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Abstract

New Zealand possesses a horizontal geodetic datum, established in 1949 (NZGDA49),
and a number of distinct vertical datums. NZGD49 coordinates remain fixed at their
originally defined values despite the fact that New Zealand is subjected to crustal
deformation. This deformation is due to the collision of the Australian and Pacific

tectonic plates at a rate of approximately 50 mm/yr.

It is proposed that New Zealand requires a new consistent three dimensional geocentric

reference system which possess the following features:

i) adynamic reference system, to account for deformation, having a defined
relationship to an ITRF.

i1) a nationwide velocity model to allow combining of different epoch data.

iii) a gravimetric geoid to convert between ellipsoidal heights and orthometric heights.

iv) coordinate transformation parameters between NZGD49 and the new system.

To address the geodetic options and implications related to the establishment of such a

reference system the following research was undertaken.

GPS can be used to monitor crustal deformation and also provide three dimensional
geocentric coordinates in terms of a global reference system. A new three dimensional
geocentric reference system for New Zealand was realised through a set of station
coordinates for the 1993 New Zealand wide GPS network. This thesis used the
GAMIT/GLOBK software suite to produce coordinates in terms of the dynamic ITRF93

at the mean observation epoch of 1993.200, with formal uncertainties of 2cm (1o).

GPS-derived ellipsoidal heights need converting to orthometric heights to be of practical
use. This conversion theoretically requires gedid heights. The capabilities and
efficiency of the UNSW RINT software was significantly enhanced as part of this thesis.
A gravimetric geoid (0.05° resolution) was computed using RINT for a test region of

New Zealand. These gravimetric geoid heights were shown to be superior to those
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derived from the evaluated global geopotential models and met New Zealand’s third

order levelling specifications.

Transformation parameters are required to allow the conversion between NZGD49 and
any new reference system. This thesis analysed existing transformation parameters
between NZGD49 and global reference systems and developed new transformation
parameters which incorporated a velocity model to account for the deformation. The
new transformation parameters produced smaller coordinate residuals than the existing

parameters but the maximum residuals were still approximately 2.0 m.
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Chapter 1

Introduction

1.1 Background

New Zealand, like many countries, possesses a post 1940 geodetic datum in which the
horizontal (or surface component) is distinct from the vertical component. While this
separation of horizontal and vertical components has been traditional, it has been

mandated by the different systems used in the two components.

In New Zealand, the horizontal geodetic datum (referred to as the New Zealand
Geodetic Datum of 1949 - NZGD49) was established in 1949 from first-order geodetic
triangulation observations that spanned the period 1923 to 1949. NZGD49 utilises the
International (Hayford) ellipsoid oriented to approximate the geoid only across New

Zealand and consequently NZGD49 is not a geocentric datum.

Unlike many other countries, such as Australia, Canada and the United States of
America, no unified vertical datum has been established in New Zealand. Rather a
number of discrete normal orthometric networks exist around local tide gauges in both
the North and South Islands. In several instances these discrete networks, built upon
first-order spirit levelling, utilise common stations however no attempt has been made to

adjust these networks to form a single unified system.

A common problem for both the horizontal and vertical datums is that New Zealand is
situated across the active Australian and Pacific tectonic plate boundary. This boundary
1s converging at approximately 50 mm/yr. The continuing and pervasive effect of this
crustal deformation has altered the relative positions of the first-order horizontal and
vertical stations; however, these first order coordinates remained fixed at their originally
defined values. The fixing of the first order coordinates is of particular concern to the

horizontal component as defined by NZGD49. With the advent of new positioning
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technologies (eg. the NAVSTAR Global Positioning System - GPS) it is relatively easy
to measure the combined effect of crustal deformation and errors in the observations and
adjustment of NZGD49. Bevin and Hall (1994) have shown that these combined effects
have introduced distortions of up to 6 m into NZGD49. Users of NZGD49 are
becoming increasingly aware of these distortions due to their own use of the new
positioning technologies. As a result there is a growing demand for either a new
consistent datum to be established or at least suitable methods be made available to

convert GPS-derived positions into NZGD49.

1.2 Thesis Aim

The aim of this research was to investigate the geodetic implications of defining a new
three dimensional, homogeneous and geocentric reference system for New Zealand
based on GPS data. The economic, cadastral and mapping implications are beyond the
scope of this thesis. This investigation into a GPS compatible reference system is
warranted when considering the increasing popularity of the GPS technology for the
positioning of physical features and transportation vehicles, both nationally and
globally. By establishing a set of coordinates in terms of a global geocentric reference
frame (the type used by GPS) 1t would be possible to investigate how the new global
reference frame and NZGD49 can be mathematically related to enable data, referenced
to either system, to be transformed between these systems. However, the ellipsoidal
heights generated by processing GPS data bear no relationship to the direction fluids
will flow due to the influence of gravity. It is therefore necessary to investigate the
determination of a geoid model for New Zealand to allow the ellipsoidal heights to be
converted to the more meaningful orthometric heights. Orthometric heights are used
extensively in the design of engineering projects (ie. road design and gravity assisted

transportation of fluids for drainage, irrigation and electricity generation).

The main aims of this thesis are:
¢ determine the geodetic requirements of modern geodetic reference system for New

Zealand.

o ecstablish a set of coordinates for New Zealand stations in terms of a global geocentric

dynamic reference system.
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establish a suitable method for calculating a gravimetric geoid for New Zealand.
improve the capabilities and efficiency of the University of New South Wales
(UNSW) gravity computation software suite known as GRAV.

investigate the transformation of coordinates between global references frames and

NZGDA49.

1.3 Thesis Method

The methods used to meet the above stated aims are:

i)

iii)

summarise the current status of the national horizontal and vertical datums in New
Zealand; outline weaknesses in both the horizontal and vertical datums that may
warrant the expense and disruption of establishing and adopting a) a new
horizontal datum, b) a unified vertical datum, or ¢) a combined horizontal and
vertical datum; with an improved understanding of the current status of the
national horizontal and vertical datums, consider what features a new reference
system should have so as to meet the requirements of new positioning and data
management technologies (ie. GPS and digital databases, respectively).

establish a set of station coordinates for New Zealand in terms of the most
accurate available global reference frame. This would expose any difficulties that
may be peculiar to New Zealand (or other countries) which has small global
extents, is located on a tectonically active plate boundary, and whose national
network of GPS data has not been attached to a global geocentric reference frame.
investigate the computation of geoid heights using global geopotential models
(GGM) and the enhancement of these GGM by using local New Zealand gravity
data.

having established ellipsoidal heights and geoid heights, derive orthometric
heights from this data. These derived orthometric heights can then be compared
with the spirit levelled (tide gauge constrained) orthometric heights at common
stations, to allow the investigation into the quality of the three heights (ellipsoidal,

geoidal and orthometric).
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v)  compare the currently available transformation parameters, and those derived as
part of this research, to convert between global geocentric reference frames and

NZGDA49.

1.4 Thesis Overview

The findings of this research have been organised into the following chapters. Chapter 2
begins by outlining the geodynamics in New Zealand, as a background to discussion on
the requirements of a modern geodetic reference system for New Zealand. A brief
history of the current horizontal geodetic datum and the multiple vertical datums are
presented. Discussion focuses on the fact that New Zealand has multiple vertical
datums and considers the establishment of a single consistent nationwide vertical datum.
The datum demands of future developments of the New Zealand survey system are then

outlined.

The establishment of a set of coordinates for New Zealand, in terms of a global
geocentric dynamic reference system are described in Chapter 3. The GPS data used is
from the 1st Order 2000 Datum Investigation campaign of March 1993, undertaken by
the Department of Survey and Land Information (DOSLI). A brief outline is given of
the major terrestrial reference frames used by GPS. A review of the problems
encountered and benefits obtained from processing the GPS data in the
GAMIT/GLOBK software suite and its resulting attachment to the International Earth
Rotation Service (IERS) Terrestrial Reference Frame of 1993 (ITRF93).

Chapter 4 contains the research into the computation of geoid heights using GGM and
the enhancement of these GGM by the use of local New Zealand gravity data. A brief
outline of the theory of computing geoid heights from gravity anomalies is given along
with the gravity data available for New Zealand. An area in the lower North Island was
selected for the testing of the enhancements to the GGM using the UNSW, Ring
Integration (RINT) based geoid software suite. Also described are improvements to the
capabilities and efficiency of the RINT software. Based on the tests a method is

proposed for the computation of a New Zealand wide gravimetric geoid. Possible
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difficulties testing a national geoid model, due to the multiple vertical datums, are

raised.

The problem of relating coordinates derived in terms of a three dimensionally consistent
ITRF93 with New Zealand’s horizontal geodetic datum (NZGD49) and multiple vertical
datums is investigated in Chapter 5. A summary of the primary coordinate systems in
geodesy is given before outlining the theory of different transformation methods. The
currently available sets of transformation parameters to convert between global
reference systems and NZGD49 are presented, along with the transformation method
and parameters developed as part of this research. Investigations then focus on the
accuracy of the coordinates obtained by applying these transformation parameters.
Alternative methods to transform coordinates between NZGD49 and global reference

systems or a new national reference system for New Zealand are discussed.

The conclusions and recommendations of this research are presented in Chapter 6.
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Chapter 2

Geodetic Setting of New Zealand

2.1 Introduction

This chapter begins by summarising the geodynamics in New Zealand, as a background
to discussion on the requirements for a modern geodetic reference system in New
Zealand. The variety of horizontal and vertical surveys that have been carried out in
New Zealand to establish the nation’s current horizontal geodetic datum and the
multiple vertical datums are outlined. Discussion then focuses on some of the obstacles

and benefits of developing a consistent vertical datum for New Zealand.

2.2 Geodynamics in New Zealand

New Zealand is located across the boundary between the Australian and Pacific plates
(Figure 2-1). The North Island is at the southern end of the Tonga-Kermadec-Hikurangi
oblique subduction zone. This subduction zone terminates at the northern end of the
South Island and dips westward from the Hikurangi Trench (ie. the Pacific plate is
subducting beneath the Australian plate). In the far south of the South Island, the plate
boundary is an opposed subduction zone dipping eastward from the Puysegur Trench
(ie. the Australian plate is subducting beneath the Pacific plate). Between these two
subduction zones, two largely submerged continental fragments, the Challenger Plateau

and the Chatham Rise, collide obliquely.

Each of the two main islands therefore have distinct tectonic features that reflect the
complex temporal and spatial interactions between subduction and strike-slip regimes
along the New Zealand portion of the Australian - Pacific plate boundary. See Cox and

Hart (1986) or Park (1988) for principles of plate tectonics.
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Geodetic setting of New Zealand
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Figure 2 - 1 : Location of the Pacific and Australian plate boundary in the New

Zealand region (adapted from Cole 1990; and Anderson and Webb
1994). The solid arrows represent the absolute plate motion (in terms
of NuvellA) at Wellington, if Wellington was located only on the
Australian or Pacific plates, based on DeMets et al. (1994). The
hollow arrows represent the relative plate motion between the
Australian (fixed) and Pacific plates, based on DeMets ef al. (1994).
Shading represents the Rise/Plateau boundaries.
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The Taupo back arc region in the centre of the North Island is an area of back arc
spreading that is occurring on land. This is one of the few occurrences in the world of
back arc spreading on land and it experiences a principle extension rate of 0.21 +0.09 x
10°%/yr (15) at an azimuth of 124 + 13°, which corresponds to 8§ + 4 mm/yr extension
over 40 km across the Taupo Volcanic Zone (Darby and Meertens, 1995). This back arc
region also has volcanic activity, which along with the spreading, is a feature associated

with back arc spreading.

The No Net Rotation NUVEL-1A (DeMets et al., 1990, 1994) plate motion model,
which is based on geophysical data, predicts that the relative plate motion between the
Pacific plate and the Australian plate is 45 mm/yr to the north of New Zealand, and
diminishes further south to 34 mm/yr (Figure 2-1). These rates are in agreement with
results from the analysis of terrestrial geodetic observations, such as those by Reilly
(1990) who reported rates between the Australian and Pacific plates of up to 58 mm/yr
in the north, and 39 mm/yr in the south of New Zealand.

For the lower half of the South Island the Alpine fault gives the appearance of being a
relatively simple collision plate boundary. However, Pearson et al. (1995) report that
there 1s some debate in the literature as to the proportion of the relative plate motion
accommodated by the Alpine fault. Estimates vary between 25% and 100% of the
relative motion, although there is general agreement that any remaining motion is
accommodated over a broad area mainly to the east of the Alpine fault. The northern
part of the South Island contains the transition zone between continental collision and
subduction on the Hikurangi Trench. In this region the plate boundary broadens from
the Alpine fault into a series of northeast-southwest trending strike-slip faults that

accommodate most of the relative plate motion (Berryman et al., 1992).

The seismicity associated with subduction zones is one of their most characteristic
features (Park, 1988). The dipping zone of earthquake foci, widely known as the
Benioff zone, constitutes one of the most important pieces of evidence for the
hypothesis of subduction of oceanic lithosphere. Benioff zones for the New Zealand

region have been reported by Reyners (1989), Anderson et al. (1993) and Anderson and
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Webb (1994). Figure 2-2 contains two examples of Benioff zones, one across the
Hikurangi Trench and one across the Puysegur Trench, for earthquakes between January
1, 1990 and February 28, 1993. The difference in the angle of the dipping zone is
indicating the variation in subduction rates at the plate boundaries. The direction shows
that for Figure 2-2A the Pacific plate is subducting under the Australian plate, while
Figure 2-2B shows the Australian plate is subducting under the Pacific plate.

In Figure 2-3 it is clear that there are lower levels of seismicity in the region of the
Alpine fault. This highlights that the Alpine fault is undergoing a different tectonic
process to regions on either side for the period 1964 to 1991. The North Island region
of the deformation between the Pacific and Australian plates is marked by a diffuse
band of earthquakes 200-300 km in width (Figures 2-2A and 2-3). This is typical of
regions where plate boundaries cross continental lithosphere, and is in contrast to the
relatively narrow bands of seismicity that mark plate boundary zones in oceanic
lithosphere, such as that to the south of the South Island (Anderson et al., 1993) (Figures
2-2B and 2-3).
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Figure 2 - 2 : Cross-sections of Benioff zones for earthquakes between January 1,
1990 and February 28, 1993, across: A) the Hikurangi Trench, and
B) the Puysegur Trench (Anderson and Webb, 1994). See Figure 2-1
for cross-section locations. The symbol size is scaled to magnitude in
unit steps of M.
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Figure 2-3 shows that for the period from 1964 to 1991 most regions of New Zealand
experienced shallow earthquakes (<40 km) of magnitude >4.0 on the Richter scale.
Only a small number of these earthquakes would have caused rupturing of the Earth’s
surface, however, they still indicate that deformation due to tectonics is occurring across
New Zealand. In support of the seismic evidence of deformation across New Zealand,
Wellman (1955), Walcott (1984), Reilly (1990) and Bevin and Hall (1994) have all
reported the existence of deformation from the analysis of geodetic measurements,

without there being any specific earthquakes causing the surface to rupture.

166* 170°E 174° 178

Figure 2 - 3 : Shallow earthquakes (<40 km) of magnitude >4.0 on the Richter scale
reported by the New Zealand Seismological Observatory from 1964
to 1991 (Anderson et al., 1993)

The results from seismicity, geodetic analysis and geological studies, show that New
Zealand experiences a variety of forms of deformation. These deformations need to be
considered in the maintenance of any new geodetic datum for New Zealand. Beavan et
al. (1996) have shown that these deformations are easily detectable within two years

using modern geodetic observing techniques (ie. GPS receivers) (see Figure 2-4).

10
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Figure 2 - 4 : Velocity field of the New Zealand GPS sites that were observed in
February 1994, 1995 and 1996 (see Appendix I) with the Otago
University site (OUSD) fixed to the NUVEL1-A pacific plate rate.
Arrows without 1 sigma error ellipses are NUVEL1-A rates. Light
grey lines running from the SW to NE indicate the approximate
position of the plate boundary. Mercator projection drawn using
GMT (Wessel and Smith, 1991). (Beavan et al., 1996).

From Figure 2-4 it is clearly seen that all stations on either the North Island or the South
Island do not experience the same deformations. Stations near the plate boundary
(approx. 100 km) are undergoing different deformation rates to those located further
away. Figure 2-4 demonstrates that using simple velocity field models such as: 1) all
North Island or all South Island stations have the same deformation rates, or ii) all
stations on one side of the plate boundary have the same deformation rates, is not valid.
Velocity field models involving greater complexity are therefore required to predict
New Zealand’s deformation.

11
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2.3 Roles of a Modern Geodetic Reference System

Conventional geodetic datums have been established in the past, as was the case for
NZGD49 (Jones 1981 and Section 2.4.2.3), by defining :

1) the size and shape of the reference ellipsoid,

11) the relationship between a physical point on the Earth’s surface (Geodetic

Origin) and the centre of the reference ellipsoid,

iii) the direction of the minor axis of the reference ellipsoid, and

iv) the origin of the longitude measurement.
These conventional geodetic datums had no observation methods available to enable the
relationship between the centre of the reference ellipsoid and the centre of mass of the
Earth to be determined. However, since the advent of space based observation
techniques, such as Doppler, Satellite Laser Ranging and GPS, it is now possible to
determine the relationship between the centre of the reference ellipsoid (Cartesian

coordinate origin) and the centre of mass of the Earth.

As a result of being able to determine the location of the centre of mass of the Earth,
reference systems have been developed which place the centre of the reference ellipsoid
at the Earth’s centre of mass (eg. World Geodetic System 1984 - WGS84). These
“geocentric” reference systems (Section 5.2.3) allow for consistent global reference
frames to be established which allow navigation and positioning, be it on land, water, or
in the air, to be undertaken in terms of a single reference frame, irrespective of location

in the world.

As New Zealand has no common land boundaries with other countries, the problem of
common stations having different geographic coordinates has not been a significant
issue. However, with the increasing importance being placed on defining New
Zealand’s continental shelf boundary the difference between nationally defined geodetic

datums is likely to become an issue for New Zealand.

There are a number of issues that need to be considered before an old datum is replaced
by a new reference system (See Section 2.3.1). The age of the datum is irrelevant,

12
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however, if the national datum is not geocentric there are increasing demands from users
of geocentric positioning technologies, such as GPS, that transformation parameters be
established to allow the conversion between the national datum and global geocentric

reference frames (ie. between NZGD49 and WGS84 or ITRF, see Chapter 5).

New positioning technologies, such as GPS and electronic total stations, are able to
measure between stations with a higher accuracy than the technology that was used to
establish NZGD49. As a result of this improvement in technology, and the continuing
effects of earth deformation in New Zealand, distortions in NZGD49 of up to 6.0 m
have been reported by Bevin and Hall (1994). Some users of NZGD49, who have
purchased these new positioning technologies, are frustrated that their surveys with
higher internal consistency than NZGD49 have to be distorted to fit this datum (GMS,
1996). Consequently, they are requesting that a new consistent datum be established in
New Zealand so that they are able to obtain the benefits of improved accuracy offered by

the new technologies.

2.3.1  Considerations for defining a geodetic reference system

Each geodetic reference system, whether it be of national, continental or global extent,
will be required to meet different user requirements, such as accuracy and consistency
with adjoining datums. As a starting point for defining a new geodetic reference system
for New Zealand, it is worth analysing the criteria that Gubler and Schneider (1994) list
as part of the establishment of the European Terrestrial Reference System (ETRS).
They are:
1) Coordinates of geodetic points determined in a particular reference system
should not vary more than inevitable over time spans of one to several decades.
ii) The realisation of the system, the so-called reference frame (namely the
geodetic points and a set of coordinates), should have a sufficiently long
lifetime 1n order to guarantee criterion 1).
iii) If the area concerned is subject to deformation, due eg. to deformation of the
earth’s crust, the reference system should provide a suitable functionality to

model the kinematics.

13
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iv) A national reference system (frame) should not differ more than absolutely
necessary from continental or global reference systems (frames).

v) On one hand, regular mathematical transformation formulae should be
provided to transform coordinates defined in the national system into
continental and global systems such as ITRS.

vi) On the other hand, it must be assured that a sufficient number of identical
points will be known in the old as well as in the new system (and frame) in
order to allow transformations between the old national system (respectively
frame) and the new one.

Gubler and Schneider (ibid.) note that some of the criteria may be in conflict with each
other and that it is important to discuss the importance of the criteria carefully before

deciding on a reference system.

Analysing the first criteria of Gubler and Schneider for its suitability to New Zealand, it
is true that prolonging the time spans between varying the coordinates of geodetic points
in a particular reference frame, does have benefits for paper-based databases. The major
benefit is that to update an entire paper-based database involves a considerable amount
of time (eg. months or years) However, with digital databases, there is no longer a need
to maintain the coordinates at fixed values for long periods of time.. If the database has
been designed to accommodate time-varying coordinates, and suitable velocity models
are available updates can be performed automatically by computers within a small

fraction of the time (eg. minutes or hours).

For the second criteria, if the reference system is designed to accommodate variation of
the coordinates of geodetic points (ie. be dynamic as ITRF is; Section 3.4.1), then the
reference frame can realise the reference system for as long as the reference system is
deemed appropriate by its users. If a new geocentric reference frame is established for
New Zealand with out the ability to accommodate deformation then the new reference
frame will not only be distorted over time, like NZGD49, but will also not remain

geocentric.

14
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In Section 2.2 it was shown that New Zealand is subjected to Earth deformation, that
can reach 50 mm/yr in magnitude. Therefore, as described in criteria three, a new
reference system should provide a suitable functionality to model the kinematics of New

Zealand.

Criteria four can be met, as suggested by Grant and Pearse (1995), by developing a
method so that a dynamic national reference system (frame) can be steered to remain
within specified limits of the global reference system (frame). An analogy is how GPS

time is steered so as to maintain a close relationship to Coordinated Universal Time

(UTC).

The transformation formulae in criteria five and six are important in New Zealand
because users of the current datum, NZGD49, will require a method for converting their
databases to any new reference system. Even if no new reference system is adopted in
New Zealand, there are growing needs for users of NZGD49 to be able to easily convert
their data into global reference frames, such as WGS84, without ambiguity or
significant loss of accuracy. Currently the only transformation parameters available for
converting between NZGD49 and WGS84 are based on Doppler derived WGS72
coordinates of NZGD49 sites (see Section 5.4.2) (These transformations are of low

accuracy and do not model local distortions).

Earthquakes can cause distortions in localised areas of the national reference frame
(geodetic network). Often in New Zealand the area affected by an earthquake is
resurveyed and adjusted back into the geodetic network holding the first-order control
station coordinates fixed at their original NZGD49 values. As a result the new survey is
distorted to fit the continually distorting first-order network. Grant (1995) proposes a
dynamic national reference system which would allow the coordinates to be changed.
This would enable a consistent reference system to be maintained more easily and be

able to accommodate earth deformation.
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2.4 The New Zealand Horizontal Datum

The establishment of a National Datum in New Zealand was driven partly by the
necessity to provide both Government and new settlers with reliable plans and
descriptions to enable the safe issue of titles to land. Lee (1978) provides an extensive
description of the Geodetic Triangulation of New Zealand from settlement until 1974.
Early geodetic surveys were localised and no serious attempt at connecting these surveys
was undertaken until 1909. A summary of early geodetic surveys as reported by Lee
(ibid.) is contained in Section 2.4.1. Geodetic triangulation designed to connect the
early isolated geodetic surveys began in 1921. This geodetic triangulation was not
completed until 1949, at which time the first geodetic datum for New Zealand was
established and called New Zealand Geodetic Datum 1949 (NZGD49) (Figure 2-5). Lee
(ibid.) provides a comprehensive description of this geodetic triangulation which is
summarised in Section 2.4.2. Geodetic surveys undertaken in New Zealand since the

establishment of NZGD49, through to early 1993, are outlined in Section 2.4.3.

24.1  Settlement and Provincial Surveys

From settlement until 1852, land surveys in New Zealand were only undertaken to assist
in the production of a plan to accompany the sale of land to settlers. These settlement
surveys did not claim to have used scientific methods or to have achieved great
accuracy. Often these surveys were inaccurate. There was no real attempt to place them
in their correct relative position or, in some cases, even to orient them. Lee (1978) notes
that bearings were often magnetic bearings and positions were often scaled from
nautical charts with no comprehensive control surveys being undertaken. Due to gaps or

overlaps in the surveys there was frequent litigation over land boundaries.

Between 1853 and 1876 New Zealand was administered by Provincial Governments -
mitially six and later nine. Each Provincial Government had its own Survey Department
which was given the task of introducing some form of order to the survey records, to at
least provide security of tenure to the land purchasers. The Provinces of Auckland,
Hawke’s Bay and Wellington made successful attempts to bring order to the survey

records through the use of triangulation schemes. Unfortunately these competently
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performed triangulation surveys suffered from the errors in the standard of length. In
other Provinces triangulation was either avoided or, when performed, was undertaken in

an inefficient manner that made it unreliable.

Rather than using triangulation, the Province of Otago introduced a system to control
the orientation of surveys. This system was introduced in 1856 by J.T. Thomson and
divided the Province into four large districts called “meridional circuits”. Within each
circuit an initial station was selected and the true meridian was determined by
astronomical observation. Bearings, but not distances, were carried outwards by
traverse from the initial station to the boundaries of the circuit, following the valleys
that were suitable for settlement. As later surveys linked these valley traverses there
was no attempt to adjust out the discrepancies. This system satisfied the immediate

needs of the time but not of the future.

In 1872 the Secretary for Crown Lands, W.S. Moorhouse, recommended that all surveys
be placed under the control of the Central Governments Surveyor-General and that

general triangulation be carried out.

In 1876 the Provincial Governments were abolished. J.T. Thomson was appointed by
the General Government as Surveyor-General. The Chief Surveyors of the Provincial
Districts remained in control of their local surveys, but were now under the direction of
the Surveyor-General. At the time of Thomson’s appointment there was a large backlog
in land purchases awaiting the demarcation of boundaries. There was therefore an
urgent need for a system that would rapidly bring all surveys under a reasonably correct
system of control. Thomson therefore rejected the general triangulation and introduced
for all districts of the colony the meridional circuit system which he had earlier used in
Otago. Twenty eight meridional circuits were established, nine in the North Island and

nineteen in the South Island.

The meridional circuit bearings were sufficient for orientation of any survey but alone
could not provide accurate coordinates. Triangulation was required for this purpose.

This was being undertaken by Provincial Districts without any specific regulation by the
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Surveyor-General. By the mid-1880s a continuous network of triangles extended for
1500 km from North Cape to Stewart Island. This network was primarily to link the

settlement surveys and was conducted to low geodetic standards.

In 1901 new second order triangulation was commenced to bring uniformity to all the
different nets of minor triangles, which had spread inland from the coastal network in
advance of the settlement surveys in the Wellington and Taranaki districts. For the
secondary triangulation two baselines were selected. These were the Eltham and
Wairarapa bases (Figure 2-5). The secondary triangulation was never intended to
replace the need for national triangulation, though the two baselines were observed to

sufficient accuracy to enable their use in the national triangulation.

2.4.2 New Zealand Geodetic Datum 1949

24.21 Field Surveys
In 1921, the work needed to provide a national geodetic control network for New

Zealand commenced.

Between 1921 and 1923 reconnaissance, network design and station marking was
conducted. In 1923 the first angle observations finally began at the Kaingaroa baseline
(Figure 2-5) and were carried to the coast northward and eastward. The sides of the
triangles averaged about 30 km in length. Until 1927, angular observations were made
in daylight using a Troughton and Simms 200 mm transit micrometer theodolite reading
to 1”. A minimum of 12 sets of horizontal angle observations and 2 sets of vertical
angle observations were observed. As the work progressed larger triangles were trialed,
resulting in an optimum length of sight of 50 km being adopted. By the end of the field
observations, latitude had been determined by astronomical observations at what
amounted to one in every three stations in the North Island and one station in every six
in the South Island, a total of 67 stations. Astronomic azimuth had been observed at 40

stations, being one in every seven stations in both islands.
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Some of the errors of triangle closure in the part of the network observed in the first few
years were large, occasionally reaching 57, although the majority were less than 1”. In
1929, a Wild T3 geodetic theodolite, reading to 0.2” replaced the transit theodolite. In
1930, observations were made at night to lamps instead of to the opaque beacons
formerly used for daytime observations. As a result of the improved triangle closures
obtained, the method of observing to beacon lamps at night was adopted. This resulted

in improved progress and triangle closures rarely exceeding 2”.

The observation of vertical angles was performed during daylight hours, as with all
observations of the early period. Vertical observations were generally observed between
midday and 2 pm, but if conditions prevented observations during the daylight hours

they were performed as close as possible to midnight.

Progress was halted in February 1931 due to the Napier earthquake and the subsequent
fires that destroyed all survey records of the Hawke’s Bay District. Once the urgent
work required to establish new survey control in the Hawke’s Bay had been completed,
further geodetic triangulation work was suspended for financial reasons during the

depression of the early 1930s.

In 1936 the first-order triangulation resumed. Observations in the form of a
quadrilateral across Cook Strait were completed in 1938. During the observation of the

South Island, the mountainous areas to the west were avoided.

The outbreak of the Second World War did little to impede progress of the survey. This
was mainly due to the fact that the threat of invasion increased the need for
topographical maps for military use. The production of “provisional” topographic maps
made the value of geodetic triangulation clear, as it allowed survey data from different

districts and different degrees of reliability to be combined.

From 1940 to 1942 the network was spread down the South Island, and across Foveaux

Strait to Stewart Island (Figure 2-5).
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Due to the War, restrictions on the availability of baseline measuring equipment meant
that the three South Island baselines were not measured until 1947. At the same time,
two of the five North Island baselines were re-observed to allow comparison with earlier
measurements. The difference between the 1947 and 1911 measurements at the
Matamata baseline indicated the more recent determination was 12.2 ppm shorter, while
the Waitemata baseline was 7.3 ppm shorter. The mean of these two determinations,

9.7 ppm, was used to correct the other North Island baselines.

The heights of the primary triangulation stations were determined by adjusting the
vertical observations. The primary purpose of determining the height of the stations was
to reduce the horizontal observations to the ellipsoid. The heights used to reduce the
observations to the ellipsoid were actually orthometric heights - not ellipsoidal heights
which were unknown. Therefore it was implicitly assumed that the geoid and the
ellipsoid were coincident (Chapter 4 indicates that this is not necessarily the case). The
height adjustment was controlled by using the heights of eight tide gauges (four in each
island) that had been determined from different 3 year observation periods (refer to

Section 2.5 for further discussion on the vertical datum).

In 1948 twelve Laplace stations were observed, with observations being completed in
early 1949. This marked the completion of the field work which had spanned 40 years

(counting the secondary triangulation baselines).

The primary triangulation was broken down to give networks of smaller triangles being
referred to secondary and tertiary networks. These three levels of triangulation were
given the terminology of first-, second- and third-order networks and originally had the

specifications as contained in Table 2-1.

Triangle Closure Length Closure | Average Length
Average Maximum of side
First-order 1” 3” I in 25000 50 km
Second-order 3 5” 1 in 10000 15 km
Third-order 5” 8 1in 5000 5 km

Table 2 -1: Original NZGD49 horizontal classification for triangulation surveys
(Lee, 1978, p. 21)
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2.4.2.2 Adjustment

The adjustment of the geodetic network observations was done with the aid of electro-
mechanical calculating machines and by the then usual method of condition equations.
For the adjustment of the observations, each of the eight base networks was regarded as
a separate figure and adjusted independently. The remainder of the network was divided
into four figures, two in each island. The part of the eastern North Island network that
had been observed to the lower accuracy using the micrometer theodolite was one of the
North Island figures. The South Island was already divided into two, with the northern

figure including the connection across the Cook Strait.

Following the final adjustment, it was possible to establish the “Geodetic Datum 1949,
and to express all the triangulation in terms of a homogeneous system over the whole
country. Stations were coordinated on the National Grids, as the North and South
Islands had independent transverse Mercator projections. The International (Hayford)
spheroid (ellipsoid) was adopted as the figure that best approximated the geoid for New
Zealand surveys. The Hayford ellipsoid had been defined by the International Geodetic
and Geophysical Union m 1924 by specifying the semi-major axis (a) and the flattening
() as:

a=6378388 m f=1/297
All measurements of length in surveys and on plans affecting land titles in New Zealand
were required in 1935 to be in terms of a chain of 100 links, having a length of 66
imperial feet. The conversion from metres to links was therefore carried using the
Sears(1927) metre-foot relationship (also known as the Sears ratio) of:

1 metre = 39.370147 inches (Sutherland, 1994)
and resulted in the value adopted in New Zealand for the semi-major axis being:

a=31706827.42 links
When New Zealand adopted the metric system in 1973, the S.I. metric-imperial ratio

was used and this ratio differs from the Sears ratio by 1.7 ppm. This introduced a

systematic scale error into NZGDA49.
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In 1973, when maps and surveys were metricated in New Zealand, one-projection
coordinate system (New Zealand Map Grid - NZMG; Reilly, 1973) was adopted for
topographical maps, but for cadastral surveys the meridional circuits were retained with

only minor amendment of boundaries in some places.

A scheme for the extension of the first-order triangulation network was undertaken in
the north-western part of the South Island during 1973. This area, like the entire west
coast of the South Island, had not been covered by the original survey (Figure 2-5).

24.23 Origin of NZGD49

When NZGD49 was established, no station was specifically designated as the Geodetic

Origin. However, Lee (1978) describes how Papatahi, near Wellington, was designated

the Initial Station as follows:
“The final solution of the triangles gave the final spherical angles and lengths of
sides, and from these the final latitudes, longitudes and azimuths could be
computed, beginning at some initial station of defined position. The station
chosen as the initial station was Papatahi, a centrally situated station of the main
net and one of the corner stations of the subsidiary net containing Kelburn. The
differences between astronomic and geodetic latitude at 65 stations and the
differences between astronomic and geodetic azimuths at 39 stations from the first
adjustment were known, and the latitude and azimuth at Papatahi were chosen so
as to make the means of these differences equal to zero. The longitude adopted

was that derived from Kelburmn. The rounded-off values are :

South latitude 41° 19> 08.9000”
East longitude 175° 02> 51.0000”
Azimuth to Kapiti No. 2 347° 55 02.500”

and these define the Geodetic Datum 1949, on which all subsequent computation

of horizontal position has been based.”

The datum for heights was described above in Section 2.4.2.1.

Jones (1981) outlines that it was obvious that it was intended that Papatahi be the Origin

since geodetic latitude, longitude and azimuth were defined there when it was
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designated the Initial Station. However, only astronomic latitude was observed at
Papatahi and thus it is not possible to determine if Laplace’s equation (5.3) is satisfied at
the station. Since the height of Papatahi was determined by trigonometrical levelling, as
opposed to spirit levelling, the relationship between geoidal and ellipsoidal height is
indeterminate or at best ill-defined. Jones (ibid.) also shows that Kelburn has a strong
case to be considered as the Geodetic Origin of NZGD49, since it satisfies all the
criteria which are prescribed for an origin (Section 2.3). That is, the Laplace equation is
satisfied and the relationship between the Origin and the centre of the reference ellipsoid

is uniquely and unambiguously defined.

With Kelburn designated as the Origin of NZGD49 the full statement on NZGD49 is
given by Jones (ibid.) as:

Reference Ellipsoid : International (Hayford) a = 6378388 m; /= 1/297
Origin : Kelburn
¢ = geodetic latitude = 41° 17°10.1916” S
A = geodetic longitude 174° 46> 05.0263” E
o= geodetic azimuth to Island Bay No.2 172° 07 02.95”

Il

It

h = ellipsoidal height = 126.66 m

The mean observed values of the above quantities are:
@ = astronomic latitude = 41° 177 03.50” S
A = astronomic longitude = 174° 45’ 59.19” E
A= astronomic azimuth to Island Bay No.2 = 172° 07’ 06.80”
H= orthometric height = 126.66 m

The following quantities may be derived from the above values:
O-¢ = -6.69”
A-A = -5.84”
A-a = 3.85”
H-h = N= 0.00m (This is an implicit assumption rather than an

explicit constraint and was actually assumed for all stations as noted earlier).

NZGDA49 is realised through the (approximately) 290 first order stations that have been

coordinated with respect to the Initial Station.

2.4.3 Post 1949 Geodetic Datum for New Zealand

Besides the sporadic second, third and fourth order densification surveys of the
NZGD49 network, there has been no specific attempt to resurvey the first order network

until the mid 1990s (Section 2.6). However, there have been geodetic surveys
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undertaken to either determine the relationship between NZGD49 and the Earth’s

geocentre or to monitor earth deformation across the country.

The determination of transformation parameters between NZGD49 and WGS72 has
been reported by Mackie (1982, 1983). These have been analysed in Chapter 5. The
parameters were developed using 18 well distributed stations (which had Satellite
Doppler-derived WGS72 coordinates) and were connected to the first order network.
The TRANSIT Doppler data was collected between 1975 and 1979 with coordinates
having an accuracy of 1.5 m in each axis (90% confidence limit). Rowe (1981)
describes the survey data used by Mackie (ibid.) along with other Doppler surveys

undertaken in New Zealand prior to 1981.

Mackie (ibid.) also proposed that a redefinition of NZGD49, based on the Doppler
positions, be adopted for scientific use in New Zealand. This new proposed datum,
referred to by Mackie as the New Zealand Geodetic Datum 1981, appears (from the lack
of literature on the topic) to have received little support from the scientific community

and has not been widely adopted.

The Earth Deformation Study (EDS) surveys initiated by the Royal Society of New
Zealand were, as their name implies, designed primarily for detecting earth deformation
using geodetic surveys. Bevin ef al. (1984) describe these EDS surveys that, where
appropriate, were designed to occupy first order stations. However, the survey data
from these networks has not been used in a readjustment of the first order stations, even

though a significant portion of the country has been reoccupied (Figure 2-5).

2.5 The New Zealand Vertical Datums

New Zealand does not have a single consistent height datum. Rather a collection of
individual datums, each based on Mean Sea Level (MSL) determined at a tide gauge.
This section summarises the historical development of these MSL datums and reports

on their internal and relative consistency.
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Due to the well established and documented principles of precise levelling, details will
not be included in this thesis (see, eg., Bomford, 1980; Bannister and Raymond, 1984;
or Vanicek and Krakiwsky, 1986).

2.5.1 Historical Development

This section on the historical development of the vertical datums is a summary of the

work by Gilliland (1987) unless specifically referenced.

In 1930-31 the Department of Lands and Survey purchased equipment suitable to
undertake precise levelling. The first recorded precise levelling was carried out by the
Department in 1932, in cooperation with the Wellington City Council. However, this
work does not form part of the national precise levelling network. The oldest records
forming part of the national system of precise levelling are from a survey in 1937
between the Lyttelton and Timaru tide gauges (Figure 2-6). The primary purpose of the
work was to coordinate the various systems of levels that had been undertaken for

drainage, irrigation and road construction on the Canterbury Plains.

Between 1940 and 1948 there were only 35 miles (56 km) of precise levelling
completed due to the more urgent mapping requirements for the war and the subsequent
land surveying demands. From 1948 until 1990 there was a continuous effort to
increase the coverage of the precise levelling networks in both the North and South
Islands. The earlier work during this period was mainly to support engineering and
mapping projects, though in 1973 the emphasis was changed to undertake the Royal
Society of New Zealand’s Earth Deformation Studies program (Section 2.4.3). The
state of the precise levelling networks at 1990 for the North and South Islands is
illustrated in Figure 2-6. Since 1990 there has been little emphasis placed on extending

or even resurveying the precise levelling network.
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The first instructions on how precise levelling should be performed in New Zealand
were 1ssued by the Surveyor General in 1948. These instructions were slightly modified
in 1972 to accommodate the introduction of automatic levelling instruments and
electronic data recording. They detail the methods and procedures required for the
placement of bench marks (BMs), field observation techniques, limits of error and other

relevant technical information.

There are two types of BMs. The first are Fundamental BMs being placed every 35-40
km. These are carefully located on solid ground, preferably rock, in substantially
constructed sub-surface concrete chambers. The second type, Standard BMs, are placed
between Fundamental BMs at intervals of about 1.5 km. Each Standard BM is generally

a stainless steel pin set in a concrete block.

There are a series of local height datums used for the levelling networks which are
defined by MSL, as determined at various locations from tide gauge observations over a
varying range of time intervals and epochs. The description of the datum for heights for
the first-order triangulation (Section 2.4.2) stations is reported by Lee (1978) as follows:
“The heights of stations are measured from mean sea level as established by
tide gauge record at the principal ports. The datum itself has usually been
derived from the records over a period of at least three years, often a random
selection of years from amongst those available. Connections between tide
gauges and the triangulation network have been made by precise levelling.
For the first computation of the heights of first-order stations, eight starting

points were available, four in the North Island and four in the South Island”.

The dates of tidal observation that were used to determine these eight stations, where
known, and also the determination of other height datums are given by Gilliland (1987)
(Table 2-2). It is important to note that the tide gauges of the principal ports used to
determine the eight datums are all in sub-optimal locations such as harbours or river

mouths rather than at the open-coast.
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Datum Name Connected to Approximate | Approximate | Observation
Triangulation at Latitude (S) | Longitude (E) | Period of MSL

Auckland Mt Eden 36° 52’ 174° 47 1909 - 1923
Bluff The Bluff 46° 34’ 168° 24’ 1918 - 1934
Dunedin Flagstaff 45° 54’ 170° 28’ unknown
Gisborne 38° 39’ 178° 02’ 1926
Lyttelton 2nd order station | 43° 38’ 172°42° 1918 - 1933
Moturiki 37° 38’ 176° 10’ 1949 - 1953
Napier Bluff Hill No. 2 39°28’ 176° 55° unknown
Nelson Botanical Hill 41° 15 173° 16’ 1939 - 1942
One Tree Point 35°52° 174° 30’ 1960 - 1963
Tararu 37° 06’ 175°31° 1922 - 1923
Taranaki 3rd order station | 39° 03’ 174° 02’ 1918 - 1921
Wellington Kelburn 41°17 174° 47 1909 - 1946

Table 2 -2 : Mean Sea Level (MSL) datum used for the precise levelling
networks. Compiled from Gilliland (1987) and Lee (1978)

All BMs within the levelling network have a reduced height referenced to a particular
datum. In some cases a BM may have its height referenced to more than one datum

(Section 2.5.2).

2.5.2  Specifications and reduction of field observations

The accuracy requirements for precise levelling are specified in terms of the maximum
allowable difference between the forward and backward measurement. The original
specifications for precise levelling set down by the Surveyor General were, when
expressed in metric units, £3mm-~/7 , where [ is the length of the levelling run in
kilometres. Since 1975, when the Royal Society’s Earth Deformation Study programme
began, the specifications were changed to +2mm+/I when using the Zeiss Ni 002

automatic level.

As with the horizontal triangulation, so too the levelling networks have different orders.

The specifications for the levelling networks to fourth order are contained in Table 2-3.

Gilliland (1987) states that the “Orthometric heights of each BM are determined

successively from selected datum or existing BM of known orthometric height
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referenced to the datum by summing the orthometrically corrected height differences”
(Appendix L). “These heights so derived are actually normal orthometric heights and
not orthometric heights since normal gravity rather than observed gravity has been used
in the correction formulae and thus no account is taken of the local variation in the
gravity field”. Section 3 of Appendix L describes the differences in the computation of

orthometric and normal orthometric heights.

Network order | Specification

first spirit levelling with a maximum close error of +2 mm+/I, where /is
the distance in km.

second spirit levelling with a maximum close error of +7 mm /] , where [ 1s
the distance in km.

third spirit levelling which does not meet 1st or 2nd order specifications,

trigonometric levelling that is well controlled with short or low
elevation observations

fourth trigonometric levelling that is poorly controlled with long or high
elevation observations

Table 2 -3 : Specifications for New Zealand Levelling Networks (Glen Rowe,
pers. comm., 1996)

If the difference between the normal and observed gravity is 10 mGal then there is an
error of only 0.001 m between the orthometric and normal orthometric heights per 100m
in measured height difference (Bomford, 1980). An extreme hypothetical case of the
difference between orthometric and normal orthometric heights for the lower North
Island test area (Section 4.4) is now presented. From Table 4-2 we take the maximum
residual gravity anomaly of 200 mGal and assume this residual occurs at the summit of
Mount Ruapehu (2800 m). Applying Bomford’s approximation results in there being an
error of 0.56 m between the orthometric and normal orthometric heights of a point at sea
level and another at the summit of Ruapehu. A more realistic hypothetical example
would be between a BM at Waiouru (950 m) and another at Bulls (50 m), with a
residual gravity anomaly of 15 mGal. In this example the difference in height between
methods would be only 0.014 m. Considering the distance of approximately 150 km
between the marks this is less than half the allowable observational errors for first order

levelling.
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As was mentioned in Section 2.5.1, it is possible for some BMs to have heights defined
in terms of more than one datum. Gilliland (1987) reported that discrepancies between
these various datums, as witnessed at common BMs (ie. a BM connected to more than

one datum) is less than 0.25 m.

During the first half of 1996 a search of DOSLI’s Geodetic Database revealed that the
largest discrepancy of a first order BM was 0.48m. Further investigation revealed that
three first-order BMs had discrepancies over 0.44 m and were all located in the Taranaki
area. When these three points were removed the largest discrepancy on a first-order BM
was 0.23 m. As there has been no direct attempt, due to practical limitations, to connect
levelling networks between the North and South Islands, investigation of discrepancies
of both islands was undertaken separately. The maximum discrepancy in the North
Island was 0.23 m from a total of 473 possible comparisons. The maximum discrepancy
in the South Island was 0.13 m. However, for the South Island all but 6 of the possible
176 comparisons in the South Island were between the Lyttelton and Nelson tide gauges.
Considering the extent of the precise levelling network along the west coast of the South
Island, a maximum discrepancy of only 0.13 m should be approached with caution until

further investigations into the South Island height networks are undertaken.

2.5.3 Future Developments

Before outlining some of the possible future developments of New Zealand’s vertical
datums it is worthwhile summarising their current state and the different user

requirements for vertical datums.

The primary intention of a vertical datum is to provide a network of points that have
their heights determined with respect to an equipotential surface. For engineering
projects concerned with the transportation of fluids or the monitoring of localised
deformations, a relative height in terms of a local vertical datum is often sufficient
except in coastal areas, where height in terms of sea level may be more important.
These users require a high relative accuracy but are not often concerned with the
accuracy of absolute MSL height. For topographic maps to meaningfully represent the

elevations of features on the Earth’s physical surface, the height of topographic features
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need to be known with respect to a physically meaningful surface, such as that
approximated by MSL. Therefore topographic map users expect that maps have relative
and absolute height accuracy. The most demanding requirements for a vertical datum
come from users wanting to monitor small vertical changes in sea level. They require
highly accurate heights in both absolute and relative terms, to enable the detection of

small (often sub-centimetre) variations in the height of their monitoring points.

New Zealand currently has vertical datums (levelling traverses) that have high internal
relative accuracy due to the tight specifications for differences between levelling runs
(Table 2-3). It has been shown in Section 2.5.2 that comparisons between the various
vertical datums at first order benchmarks can reach 0.48 m. The majority of this
discrepancy is probably due to the different procedures for determining MSL, different
observation periods, possible variation in MSL (ie. sea surface topography) and the sub-

optimal location of the tide gauges.

From the perspective of using New Zealand’s tide gauge data to monitor sea level
variations Goring and Bell (1996) are very critical. They state, “To grace the motley
collection of tide gauge recorders around the New Zealand coast with the term
‘network’ is an exaggeration, for it wrongly implies that there is some overall plan for

the collection of tidal and sea level data.”

If New Zealand is to establish a consistent nationwide vertical datum reliably related to
MSL, existing tide gauge recording facilities need to be maintained especially at sites
which have been used in the determination of a MSL datum for precise levelling
networks. This will allow future determinations of MSL at these tide gauges to be
related to earlier determinations, and will allow investigations of long term variations.
However, one needs to be able to determine whether a detected change in MSL is in fact
due to variation in the sea level or instability of the tide gauge BM. To eliminate (or
reduce) the latter, 1t is desirable to monitor the position of the tide gauge BM by means

of changes in absolute gravity, ellipsoidal height, or both.
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MSL is not an equipotential surface due to the effects of tides, weather patterns, and
location specific features. Each tide gauge is likely to determine MSL as a unique
equipotential surface. If an adjustment of all levelling traverses for either the North or
South Island is performed holding only one tide gauge BM fixed, non zero MSL heights
at the other tide gauge BMs for that island are likely to exist. One has to then decide
whether to cope with the fact that the unconstrained tide gauges will have a non-zero
height or whether to constrain the height of all tide gauges to zero in an adjustment, thus
introducing distortion to the levelling datum which will no longer represent a single

physical equipotential surface.

The current vertical datum of the United States of America is the North American
Vertical Datum of 1988 (NAVDS88), which was realised by a minimum-constraint
adjustment of Canadian-Mexican-USA levelling observations, holding fixed the height
of one primary tidal benchmark in Quebec, Canada (Zilkoski et al. 1992). Therefore,
NAYVDS8 has not been distorted to give zero heights at tide gauge benchmarks. For the
USA, the NAVDS&S replaced the National Geodetic Vertical Datum of 1929 (NGVD29).
NGVD29 was realised by constraining, in the adjustment of Canadian and USA
levelling observations, the heights of 26 tide gauge benchmarks in both Canada and the
USA. A minimal constraint adjustment of NGVD29 when compared to the constrained

adjustment results show differences exceeding 0.5 m (Zilkoski et al. 1992).

Another example of a large continental wide vertical datum is that for Australia. The
Australian Height Datum of 1971 (AHD) was realised by a constrained adjustment
which held fixed 30 tide gauge benchmarks (Roelse et al. 1975). The AHD was
designed primarily as a mapping datum, though differences between the constrained
adjustment and a minimum constraint adjustment are of the order of 1.5 m along the

East Australian coast (Morgan, 1992).

The NGVD29 and AHD examples show the magnitude of distortions in the levelling
network that result from constraining more than one tide gauge height to zero. The land
masses of New Zealand cover a considerably smaller portion of the Earth’s surface than

either the USA or Australia. New Zealand does have a reasonable geographical extent
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(approx. 13° in latitude and longitude) one could expect different tide gauges to
experience different sea surface topography (SST) effects. The tide gauges used to
determine the MSL around New Zealand have often been located poorly, such as within
harbours or river mouths, and consequently realise a MSL on different equipotential
surfaces due to these local effects on sea level. The adjustment of levelling data in New
Zealand by constraining more than one tide gauge to zero in each island is likely to

distort the datum from an equipotential surface, unless this SST is modelled.

Despite the number of stations constrained in the adjustment and the distortion that can
be introduced into the datum, both the USA and Australia have a single nationwide
vertical datum. This avoids the confusion that can exist in New Zealand, with its

multiple vertical datums.

If the SST cannot be modelled, then the MSL height of the tide gauge and corresponding
BMs will deviate from the geoid by the magnitude of the SST effect. Consequently,
gravimetrically determined geoid heights (Chapter 4) will not be able to convert
between orthometric and ellipsoidal heights to better than the magnitude of the SST
effect.

If New Zealand is to develop a single national vertical datum then the distortion
introduced by constraining different tide gauges to zero is only one of a number of
considerations that need to be taken into account. Other considerations include, but are
not limited to:
1)  whether the national vertical datum should have a known relationship to a
global reference system.
1) which method of conversion between national and regional vertical datum
heights should be applied.
ii1) which design specifications for precision and accuracy of the national datum
heights should be adopted.
1v) what will be the impact on users of changing from (and not changing from) the
current regional vertical height datums to a single national vertical datum.

v) what type of height system is to be adopted (See Appendix L for options).
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vi) whether to incorporate vertical deformation rates.

For (i), the relationship between a national vertical datum and a global reference system
1s required and can be achieved by collecting GPS data at BMs which have been
assigned heights in terms of the national vertical datum. Once the GPS data has been
processed in terms of an ITRF (Section 3.4.1) solution then the relationship between the
national vertical datum and a global reference system will be known at these common

stations.

Consideration (ii), of converting between old regional datum heights and a national

vertical datum, can be addressed by developing transformation parameters (Chapter 5).

The method used to realise the national vertical reference system will be influenced by
the consideration (iii), while considerations (iv), (v) and (vi) will dictate the type of
reference system adopted. There are a number of different vertical reference systems
available, with some being able to detect which direction water will flow due to defining
the height in terms of equipotential surfaces, while others are simply mathematical
approximations of the Earth. A brief summary of different vertical reference systems

that are commonly used in geodesy is contained in Appendix L.

2.5.3.1 Determining the Geoid position

The problem with all the heights commonly used in geodesy (Appendix L), except

ellipsoidal height, is that the position of the geoid is not directly measurable.

The geoid has conventionally been determined by observations of MSL at tide gauges,
although tide gauges only measure the relative motion between the sea surface and the
land. As was discussed earlier in Section 2.5.3, each tide gauge is likely to determine

MSL as a unique equipotential surface.

With the advent of Satellite Altimetry, it is possible to measure the instantaneous sea
surface with high spatial resolution, as opposed to tide gauges which can measure the
instantaneous sea surface with high temporal (but low spatial) resolution. Once the

Satellite Altimetry data has had the effects of the open ocean SST removed, there is still
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the uncertainty in the geoid position at the coast as the altimeter loses lock near the coast
(see Figure 4-16), and therefore is not able to measure the effects of sea bed topography

or river discharge.

Combining GPS measurements of the tide gauge position with the tide gauge
measurements of the instantaneous sea surface allows the absolute determination of the
instantaneous sea surface at the tide gauge. If the satellite altimeter orbits were
computed in terms of a GPS reference frame, then the combination of the high spatial
resolution satellite altimetry derived geoid, with the high temporal resolution tide gauge
determination of the position of the geoid, could result in an improved estimate of the
geoid position. However, the effects of coastal sea bed topography and river discharge
will remain. Zilkoski ez al. (1992) report that realistic models to compute the sea
surface topography at the tide gauge sites to required accuracy were unavailable in 1992.

This still remains the case for most of the world, including New Zealand.

Several techniques for determining a regional vertical datum have been put forward by
various authors in recent years (see Groten and Muller, 1990; Rizos et al., 1991; and
Vanicek, 1991). The general consensus was that the establishment of a regional vertical
datum needs to consider the potential differences derived from a combination of spirit
levelling and gravity data, precise altimeter data, and the tide gauge records at primary

tide gauge stations, all in a combined adjustment solution (Balasubramania, 1994).

2.53.2 Summary

The three dimensional dynamic reference system discussed in Section 2.6 and Chapter
3, 1s primarily going to be established using GPS data. The heights from processing the
GPS data in terms of a global reference frame will be ellipsoidal. As discussed in
Appendix L, ellipsoidal heights bear no relationship to the geoid (ie. MSL), which is the

surface the general public expects heights to refer to.

Orthometric heights do meet the general requirements for heights and can be determined
from ellipsoidal heights if the geoid height is known to sufficient accuracy (see Chapter
4). However, geoid heights are not yet known to sufficient accuracy to combine with

ellipsoidal heights and match the spirit levelled heights for high precision projects.
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The development of a single New Zealand wide vertical datum is warranted due to the
limitations, for general use, of the ellipsoidal height determined as part of the three
dimensional dynamic reference system. Any attempt to establish a single national
vertical datum for New Zealand, should consider including the potential differences
derived from a combination of levelling and gravity data, precise altimeter data, and the
tide gauge records at primary tide gauge stations. These data should be combined in an
adjustment which is consistent with the development of any scientific global vertical
datum, such as that proposed by Rapp and Balasubramania (1992) and the first iteration
by Balasubramania (1994).

2.6 Development of the New Zealand Survey System

New Zealand’s current cadastral survey methods have ensured that property boundaries
move generally in concert with the landowners’ assets, and therefore by spatial
definition the cadastre is currently dynamic (Grant, 1995). With the establishment of a
digital cadastral database (DCDB) in New Zealand coordinates have been assigned to
the cadastral boundaries. The current spatial accuracy of the DCDB is not sufficiently
high enough to be significantly affected by the dynamics of the cadastre (Grant, 1995).
However, with the passing of time and the expected improvement in the spatial accuracy
of the cadastral coordinates, the situation will arise that these coordinates will not
represent the physical location of the landowners’ boundaries and assets. This is, of
course, undesirable for both the landowners and the government, as the cadastre is

intended to record the landowners rights of the land and avoid litigation over disputed

boundaries.

If the coordinates held in a future cadastral survey database are going to become and
remain definitive, then the cadastre, and the geodetic datum to which the cadastre is
related, need to be able to account for the spatial dynamics of the physical
monumentation and landowners’ assets. The problems arising from a dynamic digital
coordinated cadastre will not be canvassed in this thesis, these matters are canvassed in

Grant (1995). This thesis concentrates on the issues affecting the incorporation of
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coordinate dynamics into the establishment of a modern geodetic reference system for

New Zealand.

Before dynamics can be incorporated into a geodetic datum, it is necessary to determine
the quality of the current geodetic datum (NZGD49) and whether or not a new datum
needs to be established. In New Zealand, the 1st Order 2000 March 1993 GPS survey
was the first campaign undertaken specifically by DOSLI for datum investigations.
These datum investigation studies have been continued by DOSLI (and since July 1996,
by Land Information New Zealand - LINZ) with further GPS campaigns as summarised
in Appendix I. Analysing the results of the March 1993 campaign, Bevin and Hall
(1994) have shown that distortions of up to 6.0 m exist in NZGD49.

The study by Bevin and Hall (ibid.) was primarily concerned with establishing the
magnitude of distortions within NZGD49. However, the March 1993 GPS data
provided an opportunity to coordinate the stations occupied in a global dynamic
reference system, such as ITRS. Chapter 3 reports on the establishment of coordinates

in terms of ITRF93 at the epoch of 1993.200 for these GPS stations.

It is anticipated that a new geodetic datum for New Zealand will be a geocentric
reference system tied to ITRS. However, it is still being debated whether or not the
reference system will be ‘fixed’ or ‘dynamic’ (Grant, 1995). Irrespective of this
decision, a velocity model to monitor the motion of the ground marks will be required.
This will enable observations collected over several years (Appendix I) to be adjusted in

terms of a common epoch.

Any new horizontal, vertical or three dimensional geocentric geodetic reference system
should not ignore the fact that points on the surface of the Earth are moving. The
general public is likely to assume that coordinates and the associated features are fixed,
while in reality the feature changes position while the coordinate remains unchanged.
Therefore, it 1s better to begin educating people about the reality of changing
coordinates. The user community should be educated to accept that if coordinates are
defined as having an associated date, then conversion to common epochs can be

accommodated (where required) by means of kinematic models. If a new geocentric
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reference system is fixed rather than dynamic (ie. does not account for crustal
movement) then it will slowly become non-geocentric, out of terms with global
reference systems and thus degraded. As computer technology is still developing
rapidly, there is no reason to doubt that the computational problems of maintaining a

dynamic reference system will be quite manageable in the future.

2.7 Summary

New Zealand is located across the active boundary between the Australian and Pacific
tectonic plates. This pervasive deformation provides a challenge to the maintenance of
a national geodetic datum. The current horizontal geodetic datum (NZGD49) ignores
the fact that this deformation is distorting the network. Bevin and Hall (1994) have
shown that distortion of up to 6 m is present in NZGD49 due to the original observation
and adjustment methods, combined with the deformation effect when compared to the
GPS results. LINZ is undertaking GPS campaigns in New Zealand to further investigate

NZGDA49 distortions and the possible establishment of a new dynamic reference system.

A new GPS derived national reference system would be consistent in the horizontal and
vertical but the vertical component would produce ellipsoidal heights. As ellipsoidal
heights bear no relationship to the geoid, it was argued that a consistent orthometric
height datum should also be established for New Zealand. This new vertical datum

would replace New Zealand’s current collection of individual datums.

The establishment of a single nationwide vertical datum, based on orthometric heights,
will still result in users of the GPS technology wanting to be able to convert their
ellipsoidal heights into orthometric heights. For this conversion the geoid height is
required. Investigations into the determination of the geoid height for New Zealand are

contained in Chapter 4.

As part of the investigations into the possible establishment of a dynamic reference
system for New Zealand, the data from the GPS campaign used by Bevin and Hall
(1994) was processed in terms of the dynamic ITRF. Discussion on processing this data
and results are contained in Chapter 3.
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Chapter 3

Dynamic Coordinates for New Zealand from GPS data

3.1 Introduction

New Zealand’s original, and only, national geodetic datum, New Zealand Geodetic
Datum 1949 (NZGD49) is the result of terrestrial geodetic surveys undertaken from
1930 to 1946. A full description on NZGD49 can be found in Lee (1978) which was
summarised in Section 2.4.2. Since the time of these surveys, the land mass of New
Zealand has continued to be subjected to earth deformation, primarily a result of the
collision between the Pacific and Australian tectonic plates, which has a rate of about 50
mm/yr (Section 2.2). It can therefore be expected that between 1949 and 1995 there will

have been deformation of up to 2.5 m between the east coast and the west coasts of New

Zealand.

The NZGD49 coordinates, which form the datum for cadastral surveys in New Zealand,
have been held fixed at the values determined in 1949. Due to the improvement in the
accuracy and precision of survey techniques and the continued deformation of the New
Zealand crust, surveys carried out today do not fit with the coordinates of the primary
NZGDA49 stations. When NZGD49 is replaced, the new reference system should attempt
to take into account the effects of earth deformation (ie. have a velocity model), to
ensure that large step changes are infrequent in the case of a static reference system, and
in the case of a dynamic reference system the velocity model will be an integral part of

the whole reference system definition (Section 2.6).

This chapter will look at the role GPS can play in providing coordinates for stations in
New Zealand. These coordinates are in terms of the global dynamic reference system,
ITRS (International Earth Rotation Service (IERS) Terrestrial Reference System). A

summary will be presented of ITRF93 coordinates obtained by processing, using the
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GAMIT / GLOBK software suite, a set of nationwide GPS data collected by the
Department of Survey and Land Information (DOSLI) in March 1993.

The results and discussions presented in this chapter are an extension to those contained
in Pearse and Morgan (1995) and Morgan ef al. (1996). These two references should be
consulted for general information on the processing of the GPS data in the GAMIT/
GLOBK software suite, while this chapter will describe details of the NZ GPS data
(Section 3.2) and processing (Section 3.5).

As the GPS theory and technology is now well advanced there is numerous literature
available to the reader requiring comprehensive details on GPS. Therefore it is not
necessary to provide a detailed description of GPS in this thesis. Readers requiring
further details are directed to one of the following texts (which is not intended to be a
comprehensive list): King ef al.(1985), Wells ef al. (1986), Seeber (1993) or Kaplan
(1996). Another useful source of information is Morgan ef al. (1996).

3.2 New Zealand GPS data

In March 1993 DOSLI undertook a 13 day GPS campaign across New Zealand. The
GPS network was designed for the six Ashtech LM-XII GPS receivers, which DOSLI
had available at the time of the campaign. The network design was influenced, firstly by
the requirement to occupy at least one first or second order station (Table 2-1) in each of
the 28 meridional circuits (Section 2.4.1), which also had relatively easy access. The
second influence was the intended GPS post processing software, the Ashtech
proprietary software GPPS, that DOSLI had available in early 1993. GPPS’s main
restriction was that a 24 hour data session could not be processed unless broken into
sub-sessions where at least one satellite was present for the entire sub-session. Thus the

observations were chosen to consist of two four-hour sessions per day.

For the period 8™ through 20" March (DOY 067 to 079), 1993, the best satellite
constellations for two four-hour observation sessions was from 0700 to 1100 and 1200

to 1600 Coordinated Universal Time (UTC) (Figure 3-4). This nine hour time span
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(0700-1600) in terms of New Zealand local summer time (UTC + 13 hours) was from
2000 to 0500. Thus GPS observations could be taken during, what was considered to
be, the more stable ionospheric conditions of the evening and early morning, allowing the

transportation of the GPS equipment during the daylight hours.

Three New Zealand fiducial sites were chosen to form the common sites between
observation sessions. These local fiducial sites were Whangaparaoa (D045) in the
Auckland area, Three Sisters (D474) near Invercargill and Heaphy House (WELL =
D475) in Wellington (Figure 3-1). As the four roving receivers were moved each day to
new sites in the South Island, the two local fiducial sites D474 and WELL were
operated. When the roving receivers were in the North Island, the local fiducial sites
D045 and WELL were operated. The local fiducial sites were operated continually
throughout the nine hours of observing each day (0700 to 1600 UTC). The four new
sites for each day were operated for the first four hours (0700 to 1100 UTC) after which
they were switched off for an hour, during which time the antenna was set up at a new
height. They were then switched on for the second four hour session (1200 to 1600
UTC). The reason for altering the antenna height was to try to detect incorrect height of
instrument measurements through having a second occupation at each site. The
procedure of altering the antenna height was also adopted in the “TREX’ campaigns in
Southern California but has subsequently been abandoned (Peter Morgan, pers. comm.,
1996). The altering of the antenna height created some processing problems in the
GAMIT software (Section 3.5.1). It is no longer the recommended procedure (see
Appendix I). Another problem associated with the switching off the receiver is that the

clock characteristics had to be re-established.

For the original design of the March 1993 campaign, the reader is directed to Bevin and
Hall (1994). These authors processed the data in Ashtech’s GPPS software for the
purpose of detecting distortions in NZGD49 rather than establishing a set of dynamic
coordinates. A summary of the GPS data available from the March 1993 New Zealand

observation campaign is contained in Appendix A.
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Figure 3 - 1 : Distribution of New Zealand GPS sites having data available for
processing in GAMIT from the March 1993 Campaign. The 3 local
fiducial sites (D045, D474 and WELL) are shown as diamonds, while
the local sites are shown as circles. The following sites also had
receivers on eccentric marks: at WELL was D482, D483 and D485;
at D072 was D484; and at D473 was D481. Mercator projection
drawn using GMT (Wessel and Smith, 1991).

Due to the remoteness of most of the sites, field processing of the data was not able to
be undertaken to verify the quality of the data being collected each day. The data was
therefore posted to DOSLI’s Geodetic Branch in Wellington for rapid quality control
processing. With delays in getting the data to a Post Office and the mail delivery time, it

was normally about a week before all the data from one day’s observations could be
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processed with GPPS to check the quality. As a result of the delay in receiving the data
at the central site and the logistics of distributing replacement receivers to the remote

sites, it was ten days before one faulty receiver (alias Ashtech number 4) was replaced.

Unfortunately none of the data collected by the Ashtech number 4 receiver was able to
be processed due to the poor quality of the data. Section 3.5.3.1 outlines the
unsuccessful processing of this data in GAMIT, with graphical examples of the data
given in Appendix E. The replacement receiver was a Leica Wild GPS-System 200.
However, at the time of the campaign no data from a Leica receiver had been processed
in the Ashtech GPPS software by DOSLI. Therefore a second Leica receiver was set up
eccentric to the WELL site and operated for the last three days of the campaign as a base
site for the roving Leica recetver. Subsequently it was established that the Leica data
was able to be combined with the Ashtech data and processed successfully in GPPS.
This is also the case for processing in the GAMIT / GLOBK software suite (see
Appendix D).

On day 069 the receiver (alias Ashtech number 1) which was stationed at WELL for the
entire campaign, had a poor signal to noise ratio detected for all satellites. The pre-amp
was replaced before observations began on day 070. Unfortunately none of the data
collected by the Ashtech number 1 receiver was able to be processed for DOY 067, 068
or 069 (Section 3.5.3.1).

At the time of the campaign, the GPS constellation consisted of a total of 22 operational
satellites, consisting of 4 Block 1 satellites (PRN 03, 11, 12, 13) and 18 Block II
satellites (PRN 01, 02, 14 to 29), all of which were observed.

The data from the Ashtech receivers were converted from the Ashtech format to RINEX
(Receiver Independent Exchange Format) using the Ashtech software, ASHTORIN.

The Leica data was converted to RINEX using the conversion module in the Leica SKI
software. This RINEX data was then imported into the GAMIT software for processing
(Section 3.5).
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3.3 Global GPS data

The GAMIT software used to process the GPS data (Section 3.5) allows the estimation
of three-dimensional relative positions of ground stations and satellite orbits for each
session, normally 24 hours. For the estimation of satellite orbits, the network of GPS
sites needs to cover a significant portion of the earth’s surface, ideally the whole globe.
The New Zealand network alone was too small so additional GPS data from four sites,
one in Tahiti (PAMA), two in Australia (DS42, HOB1) and one in Antarctica (MCMU),
were included to give a coverage of about 1/12 of the earth’s surface (Figure 3-2).
These four additional sites, referred to as regional fiducial sites, allowed for orbit
estimation in the processing of the New Zealand data (Section 3.5). Additionally and
perhaps more importantly, they also enable the New Zealand network to be correctly
placed in terms of the global reference frame thereby overcoming all relative and origin
issues. The raw RINEX data for the four additional New Zealand regional fiducial GPS
sites was obtained from CDDIS, which is one of the global data centres of IGS

(International GPS Service for Geodynamics, refer Section 3.4.2).

GAMIT is essentially a relative processing system dependant on a priori values for
station coordinates and earth rotation parameters as well as the mode of defining the
geocentre. These dependencies are controlled or solved by referencing the GAMIT
solution to an external framework. The most efficient way to establish the origin is to
adjust the daily GAMIT solutions (generated in a loosely constrained system where the
network strength is maintained) together in GLOBK where the coordinates of stable

reference frame sites are constrained.

The attachment process requires at least one station, though in order to minimise errors
at this single attachment station it is usual for 3 or 4 stations to be used (Morgan ef al.,
1996). To attach the New Zealand network (Figure 3-1) to an ITRF, the closest IGS
core site (Table 3-3) of DS42 was included in the daily New Zealand GAMIT solutions,
along with the MCMU and PAMA sites, which form part of the Scripps Institution of
Oceanography (SIO) global daily solution. Since these stations were adjusted
simultaneously with the IGS core stations they can be assumed to be in the same system

but with increased uncertainty. The Cooperative International GPS Network (CIGNET)
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site at Hobart (HOB1) was also included to increase the regional network strength,

through the additional double difference observations between the New Zealand regional

fiducial sites, local fiducial sites and local sites.

Figure 3 - 2 : The four regional fiducial sites, shown with triangles (PAMA, DS42,
HOB1 and MCMU), needed to allow orbit estimation and
attachment to the global reference frame for the March 1993
campaign. The sites shown with circles form part of the SIO global
network of GPS sites, while WELL (the diamond) is a local fiducial

site. Orthographic Azimuthal projection drawn using GMT (Wessel
and Smith, 1991).

As daily global GAMIT solution files, which included all 13 core IGS sites plus
additional global GPS sites (Figure 3-3), were available from SIO, this global framework

was used to attach the New Zealand network to an ITRF realisation. The data for these
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additional Global GPS sites from SIO were not in the RINEX format but in the
processed GAMIT output H-file format, and as such were combined with the New

Zealand regional network during the network adjustment using GLOBK (Section 3.5.2).

Figure 3 - 3 : Distribution of SIO’s global network of GPS stations at 1993, which
include the 13 core IGS stations. Notice the bias towards northern
hemisphere stations. Winkel Tripel projection drawn using GMT
(Wessel and Smith, 1991).

3.4 International Terrestrial Reference Frame Coordinates

The determination and maintenance of a Conventional Terrestrial Reference System
(CTRS) (Section 5.2.2) requires extensive collaboration between different international
organisations operating various high-precision techniques in space geodesy. In order to
coordinate the work of the various international organisations, a central organisation has
been established, which currently is the International Earth Rotation Service (IERS).
Section 3.4.1 summarises the work of IERS in determining and maintaining a CTRS.
With the rapid rise in the use of GPS for geodynamic studies a separate organisation has

been established to coordinate global GPS activities and is called the International GPS
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Service for Geodynamics (IGS). A brief summary of IGS activities to assist in

maintaining a CTRS is contained in Section 3.4.2.

Neither Section 3.4.1 nor 3.4.2 are intended to be a comprehensive description of all the
activities performed by IERS and IGS. They merely provide an outline of the necessary
information required in subsequent sections of this thesis to understand how the New
Zealand GPS data has been coordinated in terms of a CTRS. Detailed information is
given in the annual reports of each organisation and the special publications of each
service. These two summary sub-sections were compiled from IERS (1996) and

Zumberge et al. (1995), respectively.

With the extensive use of GPS, a commonly used realisation of a CTRS is that of
WGS84. This CTRS is different from the ITRF series and must not be confused with it.
Section 3.4.3 outlines briefly the WGS84 reference frame, which is maintained primarily

to support the US Department of Defense use of GPS for navigation.

Transformation parameters required to convert between ITRF and WGS84 realisations

are included in Section 5.4.1.

3.4.1 International Earth Rotation Service (IERS)

IERS was established during 1987 by the International Astronomical Union (IAU) and
the International Union of Geodesy and Geophysics (IUGG). TERS commenced
operation on January 1, 1988. The IERS centralised the distinct and different services
offered by the International Polar Motion Service (IPMS) and the Earth Rotation Section
of the Bureau International de I'Heure (BIH) (Yokoyama, 1991).

One of the responsibilities of [ERS is the definition and maintenance of a CTRS, based
on observing stations that use high-precision techniques in space geodesy (IERS, 1996).
The CTRS maintained by the IERS is known as the IERS Terrestrial Reference System
(ITRS). Since 1988, IERS has realised the ITRS by producing a yearly set of global

coordinates and velocities (ie. X, Y, Z, X, Y, Z). These coordinates are obtained by
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combining various SLR, LLR, VLBI and more recently DORIS and GPS solutions to
obtain an IERS International Terrestrial Reference Frame (ITRF) which is qualified by a
year (for example: ITRF88 and ITRF89).

For each space geodetic technique (ie. SLR, LLR, VLBI, DORIS and GPS; see Seeber,
1993) there are a number of analysis centres around the world. These process the data
using their own choice of software but comply with the standard reference system as
defined by the IERS Standards (McCarthy 1989, 1992, and 1996). These individual
realisations are adjusted by IERS Terrestrial Frame Section (ITFS), using a least-squares
technique, to obtain station coordinates and an associated velocity field at an epoch. The
reference epoch varies between ITRF solutions, though it is common for a second set of

coordinates and velocities to be defined for each ITRF at the epoch of 1988.0.

Prior to ITRF91, no velocity field had been derived so the AMO-2 model (Minister and
Jordan, 1978) was used to account for the time evolution of ITRS. ITRF91 was the first
realisation of ITRS to derive a global velocity field by combining site velocities estimated
by SLR and VLBI analysis centres (Boucher and Altamimi, 1993). To ensure the
condition of no-net-rotation of ITRS with respect to the earth's crust, NNR-NUVEL1
(DeMets et al., 1990) was selected as the reference motion model of ITRF92. For
ITRF93 the more recent geophysical reference motion model, NNR-NUVELIA
(DeMets et al., 1994) was used instead of NNR-NUVELI1. This was due to the recent
re-calibration of the geomagnetic time scale which resulted in the two NUVEL models
being different by a factor of 0.9562. NNR-NUVELIA, like NNR-NUVELL, is a
horizontal motion model only. For consistency of the three-dimensional nature of ITRS,
the vertical velocity 1s set to zero with an assumed error of 1 cm/year (Boucher ef al.,
1994). Further details on specific ITRF solutions are given in the appropriate IERS
technical notes (ie. for ITRF93 refer Boucher ef al. 1994).

For the determination of a station’s position in an ITRF, the station is assigned to a
specific tectonic plate. The point position of the station at time, #, on the surface of the

solid earth is given by McCarthy (1996) as:
X=X, +V,(t-1,)+ 2 A% () 3.1)
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where
AX, = corrections due to various time changing effects, ie. residual solid Earth
tide displacement, ocean loading, post glacial rebound and atmospheric
loading. These effects are assumed to be zero in this research due to both
their periodic nature and the level of modelling adopted in GAMIT.
)?a = position at epoch 7, .
VO = velocity at epoch 7, .

initial reference epoch (ie. 1988.0).

N
I

New Zealand's ITRF92 station Wellington (WELL) is assigned to the Australian plate
(Boucher ef al., 1993) but is clearly not consistent with this assumption (Morgan ef al.,
1996). The Wellington station, like most of New Zealand, is located within the
deforming zone between the Australian and Pacific tectonic plates (Section 2.2).
Assigning Wellington to either plate is likely to be incorrect, as shown by Morgan e# al.
(ibid.). Current ITRF’s accommodate the horizontal velocity of sites on plate
boundaries by assigning a larger a priori standard deviation (10 cm/year) to the site’s
velocity than for sites located on the rigid part of a tectonic plate (3 mm/year) (Boucher
et al., 1994). Therefore to improve the reliability of a New Zealand station’s connection
to an ITRF solution when processing multiple campaigns, a specific plate motion or earth

deformation model for New Zealand needs to be developed.

However, as the March 1993 New Zealand GPS campaign only spanned 13 days and
coordinates were determined at the mid-observation epoch of 1993.200, reliable velocity
estimates were required only for those ITRF sites used to attach the New Zealand
network to ITRF93. Additionally, the attachment to sites such as PAMA and DS42 on
rigid tectonic plate interiors ensures the correct placement of the New Zealand epoch

solution without reference to WELL.

3.4.2  International GPS Service for Geodynamics (IGS)

The International GPS Service for Geodynamics (IGS) began formal operation on
January 1, 1994. This formal operation followed testing and pilot phases that
commenced in June 1992 and formal establishment of IGS in 1993 by the International
Association of Geodesy (IAG). IGS, like IERS, is a member of the Federation of
Astronomical and Geophysical Data Analysis Services (FAGS) and it operates in close
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cooperation with IERS. This brief history on the establishment of IGS and the following

extracts of IGS operations were obtained from Zumberge ef al. (1995).

The primary objective of IGS is to provide a service to support, through GPS data

products, geodetic and geophysical research activities. To help meet this objective IGS
collects, archives and distributes GPS observational and product data sets from a broad
spectrum of international GPS activity. To enable the successful and timely delivery of
these products IGS has a number of components which include data collection, archive

and analysis centres.

The data provided by IGS and IERS and their close cooperation greatly facilitated the
determination of ITRF coordinates for New Zealand sites (Section 3.5). This was
primarily because SIO is an analysis and data collection centre for IGS. Therefore SIO,
through IGS, deduces coordinates and velocities for the 13 core IGS sites which are
supplied to IERS. The SIO GPS realisation of an ITRF is combined with other IGS
analysis centres realisations, which are then analysed by IERS along with the SLR, LLR,
VLBI and DORIS data. This analysis by [ERS provides a check on how well GPS
realisations of an ITRF compare with other high-precision techniques in space geodesy.
The SIO daily global GAMIT solutions, which were considered by IERS as part of their
realisation of the ITRF, were available for the period of the New Zealand campaign.
Their adjustment with the daily GAMIT solutions for local New Zealand network

provided an efficient and consistent connection to the chosen ITRF (Section 3.5.2).

3.4.3 World Geodetic System 1984 (WGS84)

The United States Defense Mapping Agency (DMA) has been involved in the
development of World Geodetic Systems since 1960. The World Geodetic System that
was established in 1984 (WGS84) used Doppler data from the US Navy Navigation
Satellite System (NNSS). WGS84 was primarily developed to support the US DMA’s
mapping, charting and geodetic products and includes in its definition a geocentric
coordinate system, a reference ellipsoid, a consistent set of fundamental constants, and

an Earth Gravitational Model and associated global geoid (DMA, 1991).
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The WGS84 reference frame constitutes a mean or standard earth rotating at a constant
rate around a mean pole of rotation fixed in time. Its origin is at the earth’s centre of
mass, and the axes are coincident with the Conventional Terrestrial System as defined by
BIH for the epoch of 1984.0. The fundamental parameters and reference ellipsoid of
WGS84 are the same as the [IUGG’s defined Geodetic Reference System 1980 (GRS80),
as described by Moritz (1980a), except for one parameter, C ,. WGS84 defines the

normalised second degree zonal harmonic coefficient of gravitational potential constant,

C, (=-J,/+/5), instead of the dynamical form factor, J,, of GRS80. The indirect use of

5 thus introduced a truncated difference (after the eighth digit) in the flattening, £, for
the WGS84 ellipsoid from the f of GRS80 ellipsoid (Kumar, 1993). DMA (1991) gives
the full list of adopted constants for WGS84, while further information on GRS80 is

given in Section 4.2.1.

The WGS84 reference frame, now over a decade old, was designed only to have an
accuracy of 1-2 metres (1 sigma), which is more than adequate even for large scale
mapping (DMA 1991). However recent geodetic requirements of the Department of
Defense (DoD) has required accuracy at the decimetre level. By comparing the four
defining parameters (¢, GM, J, and ®; Section 5.2.3) of WGS84 with the more recently
adopted scientific community values of IERS (McCarthy, 1992), it was established that
the GM value was the only parameter warranting revision. The main reason for updating
the original WGS84 GM value was to reduce the 1.3 metre radial error (bias) in all DoD
GPS orbit fits. The GM value of the IERS standards was adopted as the new WGS84
GM (Malys and Slater, 1994).

At the time of redefining the GM parameter for WGS84, the coordinates of the five Air
Force and five DMA GPS monitor stations were updated. This was achieved by
simultaneously processing GPS data from the Air Force, DMA and selected IGS sites
during the 1992 global IGS campaign. The adjustment of these Air Force and DMA
sites was performed while constraining a selection of the IGS sites to their ITRF91
values. This resulted in a new realisation of W(GS84 through the adoption of new
coordinates for the 10 DoD GPS tracking stations. The new realisation of WGS84 is
reported by Swift (1994) to be coincident with ITRFO1 at the order of 10 cm. This
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refined WGS84 reference frame, along with the improved GM value, have been given the
designation WGS84 (G730), and was placed into DMA’s orbit processing from the first
day of GPS week 730 which corresponds to 2 January 1994 (Malys and Slater, 1994).

3.5 GPS data processing with the GAMIT / GLOBK suite

The processing of the GPS data reported in this thesis used the GAMIT component of
the suite (Section 3.5.1) to generate daily solutions. These daily solutions were then
combined to obtain the final station coordinates in terms of ITRF93 by using the

GLOBK component (Section 3.5.2).

The March 1993 New Zealand GPS data was processed using strategies consistent with
those of Morgan et al. (1996). This led to the data being incorporated with the work of
Morgan et al. (ibid.) and resulted in coordinates being published in terms of ITRF92 at
the epoch of 1994.0, in accordance with their contract with the Inter-governmental
Committee on Surveying and Mapping (ICSM). However during the time the New
Zealand data was being processed ITRF93 was established and it was decided that it was
more appropriate to determine coordinates in terms of this new reference frame at the
mean observation epoch of 1993.2 (DOY 073). A summary of this determination of
ITRF93 coordinates has been reported by Pearse and Morgan (1995).

The following sub-sections contain a detailed description of how the results reported by
Pearse and Morgan (ibid.) were generated and the necessary variations to the strategies

of Morgan et al. (ibid.) due to the nature of the New Zealand data.

3.5.1 GAMIT processing of daily solutions

The GAMIT software (King and Bock, 1994) is a comprehensive GPS analysis package,
jointly developed at the Massachusetts Institute of Technology (MIT) and Scripps
Institution of Oceanography (SIO), University of California at San Diego. This suite of

software was used to compute the daily network solutions reported in this thesis.
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When the processing of New Zealand data began in GAMIT, the associated daily
solution adjustment software GLOBK, ver. 3.0 (Section 3.5.2), did not allow the
adjustment of multiple occupations of the one station in a 24 hour period, if the heights
of the antenna varied. This unfortunately meant that the initial processing in GAMIT had
to be done using two sessions per day. As satellite orbits, which need as long a span of
data as possible, were being estimated, the cutting of the 24 hour global data sets into
approximately two, 12 hour sessions, was less than ideal. Figure 3-4a shows the splitting
of the data with two sessions per day for processing. This method was aimed at
combining the solutions from the two sessions using GAMIT, but required three GAMIT
runs. One run was required for each of the sessions and the third run joined the sessions.

Days 067, 070 and 078 were processed as 2 sessions.

In the release of GLOBK version 3.2 a new feature to account for sites affected by an
earthquake was included. This earthquake file appeared to allow sites to be renamed in
the same session and for the height of the receiver to change. Thus the remaining 10
days were processed in GAMIT as single 24 hour sessions. The second session of a site
in New Zealand was given a new name in GAMIT. For example, D309 was called E309
for the second session. Figure 3-4b shows the continuous data within one session and
two names for each local site. This method required only one GAMIT run and meant no
observations were broken during the days observations, resulting in longer data spans
which increased cycle-slip detection and strengthened the orbit estimation. However,
during the adjustment of the data in GLOBK, it was discovered that the earthquake file
could only be used with separate session data. To overcome the problem of joining the

two sets of local site coordinates the GLORG option of GLOBK was used (Section
3.5.2).
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a)
Session 1 Session 2

UTC 0000 0700 1135 1140 1600 2400
Regional Fiducial | 1 F g
Local Fiducial F 1+ .
Local Site (D309) F 1 F :

b)

Session 1

UTC 0000 0700 1135 1140 1600 2400
Regional Fiducial | y
Local Fiducial

-1
.

Local Site (D309) —
Local Site (E309) Food

Figure 3 - 4 : The different methods for processing the data in GAMIT. a) has two
sessions with the Regional and Local Fiducial data being split. b) has
one session with no splitting of the observed data. Examples of sites
for each category are :- Regional Fiducial = DS42, MCMU; Local
Fiducial = WELL, D045, D474; Local Site = D072, D309, E309.

During the processing of the GPS data, GAMIT’s automatic data editing module
(AUTCLN) was developed to an operational level. Initially, days were processed using
SINCLN, which operates on one-way residuals. AUTCLN operates on both single and
double differenced residuals. AUTCLN is able to detect cycle slips and questionable
data more reliably than SINCLN, due to its use of all combinations of the available phase
and pseudo-range data. The use of AUTCLN in the processing of the data significantly
reduced the amount of time required to manually edit cycle slips in the data using
CVIEW. This meant that it became possible to generate a list of the worst cycle slips,
rather than searching all combinations producing double difference observations to find

the cycle slips.

CVIEW is the interactive editing module of GAMIT. CVIEW can display on the screen

almost all combinations of phase and pseudo-range residuals, as well as showing clock
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behaviour and satellite sky tracks. The main feature of CVIEW is that it allows
interactive editing of data. That is cycle slips can be repaired and questionable data
unweighted. The combinations of data primarily used to edit the data were:

L1 = L1 phase or carrier beat phase of the 1575.42 MHz signal (f1)

L2 = L2 phase or carrier beat phase of the 1227.60 MHz signal (f2)

LC = Jonospheric free combination =13 =2.546 L1 - 1.984 L2

LG = Geometry free combination=L4=12-0.779 L1

WL = Wide-lane combination = L2 - L1 + (P1 + P2)(f1 - f2)/(f1 + {2),

where P1 and P2 are the precise (P-code) pseudo-range of both the GPS

frequencies, f1 and f2 respectively.

The LC combination has the benefit of almost completely eliminating the effects of the
ionosphere for long baselines but results in an increase in the effect of other error sources

(ie. a larger noise on the generated signal since adding noise :

J (2.546 1.1)* +(1.984 L2)* ). The LG combination cancels all the geometrical and

other non-dispersive delays (ie. tropospheric) so leaving the ionospheric variations. The
WL combination has the advantage, if the P-code is available, of determining the
difference in integer ambiguities for L1 and L2, as it is free of both ionospheric and

geometric effects.

Examples of various combinations of the available GPS signal with real data are
contained in Appendix E, along with discussion of the features displayed in the data.
The examples are in the form of CVIEW plots, which show the L1, L2, LC, LG and WL

combinations for a selection of sites and satellites.

Days 067 and 070 were cleaned using SINCLN, while days 068, 069 and 071 - 079 were
cleaned using AUTCLN. However, for all days, all combinations of double difference
observations were checked in CVIEW manually to ensure no cycle slips or questionable
data remained. The manual editing also removed any small segments of data, usually less
than 10 minutes, that either preceded or followed the main data. This is now part of the
AUTCLN process. The rationale for removing this data was that there was no strength

in such data sets as a new bias flag was needed.
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The data on DOY 067 for DS42, HOB1, MCMU and PAMA to satellite PRN 25 shows
that WL is available, due to all four sites having Rogue receivers, which can track the P-
code (Figures E-2 through E-7). It is interesting to note that the standard deviation on
the WL for the DS42 and HOBI1 receivers is approximately 75% and 30% that of the
MCMU and PAMA receivers, respectively. This is probably due to the DS42 and HOB1
receivers having lower internal noise levels and experiencing lower tropospheric and
ionospheric effects at these sites during this period. The major effect is probably due to
the ionosphere (Figure E-6). When the standard deviation of the LG combination is
compared at the plot scale, the DS42, HOB1 and PAMA data is smooth. This indicates
very small ionospheric delay for these three sites when compared to the significantly

noisier LG data at MCMU (Figure E-6).

When a receiver is performing poorly, it can become very obvious in the CVIEW plots.
Appendix E also contains examples of the Ashtech receivers that were operating at
D253, D269, D474 and WELL on DOY 067. One can clearly see that data from D269
(Figure E-10) and WELL (Figure E-12) have larger noise in comparison to the data at
D474 (Figure E-8) and D253 (Figure E-9). The data from D474 and D253 are more
typical of other Ashtech and Leica receivers that were operated during the March 1993

New Zealand GPS campaign.

The strategy adopted while cleaning the data was to constrain the size of the adjustments
to the a priori coordinates of the sites and satellites, at a precision level to which the
sites were considered known in a relative sense. The site constraints used are shown in
Table 3-1, and were obtained from Morgan ef al. (1996) experience which suggests that
the constraints should be an order of magnitude larger than the formal errors from the

GLOBK output.
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Site Code | Name Latitude Longitude Radius
(m) (m) (m)
DS42 Tidbinbilla (Canberra) ' | 0.020 0.020 0.100
WELL Wellington CIGNET * | 0.050 0.050 0.200
HOBI Hobart CIGNET * 0.050 0.050 0.500
MCMU | Mc Murdo * 0.250 0.250 0.250
PAMA Tahiti ® 0.250 0.250 0.250
Dxxx New site in NZ 100.0 100.0 100.0

Table 3 - 1: A priori coordinate constraints used in GAMIT. Notes: ' - best
knowledge due to being an IGS core site; * - reliably connected to
global frame; ° - poorly connected to global frame.

The IGS core site, DS42, was considered to be known the best, while the new local sites
in New Zealand were known least. 4 priori coordinates for the New Zealand sites,
Dxxx, were taken from the results obtained by Bevin and Hall (1994) through processing
the GPS data in the Ashtech GPPS software and converted from WGS84 to ITRF92
using the transformation parameters of IERS as described in Section 5.4.1.
Transformation was to ITRF92 as ITRF93 had not been established when processing
began. Due to the small difference between ITRF92 and ITRF93 (refer Table 5-2) these
coordinates were still suitable as a priori values considering the size of the a priori

constraints.

The constraints on the Keplerian a priori orbital errors and force parameters are shown
in Table 3-2. The a priori satellite positions were obtained from SIO solutions for each
day. These solutions are generated by SIO through processing a global network of GPS
sites that have well determined coordinates from which high quality satellite orbits can be
determined (Figure 3-3). As local orbits were being generated the S1O orbits only
provided a more reliable a priori orbit, thus saving one iteration in GAMIT. This would
otherwise have been required if the lower quality broadcast orbits had been used. When
undertaking a local survey of (say) less than 250 km in extent, the SIO orbits would be
held fixed, as the local network would not have sufficient strength to solve the

coordinates of the satellite orbit.
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Keplerian a priori orbital errors (ppm)

Semi-axis | Eccentricity | Inclination | Ascending Node | Perigee | Mean Anomaly

5.0 5.0 5.0 5.0 5.0 5.0

Force Parameters (%)

Solar Radiation Force 1 (x) | Solar Radiation Force 2 (y) | Solar Radiation Force 3 (z)

10.0 0.01 0.01

Table 3 - 2 : A priori satellite orbit constraints.

The data in the New Zealand regional solution was processed at an interval of 30

seconds and a satellite cut-off elevation of 15 degrees above the horizon.

The following models and default constants were used in GAMIT for the meteorological
parameters:
Atmospheric propagation delay model
Dry and Wet Zenith delay : Saastamoinen (1972)
Dry and Wet mapping function : CfA-2.2 (Davis et al., 1985)
Default Meteorological data
Pressure : 1013.25 mbars
Temperature : 20.0° C
Humidity : 50.0 %

Clock modelling (KLOCK) : option 3, which estimates the receiver clock offset epoch-
by-epoch using the pseudo-range, was used for all receivers. However, the Leica
receiver keeps its clock synchronised with the GPS time, so option 1 could have been
used as this assumes zero offset, though the difference between the clock models is

negligible at the level.

GAMIT release 9.28 has an Antenna Phase Centre variation modelling option. This
option was in the development stage when processing the March 1993 GPS data, so was
not incorporated. The modelling of the antenna phase centre variation is likely to
improve results and should be investigated in future data processing. Additional
improvements to GAMIT since the data was processed include full Earth and Ocean

Tide Loading models, improved orbit modelling by including once per revolution terms

59



Chapter 3 Dynamic Coordinates for New Zealand from GPS data

and the fixing of small but important satellite elevation effects, and stochastic

atmospheres.

The GAMIT manual describes weighted constraints as a way of taking account of
ionospheric effects so that for short baselines the algorithm uses L1 and L2
independently, while for long baselines the algorithm uses the linear combination, LC.
The processing of the NZ data used the LC option for all baselines irrespective of the
baseline length. This was primarily necessitated by the need to have baselines in excess
of 200 kms to network the local sites (Dxxx) to the local fiducial stations (D045, D474,
WELL).

The results from processing a day of GPS data in GAMIT are in the form of vectors
from the Earth’s centre of mass to the stations and satellites, along with the associated
covariance matrix. The actual parameters solved for in GAMIT were :

i) The three components of the station vector, (X,Y,Z)

ii) One 24 hour mean zenith delay parameter for each site

iiiy The six conventional components of the satellite state vector (X, Y, Z, X, Y, Z)

iv) Three non-gravitational corrections to the satellite state vector

v) Biases (cycle slips) as appropriate

vi) estimates of the integer phase ambiguities

GAMIT release 9.28 did not have the capability to solve for more than the one 24 hour
mean zenith delay parameter for each site. The zenith delay parameter is used to account
for tropospheric errors. More recent GAMIT releases now support multiple zenith delay
parameters per site, and therefore for future processing it is recommended that multiple
zenith delay parameters be solved for at each site (ie. every 2 hours solve for a new mean
zenith delay parameter). These extra zerith delay parameters are likely to improve the

results, especially in the height component.

The daily GAMIT solutions then need to be adjusted together using GLOBK. As a final
step in GAMIT the constraints as listed in Tables 3-2 and 3-3 are loosened by
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approximately two orders of magnitude to obtain what is basically a free-net adjustment

for use in GLOBK.

3.5.2 GLOBK adjustment of daily GAMIT solutions

GLOBK is a Kalman filter which analyses solution vectors and their associated
covariance matrices generated in the GPS analysis program, GAMIT. The basic

algorithms and a description of Kalman filtering is given in Herring e al. (1990).

Once daily solutions have been cleaned (cycle slips removed) in GAMIT, the separate
daily solutions can be adjusted together, with the coordinates of fiducial stations

constrained or held fixed. This forces the results to comply with the defined reference

frame.

To improve the degree to which the final coordinates would be in terms of ITRF93 the
daily GAMIT solutions (H-files) from SIO were combined with the New Zealand
GAMIT solutions. The inclusion of the SIO solutions is an important step, as these
solutions contain approximately 30 staticns which are distributed around the world, these
stations having been observed in a number of campaigns to determine their ITRF
coordinates. Unfortunately all but 7 of the stations in the 1993 SIO solutions are in the

northern hemisphere (Figure 3-3).

GLOBK begins the adjustment using data from the GAMIT solution file which has the
earliest mean epoch for the satellite ephemeris. Due to the New Zealand network being
processed in two sessions of approximately 12 hours for the first day of the campaign
(DOY067), the first session had a mean epoch earlier than the SIO 24 hour session. The
GLOBK subroutine unify _svs was used to make the satellite ephemeris files consistent,
though large prefit chi-squared values were still encountered. To provide a more
appropriate GAMIT solution file for initialisation of the adjustment of the New Zealand
and SI10 networks, an extra SIO solution at either end of the New Zealand campaign was

obtained from SIO (ie. SIO solutions obtained were DOY 066 through 080).
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Both Tregoning (Section 4.4, 1996) and Morgan ef al. (Chapter 9, 1996) have reported
inconsistencies between southern hemisphere dominated GPS data sets and the ITRF92
values for the 13 core IGS sites. Similar inconsistencies have been found while trying to
attach the March 1993 New Zealand GPS data to ITRF93. To minimise these
discrepancies while still endeavouring to fit to ITRF93 as best as possible, the positions
and velocities of only some core IGS stations were used to define the reference frame
(Table 3-3). These sites were chosen after testing various combinations and analysing
the results so as to minimise the adjustments to the less constrained IGS Core sites. The
coordinates and velocities for the IGS Core stations that were held fixed were obtained

from Boucher ef al. (1994).

As discussed in Section 3.2 and depicted in Figure 3-4, the New Zealand local sites had
two occupations of the same station within one 24 period, where only the height of the
instrument was changed. GLOBK required two names for the two independent
occupations with a 24 hour session. Therefore, GLOBK generated an output file
containing two sets of station coordinates and the associated VCV for these dual
occupation sites. The GLORG option of GLOBK was then used to equate the two sets
of coordinates. This equating of the coordinates was only required for the sites which
had two 4-hour sets of data processed in GAMIT using a single session. Herring (1994)
describes GLORG as the origin (translation and rotation) fixing program for the data
analysis. Essentially GLORG allows the translation and rotation values and velocities to
be determined by a minimisation of the deviations between horizontal positions and

velocities given in the a priori station position file.

The final coordinates are in terms of ITRF93 at a mean observation epoch of 1993.200

(Appendix B).
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STATION CODE | N position | E position [ N velocity | E velocity
Algonquin ALGO | held held held held
Fairbanks FAIR held held held held
Goldstone DS10
Hartebeesthoek | HART
Kokee Park KOKR | held held held held
Kootwijk KOSG | held held
Madrid DS60
Santiago SANT
Tidbinbilla DS42 held held held held
Tromso TROM | held held
Wettzell WTZ1
Yaragadee YARI1 held held
Yellowknife YELL

Table 3 -3 : List of the 13 IGS core sites and those stations used to define the

March 1993 GPS reference frame and attachment to ITRF93. Refer
to Figure 3-3 for station locations. Note : some of the codes used are
not the official IGS codes but are local codes of the equivalent
station; the Up (local vertical) component for both position and
velocity were not held fixed.

3.5.3  Analysis of results

As the processing of the GPS data progressed through GAMIT and GLOBK, different
inconsistencies within the data became apparent. The next two sub-sections describe
inconsistencies that can be attributed to a particular receiver or satellite. The last sub-

section (3.5.3.3) contains general comments on the analysis of the results.

3.5.3.1 Problem Receivers

Prior knowledge of GPS receivers which had performed poorly during the New Zealand
GPS campaign was obtained from Bevin and Hall (1994). However, it was decided that
an attempt to process all the collected data should be undertaken in case the GAMIT
software was able to process data which had to be rejected when using the Ashtech
GPPS software. With the interactive visual data editing facilities of GAMIT it was
envisaged that there was a better chance of cleaning this previously rejected data.
However, as explained below, the data rejected by Bevin and Hall (ibid.) was not able to

be processed in GAMIT, though the remaining data was able to be cleaned in GAMIT
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more reliably, due to the ability to visually check the data, than using the Ashtech GPPS

software.

Initially data rejected by Bevin and Hall (ibid.) was accepted by GAMIT. However,
problems were encountered when attempting to combine the daily GAMIT solutions in
GLOBK as the network was clearly distorted from day to day. The largest adjustments
to the a priori coordinates clearly indicated those sites whose receivers had performed
poorly were at fault. GAMIT solutions were re-computed without the faulty receiver
sites. This improved the statistics on both the daily GAMIT solutions and the GLOBK
adjustment. These improved statistics clearly indicated that significant contamination

was being introduced by this noisy data.

The sites which were not able to be processed had been observed by one of two
receivers. Both these receivers (alias Ashtech number 1 and 4) had pre-amps which were
faulty. After the pre-amp was replaced in receiver number 1 (located at WELL - before
DOY 070 observations began, see Section 3.2) there were no further problems in
processing data collected by this receiver. Unfortunately receiver number 4 was not
diagnosed during the campaign as having a faulty pre-amp, and this resulted in no data
collected by this receiver being processable. Appendix E contains CVIEW examples of
both receiver 1 (located at WELL, Figure E-13) and receiver 4 (located at D269, Figure
E-11) for DOY 067. It is obvious from these CVIEW plots that both these receivers,
when separately combined with DS42 and satellites (PRN 15 and 25) to form the two-
way combination have many cycle slips, especially when compared with other sites

observing the same satellites.

3.5.3.2 Problem Satellites

The data from DOY 076 was not processable in GAMIT when PRN 18 data was
included, as it caused adjustments in the order of metres to site a priori coordinates.
According to the NANU (Notice Advisory to NAVSTAR Users) message number 059-
93077, PRN 18 was switched unusable from 1515 UTC on day 076 to 0554 UTC on day
077. 1t 1s suspected that PRN 18 was performing poorly before being switched unusable,

thus affecting the data collected earlier on DOY 076. There was no noticeable
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deterioration in the solution for DOY 076 with the exclusion of PRN 18 when compared

with coordinate repeatability plots of other days (Appendix D).

3.5.3.3 General comments

Appendix D contains figures showing the consistency between the daily solutions of
GAMIT for the local North, East and Up components of each site. To help the
following discussion on the quality of the results, the D474 repeatability plot is also
included in this section (Figure 3-5). As can be seen from the figures in Appendix D, the
daily solution components are generally within 36 confidence level of the D474 standard

deviations given in Figure 3-5.

Analysing the site repeatabilities between different days was difficult due to the variations
in the network geometry and processing techniques. However, a few comments are
worth making and generally can be confirmed through Figure 3-5 when references to the

figures in Appendix D are not given.

i)  DOY 070 generally had the largest variation in site coordinates and uncertainties,
especially for the second session (when compared with other daily solutions of the
same site). However, the cause of these larger residuals is unclear. DOY 070 was
processed using SINCLN with 2 sessions. The first session had data from 00:00 to
07:00 UTC for DS42, which did not coincide with data from the New Zealand
sites. The second session had no data from DS42. The loss of DS42 from the
network may indicate the reason for the poorer results for the second session on
DOY 070. To establish if varying the network geometry caused the large
uncertainties for DOY 070, the following days were investigated. DOY 067 was
the other day that was processed with the same approach as DOY 070, ie. using
two sessions and SINCLN. However, only one site, D474, was suitable to make
comparisons between these two days (Appendix A). From this unfortunately small
sample of one, it would appear that DOY 070, when compared with DOY 067, has
been affected adversely by the lack of data at the regional fiducial site, DS42,
especially for the second session which contained no DS42 data. This example of

the deterioration in the quality of the session solution when data from DS42 was
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iif)

not available shows the extra network strength obtained by including well known

IGS core sites in the network.

Site repeatabilities are generally superior when at least 2 of the 3 New Zealand
local fiducial sites are operating in conjunction with all 4 regional fiducial sites (ie.

DOY 071, 074 and 075); this is confirmed at WELL (Figure D-6).

Having established that variations in the fiducial network can affect the site
uncertainties, a careful choice of days is required to determine the effect of using
two processing sessions with SINCLN as opposed to one session with AUTCLN.
DOY 078 had been processed using AUTCLN with 2 sessions, so these provided
the only opportunity to distinguish between results processed using SINCLN and
AUTCLN. Unfortunately DOY 078 had only HOB1 and DS42 as fiducial sites,
which are both located to the west of New Zealand and separated by only
approximately 830 km (Figure 3-2). As a consequence it was not possible to
distinguish between the effect of varying the number of processing sessions, from

the effect of changing the data editing software.

To compare the combined effect of using either SINCLN on two sessions or
AUTCLN on one session, DOY 067, 068 and 069 were investigated as these days
had a consistent fiducial network. For D474 there is no discernible difference
between DOY 067 which used SINCLN with two sessions or DOY 068 and 069
which both used AUTCLN with one session. Making the same comparison at
D253 (Figure D-21) shows that DOY 067 has smaller uncertainties than both DOY
068 and 069. The only significant difference between sites D474 and D253 is that
D474 collected data continuously for 9 hours while D253 collected two sets of 4
hours of data which were separated by 1 hour. One reason that could explain this
is that breaking continuous data into two sessions can cause sites with 4 hour data
spans to have reduced formal uncertainties, though without an improvement in

their overall accuracy.
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Figure 3 - 5: D474 site repeatabilities between daily GAMIT solutions after
performing a backward adjustment in GLOBK. The variation
plotted is the daily solutions correction to the a priori coordinate
value for each of the three components. sd is the standard deviation
of each component in millimetres. The error bars are the formal one
sigma values. Note that DOY 067 and 070 were processed using 2
sessions (Figure 3-4a).
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vi)

Because the New Zealand regional network was adjusted in GLOBK with the SIO
global network, three of the regional fiducial sites (DS42, MCMU and PAMA)
were contained in both solutions. The small number of duplicate baselines between
these three regional fiducial sites was thought to have no adverse impact on the
solution. The benefit of these sites being contained in both networks was that a
comparison could be made between the New Zealand network estimates of their
position and those of the SIO network. Appendix D contains the site
repeatabilities for MCMU (Figure D-1) and PAMA (Figure D-2). From these
diagrams it is clear from the standard deviations that the New Zealand network

determinations for these sites were consistent with those of SIO.

If the southern hemisphere sites of MCMU and PAMA are compared with the
northern hemisphere sites of DS60 (Figure D-3) and YELL (Figure D-4), it is clear
that the northern hemisphere sites’ standard deviations are almost an order of
magnitude smaller. This improved quality of the northern hemisphere sites is
mainly the consequence of the denser network of permanent tracking sites (Figure

3-3).

To summarise the analysis of the site repeatability diagrams (Appendix D) the following

comments can be made.

i)

iif)

It is inconclusive that the results of processing the days with two sessions and
using SINCLN were inferior to those days that used a single session and
AUTCLN.

There is a noticeable decrease in the quality of results for days which are missing
one or more regional or local fiducial sites. This could be less noticeable if one
was not estimating local orbit parameters, though this was not tested.

The repeatability of common site coordinates, between the SIO and New Zealand

networks, were in agreement.

The output of GLOBK gives the formal uncertainties of the sites estimated coordinates

in the X, Y and Z components. A comparison of these uncertainties was undertaken to

establish whether there is an improvement in the uncertainty by re-occupying sites. This

was achieved by calculating the magnitude of the vector formed by each sites X, Y and Z
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formal uncertainty components (Gx, Gy, G;), summing up the magnitudes of those sites
that had been observed for the same number of days (n) and then taking the average for
each number of site occupations.

9]

X

uncertainty = 4] n 3.2
y y

i=1
9)

Table 3-4 contains the results from grouping site uncertainties together based on the
number of days occupied. From this table it is clear that the formal uncertainty of a site

is improved by increasing the number of days occupied. This is as one would expect.

It should be noted that the hours of data collection per 24 hours varied between sites.
The results for one to three days occupation in Table 3-4 are based on two four-hour
data sets per 24 hour period in contrast to sites with 12 and 13 occupations which had a

single 24 hour data set.

Number of | Number | Hours of Mean Calculated Observed minus
days occupied | of Sites | data per | Uncertainty | Uncertainty Calculated
n day (metres) (0.0189/\n) (metres)
1 10 2 x 4hr 0.0189 0.0189 0.0000
2 12 2 x 4hr 0.0112 0.0134 -0.0022
3 3 2 x 4hr 0.0093 0.0109 -0.0016
5 1 Ohr 0.0089 0.0085 0.0004
9 2 Shr; 24hr 0.0056 0.0063 -0.0007
10 1 9hr 0.0075 0.0060 0.0015
12 2 24hr 0.0047 0.0055 -0.0008
13 1 24hr 0.0037 0.0052 -0.0015

Table 3 - 4 : Formal uncertainty of site coordinates with respect to the number of
days the site was occupied. The mean formal uncertainty is quoted
at the one sigma level.

What is of more use from generating the results in Table 3-4 is that in planning further
campaigns one is able to obtain an estimate of the quality a site is likely to obtain based
on the number of days the site is occupied. To help in this planning a power series was

determined so as to model the mean uncertainty. It was found that the simple
relationship of 0.0189/</n , where n is the number of days the site is occupied, suitably
modelled the uncertainties (Table 3-4 and Figure 3-6).
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Figure 3 - 6 : Formal uncertainty of site coordinates with respect to the number of
days the site was occupied. Note: amount of data collected varied
between sites (see Table 3-4).

With an increase in GPS data available at the 13 core sites, due to the passing of time,
one would expect to be able to monitor a site position with improved precision. The
IERS 1994 realisation of ITRF92 stated the formal uncertainties for the XYZ
components as 5-11 mm (IERS 1994, p61) for the core sites. For the IERS 1995
realisation of ITRF93 the formal uncertainties had been reduced to 2-5 mm (ibid., p 66).
These formal uncertainties reported by IERS represent the minimum uncertainty
attainable in attaching GPS data to an ITRF. Therefore the formal uncertainties in Table
3-4 would appear to be realistic, considering the relatively small amount of data used in

the New Zealand network.

If the coordinates in Appendix B were transformed to another epoch besides 1993.200,
then the New Zealand sites whose velocities are uncertain would have significantly

degraded results at the new epoch.

70



Chapter 3 Dynamic Coordinates for New Zealand from GPS data

3.6 Summary

The processing of the March 1993 New Zealand GPS data in GAMIT and GLOBK has
resulted in a set of coordinates for the New Zealand sites which are in terms of ITRF93

with a formal uncertainty of 2 cm (15). The results are at the mid-observation epoch of
March 14, 1993 (1993.200), with the Cartesian coordinates contained in Appendix B,

while the ellipsoidal coordinates are in Appendix C.

With the experience gained from processing this New Zealand GPS campaign data in the
GAMIT/GLOBK suite it is recommended that future GPS data collected for use in
establishing high precision networks (such as national primary control networks) should:
occupy sites for a minimum of 3 days collecting 24 hour data sets (ie. 3 x 24hr). Future
processing of GPS data for datum maintenance or development in New Zealand should
investigate the effects of antenna phase centre modelling, full Earth and Ocean Tide
Loading models, improved orbit modelling by including once per revolution terms and

the fixing of small but important satellite elevation effects, and stochastic atmospheres.
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Chapter 4

Gravimetric Geoid Computation

4.1 Introduction

With the increased use of satellite based methods, such as GPS, for determining position
in 3-dimensions with relative accuracy of better than 0.1 part per million (ppm),
gravimetric geoid computation methods need to be developed further to maintain this
accuracy through the conversion of ellipsoidal heights obtained from GPS to
orthometric heights. Orthometric heights are required for most engineering and
surveying applications, especially those dealing with the dynamics of water and other
fluids, since differences in orthometric heights closely represent differences in
equipotential surfaces. As was described in Section 2.5.2, with examples of the effect,
New Zealand heights are normal orthometric heights rather than orthometric heights due
to the use of normal gravity instead of observed gravity. For the remainder of this thesis
the term orthometric height will be used to described New Zealand heights due to the
small difference between the two heights below 1000 m. The difference between the
ellipsoidal height and the orthometric height of a point is called the geoid height (N).
This difference results from the fact that ellipsoidal heights are referenced to a
mathematical model of the earth’s surface while the orthometric heights refer to the
geoid (heights are discussed in Appendix L). The geoid is an equipotential surface that
approximates mean sea level and its theoretical continuation under the continents (see
Figure 4.2). The purpose of this chapter is to outline a method to determine the geoid
height with sufficient accuracy to allow the transformation of ellipsoidal heights to
orthometric heights, so as to meet 3rd, 2nd or perhaps even 1st order levelling

specifications in New Zealand (Table 2-3).
There are a number of techniques to convert ellipsoidal heights to orthometric heights.

Three of these methods are outlined below. Each has advantages depending on the

nature of the survey site and the accuracy required for the project.
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i) The first method of determining orthometric heights from the ellipsoidal heights
from GPS, is to include in the GPS network, connections to spirit levelled marks within
and at the limits of the survey area. Then, by assuming that the geoid height can be
represented by some mathematical surface, eg. a plane between those spirit levelled
points, the GPS network can be adjusted into approximate orthometric heights. The
method involves holding the orthometric heights fixed while also estimating three
dimensional transformation parameters. The resulting parameters effectively
incorporate a plane geoid height function and the adjustment results in the application of
this function to the new stations. This method may work for surveys of small extents
over flat terrain, but is unlikely to produce suitable results anywhere that the geoid
departs significantly from a simple geometric surface, such as in mountainous areas or
where large gravity anomalies occur. Gilliland (1986) reports geoid height variations of
> (.1 m in 25 km for areas of Australia where the terrain varied by only 300 m.
Featherstone ef al. (1995) have shown that in areas of Australia the gravity field is not
always correlated with the terrain. Another disadvantage of this method is that
orthometric heights of suitable accuracy need to be available around the extents of the
survey. Also, any error (other than gross error unless using only 3 stations) in the
control orthometric height maps directly into the interpolated height, with no
independent means of checking the value of N. Thus there is no effective redundancy in

the control heights.

A variation on this first method is to calculate the differences between the orthometric
and ellipsoidal heights at all possible stations within the survey area. From these
differences a contour map can be generated and local geoid heights scaled off the map
for stations that only have ellipsoidal heights, thus allowing the determination of the
orthometric height (see Collins and Leick, 1985 and Holloway, 1988). A modification
of this method was used for mapping control purposes in the rugged Fiordland area of
New Zealand and is believed to have achieved the required height accuracy
specifications of 1.0 metre (Tait, 1991). Once again, there is no method of testing the

correctness of control heights except against gross errors.
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ii) The second method is to compute geoid heights from Global Geopotential
Model (GGM) coefficients. Depending on the degree and order of the model, the
complexity of the local geoid and the amount of local terrestrial gravity data used in
developing the specific GGM, geoid height accuracy can vary widely between project
locations. As a GGM is a finite expansion of potential coefficients, it has limited
resolution. Current GGM are complete up to degree and order 360, which means that
features of only 0.5° or larger in size (approximately 55 km) can be modelled (see

Section 4.2.5).

iii) The third method of determining the geoid height at a point is based on the use
of a GGM and local gravity observations to define smaller geoid features than the
resolution of the GGM. This method produces a gravimetric geoid and is the method on
which the remainder of this chapter will focus. As can be see from Figure 4-1, New
Zealand has reasonably dense gravity data coverage on land which is about 1 station per
7.5 km? (Gilliland, 1988). Therefore it seems reasonable to take advantage of this asset,

and to use this gravity in the determination of a New Zealand geoid model.

This is not the first attempt to compute a gravimetric geoid for New Zealand. Gilliland
(1990) produced a gravimetric geoid for New Zealand on a 0.25° grid by combining
gravity data and the OSUS81 (Rapp, 1981) GGM to degree and order 180. However
without any ellipsoidal heights from GPS no comparison using equation 4.1 below

could be made.

Mackie (1982) determined geoid heights at 18 stations, distributed across New Zealand,
by comparing Doppler derived WGS72 ellipsoidal heights with spirit levelled

orthometric heights.

Mackie’s work did not use local gravity data, though when Gilliland (ibid.) compared
his results with the results of Mackie (ibid.), after reduction to a common datum and the
removal of biases, a Root Mean Square (rms) of geoid heights of less than 1.3 m was

obtained. At the time this was a reasonable result given observation error in Doppler
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height, but with present day techniques it should be possible to obtain results at least an

order of magnitude better.

The possibility of increased accuracy has come about with the improvement in GGM’s
and the accuracy of ellipsoidal heights, primarily from GPS, at which geoid heights can
be tested. With these improvements and the demand from GPS users to be able to
convert the GPS ellipsoidal heights to orthometric heights, it is appropriate to develop a

high resolution, national geoid model for New Zealand.
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Figure 4 - 1 : Distribution of Land Gravity data available for New Zealand.
Rectangular projection
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The lower North Island was selected as the test area for the development of a
gravimetric geoid model for New Zealand for three main reasons :
1) both land and sea gravity data was available
11) approximately 100 points had both ellipsoidal height from GPS and
orthometric height from spirit levelling (control stations)
111) the region encompasses rugged terrain which is typical for New Zealand,

varying from sea level to 1500 metres

Having both ellipsoidal heights (h) obtained by GPS, and orthometric heights (H) from
spirit levelling one can check on the quality of the geoid height (N) obtained by using
the new gravimetric geoid model. This check uses the well-known algebraic
relationship of (4.1) which is illustrated in Figure 4-2.

"h=H+N 4.1

The value of N obtained by subtracting the orthometric height from the ellipsoidal
height at each of the control stations is known as the geometric geoid height (Nggo).

NgEeo = heps - Heevelling (4.1a)

From (4.1) it is clear that identifying the source of any errors in the determination of one

or more of the height components will not be possible.

mean sea level (an equipotential surface)

Ellipsoid

(a mathematical surface)

Figure 4 - 2 : Relationship between Geoid, Ellipsoid and Orthometric heights
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Through processing gravity data using the RINT (Ring Integration) based software (see
Section 4.3) in the lower North Island, a procedure is developed to expand the
gravimetric geoid model to cover the whole of New Zealand. This New Zealand
specific geoid model can then be used to convert ellipsoidal heights (GPS) to

orthometric heights.

4.2 Theoretical Background

This section outlines the theory of determining geoid heights from gravity data. As was
described in Section 4.1 the geoid height is required to convert ellipsoidal heights from
GPS to orthometric heights which are required for most surveying and engineering

applications.

4.2.1 Normal Gravity
The use of an ellipsoid of revolution to approximate the shape of the earth allows,
amongst other applications, the computation of gravity on the ellipsoid. The currently
accepted international reference ellipsoid is the Geodetic Reference System 1980
(GRS80). The four conventional constants adopted by the XVII General Assembly of
the International Union of Geodesy and Geophysics (IUGG) to define GRS80 are
(Moritz, 1980a) :
equatorial radius of the Earth :
a=6378137m
Geocentric gravitational constant of the Earth (including the atmosphere) :
GM = 3.986005 x 10'* m’s
dynamical form factor of the Earth, excluding the permanent tidal deformation :
Too=1.08263 x 107
angular velocity of the Earth :
®=7.292115% 10° rad s”'

Moritz (ibid.) went on to state that from a given ellipsoid of revolution it is possible to
define an equipotential surface, U = U, = constant, of a certain potential function, U,

called the normal gravity potential. Using geodetic coordinates (¢, 4, h) the normal
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gravity at the surface of the ellipsoid, yq = |grad U], can be evaluated rigorously using
Somigliana’s closed formula (Heiskanen and Moritz, 1967, eqn. 2-78).
_ay, cos® ¢ + by, sin’ ¢

= 4.2)
\/az cos’ ¢ +b*sin’ ¢

Yo

where: Ya 1s the equatorial normal gravity on the ellipsoid
v 1s the polar normal gravity on the ellipsoid
a is the semimajor axis

b is the semiminor axis

Equation (4.2) can also be expressed as a series. The conventional abbreviated series
(ibid., eqn. 2-116) describing the variation of normal gravity on the ellipsoid with
geodetic latitude (¢), and after substituting the constants for GRS80 is

7o = 9.780327(1+0.0053024 sin®¢ - 0.0000058 sin” 2 ¢) ms™ (4.3)

and has an accuracy of 1 ,urns'2 = 0.1 mGal.

The derived values for normal gravity at the equator and pole, in terms of the GRS80
ellipsoid are respectively (Moritz, ibid.) :

va = 9.7803267715 ms™

o = 9.8321863685 ms™

The unit of acceleration in the SI-system is ms™, though the cgs-system unit of
acceleration, the “Gal” = cm s, is still widely used in geodesy and geophysics. The
following example shows y, expressed in terms of different units of acceleration.

Yo = 9.7803267715 ms™

Ya=978.03267715 Gal

va=978032.67715 mGal  where 1 milligal = 10 Gal = 10° ms™

4.2.2  The Boundary Value Problem in Physical Geodesy

The natural reference system - the geoid - is the equipotential surface, W,, that is chosen

so as to approximate MSL without the effects of ocean currents, weather and tides and is
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also the theoretical continuation of MSL under the land. A point (x,y,z) is on the geoid

if the potential of the point, Wiy =W, .

The mathematical reference system is normal gravity (yg) (see Section 4.2.1). The
potential of the normal gravity field being denoted by Uy y., = U, = constant and

therefore exactly corresponds to the geoid defined by the surface Wy, = W, = constant.

Heiskanen and Moritz (1967, Section 2-13) state that the small difference between the
actual gravity potential W and the normal gravity potential U at the geoid is called the
disturbing or anomalous potential 7

Toyz) = Wxya) - Uy (4.4)
If the x,y,z position is on the geoid at point P, as shown in Figure 4-3, then the
disturbing potential on the geoid becomes

Tp=Wp-Up (4.5)
where Wp is the Earth’s gravity potential at the geoid and Up is the normal gravity

potential at the geoid. Thus at the geoid, Wp = W, = Uqg = U,.

The gravity anomaly vector (Ag) is the difference between the gravity vector g at P and
the normal gravity vector y at Q.

Ag=gpr-710q (4.6)
The difference in the magnitude component of the gravity anomaly vector is the gravity
anomaly (Ag), while the difference in direction is the deflection of the vertical. There
are two components to the deflection of the vertical, one is the north-south component

(&) and the other is the east-west component (1) (see Torge, 1980, Chapter 5).

It is also possible to obtain the difference between the gravity vector g and the normal
gravity vector y at the same point P. The difference in the direction gives the gravity

disturbance vector

o= gr -Yp (4.7)
while the difference in the magnitude gives the gravity disturbance
2T,
dg=gr-TP= —5— (4.8)
dn
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As the elevation is determined along the geoid normal, », rather than the ellipsoid
normal, »’, then On can be approximated by oh to determine the gravity disturbance

(Figure 4-3).

The gravity disturbance can in theory be used instead of the gravity anomalies for

computing geoids, though practical methods have not been developed.

n
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Figure 4 - 3 : Relationship between the Ellipsoid and the Geoid (adapted from
Heiskanen and Moritz, 1967, Fig. 2-12)

From Figure 4-3, when the deflection of the vertical & is small, one can express the
normal gravity potential at the geoid, Up, as a function of the normal gravity potential on
the ellipsoid, Ug, and the geoid height, N, by (Heiskanen and Moritz, 1967, eqn. 2-143)

U, :UQ+(8—U) N=U, -y, N (4.9)
an /g

where (Q—gj is the derivative of Ug with respect to the geoid normal. By inserting
n/q

(4.9) into (4.5), Brun’s generalised formula is obtained
Tp:Wp-Upsz-UQ‘f"YQN (410)
Because the reference ellipsoid is assumed to have the same potential as the geoid

We=Uq=Wp (4.11)
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Brun’s formula simplifies to
Tp =voN (4.12)
which relates the geoid height to the disturbing potential.

4.2.2.1 The Fundamental Equation of Physical Geodesy

The relationship between the gravity anomaly Ag and the unknown disturbing potential

T will now be developed. With analogies to (4.9) the normal gravity y at P can be

written as
7,
=yqg+ ——N 4.13
=Yt = (4.13)
combining (4.8) and (4.13) results in
dy T,
Sg=gp-Y1o- —=N =-——L 4.14
g=gr-1o- oo oh (4.14)

and applying the gravity anomaly component of (4.6), then Brun’s simplified formula

(4.12), the following equivalent equations are obtained

o7, 9,

+ag- ey =g 4.15
on "8 om (4.15a)
JT 1 dyq

fAg. e 4.15b
on BTy, 9n * (4.150)

where (4.15b) is referred to as the Fundamental Equation of Physical Geodesy as it
relates the desired quantity 7p, to the measured quantity Ag. 7p is desired because it

allows N to be computed from (4.12).

To be complete it should be noted that the first derivative with respect to the normal
height, h, on the left hand side of (4.15), should be the geoidal normal, », while the
second occurrence should be the ellipsoidal normal, n°. However, in reality due to the

small magnitude of deflection of the vertical values, this difference is insignificant.

Assuming that the effect of masses outside the geoid have been removed (refer to
Section 4.2.4 to see how this 1s achieved in practice), that is the density p is zero outside
the geoid, the anomalous potential 7" is harmonic there and satisfies Laplaces’ equation
(Heiskanen and Moritz, 1967, p. 86)
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_9°T 9°T 9°T_

R AL A (4.16)

By 1) taking the spherical approximation of the normal gravity on the ellipsoid,
i1)  assuming that the geoidal and ellipsoidal normals can be approximated by
the radius vector (),
ii1) introducing the mean radius of the Earth (R),
the spherical approximation of the fundamental equation of geodesy is obtained as

follows (Heiskanen and Moritz, ibid., eqn. 2-151f)

IT 2T,
7% 4 22 pg =0 417
ar R 8 ( )

As (4.17) is a boundary condition the following assumptions are made to enable it to be
solved on the geoid:

i) mass of the reference ellipsoid equals the mass of Earth.

ii) centre of the reference ellipsoid coincides with the Earth’s geocentre.

i11) no mass exist outside the geoid.

iv) gravity anomalies are available over the entire surface of the Earth and refer to

the geoid.

These assumptions are never fully met in reality. In an attempt to satisfy these
assumptions various terrain and gravity reductions are applied to the gravity anomalies.
Heiskanen and Moritz (1967, Chapter 3) give detailed descriptions of these various

reductions, and these are briefly summarised in Section 4.2.4.

4.2.3  Gravimetric techniques for solving the Geodetic Boundary Value Problem

In this section a brief review is given of the different ways of solving Laplace’s equation
(4.16) subject to the boundary condition (4.17). These are fundamental to the

computation of geoid heights from observed gravity anomalies.

4.2.3.1 Stokes’ Method

Solving (4.16) under the condition of (4.17) results in the spherical Stokes’ formula
(4.18), which enables the disturbing potential 7p to be found as a function of the gravity

anomalies Ag on the geoid.
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T, :Z%LJ‘Ag S(w) do | (4.18)

where do is an element of the unit sphere. S(y) is known as the spherical Stokes’

function and is given in closed form by
S(l//) = cosec(%) ~06 sin(%) +1-5cosy —3cosy ln(sin—g— +sin® %) (4.19)

where Y is the surface spherical distance. By applying Brun’s simplified formula

(4.12) to (4.18) the geoid height can be obtained

r

N = [[ Ag S(y) do (4.20)
yQ o

4

Both (4.18) and (4.20) are equivalent and are referred to as Stokes’ formula or Stokes’
integral. Using the spherical approximation it is possible to set » = R and yo = G, and
neglecting quantities of the order of 3x10™ N (Heiskanen and Moritz, ibid., section 2-

16).

R
N=_— j [ Ag S(v) o (4.202)

To solve Stokes’ formula, the surface integral can be approximated by a double
summation. The surface elements do are replaced by small but finite compartments g,
which are obtained by suitably subdividing the surface of the Earth. Heiskanen and
Moritz (1967, Section 2-24) describe two methods for this subdivision, which are

summarised in sections 4.2.3.2(i) and 4.2.3.3.

Before moving on, a few comments should be made about Stokes’ function (4.19).
There exists a singularity when y =0. As y — 0, S(y ) —> « (see Figure 4-7).
Therefore, as the compartment g approaches the point of computation, Stokes’ function
can not be assumed linear across the extent of the compartment. A common approach to
overcome this non-linearity near the point of computation is to reduce the size of the
compartments when near the point of computation, though other mathematical

techniques are available.

4.2.3.2 Solving Stokes’ Integral using Geographical Coordinates

@) Quadratures
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If grid lines forming a fixed coordinate system, such as geographical coordinates, ¢ and
A, are chosen to subdivide the surface of the Earth, the compartments are a series of

blocks or quadratures (Figure 4-4).

174.00 175.00 176.00 177.00 178.00
-39.00

-40.00

& q o
il -41.00
oP
-42.00
-43.00

Figure 4 - 4 : Quadratures formed from a grid of geographical coordinates

By numerical summation of all the compartments it is possible to calculate the geoid
height. This summation should in theory be performed over the entire Earth - an
impossibility because such a global data set does not exist. By using a GGM to compute
the long wavelength contribution to the geoid height the summation can be limited to a
cap of a few degrees around the point of computation. By limiting the integration to a
cap one introduces a truncation error that can be reduced by modifying Stokes’ function.
The original idea was that of Molodenskii ef al. (1962), with many authors developing
different approaches, some of which have been compared in Featherstone (1992). For
further details on the technique of numerical summation of quadratures the reader is
directed to Engelis et al. (1984) or Gilliland (1994). The use of a GGM for the long

wavelength component is described in further detail in Section 4.2.6.

(ii) Fast Fourier Transforms
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Rather than numerical summation of the quadratures it is possible to use the fact that
Stokes’ integral (4.20), when using geographical coordinates, is in the form of a
convolution mtegral. Thus (4.20) can be evaluated using fast Fourier transform (FFT)
techniques provided that the gravity data are given on regular grids. Sideris (1994)
states that FFT overcomes the problem of slow computation speed experienced by
numerical summation. More importantly FFT provides homogeneous coverage of
results and it seems that it 1S not necessary to modify Stokes’ function, especially when
using a GGM for the long wavelength features of the geoid. For information on the
theory of FFT see Bracewell (1986). While for the practical application of FFT there
are many papers, though Tsuei ef al. (1994) is given as starting point due to the inter-
comparison of techniques to evaluate geoid heights in the frequency domain (FFT) and

the space domain (Least-Squares Collocation, Section 4.2.3.4).

Spectral techniques for geoid computations are not restricted to the FFT. Recently the
fast Hartley transform (FHT) has grown in popularity due to the reduction in
computation time and computer memory requirements when compared to the FFT
(Tziavos, 1996). Li and Sideris (1995) reported that numerical computations indicate
that for the computation of three 2-D convolutions with size 1024 by 1024, the use of
FHT instead of FFT can reduce the required computer memory by 44% and reduce the

computer time by 33%.

One final comment on techniques that use geographical coordinates, is that the
randomly spaced gravity observations have to be regularised onto a grid for use by FFT
or FHT. Care needs to be taken during the griding procedure so as to maintain a fair
representation of the random input data. Also some numerical summation techniques
often pre-compute mean compartment gravity anomaly values to reduce the computation

time. Errors can be introduced in the pre-processing stage which propagate into N,

especially for small y.

4.2.3.3 Solving Stokes’ Integral using Polar Coordinates

In section 4.2.3.2 the compartments chosen to subdivide the surface of the Earth were
defined by a fixed coordinate system. By choosing a coordinate system that varies for
each computation point it is possible to overcome the problem of Stokes’ function
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having a singularity at y = 0 (Section 4.3.1). Instead of using geographical coordinates,
local polar coordinates can be used at each point of computation to subdivide the surface

of the Earth.

Figure 4 - 5 : Compartment structure using Polar coordinates

The compartments generated from using local polar coordinates are formed by
concentric circles and radial lines centred on the point of computation (Figure 4-5).

This method is called Ring Integration (RINT). The theory for RINT was originally
developed by Lambert and Darling (1936), which is outlined in Heiskanen and Moritz
(1967, Section 2-24), and has been developed for electronic computation by Kearsley
(1986b). The RINT technique has been used in all the gravimetric solutions presented
in this thesis and is described in further detail in Section 4.3. One of the features of
RINT worth noting at this point 1s that the randomly spaced gravity data is used as input,

eliminating the need to preprocess the raw gravity data onto a regular grid. The
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‘processing’ to estimate mean gravity anomalies for the compartment is done in the
computation of N. RINT also propagates the formal errors in the short wavelength
geoid height (Section 4.3.2) from error estimates of the mean compartment gravity

anomaly.

4.2.34 Least Squares Collocation

An alternative to numerical integration is least squares collocation (LSC). The main
advantage of the LSC prediction method is that it can be used to predict any parameter
describing the earth’s gravity field from other observed parameters, using the statistical
relationship which exists between these parameters. That is the auto- and cross-
covariance functions need to be known. Other advantages of LSC is that the method
can use randomly distributed data, with non-uniform noise associated with the data
(Tscherning and Forsberg, 1992) and estimates of the error of the predicted quantities

are readily obtainable (Lahmeyer, 1988).

The general formula for the geoid height at a point N(P) using LSC is given by Moritz
(1980b, eqn. 14-27) as

N(P) = C" (% + C™Y! Ag; (4.21)
where C"¢ is the cross covariance function of geoid heights and gravity anomalies. C%¢
and C™ are the auto covariance functions of the residual gravity anomalies and the noise
respectively, and Ag is the point (rather than mean block) residual gravity anomalies
(Section 4.3.4.1). As can be seen from (4.21) the choice of the covariance function is

critical in the final results obtained from LSC.

For information on the theory of LSC see Moritz (1980b); for the practical application
of LSC Tscherning and Forsberg (1992) and de Min (1995) are useful starting points,

because they give inter-comparisons of LSC with numerical integration techniques.

4.2.3.5 Molodenskii’s Problem

This section briefly outlines the approach of Molodenskii ef al. (1962) to overcome
some of the assumptions made in solving Stokes’ integral. As land gravity observations

are generally taken on the physical surface of the Earth (as compared with marine
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gravity observations which are taken on or close to the geoid), an approximation of the
density of the masses between the geoid and the terrain surface has to be assumed to
allow the reduction of the gravity observations from the terrain surface down to the
geoid. Molodenskii ef al. (ibid.) proposed that instead of solving the boundary
condition at the geoid, solve it at the terrain surface and thus eliminate the need to apply

the terrain effect corrections as outlined in Section 4.2.4.

To apply Stokes’ method at the terrain surface Molodenskii et al. (ibid.) had to
introduce the concepts of the height anomaly (), normal height (H") and a new surface
called the telluroid () (Heiskanen and Moritz, 1967, Section 8-3). Unfortunately the
height anomalies computed by the method of Molodenskii ef al. are related to the quasi-
geoid which is not a level surface and has no physical meaning whatever. However the

quasi-geoid mapped on the ellipsoid is a close approximation to the geoid.

4.2.4 Terrain Effects

In applying Stokes’ method (Section 4.2.3.1) to solving the geodetic boundary value
problem it is assumed that no masses exist outside the geoid. As the observed gravity g
is normally measured on or above the terrain surface these observations have to be

reduced to the geoid surface before Stokes’ formula (4.18) can be solved.

There are a number of methods available to correct the observed gravity for the effects
of the terrain above the geoid. However there are basically two approaches. The first is
the Bouguer reduction which attempts to completely remove the effect of mass between
the terrain and the geoid. The second is based on some model of isostasy and is called
Isostatic reduction. Instead of removing the mass above the geoid, the mass is shifted
into the interior of the geoid in order to make up the mass deficiencies that exist under

the continents (Heiskanen and Moritz, 1967, Section 3-5).

The remainder of this section will only describe methods to remove the mass effect that
are based on the Bouguer reduction method, either as it was applied to the data
described in Section 4.4.1, or variations recommended for use in future geoid model
computations in New Zealand.
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It is worth noting that there appears to be some inconsistency in the literature with
regard to the terminology and symbols used to describe the corrections to the observed
gravity due to the effects of the terrain above the geoid. The terminology used in this
section is a combination from many sources; any differences in terminology will be

noted when they occur.

4.24.1 Bouguer Plate Reduction
The first step in removing the topographic mass (mass between the geoid and the terrain
surface) is called the Bouguer plate reduction (also referred to as the incomplete or
simple Bouguer reduction). With the assumption that the terrain around the gravity
observation point (S) is completely horizontal and the topographic mass has a constant
density (p), the attraction of a plate of infinite radius and a thickness equal to the
orthometric height of S (Hs) (see Figure 4-6) is obtained by (Torge, 1980, eqn. 5.70)

Sgppr = 2nGpHs = 0.0419 x 10 pHs = 0.1119Hg x 10 (ms™) (4.22)
where  dgpyr 1 the Bouguer plate reduction

G is the Newtonian gravitational constant, 6.67259 x 10! kg'l m’ s (Cohen

and Taylor, 1990)
p is the Bouguer or mean crustal density, ie assumed density within the plate.

The value of p=2.67>(103 kg m™ is commonly used.

Terrain
Surface

Geoid

Figure 4 - 6 : Bouguer reduction and Terrain Correction
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4.2.4.2 Terrain correction

The Bouguer plate reduction does not take into account the variation of the terrain
surface with respect to the Bouguer plate surface (see Figure 4-6). The variation of the
terrain from the Bouguer plate is accounted for by the terrain correction dgy. and if a

plane is assumed for the Bouguer plate reduction, dg; is always positive.

Using the law of gravitation the terrain is divided into vertical columns using concentric
rings and radii centred at the point of observed gravity (similar to the division using
polar coordinates in Section 4.2.3.3). The vertical component of gravitation for each

compartment is computed using (Torge, 1980, eqn. 5.71)

8gete = GpAa(rz — 1+ [AH? + 17— JAH? + rf) (4.23)

where  0gc 1s the vertical component of gravitation for compartment
Ao is the angle between the radial lines centred on the gravity point. ie. 27/n,
where n is the number of compartments per ring (r;, r; pair).
1], rp are the inner and outer radii for the compartment.
AH is the difference between the mean-compartment height and the point of
computation, ie. Hg - Hy. (see Figure 4-6)
i, j are the radial position of the appropriate ring and position of the
compartment within the ring, respectively.
By summing the contributions from each compartment the terrain correction is obtained

for the point of observed gravity, ie.

[ —
6gtc = 22 8gctc (424)

=l j=I

where J is the total number of compartments per ring

Hammer (1939) developed a method of calculating the terrain correction using (4.23)
that tried to maintain nearly square compartments. The method is referred to as
Hammer Zones and applies a constraint on the selection of compartment size by
insisting that ry/r; = (n+n)/(n-n). This constraint results in both a larger number of
compartments per ring, and an increase in the size of the radial component of the

compartment, with increasing distance from the point of gravity observation.
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With the number of gravity observations increasing and the availability of DEM’s, FFT
approaches to calculating the terrain correction have become popular due to their
superior computation speed over numerical integration methods such as (4.24). The
original development of the 2D FFT to calculate the terrain correction using a DEM was
by Sideris (1984). This work applied a linear approximation using the first-order term
of the series expansion of the rigorous formula for terrain corrections. Sideris (1990)
developed a 2D FFT method for any order but the 2D FFT cannot be applied when the
density in the z-direction varies or there are large terrain inclinations (Peng et al., 1995).
To overcome the limitations of the 2D FFT method Peng et al. (ibid.) have developed a

3D FFT method to calculate the terrain correction using density values on a 3D grid.

4.24.3 Topographic Reduction

The Topographic reduction dgropo is the combination of the Bouguer plate reduction
(4.22) with the terrain correction (4.24)

O2Topo = OLhpr - OLtc (4.25)
The main source of error in the topographic reduction comes from the assumed density
p of the topographic mass, used in both the Bouguer plate reduction and the terrain
correction. However, Smith (1992, p. 64) reported that varying the density in Hawaii
from 2.67x10° kg m” to 2.9x10° kg m>, which is a large physical variation, made little

practical difference to the N values (less than 0.01m).

4.2.4.4 Free-air Reduction
Applying the topographic reduction alone to the observed gravity only removes the
mass. The gravity station must also be reduced to the geoid and as the point is not
moved through any mass (because the mass has already been accounted for in the
topographic reduction) the correction is referred to as the free-air reduction. The
rigorous free-air reduction is (Heiskanen and Moritz, 1967, eqn. 2-124)

Y —)/:—%{l+f+m+(—3f+—5—m)sin2¢:|h+iy2ih2 (4.26)

a 2 a

where 5, is the normal gravity for a point at latitude ¢, situated at height h.

v is the normal gravity (4.2) at the ellipsoid for the same latitude as

fis the oblate flattening of the reference ellipsoid
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m is the ratio of centrifugal force and gravity at the equator of the reference

w’a

ellipsoid, m = (ibid., eqn. 2-100)

a

An alternative form of (4.26) is (ibid., p. 78), though as h is often unknown it is

common to replace h with H, thus giving

o 1 9*
v,y =S He E T H (427)

It should be noted that in (4.27) since 0g/0H is unknown it is approximated by ¢y/oh.
Rather than using (4.27), it has been common practise to use a simplified free-air
reduction, which neglects the dependence on latitude and omits terms non-linear in H.
The linear or simplified free-air reduction is (Torge, 1980, eqn. 5.66)

o) o
Sgsta = —-éfI-H ~ —%H =~ +0.3086 H (mGal) (4.28)

Pavlis (1988), Heck (1990) and Featherstone (1992) have all shown that applying only
the simplified free-air reduction is not acequate for precise gravity studies. The second
term on the right hand side of (4.27) can reach about 4 mGal in the Himalayas (Pavlis,

ibid., p. 59) and 0.5 mGal in mountainous regions of the British Isles (Featherstone,

ibid., p. 100).

Combining the simple free-air reduction (4.28) with the correction term associated with
GRS80 of Heck (ibid., eqn. 3-8) results in the second-order free-air reduction dgg,.

8gta = Ogsta + (-1.69x107 + 4.4x10sin’)H + 7.21x10* H*  (mGal) (4.29)
The use of (4.29) should be restricted to cases when only the simple free-air reduced
gravity observations are available. When the raw gravity observations are available then

(4.26) should be used with H replacing h (Featherstone, ibid., section 5.1.1) as follows

Ogfa = — 27, li1+f+m+(—3f+‘§"m)5m2 ¢}H+ 37/; H’ (4.30)
a a

= (-0.308769 + 4.40x10™sin’p)H + 7.21x10®* H* (mGal) for GRS80

4.2.4.5 Bouguer reduction

The Bouguer reduction dgy, is the combination of the Bouguer plate reduction, Terrain
reduction and the Free-air reduction

8gbr = 'Sgbpr + 6gtc + nga (43 1)
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When the Bouguer reduction is applied to the observed gravity, Bouguer gravity gg is
obtained on the geoid.

g =g+ 0gor = g - Ogbpr T 08 + O8fa = & - 0ZTopo T 08t (4.32)
Other terminology used for the Bouguer reduction include the refined Bouguer reduction

and the complete Bouguer reduction.

4.2.4.6 Gravity anomalies
Since the Bouguer gravity gg in (4.32) refers to the geoid (actually co-geoid, see
Section 4.2.4.7) it 1s possible to obtain gravity anomalies as defined in Section 4.2.2 by
subtracting the normal gravity yq (4.2) referred to the ellipsoid (Heiskanen and Moritz,
1967, eqn. 3-19)

Ags =88 -Yq (4.33)

where Agp is called the Bouguer anomaly.

Any of the terrain reductions in the preceding sections can also be converted to their
anomaly component by applying the appropriate terrain reduction to the observed
gravity and subtracting the normal gravity yq, ie the Free-air anomalies Agg, would be
obtained by using

Agr =g+ 8gm - Yo (4.34)
The Faye anomaly (Aggy) is obtained by applying the terrain correction and the
Secondary Indirect Effect (dgg) (Section 4.2.4.7), to the free-air anomaly.

Agry = Agea + 8gic + 3gsi (4.35)

Since the terrain reductions described so far only relate to the gravity observations they

are also referred to as gravity reductions.

4.24.7 Indirect Effect and the Secondary Indirect Effect

By removing the topographic masses outside (above) the geoid in, say, the Bouguer
reduction, the gravitational potential of the earth has been changed. As the geoid was
originally defined by the equipotential surface, W, the effect of removing the
topographic mass means that a point originally on the geoid will have experienced a
change in gravity potential of /7. The new equipotential surface that the point lies on is

called the co-geoid. Hence if any of the gravity anomalies outlined in Section 4.2.4.6
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were used in Stokes’ integral then the values of N computed would refer to the co-geoid
rather than the geoid. Each of the different gravity reductions results in a different co-

geoid being generated.

The difference in the height between the geoid and the co-geoid is called the indirect
effect on the geoid undulation, 5Nj, and can be computed via Brun’s formula as

ON; =0W /o (4.36)
Different methods of computing the indirect effect have been investigated by, amongst
others, Wichiencharoen (1982a) and Sideris (1990). The simplest, though least accurate
way of computing 0N is that of Grushinsky’s formula.
—~nGpH?

Ya

ON; = (4.37)

The computation of the geoidal height can then be computed using (Torge, 1980, eqn.
5.63)

N =N+ 8N; (4.38)
where NC is the co-geoidal height.

A secondary effect of this approach is the effect of N° on the gravity anomalies. Since
the co-geoid lies above the geoid, and no masses exist between the surfaces, the
reduction of gravity anomalies from the geoid to the co-geoid can be applied as a free-
air reduction (0gsr). This is referred to as the Bowie reduction or the secondary indirect
effect on the gravity anomalies, and is computed using (Heiskanen and Moritz, 1967,
egn. 3-51)

dgsr = +0.3086 SN; (4.39)

Including the two indirect effects caused by the gravity reductions, (4.20) is rewritten as

r
N = [[ (Ag+8g) S(w)do+ oN, (4.40)
4y o °;
4.2.4.8 Atmospheric Effect

In Stokes’ solution of the geodetic boundary value problem, one of the assumptions is
that no mass remains outside the geoid. In previous sections the removal of the

topographic mass has been considered but there still remains the effect that the mass of
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the atmosphere has on the gravity observations taken on the Earth’s surface. This is

known as the Atmospheric Effect, dga.

Besides the removal of the masses outside the geoid, other reasons for requiring dga to
be calculated are: 1) that GRS80 is defined including the mass of the atmosphere and ii)
that geopotential coefficients include the mass of the atmosphere due to its effect on the
satellite orbits. Therefore to ensure consistency between data types dga should be

calculated.

The precise calculation of 8ga is difficult due to the constantly changing atmospheric
densities. However, due to the small magnitude of the atmospheric mass in relation to
the Earth’s mass, dga is small (under 1 mGal). This can be seen from (4.41) and (4.42)
which are models of 6ga by Wichiencharoen (1982b) and Featherstone (1992)

respectively.
Sga = 0.8658 - 9.727x10™ H + 3.482x10”° H? (4.41)
8ga = 0.871 - 1.0298x10™* H + 5.3105x10™ H” - 2.1642x10™° H> +

9.5246x10" H* - 2.2411x102 B (4.42)

where dga 1s in mGal and H is the orthometric height in metres.

4.2.4.9 Summary of Terrain and Atmospheric Effects on Stokes’ integral

To enable N to be solved by using (4.20) the effects of the terrain above the geoid have
to be removed. The result of these reductions when combined with (4.20) results in

r
4nyQ

N =

jj (Agp, +90gg +0g,) S(y) dot 0N, (4.43)

where Ag is the gravity anomaly (either Bouguer, Free-air or Faye) and the Indirect

effects are appropriately computed depending on which gravity anomaly is used.

4.2.5 Global Geopotential Models
Torge (1980, p. 28) shows that the gravitational potential of the Earth (V) can be fully

expressed in spherical harmonics as

E [1 + i Zn“ (f_)n (Enm cosmA+S, sin ml)P—nm (cos 19)) (4.44)

r

GM
V=
p

n=1 m=0
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where G is the Newtonian gravitational constant
M 1s the mass of the Earth
a is the equatorial radius of the Earth
r is the geocentric radial distance to the computation point

n,m are the degree and order respectively

C,, is the normalised zonal Stokes’ harmonic coefficients

S 18 the normalised tesseral Stokes’ harmonic coefficients

P is the normalised associated Legendre polynomial

A, are the geocentric longitude and colatitude
When n = 0, the potential of the spherically symmetric Earth’s mass Mg is concentrated
at the centre of mass. The term n = 0 has been removed from (4.44) and by setting the
origin of the coordinates at the centre of mass of the Earth the first degree terms are
forced to zero, ie C;=C; 1=51,=0 (Torge, ibid., eqn. 2.57).

The harmonic coefficients, C, and S, , can be explicitly determined for the earth’s

gravity field using spherical harmonic analysis, though Featherstone (1992, Section 3.1)
points out that amongst other limitations the density distribution within the Earth is not
well defined, so (4.44) can only be determined by a limited series (7max) as follows
(Featherstone, ibid., eqn. 3.1)
GM & & gy — -
Ve = _GGM_(I + 2 Z (ﬂ;ﬂ) (Cnm cosmA+S,, sin m),)an (cos 19)] (4.45)
r n=2 m=0

When (4.45) is solved complete to degree and order nmay it will be referred to as a
Global Geopotential Model (GGM). The subscript GGM has been used to highlight the
fact that values of GM and a associated with a GGM sometimes differ from those of

GRS80, and the unknown true values of the Earth.

The practical determination of the Earth’s gravity potential is achieved through the use
of satellite and/or surface information. Since the early 1960’s there have been numerous
GGM developed. Nerem et al. (1995) give a review of recent progress in the
representation of the Earth’s gravitational potential. To date GGM have been computed

up to nmax = 360 (see Rapp et al., 1991 and Gruber and Anzenhofer, 1993). Improved
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nmax = 360 GGM are being developed using different data sets and weighting procedures
(eg. Rapp and Nerem, 1994), and GGM to nymax = 720 are being considered (Rapp,
1995).

The maximum resolution of a GGM is in theory directly proportional to ny,,y by the
relationship m/nmax. Therefore a GGM with nmax = 360 should be able to recover geoidal

features with half wavelengths of 0.5° = 55 km.

For the optimisation of the RINT technique in the lower North Island test area of New
Zealand (Section 4.5) only four GGM were used, as shown in Table 4-1. It should be
noted that in Table 4-1 GRS80 is not a GGM but is included to highlight the different

GM and a values used in its definition.

GGM name | Reference Nmax | GMaom (m3 s'z) agem (m) data

GEM-T2 Marsh et al., 1990 |36 | 3.98600436x10™* | 6378137 | st

OSU81 Rapp, 1981 180 |3.98600436x10™ | 6378137 | st, sa, tg

OSU91A Rapp et al., 1991 360 |3.98600436x10™" | 6378137 | st,sa, tg

EGM96 Lemoine et al., 360 | 3.986004415x10" | 6378136.5 st, sa, tg
1996 4

GRS80 Moritz, 1980a - ]3.986005 x10™ | 6378137 -

Table 4 - 1 : Global Geopotential Models used in analysis (adapted from
Featherstone, 1992). Note: st - satellite orbit perturbation
information; sa - satellite altimeter derived information; tg -
observed terrestrial gravity anomalies

Once the harmonic coefficients (C,, and S, )have been determined it is then possible

to calculate values for the geoid height and the gravity anomaly. The geoidal height
from the GGM (Nggm) can be computed using (Torge, 1980, eqn. 5.55b)

Moy 1

Noow =R, Y (C,, cosmA+35,, sin ml)f’nm (cos ) (4.46)

where R is the mean radius of the Earth. The gravity anomaly from the GGM (Ag Gom)
can be computed using (Torge, 1980, eqn. 5.54a)
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M s _ _ _
Agoom = G—2 2 Z (n— 1)(Cnm cosmA+S, sin ml)P;,m (cos®}) (4.47)

R n=2 m=0

4.3 Ring Integration Technique

The Ring Integration Technique (RINT) is basically the solving of Stokes” formula
(4.20) by numerical integration using polar coordinates and scaling Stokes’ function
(4.19) by sin(y) to overcome the singularity at y = 0. See Section 4.2.3 for a summary
of other Gravimetric techniques to solving the Boundary Value Problem. A flow
diagram of the School of Geomatic Engineering, UNSW, gravity computation software
is contained i Appendix F, with software enhancements undertaken as part of this

research described in Section 4.3.6.

The theory for RINT was originally developed by Lambert and Darling (1936) and is
outlined in Heiskanen and Moritz (1967, Section 2-24). A number of authors have
developed this theory further and produced geoid heights (Section 4.3.3). Kearsley
(1984, 1985, 1986a, 1988) has been the main proponent of RINT. Kearsley’s work
forms the basis of the method that has been used to determine a procedure to develop a

gravimetric geoid for New Zealand and is described in the remainder of this chapter.

4.3.1 Non-linearity of Stokes’ Function

As was outlined in Section 4.2.3.1 Stokes’ function tends to infinity when the spherical
distance approaches zero. Due to the rapid change in S(y) below 2° (Figure 4-7), S(y)
can not be assumed to be linear across the compartment. To overcome this non-linearity

Lambert and Darling (1936) suggested the use of the F(y) function.

Taking (4.20) and setting do = siny dy da, Stokes’ Integral can be written as (Kearsley,
1985, eqn. 2.5)

4
v

N =
47ryQ

2z
[ AgS(y) sinydyda (4.48)

w=0 a=0
where dy is the increment in the spherical radial distance centred upon the

computation point.
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do. is the increment in the direction of the radial line.

with F(y) defined as S(y) siny (4.48) can be rewritten as

j j Ag F(y)dy do (4.49)

F(y) in closed form is obtained by multiplying (4.19) by siny, resulting in
F(y)=2 cos(%’-) —sin 1/1[6 sin(%/—) —1+cos w{S +3 ln(sin 1/2/ +sin? 5 )H (4.50)

From Figure (4-7) it can be seen that F(y) does not have a singularity at y = 0 and is
also a flatter function than its parent S(y). Closer examination (see Figure 4-8) shows
that in the range 0° < y < 2°, which encompasses common spherical cap sizes (Section

4.3.2), F(y) can safely be considered linear.
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Figure 4 - 7 : Plot of the S(y) and F(y) functions for 0° < y < 180°. Where S(v) is
the pecked line and continues to infinity at 0°, F(y) is the solid line.

4.3.2  Global Geopotential Model and Stokes’ Integral

Stokes’ integral (4.20) requires that the gravity anomalies Ag be available over the
whole of the earth’s surface so the integration can be performed globally. This is neither

feasible or required as has been shown by many authors, including Rapp and Rummel
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(1975) and Kearsley (1988). Through the use of a GGM to provide the medium to long
wavelength features of N, the integration of Stokes’ integral can be restricted to a
spherical cap of, at most, a couple of degrees. This method of using a GGM is common
in modern geoid determinations and is not restricted to the RINT approach (see Torge,

1980 and Heiskanen and Moritz, 1967).

By incorporating the GGM with Stokes’ integral the gravimetric geoid height is
computed by
Nerav = Ngem + Nrint (4.51)
where Nggwm is the longer wavelength features of the gravity field represented by the
GGM and computed using (4.46).
Nrinr is the short wavelength features of the gravity field integrated by Stokes’

integral (4.49) out to the spherical cap of yo.

Yo 21
r

Nppr = e f ng F(y) dy do (4.52)

=0 a=0
In it’s present form (4.51) has introduced two errors because:
i) Stokes’ integral has been truncated at a spherical cap of yo. This truncation
error results in the values for the integration of (4.52) in the range of yo <y <7
being neglected (Jekeli, 1981). Further discussion of methods to reduce the
truncation error are contained in Section 4.3.2.1, and
ii)  the gravity anomalies in (4.52) contain the long wavelength features so
(4.51) includes these long wavelengths features twice. To avoid this the gravity
anomaly (Ag) is reduced by the gravity anomaly of the GGM (Agsgm), to the same
degree and order that Niam was computed, before the integral is solved (Kearsley,
1988). The new gravity anomalies produced from Ag-Aggowm, are called residual
gravity anomalies, Ag;. Thus applying this update to (4.52) results in the equation

that forms the foundation of the Ring Integration technique

Vo 2w
Newr = : J- J(Ag —AZgem ) F(W)d‘//da (4.53)
4n.’}/Q w=00a=0

where Aggom 1s computed using (4.47). In (4.53) the integration reference surface
has changed from the reference ellipsoid (n = 2) to the GGM geoid solution (n =
nmax) (Vanicek and Sjoberg, 1991).
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The technique of combining Stokes’ integral and a GGM by way of (4.51) is referred to
as the Remove - Restore technique. This is because the GGM gravity anomaly (Agcem)
is removed from the gravity anomaly (Ag) before integration and restored after

integration by the GGM geoid height (Nggm).

4.3.2.1 Kernel modification to reduce truncation error

In applying (4.53) to a limit of g the contribution of Ag; in the range yo <y < wis
neglected from the determination of Ngint. This neglected component is referred to as

the truncation error (Ntrnc) and can be computed by

Fi4

r

2
e ™ Ag—A Fly)dwyd 4.54
Trunc 4777}’() . a.[()( g gGGM ) (l//) W o ( )

It 1s common for the truncation error not to be computed in geoid computations.
However, a simple way to overcome the computation of (4.54) while reducing the

effects of Nynne 1s to modify Stokes’ integration kernel so that the effect of Ag, outside

Yo 1s minimised.

Numerous researchers have proposed different modification’s to Stokes’ integral to
minimise the truncation error but only four will be investigated for use with RINT. The
four modifications are based on Wong and Gore (1969), Meissl (1971), Vanicek and
Sjoberg (1991), and Featherstone and Evans (1996). All four modifications were
originally developed for use with the S(y) function, however they can easily be

converted to a F(y) function suitable for use in RINT by appropriately multiplying by

siny.

A brief summary of each modification will now be given, though for further details the

reader 1s referred to Featherstone (1992) along with the respective original authors.

i) Wong and Gore (1969) reduce the truncation error by suppressing the low degree

Legendre coefficients in S(y) using

N e (2n+1
R = )= S
n=2

P (cosy)siny (4.55)

101



Chapter 4 Gravimetric Geoid Computation

where Nioq 1 the degree of modification to the integration kernel. This integer number
can be different to the maximum degree of expansion of the geopotential model (7yax).
The choice of a large kernel modification has to be approached with caution as it
behaves as a filter and removes all corresponding wavelengths below this degree, thus
not allowing errors in the GGM to be corrected by the terrestrial gravity data

(Featherstone, 1992, Section 6.3). N was restricted to 36 for this investigation.

ii) Meissl (1971) proposed reducing the truncation error by subtracting the value of

Stokes’ kernel at y, from the kernel itself :

F,(w)=Fuy)-S(y )siny, = Fy)-F(y,) (4.56)

iii) Vanicek and Sjoberg (1991) reduce the truncation error by applying similar
theory to that of Molodenskii ef al. (1962) in the generalised Stokes scheme for a higher
than second degree reference surface :

= (2 + 1)
2

N,
Flm () = Fm (yr) — 1, (W) P, (cosy)siny (4.57)

n=2

The Molodenskii-like ellipsoidal truncation coefficients (#) are given by :

W (2n+1 & (2n+ 1
S Wew ) =0, ) - 32 e ) 4.58)

where the Molodenskii truncation coefficients ((,) are easily computed using the
algorithms of Paul (1973), and
e, (W)= [ P.(cosy)P, (cosy)sinydy (4.59)
Yo
As was the case for the Wong and Gore approach (Evllf‘"“" (y)) the higher the degree of

kernel modification the larger the filtering effect, so Nyoq is also restricted to 36 for this

research.

iv) Featherstone and Evans (1996) applied the theory of Meissl (ibid.) to the
Vanicek and Sjoberg (ibid.) modification. Thus when (4.56) is applied to (4.57) the
modification 1s :

F= (y) = F (W)= F () (4.60)
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The form of the original F(y) and the four modified kernels for y, = 0.3° (= 30 km) and
Wy, = 1.5° (= 150 km) can be seen in Figure 4-8. As the F(y) values were computed at
the mid compartment rather than outer ring edge (the full y,), values for the Meissl, and
the Featherstone and Evans modifications approach but do not equal zero. At y, these

two modifications do equal zero.

The evaluation of these four modifications to reduce truncation error using gravity data
is contained 1n Section 4.5.5. Algorithms for the kernel modifications were generously

supplied by Will Featherstone, Curtin University of Technology, Western Australia.
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Figure 4 - 8 : Modified kernels to minimise truncation error at y, = 0.3° and 1.5°.
The abbreviations are : Wong and Gore (wg), Meissl (me), Vanicek
and Sjoberg (vs), Featherstone and Evans (fe), and Stokes (st). Note
at plot scale wg and vs are equivalent for vy, = 0.3°.

4.3.3 Computational refinements to the RINT technique

Other authors to use the RINT technique in association with their own modifications are

Stewart (1990) and Tsen (1992). Both these authors use the RINT technique to compute
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the inner zone (short wavelength) contribution to the geoid (as does Kearsley) and rely
on a GGM to provide the outer zone (long wavelength) contribution (see Section 4.3.2

for the combining of GGM and gravity data).

Kearsley develops the rings so that each compartment makes the same contribution per
m@Gal to N at the computation point, obviating the need to compute the area of each

compartment in the ring structure.

The work by Stewart was based on the algorithms described in Kearsley (1986b).
Stewart chose to use a fixed compartment size so that the mean gravity anomaly for
each compartment could be pre-computed. This technique was designed to overcome
the computational effort of having to recompute the mean gravity anomaly for each

compartment around each point requiring a geoid height.

Tsen (ibid.), like Kearsley, uses varying compartment sizes around each computation
point. However, Tsen breaks the inner zone into three sub-zones, each having a
different number of compartments per ring, with zones further from the computation

point having a larger number of compartments.

4.3.4  Practical evaluation of Ring Integration

The practical evaluation of the equation that forms the foundation of the Ring
Integration technique, (4.53), will be briefly outlined in this section. For the full
development of this approach see Kearsley (1985, 1986a), and from which the following

derivations have been taken.

The modified Stokes’ integral (4.53) can be used to produce a pattern of compartments,
bounded by rings concentric to the computation point and by lines radiating from these
points (Figure 4-5). By setting da to a constant it is possible to vary the ring radii (y;)
so that each compartment contributes equally (per mGal) to the geoid height at the

computation point.
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Defining Cy as the contribution to Nt for one compartment bounded by de, y; and v;

(where j=i1+1), one can write

Vi
Ci, =K, [ Ag, F(y)dy (4.61)
\|l.

do and C’y is in meters. However, C’y is more convenient if

where K, =
Y q

expressed in units of meters per mGal (m/mGal) of the gravity anomaly, thus (4.61)

becomes
Cy =K, | F(y)dy (4.62)

It should be noted that due to the change in the normal gravity at the surface of the
ellipsoid (yq) for each computation point the ring radii (y; and ;) are unique to that

computation point.

From (4.53) and (4.62) the integral can be reduced to a double summation.
!
Nuwr =Cy >, 3 AZ; (4.63)

where  Ag, is the residual mean free-air gravity anomaly (Section 4.3.2) assumed in

practice to equal the value at the mid point of compartment i,;.
i is the index for the rings.
1 is the upper limit of the index for the rings (/ = o).
j is the index for the sectors, apex angle da.

J =2n/d e, ie. maximum number of compartments per ring.

From (4.63) it can be seen that solving the short wavelength component of the gravity
by using RINT is mainly concerned with determining the value of the residual free-air

gravity anomaly at the mid-point of each compartment. Then it is a simple matter of

summing all such values and scaling by Cy.

One of the advantages of RINT is that the compartment size can be varied to match the

average density of the irregularly distributed gravity observations. Also the area, do, of
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each compartment does not have to be computed for each ring since this has been

accounted for in the evaluation of Cy.

4.34.1 Mid-compartment gravity anomaly

When computing the gravity anomaly for each compartment there is a choice between
determining the mean or the mid compartment value. RINT computes the mid
compartment value by interpolating on the Agg surface rather than the Agg, surface, as
this is theoretically a smoother surface (Heiskanen and Moritz, 1967 and Nettleton,
1976). Analysis on the use of Agg and Agg, in New Zealand is contained in Section

4.53.

The interpolation uses a plane fit to 7 points and a weighting based on the distance of
the point from the mid compartment. The 7 points are chosen so as to select the 3
closest points to the compartment middle, then the next closest point from each of the 4

quadrants to give a well conditioned figure for the interpolation.

4.3.4.2 Mean residual free-air anomaly for the compartment

Once the mid compartment residual Bouguer anomaly has been computed (Section
4.3.4.1) it needs to be converted back to a residual free-air anomaly for use in (4.63).
RINT has the option to use either the height information of the gravity stations or a
DEM to determine the mean height of the compartment to be used in (4.28) to

reconstruct the residual free-air anomaly.

If a DEM is available then the mean height is computed by taking the mean of all the

heights which are contained in the compartment.

If no DEM is available, a mean of the heights of the 7 points chosen to interpolate the

mid compartment residual Bouguer anomaly 1s used.
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4.3.5  Analysis techniques of the RINT solution

The RINT technique has parameters which can be varied so as to optimise the geoid
heights that are computed. These parameters include the ability to: a) vary the
maximum radius of the integration cap; b) vary the size of the compartments; and ¢) use
the DEM data. To find which parameter settings are optimum for a specific project
area, two techniques are primarily used to evaluate the results. These two techniques
will be described in further detail in the following two sub sections, though in summary
the first uses the absolute point comparison of the Ngrav and Nggo at each control
station, while the second uses the relative line comparison of Ngrav and Nggo between

each control station. An alternative analysis technique is investigated in Appendix M.

4.3.5.1 Absolute Point Comparison (3N)
From (4.1) it 1s possible to compare the gravimetric height of the geoid (Ngrav),
computed using RINT, with the geometric height of the geoid (Nggo) once all three
heights (h, H, N) are known at the control stations. The difference in the geoid heights
(0N) is computed by subtracting Ngrav from Nggo, ie.

ON = Nggo - Ngrav = (haps - Hievelling) - Norav (4.64)
The use of 6N to analyse the Ngray results has to be approached with caution. One has
to assume that there is no bias between any one of the three height datums used (h, H or
N). This bias could be in the form of a constant offset and/or a slope between the
datums. As 0N values would have an expected value of zero if there existed no errors in
any of the three heights, analysis of 6N can highlight gross errors in the height data.
However, 1dentifying which of the three height data has the error is not possible without

further information.

4.3.5.2 Relative Line Comparison (5AN)

To reduce the effects that biases in any of the three height datums can have on the AN
analysis the relative line comparison is used. The magnitude of SAN gives an indication
of the accuracy of orthometric heights obtained from combining ellipsoidal and geoidal
heights using relative heighting methods. By biases in a height datum one means any
assumptions that introduce error in the data reductions and adjustment procedures for

obtaining the respective height. Instead of calculating the difference in geoid heights at
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each control station, the difference between pairs of control stations is calculated using
the following formula

OAN = ANgGgo - ANGrav (4.65)
where ANggo=hp -h,-H, +H,

ANgrav = NGrav s - NGrAv 4

subscripts a and b identify the two control stations used for the differencing

The statistical analysis of the 0AN values can be affected by the choice of control station
pairs, ie. a to b or b to a. To minimise this effect, the same combination of pairs of
control stations should be used through out the analysis, along with the root mean

square (rms) of the SAN since it is insensitive to the direction of the control station

pairing.

4.3.6 Enhancements to the UNSW gravity computation software

The UNSW gravity computation software suite, known as GRAV, was enhanced in a
number of areas during this research. This section briefly describes the major

enhancements that improved both the capabilities and performance of the GRAYV suite.

Prior to 1994 the UNSW copy of the GRAYV suite was only compiled on the universities
VAX central computer. The first enhancement was therefore to rewrite VAX specific
code as standard fortran to enable the compilation of the code on other computing
platforms (primarily PC and UNIX). During the testing rounding errors in the original
code were discovered for some variables that were only declared as real*4. These
rounding errors were more significant for larger cap sizes, amounting to approximately

0.01 m in N per 10 km of cap size.

The input commands for each component of the GRAV suite (see Appendix F) were
incorporated into a batch file instead of requiring keyboard input at run-time. This
modification to the GRAYV suite was undertaken as a joint project with Matt Higgins.
The use of batch files enabled the geoid computation process to be automated, thus
allowing different tests to be combined in a single batch file and run sequentially over

night. In addition example batch files, and help files, were included in the software to
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provide users with batch file templates. During this project an error in the search
routine for extracting a subset of gravity data around the computation point was found.
Instead of exiting a search loop after sufficient data was obtained the remainder of the
file was still read. As the GRAYV suite stores data by latitude from south to north the
effect on large datasets, such as the Australian wide file, was that considerable
processing time was wasted in reading unwanted data for southern sites. Removal of
this error improved the computation speed significantly at southern sites (eg. Hobart)
but the improvement was reduced the further north the site was. For a northern site (eg.

Darwin) there was no improvement.

Inspired by the improvement at southern sites another project to improve the searching
of data was undertaken by the author. This resulted in the format of the residual gravity
file being changed to a fixed record type, unformatted file so as to allow direct access
binary reading. A simple “halving” search routine was then implemented to further
improve the time required to search for the desired data. The combined effect of
changing the file format and adding the search routine was that at most six records
needed to be read to get to the start of the desired data irrespective of the computation
points location with respect to the start of the file. The time savings for this change
depended on the extent of the data files, though now the computation time for a site was
independent of the data file extents, consequently there is no need to have a number of

smaller data files containing overlapping data.

The residual gravity data used to be stored as real*8 and when dealing with the
Australian wide data set this was almost a 100 Mbyte file. To reduce the hard disk
requirements for the GRAYV suite the residual gravity data storage format was changed

to integer*4 which resulted in approximately a 50% file size reduction.

The GRAYV suite was also updated to allow the use of DEM’s in the computation of
geoid models (see Higgins et al., 1996) and a version developed to test kernel
modifications (Section 4.3.2.1) designed to reduce truncation errors due to the

integration limit.
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4.4 Data - Sources and Validation

4.4.1  Terrestrial Gravity data

The original gravity data supplied by DOSLI for this investigation was derived from a
research contract described in Gilliland (1988). The two files supplied were
MEANAN.DAT and NZGRAV.DAT. A description of how these two files were
generated can be found in Gilliland (1988, 1990) and Woodward (1982).

The MEANAN.DAT file contained mean gravity anomalies for every 1/10 th of a
degree block over New Zealand (Latitude S32° - S50°, Longitude E164° - E181°). This
file was not used as the RINT based software can directly use the randomly distributed

gravity anomalies (Section 4.2.3.3).

The NZGRAV.DAT file contained both land and sea gravity data from Latitude S24.05°
- S§57.95°, Longitude E162.69° - E191.5°. This data file, as described in Gilliland

(1988), contained free-air gravity anomalies in ums‘2 referenced to the International
Gravity Standardisation Network 1971 (IGSN71) and the Geodetic Reference System
1980 (GRS80), being corrected for atmospheric effects (land and sea data) and terrain
correction (land data only). The latitude and longitude of the gravity data was in terms
of NZGD49 which is not a geocentric datum and uses the International Hayford
spheroid as the Figure of the Earth (refer to Section 2.4 or Lee, 1978, p57). The
conversion of the NZGD49 latitude and longitude of the gravity data to WGS84 was
performed using the Mackie based seven parameter similarity transformation parameters
(Table 5-5). The orthometric heights of the gravity stations are in metres and generally
were obtained by barometric levelling, although some heights were obtained by spirit
levelling or trigonometric heighting. Reilly (1972) states that the accuracy of the
barometric levelling varies largely with the degree of control of pressure variation. For
surveys under favourable conditions heights could vary between 2-5 m while in windy
conditions in mountainous areas variations could attain 10-20 m. The atmospheric
effect was calculated as per the recommendations in the GRS80 system. The inner and
outer terrain correction was applied out to a radius of 21.94 km (Woodward, 1982)
using Hammer’s (1939) method. The use of Hammer’s method is outlined in Section
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4.2.4.2 along with modern techniques of applying the terrain correction. Due to the
format of the gravity data supplied to DOSLI, it was not possible to extract the size of
the terrain correction that had actually been applied to the observations. An indication
of the terrain corrections applied to the data could have been obtained by applying (4.24)
or the Hammer (1939) method, however this would not have given original corrections

due to the original DEM not be available.
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Figure 4 - 9 : Land gravity data for the lower North Island test area. Rectangular
projection

The land data for the lower North Island test area (Lat. S38.00° - S43.50°, Long.
E172.50° - E178.00°) (Figure 4-9) was extracted from NZGRAV.DAT. There were
15748 records for this land area of approximately 100,000 km?, which averages out at a
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station density of approximately 1 per 6.5 km? that is marginally denser than the

national average of 7.5 km? (Section 4.1).

As can be seen from Figure 4-9, all the land stations for the lower North Island test area
appear to fall on land. The gravity stations at approximately S40.7°, E175.0° are on
islands. However, if we look back to Figure 4-1 there appears to be a cluster of land
stations off the east coast of the South Island (approximately S44.3°, E171.8°) where no
islands exist. Irregularities such as this have not been investigated beyond the limit of

the lower North Island test area.

4.4.2  Off-shore Gravity data

The ship-borne gravity data for the lower North Island test area (Lat. S38.00° - S43.50°,
Long. E172.50° - E178.00°) was extracted from NZGRAV.DAT, which is described in
Section 4.4.1. Unlike the land gravity there was (obviously) no need to apply the terrain
correction. Figure 4-10 shows the location of the off-shore data, and clearly shows

stations on land and a distinct grid pattern.

After holding discussions with Gilliland, University of South Australia and Crook,
DOSLI, it was concluded that the original off-shore gravity data that was supplied for
use by Gilliland (1988) was read incorrectly during the processing. The grid pattern
apparent in Figure 4-10 can be explained as follows: coordinates that had blanks rather
than zeros after the decimal place were read ignoring the blanks (ie. 41°.0015 was in the
file as 41 15 so was read as 41°.15) and consequently all points between 0.0 and 0.1

of a degree were read incorrectly.

The impact of this error is that if the normal gravity was calculated using the incorrectly
read latitude and longitude then the free-air anomalies will be in error due to the

observations being at one point and the normal gravity at another which could have been

up to 0.9 degrees away.
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Figure 4 - 10 : Original Off-shore gravity data for the lower North Island test area.
Rectangular projection

It was decided that due to the time restrictions the original data, as supplied to Gilliland
(ibid.) which DOSLI still had on tape, would not be reprocessed. Instead Crook inferred
the corrections applied by Gilliland (ibid.) by seeking identical points in the
NZGRAV.DAT file and in the data read directly from the tape (avoiding the points
which were affected by errors reading the tape). For these common points the

corrections were determined by fitting a polynomial function of latitude to the data.

The polynomial function fitted all the test points to within the numerical accuracy of the

data (ie 0.1 pms-2). This polynomial function was then used to correct all the data read
from the tape. The corrected off-shore data was stored in MDBGRAV3.DAT and the

points in the lower North Island test area (67,582 records) are shown in Figure 4-11.
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Figure 4 - 11 : Corrected Off-shore gravity data for the lower North Island test
area. Rectangular projection

The Institute of Geological and Nuclear Sciences in New Zealand (IGNS), who are
responsible for the New Zealand gravity data, were approached for any additional
gravity data that had been collected since DOSLI last obtained a copy of the gravity
data. This resulted in additional off-shore data being made available. As this new data
was in the same format as the original tape data that DOSLI had, the new data was
converted using the same latitude function as had been used to create the
MDBGRAV3.DAT, and was stored in NEWGRAV.DAT. Figure 4-12 shows this
additional off-shore gravity data for the lower North Island test area which consists of

53,072 records.
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Figure 4 - 12 : Additional Off-shore gravity data from IGNS for lower North
Island test area. Rectangular projection

A point to be noted is that Figure 4-12 shows that gravity data observed on Lake Taupo
(S38.7, E176.0) is included as off-shore data. The orthometric height of the data
observed on the lake is given as 0.0 m in the NEWGRAV.DAT file. The lake surface is
approximately 600 m above sea level and by plotting the gravity data in the vicinity of
Lake Taupo, confirmed that the gravity observations on the lake have had the free-air

correction applied.

The combined off-shore data extracted from the NEWGRAV.DAT and
MDBGRAV3.DAT files for the lower North Island test area resulted in 120,654 records
for an area of approximately 140,000 km?, which averages out at a station density of
approximately 1 per 1.1 km?®. As can been seen from Figures 4-11 and 4-12 most of the
ship-borne gravity has been observed at a high density along the ships track, but the

distance between ship tracks can easily be 20 km apart. No attempt was made to thin
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the off-shore gravity data in the along track direction to be comparable to the track

spacing. It was assumed that this did not affect the final gravimetric geoid computation.

4.43 Combined Gravity data and preprocessing

The combined off-shore and land data extracted from the NEWGRAV.DAT,
MDBGRAV3.DAT and NZGRAV.DAT files for the lower North Island test area
resulted in 136,402 records and was stored as MNTHSORT.DAT (Figure 4-13). For the
test area of approximately 240,000 km® this averages out at a station density of
approximately 1 per 1.7 km* when including the effect of the dense along track ship-

borne gravity.
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Figure 4 - 13 : Distribution of the combined Off-shore and Land free-air gravity
anomalies for the lower North Island test area. Rectangular
projection
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The free-air gravity anomalies, within the lower North Island test area (Figure 4-13),
have the following statistics (units : pms™?): maximum = 2042.0, minimum = -1681.4,

mean = -184.9, and standard deviation = 457.2 (Figure 4-14).

Figure 4 - 14 : Surface plot of the Free-air gravity anomalies of the lower North
Island test area (units = ums'z)

As was explained in Section 4.3.2, the GGM value for the gravity anomaly is removed
from the observed gravity anomaly before the Ring Integration is performed. This
removal of the GGM gravity anomaly is performed in the RESIDGRV program, which
also checks for duplicate points in the input observed gravity anomaly file. A point is
classified as being duplicate if it has, at the fifth decimal place of a decimal degree, the
same Latitude and Longitude as another point (approximately 1 metre or less difference

in position).

When the combined Off-shore and Land gravity file (consisting of 136,402 records) was
run through RESIDGRYV there were 15,185 duplicate points. These points can be seen
in Figure 4-15, and shows that most duplicate points occur when data is collected from

boats, ie. sea or lake areas, and often represent cross-over points.
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When the positions of the remaining 121,217 residual free-air gravity anomalies are

plotted, there is no visual difference to Figure 4-13, so no new figure has been included.
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Figure 4 - 15 : Duplicate points from combined Off-shore and Land gravity data.
Rectangular Projection

4.4.4  Satellite Altimetry gravity data

The Satellite Altimetry gravity data was obtained from Scripps Institution of
Oceanography, La Jolla, California, USA by anonymous ftp to baltica.ucsd.edu. The
file downloaded was titled world grav.img.4 and consists of a global 3 minute grid of
off-shore gravity anomalies on a Mercator projection. The associated README file
states that the grid was derived from the following data sources:
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Seasat - Used in areas north of 30 S latitude. Profiles within 10 km of a
Geosat Exact Repeat Mission (Geosat/ERM) track were
excluded.

Geosat/ERM - Average of 62 Geosat/ERM profiles.

Geosat/GM - Declassified Geosat Geodetic Mission (Geosat/GM) data south
of 30 S.

ERS-1 - ERS-1 Ocean Products (OPR) Geophysical Data Records
(GDR’s). The first 16 repeat cycles of the 35-day repeat orbit
were averaged to improve their accuracy and resolution.

ERS-1 - ERS-1 fast delivery profiles from the first 200 days of the ERS-
1/GM.

The following overview of the gridding method used to generate world grav.img.4 is

based on Sandwell (1992).

Satellite altimetry uses a pulse-limited radar to measure the altitude of the satellite
above the closest sea surface point. Global precise tracking coupled with orbit dynamic
calculations provide an independent measurement of the height of the satellite above the
ellipsoid. The difference between these two measurements is equal to the instantaneous
sea surface height which, after removal of tides, is a good approximation of the marine

geoid (neglecting oceanographic effects).

To avoid a multi-satellite crossover adjustment, which would become enormous due to
the small spacing between the satellite tracks, another method was developed for using
the sea surface topography profiles. The method begins with both the ascending and
descending altimeter profiles being differentiated once in the along-track direction
resulting in geoid slopes or along track vertical deflections. This differentiation
suppresses the long wavelength radial orbit error to well below the noise level of the
altimeter. The ascending and descending slope profiles are then interpolated onto
separate Mercator grids. These two grids are summed and differenced to form

comparable grids of east and north vertical deflection.
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Using Laplace’s equation, the vertical gravity gradient can be calculated directly from

the vertical deflection grids without any assumptions. However, Fourier analysis is

required to construct gravity anomalies from the two vertical deflection grids. A GGM

(complete to degree 40) is used to limit the effective range of the implied convolution

associated with the vertical deflection to gravity anomaly conversion, so a flat-earth

approximation can be used as long as data are gridded on a map projection. This is

achieved by removing the GGM from the profiles before gridding and construction of

east and north vertical deflections. The GGM is later added back to the gridded gravity

anomaly data.
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Figure 4 - 16 : Distribution of the Satellite Altimetry data for the lower North
Island test area. Rectangular projection

178.00

120



Chapter 4 Gravimetric Geoid Computation

From world_grav.img.4 the data for the lower North Island test area was extracted
(Figure 4-16). As can be seen the Satellite Altimeter provides regular and consistent
data at sea, but near the coastline there can be considerable data loss. This data loss is

due to radar reinitialisation problems after crossing land.

4.4.5 Digital Elevation Model

A digital elevation model (DEM) was generated to cover (Lat. S37.74° - S43.82°, Long.
E171.76° - E178.52°) the Lower North Island test area using DOSLI’s in-house
software. The elevations ranged from 0 to 2855 m. The portion of this DEM
immediately surrounding the RINT optimisation points (Section4.4.6) is represented by

a surface plot in Figure 4-17. The elevations in this portion ranged from 0 to 1570 m.

The DOSLI software derives the spot heights at the grid points, rather than average cell
heights, from the 20m contours on the 1:50000 topographic map series. The
interpolation used to generate the spot heights is based on constructing profiles across
the grid in E-W, N-S, SE-NW and SW-NE directions. The contours are intersected with

each profile and heights then interpolated from the contour intersection points onto the

grid points.

This gives four elevations at each location. A weighted mean is derived from these
values. Weighting is according to the proximity of the nearest contour - if one profile
intersects a contour near a grid point then the corresponding height will be given greater

weight than that from a profile which does not intersect a contour near the grid point.

The DEM consists of a set of values which are exactly consistent with the contours but
which may contain significant artefacts relating to the directions of the profiles. In an
effort to reduce these artefacts a smoothing algorithm 1s applied to the DEM elevations.

The algorithm attempts to remove abrupt changes in slope and rate of change of slope.

The northing and easting coordinates for the spot heights were then converted from the

New Zealand Map Grid (NZMG) to latitude and longitude in terms of GRS80 to give an
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approximate grid spacing of 0.004°. Full information on NZMG is given in Reilly
(1973).
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Figure 4 - 17 : Terrain for the lower North Island test area. Top: Coastline with
the 14 first order control stations. Bottom: Smoothed terrain surface
with heights in metres

4.4.6 GPS data

During 1994 there were a number of GPS campaigns undertaken by DOSLI to improve
the horizontal control network between Wellington and Palmerston North. These
different GPS campaigns were combined in a single adjustment using the SNAP
software (Crook, 1995). The adjustment held the WGS84 latitude, longitude and
ellipsoidal height of the Heaphy House GPS Pillar fixed in a minimally constrained
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adjustment (Jim Hall, pers. comm., 1995). The coordinates and station names for these
108 GPS stations are contained in Appendix G, with their distribution shown in Figure

4-18.
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Figure 4 - 18 : Distribution of the 108 GPS stations for the lower North Island test
area. Rectangular projection

The optimisation of RINT for the lower North Island test area (Section 4.5) was
undertaken using a subset of the available GPS stations. The subset of stations were
selected using primarily two criteria. The first criteria was to reduce the biasing in the
optimisation results due to densely occupied regions (ie. S41°, E174.4°), while still

maintaining a well distributed set of stations. The second criteria was designed to allow
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results obtained at first order orthometric height stations (which are normally located in
valleys) to be checked against results at stations located in regions with more rugged
terrain. Therefore, a selection of third order orthometric height stations were chosen, as
these sites were located on ridge lines. This subset consisted of 33, out of the original
108, stations and was comprised of 14 first order (max. height = 334.232m) and 19 third
order stations (max. height = 1545.99m) (Figure 4-19).
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Figure 4 - 19 : Distribution of the selected 33 GPS stations, with 1st order
(triangles) or 3rd order (circles) orthometric heights, for
optimisation of RINT in the lower North Island test area.
Rectangular projection
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4.47 Orthometric Height data

The orthometric height for the 108 control stations in the lower North Island test area
were extracted from the DOSLI Geodetic Database. These extracted heights are listed
in Appendix H, along with an indication of their height order. Section 2.3 describes the

history of New Zealand levelling network and outlines the height order specifications.

4.5 Method of optimisation on test area of New Zealand

A test area covering the lower North Island has been chosen to trial different
configurations of the Ring Integration technique (Section 4.3). This section presents the
results of these trials in a progressive nature where the previous optimum result has

further smaller corrections applied.

The three main reasons for choosing the lower North Island as the test area are :
i) both land and sea gravity data was available (Figure 4-13)
ii) approximately 100 points (control stations) had both ellipsoidal height from GPS
and orthometric height from spirit levelling (Figure 4-18)
iii) the area consists of rugged terrain which is typical for New Zealand, varying
from sea level to 1500 metres (Figure 4-17)
Restricting the test to a small part of New Zealand also reduced the pressure on the

limited computer resources available for the project.

In October 1996, a new GGM was released through a joint project between the NASA
Goddard Space Flight Centre (GSFC) and the U.S. Defense Mapping Agency (DMA),
being referred to as the Earth Geopotential Model of 1996 (EGM96) (Lemoine et al.,
1996). Due to the late release of EGM96, with respect to the completion of this thesis,
analysis of EGM96 with respect to the other GGM listed in Table 4-1, has been
restricted to Sections 4.5.1 and 4.5.6.
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4.5.1 Comparing Global Gravity Models by residual gravity anomalies

As RINT uses residual free-air gravity anomalies (Section 4.3.2) the first test was to
determine which GGM best represented the gravity data of the region. As stated above
the gravity data available for this project were free-air gravity anomalies that had been
terrain corrected using Hammer’s method out to 21.94 km and which had had the

atmospheric correction applied (Section 4.4.1).

The procedure for the test was to take the gravity data and reduce them by the gravity
anomalies of each GGM (Agggm) listed in Table 4-1. The statistics of these residual
gravity anomalies (Ag;) were then calculated to assess which model best represented the

physical data. The results are contained in Table 4-2.

GGM Reference Mean Standard Minimum | Maximum
Deviation

GEM-T2 Marsh et al., 1990 | -14.5 44.7 -168.9 202.8

OSuU81 Rapp, 1981 -2.3 29.7 -119.7 188.8

OSU91A Rapp et al., 1991 -8.6 20.6 -97.0 193.7

EGM96 Lemoine et al., 1996 | -6.5 194 -112.9 193.6

Table 4 - 2 : Comparing GGM by residual gravity anomalies. (Units are mGal,
Standard Deviation is given at 1 sigma)

The model which performed worst was GEM-T2. GEM-T2 was derived from satellite
orbit analysis only and has a maximum resolution of only about 5° which is basically the

extent of the test area, so this poor result was not unexpected.

Prior to the inclusion of EGM96 (nmax = 360, resolution 0.5°) in Table 4-2, OSU81 (Bmax
= 180, resolution 1°) had the mean which was closest to zero but OSU91A (nmax = 360,
resolution 0.5°) had the smallest standard deviation. The large mean for the OSU91A
model could indicate that there is an inconsistency between the datum of the model and
the datum of the gravity data. However, as OSU91A gave an improvement of 30% in
the standard deviation over OSUS81, OSU91A was considered the better model to
represent the test area’s gravity data. Further trials still use both OSU91A and OSU81

to provide a means to identify results which may be influenced by the choice of GGM.
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With the inclusion of EGM96 (nm.x = 360, resolution 0.5°) in Table 4-2, it is clear that
the mean residual gravity anomaly of EGMO96 for the test area is a 24% improvement
over OSU91A. Though the large mean for EGM96 still indicates that there could be an
inconsistency between the datum of the model and the datum of the gravity data. The
standard deviation of the residual gravity anomalies using EGM96 has improved slightly
(by 5%) over the OSU91A value. The conclusion from analysing the mean and standard

deviation is that this test area’s observed gravity is better represented by EGM96 than
OSU91A.

4.5.2 Optimum cap size for RINT

Determining the integration radius for RINT is an important step. The inclusion of too
little local gravity data will result in the higher frequency geoid features missed by the
model still being unaccounted for by the local gravity data. However, if too large a
radius is chosen to include the local data, information contained in the model will be
unnecessarily duplicated. As well the computation time will increase for no further
improvement and, as will be shown, can for certain cap sizes degrade the results. RINT
allows the compartment sizes to vary through the choice of the parameters do. (4.48) and
Cn (4.61). For the following sub-sections the values of da. = 10° and Cy = 0.0003
m/mGal were used. The effect of varying these parameters was tested and it was found
that features in the results, such as the amplitude and wavelength of the W-curve
(Section 4.5.2.1), were not significantly altered. The choice of da = 10° and Cy =
0.0003 m/mGal were chosen so compartments were approximately square in shape and

this meant the radii of the rings incremented by about 10 km.

4.5.2.1 Effect of varying GGM
The purpose of this section is to test the effect of the reference GGM on determining the

optimum cap size for RINT.

The two GGM tested were OSU81 (max = 180) and OSUILA (nmax = 360). The results
for the N (4.64) analysis of the 14 first order stations (Section 4.4.6) for a cap size from
ring 0 out to ring 20 (ie. 0° to 2.0°, or approx 0 km to 200 km) are contained in Figure
4-20. From this figure it is obvious that the mean N varies with respect to both the
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GGM and the ring number. This is because any gravimetric determination of the geoid

is deficient in the zero- and first-degree terms.

The standard deviation of the 0N for each model have common minima and maxima for
ring numbers, though the amplitude varies. OSU81 has the larger standard deviations,
which is to be expected since OSU91A has a resolution that is 50% finer than OSU81

(see Section 4.2.5 for model resolution).
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Figure 4 - 20 : dN values at the 14 first order control stations when varying the
reference GGM between OSU81 and OSU91A.

To reduce the effects of datum inconsistencies it is necessary to use relative line
comparison (Section 4.3.5.2). The results from analysing the 91 baselines formed
between the 14 first order control points are contained in Figure 4-21. These 91
baselines have an average length of 42.9 km, with a minimum of 5.6 km and a
maximum of 95.8 km. The first point to note is that ring number zero (model only)
performs worst for both models. Therefore including local gravity in the computation of
the geoid height by using RINT will improve the results. For example, ring 1 gives a
25% improvement in rms over ring 0. Thus by including local gravity within 10 km, a

significant improvement occurs.
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A problem with comparing the AN directly is that they could be biased by the length or
the orientation of the line. To investigate whether a length bias existed, it was removed
by dividing the AN values by the length of the line and expressing the result in parts
per million (ppm). The mean and root mean square (rms) of the ppm values were then

calculated using 4-66 and 4-67.

i SAN,
SAN = LT Ly o8 (4.66)
n
2
z”:(éANij
SANZ™ = 22 7L 7 q0° (4.67)
n

where SAN" is the mean of the relative line comparison expressed as a ppm in

mean

terms of the line length.

OAN™™ is the rms of the relative line comparison expressed as a ppm in terms

rms

of the line length.

SAN., is the relative difference in AN for the i" baseline.

s; 18 the length of the i" baseline.

n is the number of baselines.

By comparing the OSU81 and OSU91A results for either SAN or ppm (Figures 4-21 and
4-22) it is clear that there are two distinct groups of ring numbers that produce optimum
results (rings 3-4 and 11-14). OSU91A performs the best in both rms and mean for all
rings. If there does exist a correlation between the SAN values and baseline length it is

not significant as indicated by the similarity between the figures.

The bi-modal or W-curves, as first noted by Kearsley (1988), clearly exist in this
analysis. Kearsley (ibid.) noted that the wavelength of the curve approximates the half
wavelength recovered in theory by the GGM when summed to 7y, (ie. 180/mmax). This
does not seem to occur in the analysis performed with the New Zealand data. Varying
of npax from 180 (OSU8L) to 360 (OSU91A) does not significantly affect the

wavelength of the W-curve but the amplitude is reduced with higher values for nyax
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(Figure 4-22). Further tests aimed at understanding the mechanisms that generate the

W-curve have been conducted and are contained in Appendix J.
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Figure 4 - 21 : 5AN values at the 14 first order control stations when varying the
reference GGM between OSU81 and OSU91A.
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Figure 4 - 22 : Investigation of a baseline length bias by comparing OSUS81 and
OSU91A in an relative sense at the 14 first order control stations.
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From the results of comparing OSU81 and OSU91A, at the 14 control stations,
OSU91A was chosen as the superior GGM. This confirms the earlier results in Section
4.5.1 (pre EGM96) and therefore OSU91A has been chosen as the GGM to be used as

the reference model.

As was described in Section 4.3.4.1 the use of the analysis of absolute N differences
needs to be undertaken with caution due to the effects of datum inconsistencies.
However, plotting SN for each control station can identify control stations which have
gross errors in one or more of their heights. Figure 4-23 illustrates how easy it is to
detect gross errors by plotting the third order control stations 8N values for each ring
calculated with respéct to OSU91A with a DEM used to calculate the mean
compartment height. As can be seen from Figure 4-23 the points labelled D136 and
D510 follow the general upward trend with increasing ring number but are significantly

offset from the other control points.
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Figure 4 - 23 : Absolute point comparison of the 19 individual 3rd order control
stations using OSU91A and a DEM for compartment heights.

There is no way of determining which height element (h, H or N) may be causing the
error. However, the error is likely to be in the orthometric height since D136 and D510

are both located on different islands (Kapiti and Mana, respectively) to the remainder of
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the control stations. It is possible that the gravimetric geoid height is in error due to the
combination of land and off-shore gravity observations, but this is discounted because,
if it were, one would expect to see jumps in the lines when the cap changes from
including land data to off-shore data. The ellipsoidal height has been established in a
homogeneous GPS campaign, and it would be most unlikely that both small island sites
had their antenna heights incorrectly measured. This leaves the orthometric height as
the probable source of error. This view is reinforced when one remembers that the
orthometric heights of the two control stations (D136 and D150) were determined by

trigonometric levelling across water.

For the remainder of the analysis using the third order control stations, both D136 and

D510 were removed.

Once the control stations with gross errors have been removed it is then possible to

properly analyse the relative line comparisons (Section 4.3.5.2).

4.5.2.2 Mean compartment height from gravity station information or a DEM

The RINT based software had the option to use the height of the seven gravity stations,
chosen as described in Section 4.3.4.1, to calculate the mean height of the compartment.
This mean height is used to reconstruct the residual free-air anomaly from the residual
Bouguer anomaly (Section 4.3.4.2). This section shows the results from using both
these seven gravity points and a DEM to obtain the mean height of the compartment and
the effect this has on determining the optimum cap size for the integration. For further
information on the development and testing of the benefits of using a DEM to generate

the mean height of the compartment see Higgins ef al. (1996).

Using OSU91A to nmax = 360 as the reference GGM, the ON values for the first order
control stations were computed using both the DEM and the gravity station heights only
(no DEM) to calculate the mean compartment height (Figure 4-24). It is clear from the
results that the ON mean is significantly affected by the use of the DEM, whereas the
standard deviation of the 6N sees only a marginal change (max 0.02m). The wavelength
of the W-curve remains unchanged but the amplitude is increased slightly when the
DEM is used. At the optimum cap (ring numbers 3 and 11) the standard deviation of
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the ON from using the DEM has improved by approximately 15%, however at the sub-
optimum ring (number 6) the standard deviation has deteriorated by 6%. The reasoning
behind the increase in the amplitude of the W-curve is not understood. To try to

understand this amplitude change the following approach was taken.
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Figure 4 - 24 : 0N values for the first order control stations computed using the
DEM or gravity station heights to calculate the mean compartment

height.

Since the first order control stations are generally located on valley floors, because of
the difficulties of undertaking spirit-levelling along ridge tops, it was decided to
compare the results of the first order stations with those of third order control stations.
The third order control stations are more likely to be located in areas of difficult
topography, but as a consequence have lower quality orthometric height determinations.
It should also be noted that the third order control stations orthometric height would

have been adjusted in terms of the first order stations, thus containing the same height

datum errors.

As was the case with the 14 first order control stations, the 19 third order control

stations results for the SN mean is significantly affected by the use of the DEM (Figure
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4-25). On average the ON standard deviations for the third order control stations is 10%
worse than the first order control stations. This could be due to the expected precision’s
of the 1st and 3rd order levelling alone (Section 2.5.2). It is also clear again that when
using the DEM, the amplitude of the 0N standard deviation W-curve increases. For the
two optimum rings (numbers 3 and 11) the improvement (over the non DEM solution)
was 17% and 19%, respectively. The sub-optimum ring (number 6) deteriorated by 8§%.
It is worth noting that ring number 11 is only considered as one of the optimum rings at
this stage of the analysis because it is the first of a series of rings at which the inclusion
of further gravity data does not significantly affect the 0N results. Further discussion on

selecting the optimum ring for generating a geoid model is contained in Section 4.5.2.3.
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Figure 4 - 25 : 6N values for the third order control stations computed using the
DEM or gravity station heights to calculate the mean compartment

height.

Considering that any datum inconsistencies could be affecting the 6N analysis, relative
line comparisons (0AN) are now analysed to further highlight the benefits of using a
DEM to calculate the mean compartment height. As the dAN results expressed as

straight differences could be influenced by the length of the baseline, the analysis will be

done using dAN expressed as ppm values.
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The 17 third order control stations have 136 independent baselines with an average

length of 40.7 km with a minimum of 0.6 km and a maximum of 85.5 km.

Analysing the ppm results for both the first and third order control stations we see that
for rings number 1 to 3 and 6 to 15 the use of the DEM improves the solution, however
the DEM solution is degraded for rings number 4 to 8 (Figures 4-26 and 4-27). The
concern about this degradation is highlighted at ring number 6 (ie. a spherical cap of
approximately 0.6°) where the inclusion of the gravity data has no significant
improvement over the OSU91A model only solution, for the first order control stations
and produces a poorer result than the model for the third order control stations. This
degradation has been significantly reduced when using EGM96 as the reference GGM
(Section 4.5.6).

EZEER No DEM mean
B WS DEM mean
14 4+ —O0—No DEM rms
—A-— DEM ms

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ring number (x10 for km)

Figure 4 - 26 : AN values (expressed in ppm) for the first order control stations
computed using the DEM or gravity station heights to calculate the
mean compartment height.
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Figure 4 - 27 : AN values (expressed in ppm) for the third order control stations
computed using the DEM or gravity station heights to calculate the
mean compartment height.

4.5.2.3 Considerations when selecting optimum cap size for RINT

Through the use of local gravity observations in the RINT technique it is predicted that
Ngrav values obtained will be closer to the true N value than the Nggy values. From
the results presented in Sections 4.5.2.1 and 4.5.2.2 the varying of the GGM or the
method of obtaining the mean compartment height can change the accuracy of the
solutions. What was also shown to be true was that these variations did not alter the

optimum or sub-optimum ring numbers.

Due to the presence of the W-curve, especially in the SAN and ppm results, a choice has

to be made between the two local minimum ring numbers 3 and 11.

The advantage of ring number 11 is that the ring numbers either side of 11 generally
vary less with respect to 11, than the ring numbers either side of ring 3 vary with respect
to ring number 3. The disadvantage of ring number 11 is that the spherical cap required
for RINT has a radius of approximately 110km as opposed to ring number 3 having a

radius of approximately 30km. Assuming that the gravity data has a constant coverage
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across the extent of the project then ring number 3 will only require 7.5% of the data
that ring number 11 requires for each computation point. In other words, if the
compartments are generated from radial lines with apex angles of 10°, and the radii of
the concentric circles increase by 10.0°, then ring 3 will need 288 fewer compartments
than ring 11 for the summation for each computation point. The use of ring number 3 as
the limit of integration will not only save considerable computer processing time but
also will reduce the amount of gravity and DEM data that needs to be stored on-line

while generating the geoid heights, resulting in a further time saving.

However, as the computation of a national geoid model is performed only once in a
number of years the processing time is not a major concern. The primary concern is

generating the best possible model.

From Figure 4-26 we can see that the results from ring 3 are only 0.3 ppm worse that
those from ring 11. In terms of the rms of the ppm, integration to rings 3 and 11 are not

significantly different.

The variability of the results near ring number 3 was noted above. However, it was
considered that the benefits of reduced on-line data requirements outweighed the
disadvantages, and therefore ring number 3 was chosen as the optimum ring for
calculating a relative geoid in the lower North Island test area. The choice of ring
number 3 means that the optimum spherical cap size is approximately 31 km (= 0.3°).
This optimum spherical cap size has also been chosen for geoid computations in the

Philippines (Kearsley, 1993, p11) and Australia (Higgins et al., 1996).

4.5.3 Bouguer or Free-air anomalies for interpolation in RINT

When interpolating a gravity anomaly at the compartment mid-point (Section 4.3.4.1)
the surface used should be smooth to enable a reliable estimate to be obtained.

Geophysical texts such as Dobrin (1976) and Nettleton (1976), as well as the geodesy
text of Heiskanen and Moritz (1967), state that the residual Bouguer anomaly surface

should be smoother than the residual free-air anomaly surface.
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Featherstone et al. (1995) compared dgg and dgy, across Australia and concluded that it
was unclear which anomaly was the smoothest for interpolation. This section
investigates the effect of using dgy, and 0gp as the interpolation surface for the lower
North Island test area. The test involved using the same seven gravity stations to
estimate the mean Agg, for that compartment. However, in this test the free-air

anomalies were used directly for interpolation.

The test was performed at the first order control stations. The results (Figure 4-28)
show that there is no practical difference between using the free-air anomalies or the
Bouguer anomalies in this lower North Island test area. However, as was shown in
Section 4.5.2.2, using a DEM (rather than the seven gravity stations) to calculate the
mean compartment height to reconstruct the free-air anomaly from the Bouguer anomaly
does significantly improve the results. Therefore it 1s recommended that interpolation
be undertaken using the Bouguer anomalies, and a DEM used to estimate the mean

compartment height in the lower North Island test area.

EZZZE BA mean

ppm

o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ring number (x10 for km)

Figure 4 - 28 : AN values (expressed in ppm) for the first order control stations

computed using Bouguer Anomalies (BA) and Free-air Anomalies
(FA) for the mid compartment interpolation.
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4.5.4  Satellite Altimeter or Ship-borne gravity data

The effect of using the satellite altimeter gravity data (Section 4.4.4) instead of ship-
borne gravity data is compared in this section. The residual free-air gravity anomalies
were computed in terms of OSU91A and no DEM was used to calculate the mean
compartment height. The decision not to use a DEM was based on the assumption that
as only the source of the off-shore gravity data was being varied, the relative difference

between the results would reflect this source - the on-shore data being the same for both

solutions.

From Figures 4-29 and 4-30 it is clear that the use of the satellite altimetry data instead
of the ship-borne data results in an apparent lower quality solution at all cap sizes tested.
However, the choice of optimum cap size has not been affected (ie. Ring number 3, see

Section 4.5.2.3). It is also interesting to note that the W-curve (Section 4.5.2.1) is still

present with only the amplitude changing.

The lower North Island test area contains dense ship-borne gravity data (Section 4.4.2).
If the test area contained no ship-borne gravity data at all, then the use of satellite
altimetry data to supplement the land gravity data in a RINT solution (Ring 3) would
still be a 20% improvement over OSU91A, ie. Ring 0 (Figure 4-30).

2.0

1.8+

1.6 1

141

121

1.0 +

[OX:

SN (metres)

086 1

04 1

0.2 +

0.0

-0.2 +

04+

0.6

o] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Ring number (x10 for km)

Figure 4 - 29 : ON values computed using Ship-borne or Satellite Altimeter (SA)
gravity data for marine areas around the first order control stations.
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Figure 4 - 30 : AN values (expressed in ppm) computed using Ship-borne or
Satellite Altimeter (SA) gravity data for off-shore areas around the
first order control stations.

At the time the Satellite Altimetry gravity anomaly test was undertaken,
world_grav.img.4 was the latest file available. However, more recent files such as
world_grav.img.7.2 have been generated with a 2 minute grid (Sandwell et al., 1995).
These denser grid files may produce improved results over the tested grid. Also, there
may be a datum style shift between the terrestrially observed (land and ship-borne)
gravity and the satellite altimetry derived gravity which may be able to be modelled in

future research.

4.5.5 Evaluation of Kernel Modifications using gravity data

The theory of modifying the Stokes integration kernel to reduce truncation error was
introduced in Section 4.3.2.1. This section evaluates each of the four proposed
modifications against the standard RINT kernel, F(y), by analysing the differences to

the computed N values within each integration limit (ring number).
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The degree of kernel modification (Nyoq) Was fixed at 36 for all the tests. OSU91A was
the GGM used to generate the residual free-air gravity anomalies (Ag;) to degree and

order 360 and a DEM provided the mean compartment heights.

As it has been shown in previous sections that the absolute point comparison (6N) can
contain biases due to the likes of datum errors and gravity reduction assumptions, only
the relative line comparison considering the length of the baselines (ppm) will be used

to investigate the modified kernels.

The ppm mean value of the 14 first order control stations for spherical cap sizes of 0.1°
increments up to 1.5° is contained in Figure 4-31. The first point that needs clarification
is the reason behind the small differences between the Stokes ppm mean in Figure 4-31
and that of Figure 4-26 (section 4.5.2.2). To simplify the incorporation of the modified
kernels in the RINT software the increment between rings was fixed at 0.1° rather than
being varied to give equal contribution to Nryt per compartment as is normally the case
(Section 4.3.4). This results in y, = 1.5° at ring number 15 rather than y, = 1.34° (if
equal per mGal contribution to Nrint per compartment is enforced) and therefore
slightly different gravity data is used in each compartment. However, as the tests were
primarily concerned with relative differences between the respective kernels this

difference in the data used was not considered significant.

From Figure 4-31 it is clear that the different kernel modifications affect the final geoid
results. The Meissl kernel modification gives the poorest agreement, with results
deteriorating as further local gravity data is incorporated. All other kernel
modifications, except Stokes’ at ring 6 perform better than the OSU91A model only
solution. The Featherstone and Evans kernel modification appears to be still improving

at the maximum cap size tested (Ring number 15).

Larger cap sizes were not able to be tested as the limit of the DEM was reached at ring
15. It was considered best to use a DEM so that the errors in the computed N values
were minimised, thus enabling a more critical analysis of the relationship between the

kernel and its result.
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Featherstone and Evans performs considerably worse than Wong and Gore, and Vanicek
and Sjoberg (approximately a factor of 2 and 1.6 respectively), at ring numbers 3 and

10.

The familiar W-curve of Stokes’ kernel has disappeared from the results when the
Meissl or Featherstone and Evans kernel modifications are used. Both these kernels
have values close to zero for small cap sizes (Figure 4-8), therefore, the long wavelength
component (Ngem) of Ngrav dominates the result at small cap sizes. This may indicate

that the W-curve is an artefact of errors in the residual gravity rather than the choice of

kernel.

There is practically no difference between Wong and Gore, Stokes or Vanicek and
Sjoberg kernel modifications at the optimum cap size of ring number 3 (Section
4.5.2.3). Of these three kernel modifications Stokes has the largest W-curve amplitude.
Both Vanicek and Sjoberg and Wong and Gore give slightly better results however the

simplicity of Stokes still makes it attractive to use.

The rms values expressed in ppm for the modified kernels are contained in Figure 4-32.
These rms results are very similar to the mean results in Figure 4-31. The same
comments therefore hold as for the analysis of the means, and reinforce the point that
ring number 3 using either Stokes, Wong and Gore, or Vanicek and Sjoberg kernel
modifications produce the optimum solution. Given the simplicity of Stokes kernel
there appears to be no advantage in applying any kernel modification to reduce

truncations errors in this lower North Island test area.

The Featherstone and Evans modified kernel has the attractive feature of eliminating the
W-curve for cap sizes smaller than ring 15. However, further tests at larger cap sizes
are required to investigate where the Featherstone and Evans kernel modification based
solution reaches a minimum. It should be remembered that other errors in the gravity

reduction and conversion to geoid height may be masking truncation errors. Therefore
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as improvements are made to other assumptions in determining geoid height the effects

of truncation errors may become significant.
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Figure 4 - 31 : mean values (expressed in ppm) computed using modified kernels at
the first order control stations. The abbreviations are : Wong and
Gore (wg), Meissl (me), Vanicek and Sjoberg (vs), Featherstone and

Evans (fe), and Stokes (st).
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Figure 4 - 32 : rms values (expressed in ppm) computed using modified kernels at
the first order control stations. Abbreviations as per previous figure.
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4.5.6 Comparison of OSU91A and EGMY6 as the reference GGM

Section 4.5.2.1 investigates the differences between using OSU81 or OSU91A as the
reference GGM for RINT, and showed that OSU91A was superior. This section
compares the effect of using the new GGM, EGM96 (n,x = 360), as the reference GGM
for RINT against OSU91A (nmax = 360).

As was shown in Section 4.5.2.1, the use of absolute comparisons of N (8N) are affected
by datum inconsistencies, while relative line comparisons (3AN) can be biased by the
length of line, therefore this section will only present results using SAN values

expressed in ppm, using (4.66) and (4.67), to minimise these influences.

Comparing the OSU91A and EGM96 based N value results (Figure 4-33), at the first
order control stations, computed using a DEM to determine the mean compartment
height, it can be clearly seen that EGM96 is generally superior to OSU91A in terms of
both mean and rms. However, it is interesting to note that at ring zero (ie. model only)
OSU91A produces the better results, while at ring 3 both models have practically
identical results and beyond ring 9 the difference in the results is basically insignificant.
An appealing feature of Figure 4-33 is the reduction in the amplitude of the W-curve for
both the mean and rms when using EGM96. This is especially true in the vicinity of the
previously determined optimum cap size of ring 3 (0.3°) (Section 4.5.2.3), as now the

differences between using rings 2, 3 or 4 are practically negligible.

To check this apparent improvement with EGM96 over OSU91A at the first order
control stations, a comparison using the third order control stations was performed
(Figure 4-34). The difference between the rms from the different GGM are
insignificant, except for rings 4 through 8, where EGM96 is superior. It is interesting to
note that by using the local gravity data in RINT with ring 5 as the cap size produces

rms results that are inferior to using either of the GGM on their own. The mean
difference for all rings below ring 9, except rings 2 and 3, have improved with the use of
EGM96. However, rings 2 and 3, and ring 9 and above show no significant difference

between the choice of reference GGM.
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Figure 4 - 33 : SAN values (expressed in ppm) for the first order control stations
computed using EGM96 or OSU91A as the reference GGM and the
DEM to calculate the mean compartment height.
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Figure 4 - 34 : 0AN values (expressed in ppm) for the third order control stations
computed using EGM96 or OSU91A as the reference GGM and the
DEM to calculate the mean compartment height.
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It can be concluded from these results in Figures 4-33 and 4-34 that using EGM96 as the
reference GGM in RINT (for the lower North Island test area) will produce results that
are superior, or at least equivalent, to using OSU91A. The choice of ring 3 for the
optimum cap size (Section 4.5.2.3) still is valid when using EGM96 as the reference
GGM in RINT, however from the results at the third order control stations (Figure 4-34)

it could be argued that ring 1 is optimum.

To check the conclusion from Section 4.5.2.2, that the use of a DEM to determine the
mean compartment height improves the results (except for rings 4 to 8), was not biased
by the use of OSU91A, the comparison of the evaluations using the gravity station
heights only with the DEM was repeated for the first order control stations using
EGMO96 as the reference GGM (Figure 4-35). From Figure 4-35 it is clear that the use
of the DEM to estimate the mean compartment height improves the results at all rings,

except rings 5 to 7 which are practically equivalent to using the gravity station heights.
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Figure 4 - 35 : AN values (expressed in ppm) for the first order control stations
computed using the DEM or gravity station heights to calculate the
mean compartment height with EGM96 as the reference GGM.
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4.6 Lower North Island Gravimetric Geoid

The practical requirements of a gravimetric geoid, for use in the field, are not likely to
need or require the rigorous point computation which RINT offers for some of the
following reasons:

i) the computing resources required to store the large gravity data and DEM files,
which for the lower North Island test area were 1.94 Mb and 5.14 Mb,
respectively,

i1) time and/or accuracy requirements may necessitate pre-computing geoid heights,

ii1) electronic data processing facilities may not be available and therefore paper

based products may be required (ie. tables of values or contour plots).

These field requirements can be met by pre-computing a grid of N values using RINT at
an appropriate density for a specific region (ideally the whole country - as was done in
Australia; Steed and Holtznagel, 1994). This grid of N values could be stored
electronically for automated interpolation of N values at points of interest or contour

plots generated to allow manual interpolation.

A grid was generated for a portion of the lower North Island test area to illustrate the
benefits of this approach. The grid had extents of S40.05° to S41.50° and E174.55° to
E175.85°, and an iterval of 0.05° which resulted in 30 rows and 27 columns, to give a
total of 810 grid nodes. Two different methods were used to compute the N values at
these grid nodes and then contour plots generated for each. The first method used the
EGM96 model only (ie Nggm from eqn. 4.46) (Figure 4-36a), while the second method
used the RINT solution with EGM96 as the reference GGM (ie Nyt from eqn. 4.51), a
DEM for estimating the mean compartment height and a cap size of ring 3 (20.3°)
(Figure 4-36b). Each of these grid files of N values only required 0.03 Mb of disk
space. If the grid (with the same density) had covered the same area as the entire DEM
and gravity files, the gridded N value files would have occupied approximately 0.45Mb
(stored as ascii), compared to the combined gravity and DEM file requirements of 7.08

Mb (stored in a compressed binary format).
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From the contour plots the RINT based solution (Figure 4-36b) appears to show more of
the finer geoid features than the EGM96 model only solution (Figure 4-36a), as
expected. Comparing the associated statistics, for each of the contour plots, confirms
that the RINT based solution contains finer geoid features (due to the large sd), and also
highlights that the RINT based solution determined smaller N values than the EGM96

model only solution.
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Figure 4 - 36 : Lower North Island geoid contour plots in terms of GRS80. Where
a) is the EGM96 model only N values, and b) is the RINT generated
N values for ring 3, the DEM for compartment heights and using
EGM96 as the reference GGM. (units = metres). The selected GPS
control stations with first order (triangles) and third order (circles)
orthometric height are also shown.

To test that the RINT based solution generated more realistic N values than the EGM96
model only solution, N values were interpolated for each GPS station shown in Figure
4-36 (excluding D136 and D510, see Figure 4-23) and a 6N comparison (4.64)
performed. From Table 4-3, the standard deviation for both the first and third order
stations is lower when using the RINT based solution. It is interesting to note that both
solutions have a mean of approximately 0.5 m. This indicates that there may be a datum
bias in one, or more, of the three heights (h, H, N).
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Height order Solution min. max. mean sd
(No. stations) type (m) (m) (m) (m)
First order (14) { EGM Only -1.109 0.064 -0.528 0.354
RINT -0.584 -0.267 -0.402 0.091
Third order (17) | EGM Only -0.969 0.079 -0.530 0.229
RINT -0.783 -0.167 -0.474 0.154

Table 4 -3 : ON analysis of lower North Island geoid grid representation
generated either using the EGM96 GGM or RINT with EGM96 as
the reference GGM, a DEM for estimating the mean compartment

height and a ring 3 cap size (20.3°)

4.7 New Zealand wide Geoid investigations

The determination of a gravimetric geoid using the RINT technique has been limited to
the lower North Island test area. The main reason that a nationwide gravimetric geoid
was not computed for New Zealand was that suitable DEM were not yet available for
most of the country. It is envisaged that in the near future a dense (say 1 to 5 km grid)
nationwide gravimetric geoid will be required to be generated for New Zealand and it
would be appropriate for the national geodetic agency of New Zealand, LINZ, to
compute this geoid. It has been shown above that the RINT technique provides a viable
method in the lower North Island test area. This was able to be proven through there

being available suitable ellipsoidal and orthometric heights to allow checking using

(4.64) and (4.65).

If one begins to look at validating a New Zealand wide gravimetric geoid, once
established, there are likely to be some difficulties arising from the fact that New
Zealand does not have a single consistent height datum (Section 2.5). It should also be
noted that the lower North Island test area had an average gravity data spacing on land
of 1 station per 6.5 km?, which is slightly denser than the national average of 7.5 km’,
however the density can be significantly lower in some parts of the country, ie Fiordland
in the south-west of the South Island (Figure 4-1). The lower North Island test area also
had reasonably well distributed marine gravity data, though other New Zealand coastal

regions have significantly sparser gravity data.
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To begin to understand whether not having a consistent nationwide height datum is

going to significantly influence the validating of a nationwide gravimetric geoid the

following analysis was performed. The nationwide GPS stations from Chapter 3 were

used as control for absolute point comparison (8N, where Ngray = Nggm). The GPS

stations for this analysis as those as shown in Figure 3-1 (excluding D172 and D269 due

to data processing problems). The analysis was originally done using Ngom computed

from OSU91A, though with the release of EGM96 these tests were repeated.

The initial dN results indicated that the North and South Island were performing in

significantly different ways. Therefore, a separate analysis of each island was

undertaken and results are shown in Tables 4-4 and 4-5. It should be noted that

unfortunately in the North Island there was only one GPS station (D131) having a first

order orthometric height, while the South Island had no first order and only one second

order orthometric height station (D286). When the standard deviation of the 8N results

between the islands is compared, it was not unexpected that the North Island stations

showed better comparisons than the South Island stations, due in part to the different

quality of the orthometric heights. What was interesting to see was that, irrespective of

which GGM was used, the SN mean was different between the Islands by approximately

1.0 m.
Station ID h H Order | OSU91A EGM96 OSU91A EGM96
of H N N SN SN
D026 174.519 136.090 3 38.224 38.316 0.205 0.113
D045 141.907 106.700 2 35.802 35.104 -0.595 0.103
D072 95.930 66.600 4 29.319 29.218 0.011 0.112
D078 360.584 338.690 3 21.265 21.267 0.629 0.627
D100 323.545 301.360 3 21.313 21,738 0.872 0.447
D105 263.238 240.600 2 22.383 22.955 0.255 -0.317
DI31 143.727 131.380 1 12.897 13.139 -0.550 -0.792
D143 590.954 575.200 3 16.396 16.809 -0.643 -1.056
D431 119.396 101.080 2 18.463 18.151 -0.147 0.165
D452 319.113 287.000 4 31.864 31.684 0.249 0.429
D473 760.488 733.280 3 26.585 27.404 0.623 -0.196
WELL 37.820 24.980 2 13.649 13.086 -0.809 -0.246
minimum -0.809 -1.056
maximum 0.872 0.627
mean 0.008 -0.051
std. dev. 0.561 0.500
Table 4 -4 : ON comparison between OSU91A and EGM96 at the North Island

GPS stations coordinated in terms of ITRF93 (units = metres).
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To try and resolve whether the apparent bias in the South Island stations was due to the

poor orthometric heights or from another source, it was decided to evaluate how well

each of the two GGM’s were able to represent the land only gravity data.

Station ID h H Order OSU91A EGM96 OSU91A EGM96
of H N N ON ON
D158 791.897 775.700 4 15.495 15.002 0.702 1.195
D191 405.657 392.100 4 13.035 13.261 0.522 0.296
D212 510.526 498.560 3 11.820 11.915 0.146 0.051
D229 1005.888 995.600 3 8.367 8.854 1.921 1.434
D233 397.352 388.400 4 8.381 8.491 0.571 0.461
D253 1681.042 1673.000 4 6.481 6.746 1.561 1.296
D286 269.062 265.150 2 3.184 3.611 0.728 0.301
D302 411.445 405.500 4 3.840 4.479 2.105 1.466
D309 919.511 905.320 3 11.696 11.345 2.495 2.846
D320 114.831 103.860 3 8.501 8.966 2.470 2.005
D338 14.639 7.160 3 5716 5.893 1.763 1.586
D425 254 693 243.000 4 12.011 11.25 -0.318 0.443
D469 169.677 150.800 4 19.859 18.634 -0.982 0.243
D474 176.531 172.550 3 3.386 3.802 0.595 0.179
minimum -0.982 0.051
maximum 2.495 2.846
mean 1.020 0.986
std. dev. 1.056 0.833
Table 4 -5: ON comparison between OSU91A and EGM96 at the South Island

GPS stations coordinated in terms of ITRF93 (units = metres).

The evaluation involved the statistical analysis of the residual gravity anomalies (Ag;,

Section 4.3.2) for each island separately (Table 4-6). As the South Island has greater

topographic variations than the North Island, it is not surprising that the Ag, standard

deviation in the South Island is larger than in the North Island. As is also clearly seen

from Table 4-6 the Ag; mean is significantly larger for the South Island than the North

Island. The reason for this bias in the residual gravity anomalies for the South Island is

not fully understood, though is likely to be in part due to both GGM not having

sufficient resolution to be able to represent the abrupt change in the geoid near the

Southern Alps.
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North Island South Island
OSU91A EGM96 OSU91A EGM96
No. Stations 17467 17467 17296 17296
Minimum -96.994 -112.903 -83.208 -78.279
Maximum 146.787 143.194 193.732 193.639
Mean -0.171 -1.877 -8.700 -9.091
Std. Dev. (1o) 21.138 20.527 34.261 34.295

Table 4 - 6 : North and South Island Land Only residual free-air gravity
anomalies with respect to the OSU91A and EGM96 GGM’s

(units = mGal).

From an analysis of the 3N and Ag; results (Tables 4-4 through 4-6) it is unclear as to
whether the South Island bias is a result of the poor orthometric height control or
insufficiencies in the GGM’s, though it is probably a combination of both. If GPS
stations in the South Island had first order orthometric heights then at least the control
height uncertainty could be reduced. Therefore, it is recommended that first order
orthometric height stations need to be occupied by GPS, in both islands, so as to provide
control stations to evaluate any future nationwide gravimetric geoid. If tide gauge
benchmarks were also occupied with GPS, this would provide information not only

useful to evaluating a gravimetric geoid but also the vertical datums of New Zealand.

From Table 4-4 and 4-5 it was surprising to see that the differences in Nggm values
between OSU91A and EGM96 could vary from basically 0.0m (D078) up to 1.2m
(D469). To investigate the size and location of the maximum difference between the
two Ngam values across New Zealand, a 0.1° x 0.1° grid of N values were generated
from each GGM. The difference between these two surfaces (Figure 4-37, sense
OSU91A minus EGM96) revealed that variations ranged from -2.357 m (S39.5°,
E175.0°) to 1.233m (S40.5°, E173.0°), with a mean of -0.024 m and a standard

deviation of 0.341m.
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Figure 4 - 37 : Geoid height differences across New Zealand generated by
subtracting EGM96 from OSU91A for a 0.1° x 0.1° grid.

The probable reason for the high frequency variations, since they are located primarily
on land, is the application of different power law constraints to the satellite only
solutions (Rene Forsberg, pers. comm., 1996). OSU91A used Kaula’s power law,
divided by the square root of two, which underestimates the power in the Earth gravity
field, as determined from surface gravity observations (Lemoine ef al., 1996). Lemoine
et al. (ibid.) state that EGM96 used a power law constraint derived from the signal of
the surface gravity data to spectrally constrain the coefficients of the EGM96 satellite

only solution. As the satellite only solution is the foundation of the high degree
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quadrature solution, it important that the spectrum of the errors in the satellite only
model be consistent with the signal observed by surface gravity data. Another reason

for the variations 1s that EGM96 contains terrain corrections.

From the use of a more appropriate power law constraint, EGM96 is able to represent

smaller scale variations in the geoid than OSU91A.

4.8 Summary

This chapter summarised the theory behind the determination of gravimetric geoids and
outlined some of the practical methods applied to solving the geodetic boundary
problem. The RINT technique was used to compute a gravimetric geoid for a test area
in the lower North Island of New Zealand. From analysing geoid heights computed
from the gravimetric geoid, and also a selection of global geopotential models, against
the available geometric control the following comments can be made.
1)  EGM96 produced geoid heights which had better agreement than OSU91A,
against the geometric control, in the lower North Island test area.
i1) The use of local gravity observations in the determination of geoid heights using
the RINT technique produced further improvement compared with the geometric
control, than those computed using the EGM96 model only geoid heights.
ii1) The RINT generated geoid heights, in the test area, are optimised when both a
DEM is used for the computation of the mean compartment height and a
spherical cap radius of 0.3° (= 30 km) s set.
1v) From the analysis at the first order stations the best comparison between a
geometrically-determined AN and a AN from an optimised RINT gravimetric
geoid is approximately 4 ppm for line lengths over 6 km. This meets the New
Zealand second order levelling specifications.
v) Tests on modifications to the Stokes’ kernel to reduce truncation error indicate
that for the test area these modifications appear to be insignificant. Any change

1s probably below the noise levels in the control data.

The lower North Island gravimetric geoid could possibly be refined further by applying

the second order free-air correction, and the terrain correction beyond the current radius
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of 21.94 km, to the currently available free-air gravity anomalies. In applying further
corrections to the gravity data, one should not forget to consider the magnitude of the

correction with respect to the raw gravity data observation accuracy.

With the realisation of a dense nationwide gravimetric geoid for New Zealand, whether
computed using RINT or another proven technique, surveys undertaken using GPS will
be able to convert the ellipsoidal heights into orthometric heights with improved
accuracy than is currently available using global geopotential models. With the
improved geoid heights being available from a gravimetric geoid, transformation
parameters between GPS derived reference frames and NZGD49 will be able to be

computed more rigorously. These datum transformation issues are investigated in

Chapter 5.
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Chapter 5

Transformations

5.1 Introduction

In New Zealand, as in many other countries such as Australia, there are legal
requirements for land titling work to be performed in terms of the current geodetic
system, despite any shortcomings. As other important information about the land is
related to the legal title the geodetic system can often become an integral part of most
Geographic Information Systems (GIS) and Land Information Systems (LIS). The

absolute nature of the geodetic coordinates though may be relaxed to 1 or 2 meters for

many applications.

The operational efficiency, especially today with hand held GPS receivers, of directly
determining positions from satellites in a three dimensional reference system has
necessitated the development and generation of transformation procedures. This is
especially true for those transformation procedures that operate from three dimensional
space to the combined two dimensional space of NZGD49 and the multiple New

Zealand levelling networks.

A general (and somewhat arbritary) classification of transformations accuracy are the

three following levels which can be considered as application based:

1) the 1~5 metre level. This level would be used by most practical GIS/LIS users to
ensure the uniformity and homogeneity of their digital products and systems.

i1) the sub-metre level. This level would be used by surveyors, and other professions,
who need to maintain property boundaries.

1i1) the sub-decimetre level. This level would currently be used by scientific users.
While this level is desirable, it is normally achieved by recomputing data in terms

of uniform and homogeneous three dimensional reference systems.
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It will be shown in this chapter that, at the present time, only item (i) can be achieved.
However, since this represents a considerable use of GPS and NZGD49, and with a new
reference system for New Zealand still to be defined, it is an important aspect of
transformations. It will also be shown that the literature on transformations, as

determined for New Zealand, has significant deficiencies.

5.2 Coordinate Systems

There are a number of different terrestrial (earth-fixed) and inertial (space-fixed)
reference systems used in geodesy. This section gives a summary of only those
reference systems which were of primary importance to this thesis. For further details
on those reference systems presented below, and coordinate systems in general, see
Mueller (1969), Bomford (1980), Vanicek and Krakiwsky (1986), Lambeck (1988) and
IERS special publications (ie. Boucher et al., 1994 and McCarthy, 1996).

A reference system is the realisation of a detailed model that is used in the relationship
between the configuration of the basic structure and its coordinates. At this point the
coordinates are fully defined but not necessarily accessible. The system is usually
realised by the determination of a set of conventionally chosen parameters and
coordinates (eg. star positions, station positions or pole coordinates) that define the
reference frame (Mueller, 1985). A terrestrial reference frame is realised through the
coordinates of stations which are fixed to the surface of the Earth and hence rotate with
the Earth’s rotation, whereas an inertial reference frame is realised through the
coordinates of stellar objects and other sources for which their rotation can be highly

modelled thereby reducing the system to one which is free of accelerations.

The following definitions of coordinate systems have been adopted from Lambeck

(1988) and Soler and Hothem (1988).

5.2.1 Conventional Inertial Reference System (CIRS)

An inertial reference system can be defined in terms of stellar objects or sources fixed in

space, or dynamically by the motion of a planet or satellite. It is a system in which there
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are, by definition, no accelerations and hence no rotations. This is usually achieved by

modelling the rotation.

i) Celestially based CIRS

The fundamental, or primary, plane of a celestial reference system can be either the
equatorial plane or the ecliptic (Earth’s mean orbital plane about the Sun). The
intersection of these two planes defines the line of nodes. The principal (Z) axis is
perpendicular to the fundamental plane and defined by the cross product of any two
vectors in the fundamental plane. The secondary plane contains the vernal equinox (the
point where the Sun appears to cross the Earth’s equator from the southern to northern
hemisphere. ie. at the intersection of the ecliptic and equatorial planes) and the principal
(Z) axis. The third (Y) axis is chosen to make the system right-handed (the cross
product of the Z axis and the line of nodes). The origin is implicitly defined once the
stellar bodies are assigned coordinates. The coordinates of bodies can be specified by
the declination (0, analogous to ¢) and right ascension (RA, analogous to A) (Figure 5-1)

or by Cartesian coordinates.

The Conventional Inertial Reference System (CIRS) is normally realised by assigning
coordinates to extragalactic celestial radio sources, and some collocated optical

positions, and serves as a reference for the motion of the Conventional Terrestrial

Reference System (CTRS) (Section 5.2.2).

ii) Satellite based CIRS

This is an earth-centred spatial Cartesian system, whose origin is at the earth’s centre of
mass CM (the geocentre, the centre of mass including the mass of the atmosphere). The
defining planes are the orbit of the satellite and the equator of the Earth (fundamental
plane). These two planes intersect along the line of nodes. The principal (Z) axis is
perpendicular to the fundamental plane and defined by the cross product of any two
vectors in the fundamental plane. The secondary (X) axis is the line of nodes with the
positive end being through the point where the satellite appears to cross the Earth’s
equator from South to North. The third (Y) axis is chosen to make the system right-

handed. The position of an orbiting satellite can also be described by its declination and
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right ascension, although it 1s more common to describe its position and velocity in

Cartesian coordinates.

5.2.2  Conventional Terrestrial Reference System (CTRS)

The CTRS is the closest practical approximation of the geocentric natural system and

probably the most important system in geodesy (Vanicek and Krakiwsky, 1986, p. 296).

It is an earth-fixed spatial Cartesian system, (X Y Z)ct, whose origin is at the earth’s
centre of mass CM. The conventional terrestrial Z axis (Z¢r) coincides with the mean
rotational axis of the earth at an epoch, known as the Conventional Terrestrial Pole
(CTP). The mean equatorial plane perpendicular to the Zqr axis forms the XY -plane.
The XZ-plane is generated by the mean meridian which contains the Zct axis and the
“mean” observatory of Greenwich. The Xcr axis is the intersection of the XY - and XZ-
planes, with positive being through the mean Greenwich observatory meridian. The Y¢r

axis is selected to make the system right-handed (Figure 5-1).

The CTP was for many years realised by the Conventional International Origin (CIO),
which was defined by the mean position of the Earth’s instantaneous pole during the
period 1900 to 1905. However in recent years the BIH reference pole of epoch 1984.0
has been adopted to realise the CTP.

There are a number of different terrestrial coordinate systems that have been established
to realise the CTRS. Some of the most rigorously defined realisations are those
produced yearly by IERS, being referred to as ITRF (Section 3.4), as they combine
globally distributed observations from different techniques (ie. GPS, LLR, SLR, DORIS
and VLBI). In addition to these combination solutions it is common for the different
techniques to produce their own realisations, with WGS84(G730) being an example of a

GPS realised CTRS.

The connection between the CTRS and CIRS frames by tradition is through the
conventional rotations expressed as (Mueller, 1969):

Xcrrs =S N P Xcrs : (5.1
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Where P is the matrix of rotation for precession, N for nutation matrix, and S for earth

rotation matrix (polar motion and sidereal time).

5.2.3  Geodetic Reference Surface (Datum)

The choice of a geodetic reference surface (geodetic datum) is often based on the best-
fitting ellipsoid of the entire earth surface or any portion of it. If the ellipsoid is chosen
to represent the entire Earth a global geocentric datum is established, while if the
ellipsoid is defined to only represent a portion of the Earth’s surface then a regional
usually non-geocentric datum is established (Soler and Hothem, 1988). In both cases

there is a minimisation, usually in the vertical direction.

The “ideal” global datum is defined by the ellipsoid which best approximates MSL
globally. Because the Earth is rotating and has mass, its best physical approximation is
given through the four parameters of a geodetic reference system (GRS), specifically
(Soler and Hothem, 1988):

1) a equatorial radius

1) GM geocentric gravitational constant

i) Jo9  dynamical form factor, and

iv) o  earth’s angular velocity
Note that the flattening is not one of the adopted constants, but is inferred through J5.

GRS80, as its name suggests, is an example of a GRS (Section 4.2.1)

However, due to the observational limitations imposed by early conventional geodesy,

two different types of datums have been historically implemented:

A two-dimensional (surface) datum realised by geodetic curvilinear coordinates (¢,A)
referred to a prescribed ellipsoid and determined through the adjustment of
geodetic measurements (eg. directions, distances, astronomic azimuth’s, latitudes
and longitudes), which are unable to define the geocentre. Examples are NZGD49
(Section 2.4.2) and the North American Datum of 1927 (NAD27). These datums

are frequently called horizontal as they rarely consider the vertical component.
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A vertical datum, completely separated from the horizontal datum, which in essence is a
physical datum (ie. ellipsoid independent) based on the adjustment of levelling
observations and the heights of selected tide gauge stations. Examples of continent
wide vertical datums are the Australian Height Datum of 1971, AHD71 (Roelse ef
al., 1975), and the American National Geodetic Vertical Datum of 1929
(NGVD29). New Zealand has a number of separate vertical datum that have not
been adjusted together to form a consistent nationwide vertical datum (Section

2.5).

Even though the early horizontal datums were unable to be geocentric, the ellipsoidal
axes were able to be defined so as to be approximately parallel to the CTRS axis by
geometric means. The Laplace equation (condition) attempts to achieve this for

classical triangulation.

A point on the Earth’s surface with a geodetic azimuth, ¢, and a geodetic zenith
distance, £, to a second point, are related to the astronomical azimuth, A, and
astronomical zenith distance, z, between the same points, by (Heiskanen and Moritz,
1967, p. 186):

A -z=n tang + (§ sina - 1 cosa) cot z (5.2)
Where & and n are deflection of the vertical components expressed in the local north-

south and east-west directions, respectively, or latitude and the prime vertical.

As first-order triangulation networks have lines of sight which are almost horizontal, z =
90°, then (5.2) can be simplified to get Laplace’s equation in its simplified form:
A-z=ntand = (A - A) sing (5.3)

Where A is the astronomical longitude and A is the geodetic longitude.

A Laplace station is a site for which astronomic azimuth and longitude have been
measured and geodetic azimuth and longitude have been computed. A single Laplace
station can be used to for orienting the reference ellipsoid so as its axes are parallel to

the CTRS, however it is common for conventional horizontal datums to be realised
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using more than one Laplace station so as to reduce the effect of measurement errors by

performing a combined adjustment.

The use of the simplified Laplace equation, different time origins, different star
catalogues and/or errors in the astronomic azimuths can introduce non-parallelism

between geodetic systems and the CTRS. This often necessitates the introduction of

small rotations about the axes (&, €y, €,) for transforming between geodetic systems

(Figure 5-2).

Figure 5-1: Conventional Terrestrial (CT) and Geodetic (G) Reference Frames
(adapted from Soler and Hothem, 1988)

In summary, a reference surface (datum) is realised by adjusting geodetic measurements,
that have been reduced to a chosen reference ellipsoid, so as to fulfil the Laplace
condition and to generate curvilinear geodetic coordinates for the physical ground
marks. This process orientates the axes of the ellipsoid in the CTRS. The major error in
this process is not the Laplace equation but the height of the stations above the ellipsoid.

This is particularly so when heights are orthometric. The usual practice is to minimise
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the residuals thereby aligning the ellipsoid to the geoid, which causes the centre of the
ellipsoid (CE) to not be coincident with the Earth’s centre of mass (CM).

5.2.4  Curvilinear Geodetic Coordinate System

It is often convenient to use curvilinear coordinates instead of spatial rectangular
coordinates, especially when an ellipsoid has been adopted as a reference surface
(datum). One reason is that most map projections, used for generating plane surface
coordinates, require the ellipsoidal surface coordinates to commence the mapping.

Curvilinear geodetic coordinates are defined by (Figure 5-1):

Geodetic longitude, A : Angle between the plane containing both the Zg axis (Earth’s
mean pole of rotation) and Xg axis (chosen to pass through Greenwich) and the
geodetic meridian plane of point P measured positive toward the east; 0 <A <
27.

Geodetic latitude, ¢ : Angle between the normal to the reference ellipsoid at P and
the equatorial plane containing both the X and Yg axes; -n/2 < ¢ < w/2.

Geodetic (ellipsoidal) height, h : Distance along the normal to the reference ellipsoid

between P and the surface of the ellipsoid (described further in Appendix L).

5.2.5 Geodetic Coordinate System

A unique geodetic coordinate system (and corresponding curvilinear geodetic coordinate
system) is established each time a datum is defined (Figure 5-1). They are defined with
the origin at the centre of the reference ellipsoid (CE) used for defining the specific
datum. The Zg-axis coincides with the semiminor axis of the reference ellipsoid. The
Xg-axis passes through Greenwich (the point were A=0 and ¢=0) and the Yg-axis is

chosen so as to form a right-handed system with the Xg- and Zg-axes.
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5.3 Transformation methods

There are a number of ways of defining the relationship between one reference system
and another. The choice of the most appropriate network transformation model is
influenced by:

1)  the extents of the area for which it is to be applied

i1)  the presence of distortion in either of the reference systems

iii)  the dimensions of the reference systems (two- or three-dimensional), and

iv)  the accuracy requirements.

This section focuses on those methods which have been applied to the New Zealand
situation of converting between NZGD49 coordinates and global reference systems. It
is noted that other theoretical transformation methods are available but parameters have

not been developed for New Zealand.

Harvey (1986) outlined the properties of the affine, similarity, orthogonal and projection

transformation as follows:

Affine transformation: An affine transformation transforms straight lines to straight
lines and parallel lines remain parallel. Generally the size, shape, position and
orientation of lines in a network are changed. The scale factor depends on the
orientation of the line but not on its position within the network. Therefore it
assumes that there are no systematic distortions within either network.

Similarity transformation: An affine transformation in which the scale factor is the
same is all directions. A similarity transformation preserves the shape, so
angles are not changed, but lengths of lines and the position of points may be
changed.

Orthogonal transformation: A similarity transformation in which the scale factor is
unity. The angles and distances within the network are preserved and only the
positions of points change on transformation.

Projection transformation: An affine transformation where the scale factor is also
dependent on the position of the line within the network. With this one can

therefore attempt to model systematic distortions within the network.
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The general similarity transformation is given by (Wolf, 1963):

XB XA TX
Y, |=sR|Y, [+ T, (5.4)
ZB ZA TZ

where
Xs, Yp, Zp  Cartesian coordinates in coordinate system B
X4, Yu, Zy Cartesian coordinates in coordinate system A
Tx, Ty, Tz translations terms, are the coordinates of the origin of the XYZ,
coordinate system in the XYZp coordinate system, respectively
R 3 x 3 orthogonal rotation matrix (Section 5.3.1)

SF scale factor = 1 + As, where As is the differential scale

There are seven parameters which are usually associated with a similarity
transformation; three rotation angles, three translation components and one scale factor.
If the rotations are small, as is expected when both coordinate systems refer to the same

CTRS, then (5.4) is approximately linear and the order of the rotations is unimportant.

Harvey (1994) states that it is presumptuous to assume that similarity transformations,
rather than affine or projection transformations, correctly describe the differences
between any two coordinate sets. However, the similarity transformation is popular due
to:

i) the small number of parameters involved

ii) the simplicity of the model, which is more easily implemented into software,
and

iii) the fact that it is adequate for relating two coordinate systems which are

homogeneous (no local distortion in scale or orientation).
As a result similarity transformation parameters have been published to allow the

conversion between coordinate systems used in New Zealand (Section 5.4). It is

therefore necessary to outline some of the different models that are available for
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determining similarity transformations, especially those used for establishing New

Zealand transformation parameters.

Other transformation models besides those outlined in Sections 5.3.2 and 5.3.3 have
been proposed and are reviewed by Krakiwsky and Thomson (1974), Adam et al. (1982)
and Harvey (1985). Most models relate two sets of Cartesian coordinates but there are
formulae that relate two sets of ellipsoidal coordinates. In addition to accounting for the
difference in scale, origin and orientation between the two coordinate systems, they
must also relate the results on different ellipsoids (due to a possible change in the size
and shape of the ellipsoid). These formula are collectively referred to as the
Molodenskii formula. The Molodenskii formula often assume that the deflections of the
vertical are known (n and &). This is not generally the case for geometric systems such
as GPS and EDM. They are not presented here as it is generally more convenient to
convert ellipsoidal coordinates to Cartesian coordinates, and then use a Cartesian based

model.

One disadvantage of the seven parameter similarity transformation method is that both
networks are assumed to have only linear distortions (excluding shear components).
Often older terrestrial networks do have non-linear distortions because of the adjustment
and survey methodologies employed. One method to try and account for non-linear
distortions uses Multiple Regression Equations (MRE), these are outlined in Section

53.4.

Adopted | Harvey 1986 | Boucher ef McCarthy DMA 1987a
al., 1994 1992 and 1987b

X axis translation Tx Tx T1 Ax AX
y axis translation Ty Ty T2 Ay AY
z axis translation Tz Tz T3 Az AZ
rotation about x axis Ex o) -R1 de £

rotation about y axis &y 0 -R2 o¢ \}
rotation about z axis g k -R3 ) 0
differential scale As s-1 D s AS
coordinate frame one X4Y42Z4 Xyz XYZ uvw --

coordinate frame two | Xp YpZp XYZ XSYSZS Xyz --

Table5-1: Seven parameter similarity transformation notation
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As there appears to be no standard set of notation used in the literature to express the
seven parameter similarity transformation parameters in geodesy, the notation used in
this thesis has been summarised in Table 5-1, along with some of the references cited in

this chapter.

5.3.1 Coordinate rotation methods

Before describing the different transformation models it is necessary to review some of
the methods that are available for rotating a coordinate system. Harvey (1985) describes
three of the methods for rotating a network. They are by Cardanian angles, Eulerian

angles or Euler’s Theorem.

The method of Cardanian angles is the most commonly applied and will be described
further shortly. Georgiadou and Grafarend (1983) give conversion formula between the
Cardanian angles and the Fulerian angles. They also note that if the Eulerian rotation
angle about the X axis is zero then the other two Eulerian rotation angles are
indeterminant. As rotation angles between GPS coordinates and NZGD49 coordinates
are usually small (Table 5-4 & 5-5) then there will be instabilities in the solution of the
transformation parameters if using Eulerian angles. Due to this instability Eularian

angles will not be used in this research, but are described below.

Euler’s theorem (eg. Thompson, 1969) states that provided one point of a body remains
fixed the entire succession of rotations about each axis is equivalent to a single rotation
about one axis. This one axis (Euler pole) does not necessarily coincide with either the
X, Y or Z axis. Thomson also shows that for small rotations the single axis can be
calculated from the Cardanian angles. Euler poles play a central role in plate velocity

modelling (Cox and Hart, 1986).

The Cardanian rotation matrix is the most commonly applied method of rotating a
coordinate system (Figure 5-2). If the rotation angles are small, the order of applying
the Cardanian angles to their respective axes does not influence the result. One of the

six possible combinations for the order of applying the Cardanian angles is:
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where

and

X,

Transformations

R = Rz(SZ) * Ry(Sy) * Rx(Sx) (55)

Rx, Ry, Rz  rotation matrices about the X, Y, Z axes respectively.

Ex &y & rotation angles in radians about the X, Y, Z axes respectively.
Positive rotations are clockwise rotations as viewed looking
from the origin to the positive end of the axis in a right handed
coordinate system.

cosg, sing, O cose, 0 -—sing,
Rz(e;) =| —sing, cose, O Ry(gy)=| O 1 0
0 0 1 sinsy 0 COSE,
Q2
& (- >
............. v
—————————— Ex >YA
> Y,

Figure 5 - 2 : Seven parameter transformation model using Cardanian Rotations,

(adapted from Harvey, 1994)
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| 0 0
Rx(ex) =|0 cose, sing,

0 -—sing, cose,

Therefore R can now be written as:

R=

COSE,COSE,  COSE,SINE SINE, +SINE,COSE, SINE,SiN€, —COSE, Sin€, cosg,
—SINE,COSE, COSE,COSE, —SINE,SINE, SINE, SINE,SiN€ CosE€, +Cosg, sing, |(5.6)

Sll’liiy —COSEy SINE, COSEy COSE

For small rotation angles the rotation matrix (5.6) can be approximated by (5.7) when it

is noted that the cosine of a small angle is approximately 1.0 and the sine of a small

angle is the small angle.

1 g, -¢€,
Rz|-¢, 1 €, (5.7
e, —& 1

The assumption of small rotation angles is valid for rotation angles of up to about 3.
However, considerably larger angles can be tolerated if the vectors being rotated are
shorter than an earth radius. For example, rotating a 500 km baseline vector with each
rotation angle equal to 10” will cause only 1 mm error in coordinates if (5.7) is used

instead of (5.6) (Harvey, 1986).

5.3.2  Bursa-Wolf model

This model, presented by Bursa (1965) and Wolf (1963), solves for a seven parameter
transformation - a scale factor, three rotation angles and three translation components.
The Bursa-Wolf model is also known in Geodesy as the Seven Parameter Similarity
model and takes the same form as the general similarity transformation of (5.4),

repeated for completeness in (5.8).

XB XA TX
Y, |=s.R Y, |+|T, (5.8)
ZB ZA TZ
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where the notation is as defined in (5.4).

One problem with the Bursa-Wolf model is that the adjusted parameters are very highly
correlated when the network of points used to determine the parameters covers only a

small portion of the earth (eg. Table 5-6).

5.3.3 Molodenskii-Badekas model

The Molodenskii-Badekas model (Badekas, 1969) removes the high correlation between

parameters by relating the parameters to the centroid of the network.

XB XA T; X, - iA
Y, [=| Y, |+ T/ [+5R Y, - Y, (5.9)
Z, zA Tz., z, - —Z—A
where
X, = ZX 4 /' m = centroid X coordinate for the points in coordinate system A

Y, = ZY . /' n = centroid Y coordinate for the points in coordinate system A

Z, = ZZ . /' n = centroid Z coordinate for the points in coordinate system A

T, 17,1, Molodenskii-Badekas translations terms

remaining terms are as defined for the Bursa-Wolf model

The adjusted coordinates, baseline lengths, scale factor, rotation angles, their Variance
Covariance (VCV) matrices and the a posteriori variance factor computed by this model
are the same as those from the corresponding Bursa-Wolf solution. However, the
translations are different and their precisions are generally an order of magnitude
smaller (Harvey, 1986). The difference between the translation terms of the Bursa-Wolf
and Molodenskii-Badekas models is due to the different scaling and rotating of the
centroid of the network. This can be seen clearly by expanding (5.9) to give (5.10),

where P, 1s a constant term for all points and obviously affects the translation terms.

X, T/ X, X, X,
Y, |=P +|T, |+s;R Y, | whereP, =Y, |-s.R| Y, (5.10)
ZB Tz, ZA zA zA
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When transformation parameters from the Molodenskii-Badekas model are to be applied
to transform coordinates of points, it is essential to know what values were used for the
centroid (X, Y, Z,) when deriving the parameters. However, in the past they have

not always been published with the transformation parameters (eg. Mackie, 1982).

It should be noted that when working with a global network of points the Molodenskii-

Badekas model has centroid coordinates that equal the centre of the ellipsoid (ie. X 4

=Y, =Z, = 0) and therefore reduces to the Bursa-Wolf model.

5.3.4  Multiple Regression Equations (MRE)

Multiple Regression Equations have the advantage over either the Bursa-Wolf or the
Molodenskii-Badekas models of being able to account for non-linear distortion in either
of the networks. One significant disadvantage is that outside the area of the control
points used to determine the MRE the results can be extremely unreliable. Therefore the
control points need to extend to the boundaries of the datum for which the

transformation is to apply.

There are various forms that an MRE can take, but only the form used by DMA(1987a)
will be presented, as this form has been used to determine transformation parameters
between WGS84 and NZGD49 (Section 5.4.2.1). For each coordinate component a
difference between datum values (Ad, AA, Ah) is determined by an MRE, and this is
then applied to the known datum coordinate component to obtain the unknown datum

coordinate using:

¢ = ¢a + A
A = Ap + AA
hB = hA + Ah
and where
(¢Ah)a known curvilinear coordinates of a station in terms of datum A
(¢Ah)B unknown datum B curvilinear coordinates of the same station

The general form of the difference between the two datum, using an MRE, for the
latitude component is (DMA, 1987a, eqn. 7-14):
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Ad= Ag+AU+AV+A U+ AUV +AsVE+ .+ AV + AssUV +
AsgUPV? + .+ AUV + AgsUPVe + L+ AUV + AUBVA +  +
AgU’V? (5.11)

where

Ao, Ay, ..., Agg =100 possible coefficients determined in a stepwise multiple

regression procedure with U and V each limited to single
digit exponents

U=K(¢-¢n) =mnormalised geodetic latitude of the computation point

V=K (A-An) =normalised geodetic longitude of the computation point

K = scale factor and degree-to-radian conversion

d, A = local geodetic latitude and longitude, respectively, of the

computation point (in degrees)

®m, Am = mid-latitude and mid-longitude values, respectively, of the

local geodetic datum area (in degrees).

Similar equations are obtained for AA and Ah by replacing A¢ in the left hand side of
(5.11) by AA and Ah, respectively.

The development of the MRE was performed by DMA (1987a, p. 7-18) using the
following method. Prior to beginning the development process, individual A, AA, Ah
coordinate differences are formed for each station within the datum area that has
coordinates in terms of both datums. The multiple regression procedure of Appelbaum
(1982) is then initiated to develop separate equations to fit the Ap, AA and Ah coordinate
differences. The first step of the procedure produces a constant and a variable. The
variable will either be a function of ¢ or A, or both. The procedure then sequentially
adds one variable at a time to the equation. After a variable 1s added, all variables
previously incorporated into the equation are tested and, if one is no longer significant,
it is removed. This stepwise addition or removal of variables ensures that only
significant variables are retained in the final equation. In keeping with (5.11), each
variable consists of products of powers of normalised geodetic latitude (U), or
normalised geodetic longitude (V), or both (ie. U’V* is a single variable). The stepwise

regression procedure continues until the precision desired for the equation is obtained.
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The DMA derived MRE for transforming NZGD49 coordinates to WGS84 coordinates
are contained in Section 5.4.2.1 for which the desired precision was that the rms

difference be approximately less than 1.5 m (DMA, 1987a, p. 7-19).

5.3.5 Variance Covariance Matrices

As a least squares adjustment requires both the stochastic and mathematical model to be
correct, there is the problem of “internal” and “external” accuracy. The elements of the
VCV matrices of the coordinates may represent precision estimates. It is difficult to
change these values to accuracies, especially the off-diagonal terms. Harvey (1985)
states that the application of the covariance law (Jacobians) to add the effect of
systematic effects to the VCV is the best method. Unfortunately, it is based on
functional relationships between the parameters and the systematic errors, which may
not be known. The VCV matrices can be diagonal, block diagonal or full matrices.
However, as a coordinate of one point is usually correlated with another point in the
network the full VCV matrices should be used in the computation of transformation

parameters.

It is frequently the case that one may have ellipsoidal coordinates and the associated
VCV matrix but it is necessary to convert these coordinates and VCV matrix to a
Cartesian frame for use by either the Bursa-Wolf or Molodenskii-Badekas methods.
The formula for conversion between ellipsoidal coordinates and Cartesian coordinates
can be found in most Geodesy texts (eg. Heiskanen and Moritz, 1967, Section 5-3; or
Vanicek and Krakiwsky, 1986, Section 15.4). The formula for conversion of a VCV
matrix between ellipsoidal and Cartesian coordinates is not as widely published, though
a clear presentation is given by Mikhail (1976). Harvey (1986) outlines the procedures,
and where appropriate gives formula, for converting both the coordinates and VCV

matrix between the ellipsoidal and Cartesian systems.

It should be noted that the VCV matrix of the transformed coordinates of a point is the
combination of the VCV matrices of the original coordinates and the transformation

parameters used. Therefore when the estimates of transformation parameters are
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published it is also desirable that the VCV of the parameters be published. Alternatively
the standard deviations and correlations of the parameters could be published as they
provide a clear indication of the quality of the parameter estimates and from them the
VCV can be formed (Harvey, 1986). One needs to remember that the rigorous
application of least squares is only sensible if the underlying model (which includes the

VCYV) is believed to be correct.

5.3.6  Tests for parameter significance

Once transformation parameters have been determined using either the Bursa-Wolf or
Molodenskii-Badekas method, they should be tested for significance using multi-variate
tests, especially when parameters have high correlations. Vanicek and Krakiwsky
(1986, Section 13.5) and Mikhail (1976, Section 11.5.2) both give the multi-variate tests
for the cases when the a priori variance factor (o,°) of the observations is either known

or unknown. The two cases for the multi-variate test are (Harvey 1994):

i) known a priori variance
When the a priori variance (o,°) is known reliably the multi-variate test is computed
using:
t=(U-X)"Q(U-X) (5.12)
where
X  vector of parameters being tested
U  vector of a priori values against which each X; is being compared (often

the null vector)

Qx estimated VCV matrix of the parameters being tested and it is assumed

that Qx = 6o(A'PA) ™.

The vectors X and U may contain either all the parameters or some subset of them. If
a subset is being used then the corresponding portion of the VCV matrix of the

parameters must be used. This test is rigorous and allows for correlations between

the parameters.
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The hypothesis that X; = U; should be rejected if: t> 2 o Where y? is the Chi-
squared distribution, k is the number of parameters being estimated and « is the

significance level.

If only a single parameter is being tested, then it is obvious that (5.12) reduces to:
t= (u-x)2 /ol > xz 1005 = 3.841 (atthe 95% confidence level) (5.13)

where o, is the a posteriori variance of the parameter being tested.

ii) unknown a priori variance
When the a priori variance (002) 1s unknown or weakly determined the multi-variate

test is computed using:

= U-X) k;( U-X) (5.14)

where

k number of parameters being estimated

Qy estimated VCV matrix of the parameters, or relevant portion of it,

multiplied by the estimated variance factor (VF)
U, X as defined in (5.12)

The hypothesis that X; = U; should be rejected if: t* > F' ., where Fis the Fisher (or
F) distribution, k is the number of parameters being estimated, r is the number of
degrees of freedom in the adjustment and « is the significance level. The value of t’
required to reject the hypothesis will be much larger than the value of t required in

(5.12), unless r is very large (Harvey 1986).

If only a single parameter is being tested, then (5.14) reduces to:

' =(u-x)*/ (6 * VF) > F |, (5.15)

Ifr — oo and a = 0.05, then F'{ 005 = 3.841. Therefore (5.13) and (5.15) are

asymptotic.
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For both of the multi-variate tests, if the tested parameters are not significantly different
to their a priori values (U) then the parameter should be fixed at their a priori value and

the transformation parameters recomputed.

5.3.7 The Generalised Method

In the Bursa-Wolf model (Section 5.3.2) and the Molodenskii-Badekas model (Section
5.3.3) a number of usually valid assumptions have been made. These are:

1) that the scale is uniform along each of the axial directions, and

i1) that there is no shearing process taking place.
These assumptions result in the transformation being of the similarity form as described

by Harvey (1986) (Section 5.3).

The applicability of these assumptions is quite evident by the use of the Bursa-Wolf
model in transforming between global systems such as the GPS and VLBI systems

(Boucher et al., 1994, Table T7).

However it is well known that terrestrial networks are not well behaved and as such it
seems that the most appropriate models should include the provision for scale to vary
along each axis and to admit shearing. This has the net effect of increasing the number
of parameters to 12. Such models are not entirely new. Grant (1990) used shear terms

to accommodate shearing that occurs between two plates but did not fully generalise the

concept.

In the similarity transformation matrix (5.4) the translation is treated as an addition
while the scale and rotation are treated as multiplication. A more general form of (5.4)
can be written in such a way that the scale, rotation and translation terms can all be
treated as a multiplication and combined into one single matrix, referred to as the
Composite Matrix, M. One of the basic purposes of composing transformations is to
gain efficiency by applying a single compound transformation to a point, rather than
applying a series of transformations, one after the other. In developing the generalised
model it is appropriate to follow the concepts and notation of Computer Graphics (see

Foley et al., 1990, Chapter 5). This notation uses the homogeneous coordinate system
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developed by Maxwell (1946, 1951). Its complete generality and compact form make it

useful in many systems.

The first step in developing the Composite Matrix, M, is to express points and
transformation parameters in terms of homogeneous coordinates. That is instead of
representing a point in space by the vector (x,y,2)" we represent it by the 4 tuple vector
(x,y,2,W)". The critical parameter of choice is W which is often termed the
“homogenising” parameter. When W=1 “conventional” 3-D space is a subspace of the
more generalised 4-D space. The development which follows utilises W=1 which

results in considerable similarity to the conventional 3-D space approach.

XA XB
P= YA P/: YB
ZA ZB
1 1
s, 0 0 0 1 00 T,
. ) 5y 0 S L
S 7S ’S = ¥ 2 =
IS0 0 s, 0 PEOTET 0 001 T,
0 0 0 1 0 0 0 1
[ cosg, sing, 0 0 cosg, 0 —sing, O
R —sing, cosg, 0 O R 1 0 0
2= 0 10 v(E) = sing, 0 cosg, 0
0 0 01 0o 0 0 1
1 0 0 0
R 0 cosg, sing, O s 16
X&) = —sing, cosg, 0 (5-16)
0 0 0 1

where sx, sy and sz are the scale factors for each axis. R = (Rz(g;) ® Ry(gy) ® Rx(&x))
can now be written, with the same first order approximations due to small angles used in

(5.7), as:

1 e, -¢, 0
e 1 e, O

R= e, e, 0 (5.17)
0 0 0 1
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Utilising these homogeneous expressions for P’, S, R, P and T it is possible to rewrite

Harvey’s transformation (5.4) utilising the homogeneous notation

sx &, —¢&, Ty
_gz SY gx TY

PP=MP = P (5.18)
e, -¢ s, T,

It is clear that under similarity, equal scale in all directions, sx = sy = sz = s¢ (a

constant), that this equation is equivalent to (5.4).

Indeed it is the ability of the homogeneous representation to incorporate the previously

mentioned properties of similarity, orthogonality and projection that make it so useful.

The property of orthogonality is aligned with the concept of shear in that shearing
systems are generally not orthogonal. In 3-D space there are three shears. Their

homogeneous representations are:

I 0 Shy 0 I 00 0
0 1 Shy O hy, 1 0 0
SHxy (Shxy, Shyyx) = 00 1 0 SHyz (Shyz, Shzy) = Sh,, 0 1 0
0 0 0 1 0 0 0 1
1 Shy, 0 0
1 0 0
SHxz (Shxz, Shzx) = 0 Sh, 1 0
0 01

The shear matrices behave in an analogous manner to the rotation matrices for small
shears. The generalised form of the shear matrix is:

1 Shy, Shy,
Sh 1 Sh

SH (Shy, Shy, Shy) =] ¥* v
Sh,, Sh,,

0 0 0

(5.19)

— O O O

Finally the combination of the shear (5.19) and rotation (5.17) matrices yields, for small

shears and small rotations:
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1 Shy, +&, Shy, —g, 0
Sh,, —¢€ 1 Shy, +€, 0
SHeR= Y ™ R (5.20)
Sh,y +€&, Sh, —¢, 1 0
0 0 0 1

It is now seen that there are 6 independent linear coefficients in this matrix. The form of

the composite matrix when scale and translation terms are added to (5.20) is:

Sy Shy, +€, Shy,—€&, Ty
_ Shy, —¢, Sy Shyy +te, Ty (5.21)
Sh,, +e, Sh,, —¢€, S, T, '
0 0 0 1
The general form of (5.21) is:
a, 4, a3 a4y
M= Ay Ay Gy Gy (5.22)
Qi 4y iy Oy
0 0 0 1

Writing M in the general form of (5.22) emphasises the fact that there are 12 unknown
parameters made up of:

e 3 scales sx, sy, sz which effect the diagonal elements

o 3 translations Tx, Ty, Tz which effect the fourth column

e 3 rotations &, &, & which effect the off-diagonal elements

e 6 shears Shyxy, Shvyx, Shyz, Shzy, Shzx, Shxz which linearly combine with the

rotations to make for 6 unknowns involving rotations and shears

This generalised matrix contains all the deformations between the initial and final
systems. That is it contains the classical deformation information although this
information cannot be readily extracted due to the linear combinations in the presence of
rotations. To demonstrate this fact it is noted that the shearing unit of deformation in

the x-y plane is defined as:
ov  du

ox a_y
where u and v are the deformations along the x and y axis respectively. The parameter

Shxy is the term g_u while Shyz represents g_v . Similarly the shearing unit deformation
y X
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in the y-z plane is a_w + ? which is Shzx + Shyx while the shearing deformation in the
y 0z

x-z plane is g_u + a_w which is Shxy + Shzy.
Z X

It is possible to design (5.22) so as elements of M could be functions of position. The
complexity that each elements equation could take is unlimited, though it is also
possible to just solve for the numerical values of the elements of M. Depending on
whether you are interested in the underlying physical processes which influence the
values of the elements or are only after a method to transform coordinates one may
analyse the M elements further. The approach of only solving the numerical values of
the elements of M, rather than analysing the physical processes has been applied to the
problem of converting between NZGD49 coordinates and ITRF93 coordinates (see
Sections 5.4.3.5 and 5.4.3.6).

5.4 Transformation parameters

This section firstly outlines the transformation parameters used in this research to
convert coordinates between the ITRS (Section 3.4.1) and WGS (Section 3.4.3)
realisations. Then currently available transformation parameters to convert between
NZGDA49 and W(GS84 are presented, along with the similarity transformation and
generalised method parameters developed as part of this research, that convert directly
between NZGD49 and ITRF93. Comparison of these transformation parameters are

contained in Section 5.5.

5.4.1 Transformation parameters between ITRS and WGS realisations

The transformation parameters used in this thesis for converting between different
realisations of ITRS and WGS are summarised in Table 5-2. The application of these
parameters was performed using the seven-parameter similarity transformation (Bursa-

Wolf) formula given in (5.8) using the simplified rotation matrix of (5.7).
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The three sets of transformations parameters between ITRS realisations (ie. ITRF90-93),

and between WGS84(G730) to ITRF92, in Table 5-2 refer to the epoch of 1988.0. The

epoch to which the other sets of parameters refer was not clearly stated in their

respective references.

From To Reference Tx Ty T, As £x gy g
m m m x10® | mas | mas | mas
"' ITRF90 | ITRF91 Boucher et al., -0.001] 0.004| 0.016] -0.03 0.0 0.0 0.0
1992, p32 0.003] 0.003) 0.002 0.03 0.1 0.1 0.1
2 ITRF91 ITRF92 Boucher ef al., -0.0111 -0.014| 0.006}| -0.14 0.00 0.00 0.00
1993, p44 0.0021 0.002| 0.002 0.03 0.07 0.07 0.05
3 ITRF92 | ITRF93 Boucher et al., -0.002 | -0.007 { -0.007 0.12 039 -0.80 0.96
1994, p80 0.0011 0001 0.00] 0.02 0.06 0.05 0.04
* ITRF90 | WGS84 McCarthy 1992 0.060 | -0.517] -0.223 -1.1 -18.3 0.3 -7.0
> WGS84 | WGST2 DMA 1987a 0.000] 0.000| -4.500| -21.9 0.0 00| 554.0
® WGS84 | WGS84 Swift 1994 -0.040 | -0.010} -0.280 -21.8 4.2 4.0} -15.6
(G730)

7 WGS84 | ITRF92 Swift 1994 -0.070 | -0.130| 0.150| -0.03 -6.0 2.0 2.4
(G730) 0.030 0.040| 0.030 0.01 0.3 0.5 0.7

Table5-2:

Transformation parameters between ITRS and WGS realisations.
The first line contains the parameters, while the second line (in
italics, when given) contains the formal uncertainty in the
parameters at 1 sigma.

It is worth noting that the value given by DMA (1987a) for As, to convert WGS84 to

WGS72 coordinates, is -21.9 x 10, However, a preprint of DMA (1987a and b) stated

that As = -22.63 x 10°®, which is the value quoted in Australia (eg. Higgins, 1987 and

Steed, 1990) This difference of approximately 0.04 m at the Earth’s surface can be

considered insignificant when compared to the height accuracy obtainable by the

Doppler method used to establish WGS72 and WGS84.

From Table 5-2 it is possible to derive another set of transformation parameters to

convert from WGS84(G730) to ITRF92 by combining the parameters in lines 1, 2, 4 and

6 to compare with the direct parameters of Swift (1994) in line 7. The derived

parameters are significantly different from Swift's direct determination (Table 5-3).

This difference could be due to several sources. The most likely difference is due to

uncertainties associated with the individual parameters and the mode that these

uncertainties propagate. This cannot be tested as the necessary variance-covariance

matrices are not available for all of the components.
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From To Source | Ty Ty Tz As £ gy £
m m m x10% | mas | mas | mas
WGS84 (G730) | WGS84 0.040 | 0.010} 0.280 21.80 -4.2 4.0 15.6
WGS84 ITRF90 -0.060 | 0.517 | 0.223 1.10 18.3 -0.3 7.0
ITRF90 ITRF91 -0.001 | 0.004 | 0.016 -0.03 0.0 0.0 0.0
ITRFI1 ITRF92 -0.011 | -0.014 | 0.006 -0.14 0.00 0.00 0.00
WGS84 (G730) | ITRF92 | derived | -0.032 | 0.517 | 0.525 22.73 14.1 3.7 22.6
WGS84 (G730) | ITRF92 Swift | -0.070 | -0.130 | 0.150 -0.03 -6.0 2.0 -2.4

Table 5-3: Derived transformation parameters between WGS84 (G730) and
ITRF92.

5.4.2  Conversion between WGS and NZGD49

The two main determinations of transformation parameters for converting between
WGS realisations and NZGD49 are Mackie (1982) and DMA (1987a & b). Both of
these determinations of transformation parameters have been derived from Doppler
observations at NZGD49 coordinated sites. There are however some distinct
differences which will be summarised in the following sub-sections, along with an

attempt to standardise the parameters for converting between WGS84 and NZGD49.

5.4.2.1 DMA derived parameters

DMA (1987a & b) contains three different methods of transforming between WGS84
and NZGD49. The first method uses the Seven Parameter Similarity Transformation
formula (DMA, 1987a, Section 7.2.4.3.1), the second uses the Standard Molodenskii
Datum Transformation formulas (DMA, 1987a, Table 7.8), while the third uses Multiple
Regression Equations (MRE) (DMA, 1987a, Section 7.2.4.3.3).

The Molodenskii and MRE formulas are used for transforming between ellipsoidal
coordinates. As was discussed in Section 5.3, transforming ellipsoidal coordinates to
Cartesian (rectangular) coordinates is relatively simple. Therefore, the Molodenskii
formulas will not be described further. However, as the MRE formula can take into
account the non-linear distortion in either of the networks they will be analysed along

with the Seven Parameter Similarity Transformation formula.
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The similarity transformation parameters need to be applied to Cartesian coordinates.
The local datum coordinates available to DMA consisted of orthometric heights rather
than ellipsoidal heights. To convert orthometric height to ellipsoidal height the geoid
height (N) needs to be known. DMA determined N values in terms of NZGD49 by
assuming the local geoid height at each Doppler station was zero. Then using the
Abridged Molodenskii Datum Transformation formula for AH (DMA, 1987a, Table
7.8), determined AH values (= AN). Then the AN values were subtracted from the
WGS84 geoid height (degree and order 180) DMA (1987a).

Similarity Transformation Parameters

DMA (1987a) lists four different sets of similarity transformation parameters for
converting from NZGD49 to WGS84, based on different combinations of parameters
being solved for in the least squares solution. The values for the parameters (Table 5-4)
were derived from 14 Doppler stations. No description of the location of these sites is

contained in DMA (1987a or b).

The only indication of the accuracy of the transformation parameters in Table 5-4 was
given by DMA (1987b, p. 10-9) for the three parameter solution. The accuracies for the
Tx, Ty and Tz parameters were = 5, 3 and 5 m, respectively, though the confidence

interval was not specified.

Number of Tx Ty Ty €x gy € As

Parameters

solved for m m m ”? ” ”? ppm
7* 55 -17 184 -0.773 0.122 | -0.745 | 5.9218
6 83 -20 209 -0.773 0.122 | -0.745 -
4* 56 -18 184 -- -- - 5.9218
3 84 -22 209 -- -~ -- --

Table 5 -4: DMA Similarity Transformation Parameters to convert from
NZGDA49 to WGS84 (DMA, 1987a, p. 7-47). *: As possibly printed
with wrong sign (see Section 5.5.2).

Multiple Regression Equations
The DMA (1987b, p. 20-20) MRE for the conversion of NZGD49 coordinates to
WGS84 coordinates are in (5.23). The number of stations used to determine the MRE is
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unclear as tests for determining the accuracy of the equations used either 14 points

(DMA, 1987a, p. 7-51) or 31 points (DMA, 1987b, p. 20-20).

Ap=6.18012 +0.18236U + 0.10785V - 0.15566UV + 1.36545U° -
0.44813UV? +0.16518V" - 1.66408U° + 0.44854U°

AL= 0.55131+0.18193U + 0.29501V - 0.36522UV - 0.12613U° -
1.13550U%V? + 3.31705U°V? + 3.40098U°V°

Ah=8.630+13.910U + 7.007V + 3.463V* +20.507U° - 16.813U%V -
20.530U°V - 11.602U° - 28.424U°V? (5.23)

where

parameter definitions are the same as (5.11)

A¢ and AA units are arc seconds, while Ah units are metres

U=K (¢ +41), with ¢ being the geodetic latitude in decimal degrees

V=K (A -173), with A being the geodetic longitude in decimal degrees

K =10.15707963, the combined scale factor and degree-to-radian conversion

5.4.2.2 Mackie derived parameters

Mackie (1982) determined transformation parameters between WGS72 and NZGD49
based on 18 Doppler stations that were well distributed across both the North and South
Islands of New Zealand. Mackie computed a geoid referenced to NZGD49, by
integrating the components of the deviation of the vertical (ie. from Astro-geodetic
levelling). This allowed the orthometric heights to be converted to ellipsoidal heights
and when combined with the NZGD49 horizontal coordinates, provided a local three
dimensional set of coordinates that were compared with the Doppler coordinates to

establish the transformation parameters.

Mackie solved for what he termed a “3-parameter solution to the transformation vector”
and also a 7-parameter solution. The seven parameter solution for the transformation
parameters was obtained by a least squares solution based on the Molodenskii-Badekas
method (Section 5.3.3). The parameters to transform from NZGD49 to WGS72 were
stated by Mackie (ibid., p. 22) as:
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Tx
Ty
T,
As

&x

&z

+83.217 m
-9.026 m
+202.024 m
=-4.8256x 10"
=-22650x 10°
=+4.6660 x 107
=-2.2558x 10

Il

It

+0.27m
+0.27m
10.27 m
+6.32x 107
+1.32x10°
+1.06x 107
+1.36x 107

Transformations

(5.24)
-0.47” £0.27”
+0.10” £0.22”
-0.47” £0.28”

Note that the sign of As as given by Mackie in (5.24) has the opposite sign to the As

given by DMA (Table 5.4). The difference in sign for As is compared in Section 5.5.2.

The values that were used for the centroid (X, Y, Z,) when deriving the parameters

in (5.24) were not specifically stated. However if one assumes that the centroid was

calculated using Mackie’s equation 5 (ibid., p. 22), which is equivalent to that given in

(5.9), the coordinates of the centroid can be calculated from the Cartesian coordinates

given in Mackie’s table 1 (ibid., p. 22) to be:

ol

A

NI~

p

-4774224.01 m
545802.12 m

-4159198.36 m

(5.25)

To compare the parameters derived by Mackie with parameters contained in Sections

5.4.2.1 and 5.4.3, the parameters need to be converted from the Molodenskii-Badekas

method to the Bursa-Wolf method. This can be achieved by combining (5.7), (5.8) and

(5.10) to give the Bursa-Wolf translation parameters:

NH -:.i NH

X, 1
= ?A —Sg| €,
Z, g,

e, —¢g,
1 €,
- 1

S

NI = 4

ES

(5.26)

Solving (5.26) using the values in (5.24) and (5.25) results in (the sense, from NZGD49

to WGS72):
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Tx =  +59.47m
Ty = -5.04 m (5.27)
T, = +18294m

As was discussed in Section 5.3.3 the scale and rotation parameters remain unchanged.
Having now converted Mackie’s Molodenskii-Badekas based parameters to Bursa-Wolf
parameters it is now possible to convert these parameters so that they for transforming
from WGS84 to NZGDA49, rather than transforming from WGS72 to NZGD49. This is
achieved, due to the small rotation angles, by adding algebraically the parameters for
converting WGS84 to WGS72 (Table 5-2), with the rotation and scale parameters from
(5.24) and the translation parameters from (5.27) (Table 5-5).

From To Tx Ty Tz As £y gy g,
m m m x10°¢ ” ” ”
WGS84 | WGS72 0.0 0.0 -4.50( -0.219 0.0 0.0 0.554
WGS72 | NZGD49 | -59.47 5.04 | -182.94 | 4.8256 0471 -0.10 0.47
WGS84 | NZGD49 | -59.47 504 | -187.44 | 4.6066 047 -0.10{ 1.024

Table 5-5: Seven parameter similarity transformation parameters derived from
Mackie (1982) for conversion from WGS84 to NZGD49.

5.4.3  Solving for parameters between ITRF93 and NZGD49

The School of Geomatic Engineering has software (TRANS3D), that is based on Harvey
(1985), to determine the seven Bursa-Wolf model transformation parameters by a least
squares adjustment. Harvey (1985) lists the original program code and design matrices
of the least squares adjustment that allow for rotation angles of any size. It should be
noted that for solutions containing less than the seven parameters the adjustment was
achieved by assigning very small variances (eg. 1.0x107) to the parameters being fixed
(normally to zero). This technique will produce results that are similar to undertaking a
least squares adjustment with less parameters, but is not identical. The solutions that

solve for less than seven parameters still have seven parameters, it is just that some of

the parameters are constrained to zero.
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As part of this research software was written to implement a least squares solution to the

generalised method described in Section 5.3.7.

Details of least squares adjustment are widely published and can be found in textbooks

such as Cross (1983) and Mikhail (1976).

The sub-sections 5.4.3.1 through 5.4.3.4 contain the transformation parameters
determined using the TRANS3D software. Sub-sections 5.4.3.5 and 5.4.3.6 contain the
transformation parameters determined using the generalised approach software,
LSQ12P. The ITRF93 GPS coordinates and associated VCV matrix for 26 stations
were obtained from the output of the GLOBK adjustment (Section 3.5.2). The NZGD49
three dimensional coordinates for the same 26 stations were generated by combining the
latitude and longitude coordinates for the stations with their orthometric heights. These
coordinates were obtained from DOSLI’s geodetic database. The orthometric heights
were then converted to ellipsoidal heights by adding on the geoid heights. The geoid
heights were determined firstly in terms of GRS80 using the OSU91A GGM to degree
and order 360 with (4.46), then transformed using the parameters in Table 5-5 to obtain
geoid heights with respect to the NZGD49 International (Hayford) ellipsoid. It is
recognised that these GGM derived geoid heights are not ideal when compared to geoid
heights determined by local gravimetric solutions and may have errors of up to -1.1 m
(Section 4.6). However, a high resolution nationwide gravimetrically determined geoid

had not been computed at this time.

The 26 stations ITRF93 and NZGD49 coordinates and VCV matrices used in the

following sub-sections are contained in Appendix K.

Unfortunately the VCV matrix or even a priori standard deviations for the five separate
blocks used in the original adjustment of the NZGD49 coordinates (Section 2.4.2.2) are
not available. It should be noted that NZGD49 is only a two dimensional datum and
even if the original VCV matrices were available the height variances would be zero.
Therefore, only a diagonal VCV matrix was used for the NZGD49 network of stations,

though this VCV matrix did distinguish between the differences in the accuracy of the
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horizontal and vertical coordinates (see Appendix K). The variances for the NZGD49
network are estimated as part of the least squares adjustment. One could also argue that
when a first order horizontal station is used to determine transformation parameters, the
station should be held fixed as by the NZGD49 definition these first order stations are

error free.

5.4.3.1 Seven parameter solution

The determination of seven transformation parameters to transform between ITRF93
and NZGD49 was undertaken using the TRANS3D software. Through an iterative
process the a priori variance for the NZGDA49 latitude, longitude and height was
determined as 0.04” (approx. 1.2 m), 0.04” (approx. 0.9 m) and 1.0 m, respectively.
These a priori variance estimates are reasonable when considering the likely
deformation that has occurred between the original triangulation survey and the GPS
survey (Section 2.2). The corresponding adjusted parameters and correlations are
contained in Table 5-6. Due to the enforcement of the Laplace equations during the
establishment of NZGDA49 the rotation parameters are, as expected, small (< 1.5 sec).
From Table 5-6 it can also be noted that there are high correlations (> 0.8) between the
rotation and translation parameters. This is primarily due to the relatively small global

extent of the NZGD49 network especially in the East-West direction which is longitude.

A condensed output listing of the TRANS3D solution is contained in Appendix K.
Testing the combined significance of the three rotation parameters using the multi-
variate test of (5.14) indicated that the combined rotations are significant (ie. t” = 39.69

> 371005 = 2.72).

Testing the significance of the individual parameters using (5.15) indicated that the
rotation parameters about the X and Y axes are insignificant at the 95% confidence level
(ie. ' =0.09 < F171005 =3.99 and t’ = 0.05 < FF'=3.99, respectively). The
insignificance of the X and Y axes rotations can be expected based on the known quality
of the Earth’s polar motion determinations by the International Latitude Service (ILS) at
the time NZGD49 was established. The results from redetermining the transformation
parameters holding the rotations about the X and Y axes fixed at zero is contained in the

following section.
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A posteriori estimate of the variance factor (sigma sq) is 1.033

Approximate degrees of freedom = 71

The a priori weights on the parameters contribute 0.0% to the
estimated variance factor.

These results HAVE passed the F test of the variance factor at the
95% confidence level

Adjusted transformation parameters (Bursa-Wolf model)

Parameter Adjusted Value
Differential Scale (As) 4.562 +/- 0.514 ppm
Rotation about X axis (g,) 0.072 +/- 0.241 secs
Rotation about Y axis (g,) -0.049 +/- 0.208 secs
Rotation about Z axis (g) 1.344 +/- 0.242 secs
Translation along X axis (T,) -60.788 +/- 4.465 m
Translation along Y axis (T,) -9.188 +/- 10.035 m
Translation along Z axis (T)) -187.073 +/- 5.718 m

Correlations between adjusted parameters

As g, €, €, T, T, T,

As 1.000

€, 0.063 1.000

g, -0.023 0.805 1.000

€, 0.077 -0.831 -0.803 1.000

T, 0.556 -0.602 -0.838 0.653 1.000

T, -0.042 0.949 0.840 -0.963 -0.674 1.000

T, 0.366 0.811 0.919 -0.738 -0.559 0.795 1.000

Table 5 - 6 : ITRF93 to NZGD49 seven parameter transformation solution.

5.4.3.2 Five parameter solution

In the previous section it was shown that not all rotation parameters were significant for
the seven parameter solution due the quality of the ILS polar motion determinations.
The results from redetermining the transformation parameters holding the rotations
about the X and Y axes fixed at zero are contained in Table 5-7. The a priori variance
for the NZGDA49 latitude, longitude and height was the same as for the seven parameter
solution (ie. 0.04”, 0.04”, 1.0m). One of the most noticeable differences of setting the X
and Y rotations to zero in comparison to solving for them is that the correlations
between the differential scale and each translation component has significantly

increased.
Testing the significance of each of the five estimated parameters in Table 5-7, against

zero, indicated all five parameters are significant at the 95% confidence level using

(5.15). The residuals on transformed coordinates from applying the transformation
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parameters determined by fixing ¢, and ¢, to zero (Table 5-7) is discussed in Section

5.5.4.

A posteriori estimate of the variance factor (sigma sq) is 1.014

Approximate degrees of freedom = 73

The a priori weights on the parameters contribute 28.6% to the
estimated variance factor.

These results HAVE passed the F test of the variance factor at the
95% confidence level

Adjusted transformation parameters (Bursa-Wolf model)

Parameter Adjusted Value
Differential Scale (As) 4.501 +/- 0.509 ppm
Rotation about X axis (g) 0.000 +/- 0.000 sec
Rotation about Y axis (g)) 0.000 +/- 0.000 sec
Rotation about Z axis (g)) 1.360 +/- 0.123 sec
Translation along X axis (T,) -62.113 +/~- 2.377 m
Translation along Y axis {T,) -10.979 +/- 2.899 m
Translation along Z axis (T)) ~186.400 +/- 2.149 m

Correlations between adjusted parameters

As g, g, £, T, T, T,

As 1.000

€, 0.000 1.000

g, 0.000 0.000 1.000

€, 0.202 0.000 0.000 1.000

T, 0.987 0.000 0.000 0.067 1.000

T, -0.300 0.000 0.000 -0.993 -0.168 1.000

T, 0.995 0.000 0.000 0.200 0.980 -0.297 1.000

Table5-7: ITRF93 to NZGD49 five parameter transformation solution

5.4.3.3 Four parameter solution

For some applications (ie. mapping) the accuracy requirements for the transformed
coordinates are sufficiently relaxed to allow the transformation to be represented by only
a 4 parameter solution. The results of determining only 4 parameters (translations and

scale) are contained in Table 5-8.

To satisfy the I test on the variance factor the a priori variance for the NZGD49 latitude
and longitude were both increased to 0.083” (approx. 2.5 m and 1.9 m), while the a
priori variance for height remained at 1.0 m. Using (5.14) all four parameters are

significant at the 95% confidence level.

Results and discussion from applying the transformation parameters of Table 5-8 are

contained in Section 5.5.4.
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A posteriori estimate of the variance factor (sigma sq) is 1.116

Approximate degrees of freedom = 74

The a priori weights on the parameters contribute 42.9% to the
estimated variance factor.

These results HAVE passed the F test of the variance factor at the

95% confidence level

Adjusted transformation parameters (Bursa-Wolf model)

Parameter Adjusted Value
Differential Scale (As) 3.296 +/- 1.035 ppm
Rotation about X axis (g,) 0.000 +/- 0.000 sec
Rotation about Y axis (g,) 0.000 +/- 0.000 sec
Rotation about Z axis (g) 0.000 +/- 0.000 sec
Translation along X axis (T,) -64.372 +/- 4.933 m
Translation along Y axis (T,) 20.785 +/- 0.723 m
Translation along Z axis (T)) -191.243 +/- 4.379 m

Correlations between adjusted parameters

As €, g, €, T, T, T,

As 1.000

€, 0.000 1.000

€, 0.000 0.000 1.000

€, 0.000 0.000 0.000 1.000

T, 0.997 0.000 0.000 0.000 1.000

T, -0.847 0.000 0.000 0.000 -0.844 1.000

T, 0.996 0.000 0.000 0.000 0.988 -0.839 1.000

Table 5 -8 : ITRF93 to NZGD49 four parameter transformation solution

5434 Three parameter solution

The minimum number of parameters that can be used to transform three dimensional
coordinates is three. The choice of solving the three translation parameters is often
referred to as a block shift. The results of determining only 3 translation parameters are
contained in Table 5-9. To satisty the F test on the variance factor the a priori variance
for the NZGDA49 latitude and longitude were both increased to 0.108” (approx. 3.25 m
and 2.5 m), while the a priori variance for height remained at 1.0 m. Using (5.14) all

four parameters are significant at the 95% confidence level.

Results and discussion from applying the transformation parameters of Table 5-9 are

contained in Section 5.5.4.
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A posteriori estimate of the variance factor (sigma sq) is 0.991

Approximate degrees of freedom = 75

The a priori weights on the parameters contribute 57.1% to the
estimated variance factor.

These results HAVE passed the F test of the variance factor at the
95% confidence level

Adjusted transformation parameters (Bursa-Wolf model)

Parameter Adjusted Value
Differential Scale (As) 0.000 +/- 0.000 ppm
Rotation about X axis (g)) 0.000 +/- 0.000 sec
Rotation about Y axis (g,)) 0.000 +/- 0.000 sec
Rotation about Z axis (g) 0.000 +/- 0.000 sec
Translation along X axis (T,) -80.192 +/- 0.451 m
Translation along Y axis (T, 22.648 +/- 0.494 m
Translation along 2 axis (T,) -204.9692 +/- 0.500 m

Correlations between adjusted parameters

As g, g, £, T, T, T,

As 1.000

€, 0.000 1.000

g, 0.000 0.000 1.000

€, 0.000 0.000 0.000 1.000

T, 0.000 0.000 0.000 0.000 1.000

T, 0.000 0.000 0.000 0.000 0.003 1.000

T, 0.000 0.000 0.000 0.000 -0.820 0.106 1.000

Table 5-9: ITRF93 to NZGD49 three parameter transformation solution

5.4.3.5 Generalised model solution
In this section the approach of solving the numerical values for the elements of M (5.22)
using least squares is applied to the problem of converting between NZGD49

coordinates and ITRF93 coordinates.

Software was developed as part of this research to determine the elements of the
Composite Matrix (Section 5.3.7) by a least squares adjustment. This software, referred
to as LSQ12P, does not currently utilise the VCV data of the coordinates as this was not

available.

Using the tools of strain (Section 5.3.7) to help interpret the values of the parameters in
Table 5-10 one needs to keep in mind that these strains are not only comprised of
information about the physical strain (deformation) but also the differences between the

reference systems and the observations that realised those datums.
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The values for parameters ayy, ax; and asz in Table 5-10 are statistically different and
therefore indicate that there is different axial scales between NZGD49 and ITRF93.
This 1s not unexpected as NZGD49 is a horizontal only datum and for the purpose of
transforming to ITRF93 the orthometric heights were used to provide the third

dimension.
Parameter | from NZGD49 to ITRF93 | Units
an 1.00003051 £+ 0.00000013 | dimensionless
apn -0.00001140 £ 0.00000003 | dimensionless
a3 0.00003062 + 0.00000011 | dimensionless
ay 359.2841 +1.1063 | m
@) 0.00000829 + 0.00000013 | dimensionless
axn 0.99999567 + 0.00000003 | dimensionless
a3 0.00000158 + 0.00000011 | dimensionless
aja 25.5594 +1.1063 | m
asi -0.00005054 + 0.00000013 | dimensionless
asy 0.00000734 £+ 0.00000003 | dimensionless
as;s 0.99995045 + 0.00000011 | dimensionless
a4 -246.3249 + 1.1063 | m
correlations amn an ais ags az ax an an as, asn as as4
a 1.000
an -0.811  1.000
an 0993 -0.749  1.000
an 0.999 -0.791 0997  1.000
a 0.000  0.000 0000 0000  1.000
an 0.000  0.000 0000 0000 -0.811  1.000
an 0.000  0.000  0.000 0000 0993 -0.749  1.000
an 0.000 0000 0000 0000 0999 -0.791 0997  1.000
a3 0.000  0.000 0000 0000 0000 0.000 0000 0.000  1.000
an 0.000  0.000 0000 0000 0.000 0000 0.000 0000 -0.811  1.000
as 0.000 0000 0000 0.000 0000 0000 0000 0000 0993 -0.749  1.000
s 0.000 0000  0.000 0000 0.000 0000 0000 0000 0999 -0.791 0997  1.000

Table 5 - 10 : Derived generalised model parameters and correlations for
conversion between NZGD49 and ITRF93

If parameter a;, = -ay; then there would be no shear between NZGD49 and ITRF93 in
the xz and yz planes. Table 5-10 shows that statistically -a;; # az1 (0.00001140 =
0.00000829) therefore indicating shear is present in these planes. Since a;3 # -a3; and

ay3 # -ax; this also indicates that shear is present in the remaining 4 planes (xy, zy, yx
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and zx). The difference between the values of these parameters (a1, @13, a21, a3, as1,
asz) indicates that the generalised method is able to account for additional signals than
the seven parameter similarity transformation. The existence of shearing is to be
expected between NZGD49 and ITRF93 due to the active tectonic processes taking

place across New Zealand (see Section 2.2).

The a14, az4 and as4 parameters in Table 5-10 represent primarily the translations in the
X,Y and Z axes, respectively. Comparison of the values of a4, a»4 and a4 with the
translations in Tables 5-6 through 5-10 shows that they are different, with the a4 and Ty
parameters being significantly different (a14 = 359m and Ty = 65m). However the effect
of this difference can only be determined after applying the parameters to a set of
coordinates due to the high correlations between the parameters (Table 5-10). Results
from applying the generalised model parameters to the conversion between NZGD49

and ITRF93 coordinates are contained in Section 5.5.5.

5.4.3.6 Generalised model solution using velocities

Since the establishment of NZGD49 in 1949 the effects of earth deformation have
continued to shift the relative positions of the first order control marks. This effect
could amount to 2.5m over the approximately 50 years that have elapsed between the

original observations and the GPS observations of the first order network (Chapter 2).

The LSQ12P software currently assumes homogeneous strain (elements of M are
considered to be constant across the region, ie. position independent). As Earth
deformation effects vary across New Zealand (Figure 2-4) the application of a velocity
model to remove the heterogeneous strain effects before solving for the elements of M is

tested.

In the absence of other information the NUVEL1A (DeMets ef al., 1994) rates for 50
years were applied to the NZGD49 coordinates even though it is known that they are not
fully applicable near plate boundaries. The NUVEL1A model is a surface only model
(ie. contains no rates for changes in height) and therefore it is expected that the height

component of transformed coordinates will be unaffected. No additional model was
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used to model uplift. It is expected that in the near future more realistic three

dimensional velocities will become available for New Zealand sites.

Sites were assigned to either the Pacific or the Australian plate based on which plate
their principle motion most closely resembled as reported by Beavan et al., 1996 (Figure

2-4). The sites were assigned to a tectonic plate as follows:

Tectonic Plate | Sites

Australian D078, D100, D431, D072, D473, D143, D131, D452, D045,
D026, D105, D158, D469, D309, D320

Pacific WELL, D425, D191, D212, D233, D229, D253, D338, D286,
D474, D302

As was the case in Section 5.4.3.5 the values for parameters @11, ay; and as3 in Table 5-
11 are statistically different and therefore indicate that there is still different axial scales

between NZGD49 and ITRF93. This is expected as NUVELIA rates do not affect the

axial scales.

Table 5-11 shows that a|, # -a1, a13 # -a3) and a3 # -a3; therefore indicating that the
NUVEL1A rates were not able to account for all the shear signal that is present in each
plane. This confirms that the NUVELI1A rates poorly model New Zealand sites that are

near the plate boundary.

All the composite matrix parameters containing shear strain (a2, @13, a1, 431, a32)
except a3 have smaller numerical values when the NUVELIA velocities have been
applied (Table 5-11) compared to those generated by not applying velocities (Table 5-
10). To be able to compare the different parameters in Tables 5-10 and 5-11, due to the
effects of the correlations, one needs to apply them to a set of coordinates. Results from
applying the generalised model parameters to the conversion between NZGD49 and
ITRF93 coordinates after applying NUVELI1A plate velocities are contained in Section
5.5.6.
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Parameter | from NZGD49 to ITRF93 | Units
apy 1.00002515 + 0.00000013 | dimensionless
a -0.00001050 + 0.00000003 | dimensionless
a3 0.00002661 £ 0.00000011 | dimensionless
an 3174818 £ 1.1063 | m
a1 0.00000807 + 0.00000013 | dimensionless
an 0.99999601 + 0.00000003 | dimensionless
a3 0.00000450 + 0.00000011 | dimensionless
o 35.7007 £1.1063 | m
az] -0.00004721 + 0.00000013 | dimensionless
as 0.00000660 + 0.00000003 | dimensionless
as3 0.99995255 + 0.00000011 | dimensionless
asq -222.5551 £1.1063 | m
correlations ap an ap ans azg an ax azn aszg as; az
an 1.000
an -0.811  1.000
ars 0993 -0.749  1.000
au 0999 -0.791 0997  1.000
an 0.000  0.000 0.000  0.000  1.000
an 0.000  0.000 0000 0.000 -0.811  1.000
ar 0.000  0.000 0000 0000 0993 -0.749  1.000
an 0.000 0000 0000 0.000 0999 -0.791  0.997  1.000
asi 0.000  0.000 0000 0000 0000 0000 0000 0.000 1.000
an 0.000  0.000 0000 0.000 0000 0000 0000 0.000 -0811  1.000
as 0.000  0.000 0000 0000 0.000 0000 0000 0000 0993 -0.749  1.000
ax 0.000  0.000  0.000  0.000 0000 0000 0000 0000 0999 -0.791 0997  1.000

Table S - 11 : Derived generalised model parameters and correlations for
conversion between NZGD49 and ITRF93 after applying NUVEL1A

plate velocities.

5.5 Comparison of transformation parameters

In Sections 5.4.2 and 5.4.3 both published and derived transformation parameters to

convert between NZGD49 and either ITRF93 or WGS84 were presented. This section

compares these transformations by applying them to a set of 26 stations that had both

ITRF93 (as determined in Chapter 3) and NZGD49 coordinates (Appendix K).

Comparison of coordinate differences between the known values and the transformed

values was undertaken with WGS84 coordinates. The ITRF93 coordinates obtained by

the application of the published and derived transformation parameters between
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NZGDA49 and ITRF93 were converted to WGS84 coordinates to allow the comparison

between WGS84 coordinates derived from NZGD49-WGS84 parameters. The choice

of comparing transformed coordinates in terms of WGS84 as opposed to ITRF93 did

not influence the findings. The transformation parameters used to convert the ITRF93

coordinates into WGS84 coordinates were generated by combining parameters from

Table 5-2, as shown in Table 5-12.

From To Tx Ty Tz As €x &y &
m m m x107 mas mas mas
ITRF93 | ITRF92 0.002 { 0.007 0.007 -0.12{ -0.39 0.80 | -0.96
ITRF92 | WGS8&4 0.070| 0.130( -0.150 0.03 6.0 -2.0 2.4
(G730)

WGS84 | WGS84 0.040 | 0.010 0.280 21.8 -4.2 4.0 15.6
(G730)

ITRF93 | WGS84 0.112 1 0.147 0.137 21.71 1.41 28| 17.04

Table 5 - 12 : ITRF93 to WGS84 Similarity Transformation Parameters

5.5.1

Results using the DMA Multiple Regression Equations

Applying the DMA MRE in (5.23) to the NZGD49 coordinates (Appendix K) generated

WGS84 coordinates. These MRE-derived WGS84 coordinates were compared with

those WGS84 coordinates obtained by transforming the ITRF93 coordinates (Appendix

C) to WGS84 by the parameters in Table 5-12. The differences in the WGS84

coordinates are summarised in Table 5-13 (in the sense MRE minus ITRF93

determinations).
Difference in | Difference in | Difference in
North East Height

(m) (m) (m)
minimum -3.319 -2.882 -9.701
maximum 3,923 1.021 -2.868
mean -0.323 -0.880 -6.271
rms 1.675 1.226 6.583

Table 5 - 13 : DMA Multiple Regression Equations Transformation results.
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Figure 5 - 3 : DMA Multiple Regression Equations Transformation difference
results as contour maps (units = metres). Triangles represent March
1993 GPS stations (see Figure 3-1)

From Table 5-13 it can be seen that the DMA MRE produces Northing differences that
have a larger range, though a mean closer to zero, than the Easting differences. While
the height component has a maximum difference of approximately 10.0 m. When one

considers that at the MRE reference point (S41°, E173°) the conversion for ellipsoidal
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height is 8.630 m (see 5.23), then the results in Table 5-13 indicate that this MRE height

bias is too large, by approximately 6 m.

From Figure 5-3 it is clear that the differences in each component, between the MRE-

derived WGS84 coordinates minus the ITRF93-derived WGS84 coordinates, have

significantly different signatures. The north and height components have steep east -

west gradients, while the east component has generally flatter gradients.

5.5.2

Results using the DMA Similarity Transformation Parameters

Applying each of the DMA Similarity Transformation parameters in Table 5-4 to the

NZGD49 coordinates of Appendix K generated WGS84 coordinates. These DMA

similarity transformation derived WGS84 coordinates were compared with those

WGS84 coordinates obtained by transforming the ITRF93 coordinates (Appendix C) to

WGS84 by the parameters in Table 5-12. The differences in the WGS84 coordinates are

summarised in Table 5-14 (in the sense DMA minus ITRF93 determinations).

Difference Number of Parameters

n Seven | Six ] Four l Three | Seven * | Four *
North metres

minimum -1.907 -2.898 -2.774 -3.990 -2.158 -3.027
maximum 2.645 4.580 3.535 5.935 2.392 3.290
mean -0.011 0.014 0.125 0.069 -0.260 -0.124
rms 1.167 2.026 1.434 3.123 1.196 1.436
East metres

minimum -2.766 -5.325 -4.534 -3.372 -2.766 -4.534
maximum 1.059 2.944 2.080 1.570 1.059 2.080
mean -1.009 -1.393 -1.542 -0.937 -1.009 -1.542
rms 1.477 2.308 2.506 1.576 1.477 2.505
Height metres

minimum 67.120 -8.180 66.281 -9.147 -8.304 -9.144
maximum 71.176 -4.189 70.362 -5.060 -4.262 -5.078
mean 69.567 -5.722 68.733 -6.644 -5.870 -6.703
rms 69.579 5.869 68.746 6.776 6.017 6.832

Table 5 - 14 : DMA Similarity Transformation results. Note: * indicates that the

differential scale with opposite sign to that in Table 5-4 was used.
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When comparisons of the results in Table 5-14 are made, it would be expected that the
similarity transformation results from using a larger number of parameters would
produce superior results due to the extra parameters being able to account for additional
differences between the datums. For the DMA similarity transformation results the rms
of the differences does reduce as the number of parameters solved for increases. This
indicates that the extra parameters are allowing the differences between the two datums

to be better modelled.

It is clear from Table 5-14 that there is a significant problem with the ellipsoidal height
differences, especially for the seven and four parameter results. The similarity
transformation parameter most likely to cause differences in heights is the differential
scale (As) due to this parameters main effect is to scale the radius. The As parameter is
also present in both the seven and four parameter results. From comparing the mean
height difference with the scale correction (s¢ * R) it was found that the difference is
twice the scale correction. This implies that As was used with the wrong sign.
Transforming the NZGD49 coordinates to WGS84 coordinates using the DMA seven
and four similarity transformation parameters but with the sign changed for As produced
the results in columns labelled Seven* and Four™® of Table 5-14. As can be clearly seen
from Table 5-14, the new results from the seven and four parameter solutions produce
ellipsoidal heights that agree well with those of the six and three parameter solutions,
and those from the DMA MRE (Table 5-13) and Mackie-based seven parameter

similarity transformation (Table 5-15).

Comparison of the similarity transformation formula for Cartesian coordinates given in
DMA (1987a, eqn. 7-4) with the implementation in the TRANS3D software (Section
5.4.3.1) confirmed they were consistent, thus the conclusion drawn was that As has been

printed with the wrong sign in DMA (1987a, p. 7-47).

Comparing the DMA similarity transformation parameter results (Table 5-14) against
each other shows that the seven parameter result (corrected for scale sign) produces

superior results to the other parameter sets for the north and east components. However,
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the six parameter set produced height results that were superior to the seven parameter
set by approximately 0.2 m, the significance of this height difference is unknown. Due
to the significantly inferior north and east component results from the six parameter set,
the seven parameter set was considered to be the overall superior DMA similarity

transformation parameters.

Comparison of the DMA seven parameter similarity transformation results (Table 5-14)
with the DMA MRE results (Table 5-13) reveals that the seven parameter similarity
transformation results were significantly superior for the northing results, equivalent for
the easting results and only marginally better for the height results. The three parameter
set was assigned accuracies by the DMA (1987b, p. 10-9) for Ty, Ty and Tz of £5, 3,
5m, respectively, though the confidence interval was not stated. If a confidence interval
of 95% is assumed, then the three parameter set results, in Table 5-14, satisfy these

stated accuracies.

From Figure 5-4 it is clear that the differences in each component, between the DMA
seven parameter-derived WGS84 coordinates minus the ITRF93-derived WGS84
coordinates, have significantly different signatures. When the DMA seven parameter
similarity transformation difference results (Figure 5-4) are compared with the DMA
MRE difference results (Figure 5-3) each of the respective components are practically
uncorrelated. The north and east components no longer have steep east - west gradients

and the east component minimum and maximum features have been shifted.
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Figure 5 - 4 : DMA Seven Parameter Similarity Transformation difference results
as contour maps (units = metres). Triangles represent March 1993

GPS stations (see Figure 3-1)

5.5.3  Results using the Mackie based Similarity Transformation Parameters

Applying the Mackie (1982) based parameters from Table 5-5 to the NZGD49
coordinates of Appendix K generated WGS84 coordinates. These derived WGS84
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coordinates were compared with those WGS84 coordinates obtained by transforming
the ITRF93 coordinates to WGS84 by the parameters in Table 5-12. The differences in
the W(GS84 coordinates are summarised in Table 5-15 (in the sense Mackie-based

minus ITRF93 determinations).

Difference in | Difference in | Difference in
North East Height
(m) (m) (m)
minimum -2.142 -2.553 -3.950
maximum 2.200 1.198 -0.435
mean -0.061 -0.775 -1.983
rms 1.133 1.327 2.216

Table § - 15 : Mackie-based Similarity Transformation results.

Comparison of the Mackie-based results (Table 5-15) shows that the north and east
components of the differences produced similar quality results, with the maximum
difference being approximately 2.5 m. Though the easting component does have a mean
difference of approximately 0.8 m. This implies that the W(GS84 coordinates derived
from the ITRF93 coordinates are on average 0.8 m to the east of the WGS84 coordinates
derived via the Mackie-based parameters from the NZGD49 coordinates. The
difference in the east can be interpreted as a rotation about the Z axis. A possible cause
of this rotation is that the angular rotation of the Earth as measured by UT1 was poorly

defined when observations were made to establish NZGD49.

The mean difference in height of approximately 2.0 m (Table 5-15) indicates a possible
problem in the generation of the ellipsoidal heights. The control ellipsoidal heights
associated with the NZGD49 coordinates were determined by adding the OSU91A
based geoid heights to the orthometric heights (see 4.1). These OSU91A based N

values were obtained by transforming N values in terms of a geocentric GRS80 ellipsoid
to the International (Hayford) ellipsoid (positioned through NZGDA49) using the Mackie-
based parameters from Table 5-5. Whether this method of generating geoid heights is
inferior or superior to the geoid heights generated by Mackie (ibid.), using deflections of

the vertical, is unknown.
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Figure 5 - 5: Mackie-based Seven Parameter Similarity Transformation
difference results as contour maps (units = metres). Triangles
represent March 1993 GPS stations (see Figure 3-1).

The Mackie-based similarity transformation parameter results (Table 5-15) produce
smaller differences than either the DMA similarity transformation parameter results

(Table 5-14) or the DMA MRE results (Table 5-13).
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From Figure 5-5 it is clear that the differences in each component, between the Mackie-
based seven parameter derived WGS84 coordinates minus the ITRF93-derived WGS84
coordinates, have significantly different signatures. When the Mackie-based seven
parameter similarity transformation difference results (Figure 5-5) are compared with
the DMA seven parameter similarity transformation difference results (Figure 5-4) each

of the respective components are showing high correlations.

5,54  Results using derived Similarity Transformation Parameters

For Sections 5.5.1 through 5.5.3, the transformation parameters were checked by
analysing differences in the converted coordinates at 26 stations that were well

distributed across the country.

In Section 5.4.3 all 26 stations were used in the determination of the similarity
transformation parameters. Analysing the residuals from what was considered to be an
over determined least squares adjustment (71 degrees of freedom for seven parameter
solution - Table 5-6) indicated that the determined transformation parameters were
realistic. Though to check the reliability of the derived parameters, six stations (three in
each of the North and South Islands) were each in turn removed from a determination of
the seven parameter similarity transformation parameters. This resulted in six sets of
seven parameter similarity transformation parameters each determined from only 25
stations. The station removed from each determination of the parameters could then be
used as a check station at which the transformation parameters could be applied and
differences (in the sense of known NZGD49 minus ITRF93 transformed) between the

known and transformed coordinate analysed (Table 5-16).
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Check Station | Difference in | Difference in | Difference in
North East Height
(m) (m) (m)
D473 0.186 -0.870 -0.631
D143 -0.649 -0.791 0.846
D026 1.453 0.779 0.128
D158 -1.361 -0.952 -0.163
D229 -0.124 2.286 -0.951
D474 1.948 -1.680 0.885
minimum -1.361 -1.680 -0.951
maximum 1.948 2.286 0.885

Table 5 - 16 : Results of derived similarity parameters at the six check stations

The parameter values for the six sets of transformation parameters were not different to
the values in Table 5-6 at the 95% confidence interval. This indicates that each of the
six stations were consistent with the other stations and also that the parameter solutions

were stable.

With the reliability of the least squares determined seven parameter similarity
transformation having been confirmed (at the six check stations), the four parameter sets
derived during this research, from Sections 5.4.3.1 through 5.4.3.4, were applied to the
NZGDA49 coordinates (Appendix K). Each of these four derived ITRF93 coordinates
sets were then converted to WGS84 coordinates using the parameters in Table 5-12.
The ITRF93 coordinates (Appendix C) were also converted to WGS84 coordinates
using the same parameters in Table 5-12, so as to enable the parameters derived by this
research to be compared using WGS84 coordinates as was the case for the comparisons
of the DMA (Sections 5.5.1 and 5.5.2) and Mackie (Section 5.5.3) based

transformations.

In Table 5-17 the difference between the five (2 parameters fixed to zero) and seven
parameter results only varied by a maximum of 0.1m in any component. Values for the
ex and &y rotations of zero suggest that the polar motion was correctly applied to
NZGDA49 astronomic observations to convert these observations from being with respect
to the Earth’s instantaneous pole to the CIO. This is consistent with the known quality

of the International Latitude Service which relied on crystal oscillators.
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These original observations may indeed have been of high quality, though some small

errors may exist. To reduce the effect of these small possible errors it is considered

necessary to solve for all seven parameters, though the extra parameters could obscure

small but important information.

From Table 5-17 it can be seen that, in general, the difference results deteriorate as the

number of parameters solved for decreases. This also confirms the same finding with

the DMA similarity transformations (Table 5-14). From the results in Table 5-17 it is

interesting to note that as expected the mean difference for each component deteriorates

as the number of parameters solved for decreases. It can be concluded that of the four

derived sets of similarity transformation parameters, the seven parameter similarity

transformation produces the superior results.

Difference Number of Parameters

in Seven | Five | Four | Three
North metres

minimum -2.201 -2.250 -3.651 -4.463
maximum 2.062 1.945 3.847 5.030
mean -0.002 0.006 -0.397 -0.556
rms 1.136 1.141 1.953 2.944
East metres

minimum -1.819 -1.863 -3.151 -2.889
maximum 2.132 2.197 2.899 2.282
mean -0.008 0.001 -0.320 -0.371
rms 1.064 1.067 1.687 1.342
Height metres

minimum -1.525 -1.431 -2.513 -2.507
maximum 1.652 1.653 1.654 1.632
mean -0.003 0.000 -0.003 0.012
rms 0.786 0.795 1.360 1.342

Table 5 - 17 : Derived Similarity Transformation results NZGD49 and WGS84.

Comparing the derived seven parameter similarity transformation results (Table 5-17)

with the DMA MRE (Table 5-13) and seven parameter similarity transformation (Table

5-14) results shows that the derived seven parameter similarity transformation produces

the superior results. However, comparison of the derived seven parameter results with
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the Mackie-based seven parameter results (Table 5-15) is not as clear. The Mackie-
based minimum, maximum and rms results for the north and east components are
approximately the same as the derived seven parameter results. When the height
component is compared the derived seven parameter results are superior. What is
interesting to note is that for each component the derived seven parameter results mean
difference is basically zero, while the mean difference for the Mackie-based results
reaches up to 2.0 m. It was therefore concluded that the derived seven parameter
transformation parameters were able to convert NZGD49 coordinates to WGS84
coordinates more reliably than the Mackie-based parameters, though further
investigation into the conversion of orthometric heights to ellipsoidal heights is

required.

From Figure 5-6 it is clear that the differences in each component, between the derived
seven parameter generated WGS84 coordinates minus the ITRF93-derived WGS84
coordinates, have significantly different signatures. When the derived seven parameter
similarity transformation difference results (Figure 5-6) are compared with the DMA
seven parameter similarity transformation difference results (Figure 5-4) and the
Mackie-based seven parameter similarity transformation difference results (Figure 5-5),
each of the respective components are showing high correlations. It should be noted
that the mean residual coordinate difference reduces in magnitude between the DMA
(Table 5-14), the Mackie-based (Table 5-15) and the Derived seven parameter similarity
transformation (Table 5-17). For the derived seven parameter similarity transformation

results the mean residual in each component is practically zero.
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Figure S - 6 : Derived Seven Parameter Similarity Transformation difference
results as contour maps (units = metres). Triangles represent March
1993 GPS stations (see Figure 3-1).

5.5.5 Results using the Generalised Model Parameters

Applying the Composite Matrix parameters from Table 5-10 to the NZGD49
coordinates of Appendix K generated ITRF93 coordinates. The derived ITRF93
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coordinates were converted to WGS84 by the parameters in Table 5-12 to allow
comparison between the other transformation techniques as was described in Section
5.5.4. The differences in the WGS84 coordinates are summarised in Table 5-18 (in the

sense Generalised Model based minus ITRF93 determinations).

Difference Method
in Mackie | derived 7 | Composite | Composite
based 7 | parameter Matrix Matrix
parameter | similarity (Nuvella)
North metres
minimum -2.142 -2.201 -1.251 -0.956
maximum 2.200 2.062 1.621 1.632
mean -0.061 -0.002 0.002 0.002
rms 1.133 1.136 0.586 0.521
East metres
minimum -2.553 -1.819 -1.780 -2.109
maximum 1.198 2.132 2.183 1.880
mean -0.775 -0.008 0.006 0.006
rms 1.327 1.064 1.075 1.109
Height metres
minimum -3.950 -1.525 -1.684 -1.689
maximum -0.435 1.652 1.535 1.528
mean -1.983 -0.003 -0.006 -0.006
rms 2.216 0.786 0.799 0.798

Table 5 - 18 : Comparison of Derived 7 Parameter Similarity Transformation
results and Generalised Method results for converting between
NZGD49 and WGS84.

The range between the minimum and maximum difference, and magnitude of the rms,
of the north component (Table 5-18) successively improves between using the Mackie-
based parameters, the derived 7 parameters and the generalised model (Composite
Matrix). For the east component the range is approximately the same between the three
methods but the Mackie-based results have the largest bias. In the height component the
derived 7 parameter similarity transformation and the generalised model produce
equivalent results which are an improvement over the Mackie-based results. The
probable reason why the height component does not improve by using the generalised
model is that the random errors in the height are approximately 0.8 m. Reasons for the
0.8 m random error are probably the conversion of the orthometric heights to ellipsoid

heights using the OSU91A GGM and the multiple independent height datums across
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New Zealand. This effect is common to both the 7 parameter similarity transformation

and the generalised model.
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Figure 5 -7 : Derived Generalised Method Transformation difference results as
contour maps (units = metres). Triangles represent March 1993 GPS
stations (see Figure 3-1).
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Spatially comparing the differences between the generalised model (Figure 5-7) and the
derived 7 parameter similarity transformation (Figure 5-6) show that there is high
correlation between the east and height components. The north component of the
generalised model still has the minimum and maximum differences in the same areas as
the 7 parameter, except that now the range of the differences, has been reduced and the

differences are a smoother field.

5.5.6  Results using velocities and the Generalised Model

The Composite Matrix parameters, determined after applying the NUVELIA rates to the
NZGD49 coordinates (Table 5-11), were applied to the NZGD49 coordinates of
Appendix K after the NUVEL1A rates had been applied, resulting in [TRF93
coordinates. These derived ITRF93 coordinates were converted to WGS84 by the
parameters in Table 5-12 to allow comparison between the other transformation
techniques as was described in Section 5.5.4. The differences in the WGS84
coordinates are summarised in Table 5-18 (in the sense Generalised Model based minus

ITRF93 determinations).

Table 5-18 shows that the north component rms improves by using the Generalised
Model parameters determined with the NUVEL1A rates (Table 5-11) over those
determined without the NUVELI1A rates (Table 5-10). There is negligible difference
between either using or not using the NUVEL1A rates when comparing the east
component. The relative motion between the Pacific and Australian Plates across New
Zealand is primarily in the east/west component (Figure 2-4). The lack improvement in
the east component therefore indicates that the velocity model of NUVELI1A is unable
to remove the relative motion sufficiently to improve the accuracy of the transformed
coordinates. When an improved velocity model for New Zealand is available then it is
expected that the east component results generated by incorporating the velocity model
will improve. As was predicted in Section 5.4.3.6 the height component does not
change due to the application of the NUVELL1A velocities as the NUVEL1A model

contains no rates for uplift.

212



Chapter 5

167.00 169|.00 171|‘00 173;,00 175[.00

177{00

179|.00

-36.00+

-38.00+

-40.00-

-42.00+

-44.00+

-46.00+

Height

[~36.00

{--38.00

[~40.00

—42.00

~44.00

1-46.00

T T T T T
167.00 169.00 171.00 173.00 175.00

T
177.00

179

.00

Transformations

Figure 5 - 8 : Derived Generalised Method Transformation difference results as
contour maps (units = metres) when Nuvella velocities for 50 years
are applied to the NZGD49 coordinates. Triangles represent March

1993 GPS stations (see Figure 3-1).

213



Chapter 5 Transformations

Comparison of Figures 5-7 and 5-8 show that spatially the differences for the height
component is unchanged. For the north component the minimum and maximum
differences are in the same areas, except that by applying the velocities the lower half of
the South Island has a considerably smoother field. The east component has been
changed significantly through the middle east/west section of the country due to
NUVELIA assuming an abrupt plate boundary rather than a transition zone in this

region.

The use of a velocity model to remove time dependant distortions in networks highlights
the fact that transformation parameters are between two sets of coordinates at specific
epochs. For coordinates that are not at the epoch used to determine the transformation
parameters one should apply a velocity model to the coordinates to convert them to the
transformation parameters reference epoch before applying the transformation
parameters. If this is not done errors will appear in the shear terms of M. If the
transformed coordinates are not at the epoch required then a velocity model should be
applied to the coordinates to convert them to the required epoch. As the transformation
parameters are between fixed epochs they do not need to be updated if the velocity

model is regularly maintained.

5.5.7 Discussion of results

In section 5.5 it was shown that different transformation options are available to convert
ITRF93 and WGS84((G730) coordinates to NZGD49 coordinates. None of the
parameter sets tested could produce coordinates that had all residuals less than 1.6 m,
2.1 m and 1.7 m in the north, east and height components respectively. This accuracy of
approximately 2.0 m meets the requirements of classification (i) (Section 5.1) and is

sufficient for many mapping applications and the GIS/LIS applications.

The application of a velocity model combined with the 12 parameter generalised model,
developed during this research, produced the best transformation results when compared
against the other parameters tested. The NUVEL1A velocities apply only to rigid plates.

Their ability to accurately and sufficiently model the real motion occurring across New
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Zealand must be questioned and therefore they are unable to remove the effects of
heterogenous strain prior to the computation of the transformation parameters. Further
improvements are expected when new velocity models are developed for New Zealand.
It is therefore concluded that the generalised model combined with a new velocity
model shows the most potential out of those methods tested in this research of meeting

the sub-metre level accuracy requirements of classification (ii) (Section 5.1).

Of the previously published transformation options the Mackie-based parameters

produce the smallest residuals at the test sites, with a maximum difference in the north

and east components of 2.5 m and 2.2 m in height. The superiority of the derived seven

parameter transformation results over the Mackie-based parameters is probably due to:

1) Mackie relied on lower quality Doppler observations and realization of WGS72
compared to the higher quality GPS observations and realization of WGS84(G730)
available for this research.

1)) Mackie’s results would be subjected to serious degradation by the continuing
crustal deformation which has occurred since they were published in 1982.

ii1) It was necessary to use supplementary work, which would increase errors, to bridge

the WGS72 system used by Mackie and the ITRF93 system used for this research.

Since most surveying, geodesy and geophysical applications today require absolute
positioning at a higher level of accuracy than +2 m, it is recommended that new
transformation parameters based on a new velocity model be developed to allow the
transformation of coordinates between NZGD49 and an ITRF. When the velocity
model and the transformation parameters can convert coordinates between NZGD49 and
an ITRF with better than a 0.25 m accuracy this would provide a link between the old
and new systems for all but the most demanding applications and meet the requirements

of classification (ii1) (Section 5.1).

It is worth commenting separately on the seven parameter similarity and MRE

transformation methods tested in the previous sections.
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The seven parameter similarity based transformation methods are not able to transform
coordinates to better than approximately 2.2 m in the north component and 2.1 m in the
east component (Table 5-18). This is most likely to be due to the magnitude of the non-
linear distortions that are present in NZGD49, as reported by Bevin and Hall (1994),
which cannot be modelled by the similarity transformation method. Therefore these
nationwide derived parameters represent a mean transformation that are unable to
account for local variations. Their value lies in their national applicability and that they
are supported in most surveying, engineering and GIS/LIS software. The use of a
velocity model prior to determining the seven similarity based transformation
parameters may reduce the residuals on the transformed coordinates. It is not expected
that these results would equal the twelve parameter generalised matrix method since it is

able to account for strain between the networks.

The DMA MRE was developed using Doppler and NZGD49 coordinates, both of which
have similar error budgets. The MRE method if developed with a better distribution of
stations, with one system dominating the error budget and better consideration of the
high order terms, may be able to accommodate the distortions of NZGD49 and yield a
transformation system at the sub-metre level. One disadvantage of the MRE method
when compared to the generalised method is that the software code for the MRE is very
specific whereas the generalised method code can be written to also allow seven

parameter similarity and block shift (three translation parameters) transformations.

A common feature between the DMA and Mackie based transformation results when
used to convert between WGS84 and NZGD49 coordinates, is the mean easting
difference of approximately 0.8 m. The main source of this bias is considered to be due
to poorly defined UT1 values at both the time the NZGD49 astronomic observations
were made and when the Doppler coordinates in terms of WGS72 were established.
Another possible source of this error could be an error in any one of the sets of
transformation parameters in Table 5-12. There is not a similar bias in the northing
differences, which implies polar motion was known to sufficient accuracy during the
establishment of NZGD49. The DMA transformations had a mean height difference of

approximately 6.0 m, while the Mackie based transformation had approximately a 2.0 m
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bias. These different ellipsoidal height biases are most probably due to the different
geoid models used to convert the orthometric heights to ellipsoidal heights before
determining the transformation parameters. In this thesis the geoidal heights were
computed using the OSU91A GGM (Section 5.4.3) and when combined with the seven
parameter transformation model and the generalised method of this research the height

biases were not as apparent.

5.6 Review of transformation parameters

As already noted, the seven parameter similarity transformation method, on a New
Zealand wide basis, is not able to transform coordinates (WGS84 / ITRF93 to NZGD49)
with better than 2.2 m accuracy. This is primarily due to the inability of this method to
account for non-linear distortions in either of the networks involved in the
transformation, the crustal deformation that has occurred over the last 40 years and the

difference in axial scales.

The MRE of Section 5.3.4 may be able to produce higher accuracy New Zealand wide
transformed coordinates if redetermined equations were generated between a densified
set of ITRF93 coordinates and NZGD49 coordinates. It should be noted that from a
survey of the literature the MRE technique of transforming coordinates is currently not
widely used, if at all, in New Zealand. The ability of the MRE to account for an average

crustal motion over the period is implicit in the zero order offsets.

The derived 12 parameter generalised model combined with the NUVEL1A velocity
model produced the smallest residual transform coordinates results when compared
against the other parameters tested. The transformed coordinates had rms values of 0.5
m, 1.1 m and 0.8 m in the north, east and height components respectively (Table 5-18).
When new parameters are computed based on the generalised method and incorporating
an improved velocity model for New Zealand it is envisaged that higher accuracy New
Zealand wide transformed coordinates will result. It 1s anticipated that the use of the
generalised method with a new velocity model is the most likely approach which will
enable coordinates to be transformed between NZGD49 and ITRF93 with residuals less
than a metre. This approach is recommended over the development of new parameters
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for an MRE as the generalised approach could be more readily incorporated into
software packages to allow both the conventional similarity parameters and the

composite matrix parameters to be used in the same computer code.

Reilly (1996) has investigated the application of polynomial interpolation, weighted-
sum interpolation and least-squares collocation (LSC) for transforming between
NZGD49 coordinates and any future geocentric Cartesian coordinate system. The
investigations were based on theoretical data, for transforming coordinates within a
small number of first order stations (between 3 and 12). The recommendation was that
both weighted-sum interpolation and LSC both warrant further testing on real data. It is
to be noted that there is a close similarity between Reilly’s polynomial approach and the
MRE methods of DMA. However, Reilly (ibid.) considers that there is no point in
trying to develop large scale transformation parameters to cover the whole country. The
generalised method would also produce smaller residuals if regional parameters were
determined however a national parameter set is preferred for the following reasons.

1) If asingle transformation technique and parameters can be developed to meet sub-
decimetre coordinate accuracy across the whole country, then confusion about which
parameters need to be applied in different regions would be avoided.

i1) Additionally one national set of parameters would eliminate the problem of

discontinuities at the boundaries between regional parameters.

One problem with the transformation techniques discussed so far (especially for the
MRE and similarity transformation, and to a less extent weighted-sum interpolation and
LSC) is that they all rely on the fitting of data to a mathematical model which explicitly
defines a continuous function in two space variables. Assumptions in the modelling are
usually simplistic, precluding the analysis of highly variable data, as might be
encountered with geodetic data gathered by different observers, with differing

instruments and over various epochs (Dewhurst, 1990).

To overcome the need to define a model, Dewhurst (ibid.) has applied the technique of
minimum curvature to the transformation of coordinates between various geodetic

datums. This approach mathematically minimises the total curvature, or rate of bending,
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associated with a smooth surface describing the shift values between datums. Besides
the advantage of not having to define the exact form of the mathematical function, it is
also unnecessary to have a complete knowledge of the systematic and random errors in
the data. Dewhurst (ibid.) implemented this approach for transforming data between the
North American Datum of 1927 (NAD27) and the North American Datum of 1983
(NADS3). Comparison of the accuracy of the transformations was reported to represent
at least an order of magnitude improvement over the traditional methods of Molodenskii
and the MRE as implemented by the DMA for transforming NAD27 to WGS84.
WGS84 is a datum that 1s almost identical in ellipsoidal parameters and definition to
NADS83 (DMA, 1987a). For the conterminous United States the minimum curvature

approach introduced no more than approximately 0.15 m (1o) of uncertainty.

The conterminous United States covers a significantly larger portion of the Earth’s
surface, with reasonably equal extents in Latitude and Longitude, when compared to
New Zealand. These physical features and possibly the distribution of data used in
applying the minimum curvature approach to transforming coordinates in the United
States may not be suitable for the New Zealand situation. It was initially thought that
the linear latitudinal nature of New Zealand coupled with its rather narrow longitudinal
nature would preclude this approach. Indeed this limiting geometry was part of the
rationale for adopting the rather broad regional fiducial network that was used to

determine the ITRF93 coordinates from GPS, as discussed in Chapter 3.

However, the inability of simple models to account for the distortions that exist in
NZGDA49 either due to the observations themselves, or due to the differential
deformation that has occurred since its adoption, means that models such as this should
be considered if transformation rather than computation of coordinates is to be part of

the adoption of a new reference system for New Zealand.
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Chapter 6

Conclusions and Recommendations

This research has addressed geodetic issues associated with the establishment of a new
three dimensional, homogeneous geodetic reference system for New Zealand, based on
GPS data. The research was timely because of new positioning technology (eg. GPS)
and the effect of earth deformation on New Zealand’s horizontal geodetic datum

(NZGD49) and multiple vertical datums.

Any new reference system adopted for New Zealand is likely to be based primarily on
GPS data, which can be processed in terms of global geocentric reference frames. This
will avoid most of the inter-system and inter-technique biases contained in the present
horizontal and multiple vertical datums. As an important step in the process of defining
a new reference system for New Zealand, this research sheds light on the problem of
transforming between global geocentric reference systems and the non-geocentric
NZGDA49. This problem needs to be addressed because of the widespread use of GPS
for positioning and navigation, and especially when used in conjunction with

Geographic Information Systems.

6.1 Anticipated Future Geodetic Requirements

The history and state of the NZGD49 and anticipated future demands of NZGD49 users
was investigated. This highlighted that a new homogeneous horizontal geodetic datum
is required for New Zealand and that this new datum should be a geocentric reference
system. Currently the highest quality global geocentric terrestrial reference frame is that
produced by IERS. It is recommended that a new geodetic reference system for New

Zealand have its relationship to an IERS terrestrial reference frame (ITRF) defined.

A new reference system based on GPS observations will be able to provide a three

dimensional, homogeneous geodetic datum for New Zealand. One problem with a GPS-
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based reference system is that the heights established will be ellipsoidal heights.
Ellipsoidal heights bear no relationship to the direction that fluids naturally flow due to
the influence of gravity. For this reason a consistent national orthometric height datum
needs to be established in conjunction with the GPS based reference system, and a

national geoid model should be defined with respect to GRS8O0.

New Zealand is situated across the active Australian and Pacific tectonic plate boundary,
which is converging at approximately 50 mm/yr. If this crustal deformation is not
accounted for in a new geodetic reference system then it can be expected that the
reference system will be subjected to continually increasing distortion. It is
recommended that a new geodetic reference system have mechanisms incorporated into
the design, such as a velocity model, so that the deformation can be accounted for (ie.

the reference system be dynamic).

To enable observations from different campaigns to be combined, the motion of each
stations ground mark needs to be known. It is therefore recommended that an improved
velocity model for New Zealand be developed, or at least the velocity of each station be

estimated during the adjustment process.

6.2 Geocentric Coordinates

The New Zealand 1st order 2000 March 1993 GPS campaign was processed using the
GAMIT/GLOBK software suite. The results provide ITRF93 coordinates, at the mid
observation epoch of 1993.200 with formal uncertainties of 2 cm (1), for 26 sites

distributed across New Zealand.

Sites that were observed with two four-hour occupations per day produced inferior
results compared to sites with 9 hour continuous observations, although continuous 24
hour observations produced superior coordinate uncertainties. The sites with 24 hour
observations were also the sites with the larger number of re-occupations; conversely the
sites with two four-hour observations had less re-occupations. Establishing whether the
improvement in coordinate uncertainties was due to the length of observation or the
number of re-occupations was not possible. As one would expect, it was found that
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increasing the observation period and the number of days a site was occupied resulted in
improved coordinate uncertainties. It is recommended that 24 hour GPS data be
collected for high precision geodetic surveys, and there should be a minimum of three

days of consecutive observations.

The practice of switching off the GPS receiver and altering the antenna height (as was
the procedure for the March 1996 campaign) to detect gross errors in the measurement
of the antenna height above the ground mark, is not recommended. It is instead
recommended that antenna heights be validated by check measurements. This
recommended method minimises the number of times the receiver clock characteristics
need to be resolved per day and allows the receiver clock to better stabilise with the

longer operation periods. It also means that the biases between the days are constant.

To attach the New Zealand March 1996 GPS campaign to ITRF93, it was necessary to
process the New Zealand data with GPS data from sites (which had previously
determined ITRF93 coordinates) that surround New Zealand. Four sites, referred to as
Regional Fiducial sites, were used for this attachment (two in Australia, one in Tahiti
and one in Antarctica). One of the Australian regional fiducial sites (DS42) is an IGS
core site. On DOY 070, when only 7 hours of data from DS42 was available, the quality
of the results were inferior to the results on those days when one of the other three
regional fiducial sites were unavailable. It is recommended that future processing of
New Zealand GPS data in terms of an ITRF, maintain a minimum of four regional
fiducial sites in the network. The sites should be chosen considering their distribution
around New Zealand (ie. situated in neighbouring countries) and the reliability to which

they are known in terms of an ITRF.

Since processing the New Zealand GPS data in the GAMIT/GLOBK suite there have
been a number of new features incorporated into the software. These features include
antenna phase centre modelling, full Earth and Ocean Tide Loading models, improved
orbit modelling and multiple zenith delay parameters. It is recommended that these

features be investigated in future processing of GPS data for New Zealand datum

222



Chapter 6 Conclusions and Recommendations

maintenance or development as they have the potential to improve the coordinate

accuracy, especially in the height component.

6.3 Geoid Model

The conversion between ellipsoidal and orthometric heights requires the geoid height to
be known. Four global geopotential models (GGM) were used to compute the geoid
height at control stations (ie. stations that have both ellipsoidal and orthometric heights
defined) in the lower North Island test area. Comparison of results showed that the joint
GSFC and DMA model (EGM96) produced superior results to the other GGM’s
including the commonly used OSU91A.

The geoid heights computed from a GGM can be improved upon by combining the

GGM information with local gravity data. Investigations into the determination of a

local geoid model, by combining a GGM with local gravity data for the New Zealand

test area, were undertaken using the UNSW gravity (GRAV) software suite. The

GRAYV suite is based on the Ring Integration (RINT) technique. As part of this research

significant improvements were made to the capabilities and efficiencies of the GRAV

suite. Improvements included :

e removal of VAX specific fortran code to allow compilation on DOS and UNIX
operating systems,

e converted from command line input to batch files to allow automation of the
processing and the inclusion of on-line help files,

e improved data searching routines,

¢ new file formats to reduce the size of data files,

e option to use DEM’s in the computation of the compartment height, and

¢ incorporation of kernel modifications designed to reduce truncation errors due to the

integration limit.

RINT allows local gravity data surrounding the computation point to be varied based on
the radius of the spherical cap of the data centred on the point where the geoid height is

required. Tests revealed that as the radius was increased (from 0.0° up to either 1.5° or
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2.0°), the RINT based results contained an oscillatory nature (W-curve in appearance)
with respect to the control stations. That is, the inclusion of additional gravity data did

not always result in improved geoid heights.

Investigations into the source of this W-curve indicated that it may be dependent on the
GGM. This conclusion was supported by the reduction in magnitude of the W-curve
when using recently released GGM. However, further investigations into the source of
the W-curve are required and should include varying the radius for local gravity data
inclusion in other gravimetric geoid techniques, such as Fast Fourier Transforms and

Least Squares Collocation.

By comparing the gravimetrically-derived geoid heights with the geometrically-derived
control values, it is possible to determine an optimum radius to which gravity data
should be integrated for the analysed region. For the lower North Island test area the

optimum radius of the spherical cap was determined to be 0.3° (= 30 km).

The RINT technique requires the mean compartment height to restore the free-air
anomaly from the Bouguer anomaly. The RINT software was modified to allow either
DEM heights or the heights of the seven closest gravity observations, to be used to
calculate the mean compartment height. The use of the DEM heights produced superior
geoid heights in the test area. It is therefore recommended that a DEM be used in the

computation of geoid heights by the RINT technique.

One consequence of limiting the inclusion of local gravity data to a spherical cap is that
the contribution of the gravity data beyond that radius is disregarded. The effect of
neglecting this data is referred to as the “truncation error”. The truncation error is
theoretically reduced by modifying the Stokes’ kernel. Investigations into the effect of
modifying the Stokes’ kernel to reduce the truncation error for the RINT technique were
conducted. The effect of the tested modifications on the geoid heights in the New
Zealand test area are inconclusive - any change is probably below the level of the noise

in the control data. Until there is further testing of the effect of modifying the Stokes’
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kernel to reduce truncation error in the RINT technique, it is recommended that the

RINT technique be used without modification for truncation error.

The computation of a high resolution geoid model (eg. 5 km grid spacing) is required to
enable ellipsoidal heights to be converted to orthometric heights. From the
investigations in the lower North Island test area, the combination of GPS-derived
ellipsoidal heights with RINT generated gravimetric geoid heights can produce
orthometric heights which are capable of meeting New Zealand’s third (and probably
even second) order levelling specifications. It is therefore recommended that a
gravimetric geoid model be computed for New Zealand once suitable DEM are available
for the nation, with Land Information New Zealand probably being the correct

organisation to undertake this task.

6.4 Transformation Methods

In New Zealand there are two main types of transformations available for use in
transforming between NZGD49 and the more recent Cartesian systems, such as WGS84
and ITRF93. The first, or most common type, is the similarity transformation. It is
commonly found as a seven parameter transformation. The second type is the MRE

transformation.

Of the two types, the similarity transformation was the most extensively examined, as it
is not only mathematically rigorous but has the potential of easily being encoded and
used inside GIS/LIS and navigation applications. It was determined that the full seven
parameter solution yielded the better results, with maximum differences of just over 2 m
per component. Reducing the number of parameters, more specifically, equating the
parameters to a priori estimates (zero for rotations about the X and Y axes), had
negligible effect, indicating that the horizontal only NZGD49 was correctly orientated

through astronomical observations.

Some older similarity transformations, especially that of Mackie (1982), were found to
be still useable although non-optimal. The reduction in optimality being due to the
passage of time and the accumulation of deformation during the ensuing period.
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The DMA MRE was found to be deficient, especially in height. However, it is noted
that this method, with updated positions and models, may have a role to play in either
converting the bulk of GIS data from NZGD49 to the new, as yet undefined, reference

system or in the conversion of real-time GPS positions to NZGD49.

The suitability of the Generalised model to transform between NZGD49 and WGS84
was investigated. It was found that the composite matrix determined parameters were
able to convert between NZGD49 and WGS84 coordinates more accurately than the
using the seven parameter similarity transformation. Further improvement in the
transformed coordinates were obtained when the NUVEL1A velocity model was used to
account for the deformation effects that will have occurred between NZGD49 and the
1993 GPS observations. However transformed coordinates still had rms values of 0.5m,
[.1m and 0.8m in the north, east and height components respectively. It is envisaged
that with the inclusion of an improved velocity model for New Zealand the generalised

method will be able to transform coordinates between NZGD49 and ITRF93 at the sub-

metre accuracy level.

Since none of the investigated methods were able to provide transformation at the sub-
metre level, a level necessary for the maintenance of the cadastre, further research into
transformations is required. It is recommended that further research be conducted into
the suitability of the minimum curvature approaches and the generalised model. It is
also recommended that a nationwide velocity model be determined for New Zealand to
allow the conversion of coordinates to a common epoch prior to applying a
transformation method. The benefit of this work is that a single nationwide consistent
transformation system would be available to transform all present NZGD49 values to

the new reference system without the need to re-adjust all of the historic data.
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Appendices

Appendix A

New Zealand GPS Observation Campaign

GPS data available for processing as the March 1993 New Zealand GPS campaign.

Station Day of 1993

067 068 069 070 071 072 073 074 075 076 077 078 079
DS42 Tidbinbilla e X e e e e e e
HOBI Hobart . . . X e . . . .
MCMU | Mc Murdo . . . . . . . . . .
PAMA Tahiti . . . . . . .
D026 Pukearenga No. 2 . .
D045 XVII Whangaparaoa L °
D072 F Maketu . *
D484 F Maketu Ecc. °
D078 201 Te Pohue .
D100 106 Okahuatiu . .
D105 A Huirangi ° .
D131 Mt Stewart . .
D143 Eringa . . .
D158 Jenkins Hill No. 2 .
D172 Mt Murchison ° ° .
D191 Isolated Hill . °
D212 Mt Pleasant . . .
D229 Mt Mary . .
D233 A Mt Horrible . . °
D253 T Hyde Rock .
D286 X The Bluff .
D269 A North Taieri ° .
D302 Mt York °
D309 HB Mt Greenland . . .
D320 JF (Gillespies S.D.) .
D338 8741 .
D425 A (Cape Campbell S.D.) s e . .
D431 Bluff Hill No. 3 . . .
D452 79 (Rangiriri S.D.) . .
D469 I Parapara . . . .
D473 Marotiri No. 2 ° *
D481 Marotiri Ecc. . . °
D474 Three Sisters . . . . . . .
D482 HHR9 * .
D483 HHR9A . *
WELL HH GPS Pillar = K . . . . . . .

The symbols used in the table have the following meaning:

indicates that no data was collected

data was collected and processed successfully in GAMIT and GLOBK.
data was collected and processed but did not coincide with Local NZ data.
data was collected but was not able to be processed successfully in GAMIT
and GLOBK.

data was collected using the Leica system 200 receivers (to cover the faulty
Ashtech receiver) and was processed successfully in GAMIT and GLOBK.

The shaded days (67,70,78)indicate processing in GAMIT used 2 sessions per 24 hours.
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ITRF 93 Cartesian Coordinates and Rates

Appendix B

Appendices

ITRF93 Cartesian Coordinates for the March 1993 GPS campaign stations. No
velocities for the New Zealand stations were determined, due to only 13 consecutive

days of data being processed. The coordinates and velocities for the IGS stations that
were held fixed were obtained from Boucher et al. (1994). The Cartesian Coordinates
are in terms of ITRF93 at the mean observation epoch of 1993.200.

CODE

New Zealand Local Fiducial stations
-5105842.
-4303267.
-4780648.

D045
D474
WELL

New Zealand stations
.341

D026
D072
D078
D100
D105
D131
D143
D158
D191
D212
D229
D233
D253
D286
D302
D309
D320
D338
D425
D431
D452
D469
D473
D482
D483

X

(metres)

-5167214

-5039298.
-5042731.
-4989460.
-4929040.
~-4860522.
-4794050.
-4763996.
-4660964.
-4590224.
-4519608.
-4509242.
-4408673.
.086

-4298488

-4371448.
-4616400.
-4566344.
-4521641.
-4741512.
-4922647.
-5041355.
-4802026.
-4977955.
-4780645.
-4780653.

454
210
795

830
101
513
099
592
785
341
463
191
888
432
420

615
244
445
788
998
803
081
165
202
012
183

continued on next page

Y

(metres)

461788
894811
436507

496239.
311182.
140230.
191252.
498221.
3835209.
364491.
561250.
571445,
585796.
774369.
709568.
841182.
887139.
950019.
745241,
808430.
878624.
480470.
265115.
441059.
617521.
355512.
.619

436500

436501.

.409
.309
.231

304
391
769
665
675
172
793
961
660
213
481
162
585
138
392
704
432
099
779
162
474
377
137

265

Z

(metres)

-3781953.
-4606633.
-4185440.

-3693852.
-3884430.
-3890300.
-3955756.
~4004033.
~-4098473.
-4177890.
-4190671.
-4302316.
-4375478.
-4419877.
-4440279.
-4518904.
-4612663.
-4531599.
-4324328.
-4364476.
-4396964.
-4225018.
~-4033578.
-3869624.
-4138428.
-3959577.
-4185441.
-4185431.

476
497
404

393
300
390
665
393
679
343
505
463
592
158
054
885
040
188
443
946
540
634
967
756
040
681
880
728

loNe N

jololeolololololololoNooloRoRloloNolololeoNoNeNeoNoNe

X
(m/yr)

.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

[@Ne N o]

ololelsleooooloRoNoNoloNoRololoNoNoNoNaoNoReNeNe!

Y
(m/yr)

.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

Z

(m/yr)

[eNeNe]

[eoNeNolololololoRoNoRoloNoRoloNoNoloNoNoNleNoNeRe Nl

.000
.000
.000

.000
.000
.000
.000
.000
.000
.000
. 000
.000
.000
.000
.000
.000
.000
.000
. 000
.000
.000
.000
.000
.000
.000
. 000
.000
.000
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CODE

ALGO
DS42
FATIR
KOKR
KOSG
TROM
YAR1

Other
HOB1
MCMU
PAMA

X

(metres)

918129.
-4460996.
-2281621.
-5543838.

3899225.
2102940.
-2389025.

536
146
360
060
272
410
503

IGS stations

-3950184.
-1310696.
-5245195.

111
452
230

Y

(metres)

-4346071.
2682557.
-1453595.
~2054587,
396731.
721569.
5043316.

2522364.
310469.
-3080472.

lel
192
750
460
782
372
861

550
230
239

Z

(metres)

4561977

-3674444.
5756961.
2387809.
5015078.
5958192.

~3078531.

-4311588.
-6213368.
-1912825.

.768
025
937
571
249
105
080

520
487
551

Additional SIO stations to help improve network

DRAO
D310
DS60
HART
JPL1
KOUR
MASP
ONSA
PIEL
PIN1
QUIN
RCM2
SANT
SIO2
STJO
TAIW
Usu3
VNDP
WTZ1
YELL

-2059164.
-2353614.
4849202.
5084625.
-2493304.
3839591.
5439189.
3370658,
-1640916.
-2369510.
~-2517230.
961318.
1769693.
-2455539.
.278

2612631

-3024781.
-3855263.
-2678089.

4075578,
-1224452.

654
158
471
094
147
279
119
701
787
453
968
887
061
303

853
020
853
608
431

-3621108.
-4641385.
-360329.
2670366.
-4655215.
-5059567.
-1522054.
711877.
-5014781.
-4761207.
-4198595.
-5674090.
-5044573.
-4767224.
-3426806.
4928936.
3427432.
-4525437.
931852.
-2689216.

335
357
138
577
474
330
782
011
133
143
134
867
902
042
954
913
567
721
667
042

4814432.
3676976.
4114912.
-2768494.
3565497.
579956.
29534064.
5349786.
3575447.
3511396.
4076531.
2740489.
-3468321.
3441628.
4686757.
2681234.
3741020.
3597431.
4801569.
5633638.

404
461
962
226
346
704
099
797
134
154
259
515
291
898
715
440
403
490
926
264

X

Y

Appendices

Z

(m/yr) (mfyr) (m/yr)

IGS core stations held to define ITRF93 coordinates

-0.060 O
0.137 -0
-0.222 -0
0.318 ©
0.041 -1
0.800 O
0.560 -1
0.671 O
0.238 -0.
0.815 -0
adjustment
-0.103 ~0.
-0.158 -0.
-0.240 -0.
2.077 -0.
-0.099
-0.648
~-0.720 -0.
0.194 -1.
-0.236 -0.
-0.315 -0.
0.021
-0.002
-1.704
-0.363 -0.
~-0.205 -0
-0.14¢6
0.252
-0.061 -0
0.585 -0
-0.185 -0.

0.
0.

0.
0.
3.

0.
0.
.235
.743

.181
.105
.125
.184
.586
.189
.270

.013

335

472

108
301
655
387
306
878
222
155
011
050
260
162
225
317

L2798

851
094

289

.185
.183
.479
.113
. 608
.296
.821

. 673
.585
.545

.082
.090
.311
.025
. 285
.102
.098
.303
.152
.041
L4899
.493
.578
.003
.626
.300
.444
.844
.006
.488
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The formal uncertainties for the above stations at 16 (67% Confidence interval) are
listed below. These uncertainties result from the adjustment of the daily GPS solutions
together in GLOBK and are expressed in cartesian components.

CODE

New Zealand Local Fiducial stations

D045
D474
WELL

Name

Whangaparaoa
Three Sisters
HH GPS Pillar

New Zealand stations

D026
D072
D078
D160
D105
D131
D143
D158
D191
D212
D229
D233
D253
D286
D302
D309
D320
D338
D425
D431
D452
D469
D473
D482
D483

Pukearenga No2
F Maketu

201 Te Pohue
106 Okahuatiu
A Huirangi
Mt Stewart
Eringa
Jenkins Hill
Isolated Hill
Mt Pieasant
Mt Mary

A Mt Horrible
T Hyde Rock
X The Bluff
Mt York

Mt Greenland
JF Gillespies
8741

Cape Campbell
Bluff Hill No3
79 Rangiriri

I Parapara
Marotiri No2
HHR9
HHR9A

mean

oX
(metres)

0.006
0.003
0.005

0.011
0.010
0.010
0.009
0.012
0.007
0.006
0.024
0.016
0.008
0.007
0.011
0.006
0.010
0.008
0.006
0.007
0.010
0.007
0.008
0.017
0.009
0.008
0.014
0.008

0.010

oY
(metres)

0.004
0.003
0.003

0.007
0.005
0.005
0.006
0.007
0.004
0.004
0.011
0.012
0.007
0.006
0.006
0.004
0.013
0.006
0.004
0.005
0.006
0.005
0.004
0.008
0.004
0.005
0.007
0.005

0.006

cZ
(metres)

0.005
0.003
0.004

0.008
0.007
0.006
0.007
0.009
0.005
0.005
0.019
0.012
0.008
0.006
0.010
0.005
0.010
0.007
0.005
0.006
0.009
0.006
0.005
0.012
0.006
0.006
0.011
0.006

0.007
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ITRF 93 Ellipsoidal Coordinates

Appendices

The Ellipsoidal Coordinates for the March 1993 GPS campaign stations in terms of
ITRF93 at the mean observation epoch of 1993.200 using the GRS80 ellipsoid.

CODE Station Name

New Zealand Local Fiducial stations
0.

D045
D474

Whangaparaoa
Three Sisters

WELL HH GPS Pillar

New Zealand stations

D026
D072
D078
D100
D105
D131
D143
D158
D191
D212
D229
D233
D253
D286
D302
D308
D320
D338
D425
D431
D452
D469
D473
D482
D483

Pukearenga No2
F Maketu

201 Te Pohue
106 Okahuatiu
A Huirangi

Mt Stewart
Eringa
Jenkins Hill
Isolated Hill
Mt Pleasant
Mt Mary

A Mt Horrible
T Hyde Rock

X The Bluff
Mt York

Mt Greenland
JF Gillespies
8741

Cape Campbell
Bluff Hill No3
79 Rangiriri
I Parapara
Marotiri No2
HHRS

HHRO9A

o

-36
-46
-41

-35
-37
=37
-38
-39
-40
-41
-41
-42
~-43
-44
-44
-45
-46
~45
-42
-43
—-43
-41
-39
-37
-40
-38
-41
-41

Latitude

*

36

79792

32 12.95276
16 29.61945

37
45
49
34

8
14
10
19
41
35

8
24
23
36
33
57
27
51
44
28
35
42
36
16
16

48

53.
14.
.28698

20

19.
.05656
15.
53.
43.
11.
20.
38.
56.
44 .
21.
46.
57.
29.
29.

.08803
34.
28.
30.
.40734
24.
.51725

08767
35458
55239

72122

84854
71076

85910

52656
84558
61785
69578
86252
95148
57259
35242
79138
81246
77784
74882
32603

o

174
168
174

174
176
178
177
174
175
175
173
173
172
170
171
169
168
167
170
169
169
174
176
175
172
175
174
174

49
15
46

30
27
24
48
13
29
39
le

0
43
16

3
11
20
44
49
57

0
12
55

0
40
54
46
46

55.
12.
58.

51.
59.
25.
.46420

17

41.
17.
.79514
51.
37.
38.
39.
26.
51.
19.
20.
46.
37.
12.
49.
.08045
.07893
19.
54.
58.
58.

Longitude

k

38203
38483
63422

68873
06815
56376

56402
92014

24351
00609
37662
36538
44548
73196
66414
12969
76520
17061
92462
71330

94940
09199
90236
90670

Height
m

141.
176.
37.

174.
95.
360.
323.
263.
143,
590.
791.
405.
510.
1005.
397.
1681.
269.
411.
919.
114.
14.
254.
119.
319.
169.
760.

35
34

907
531
820

519
930
584
545
237
727
954
897
657
526
888
352
042
062
445
511
831
639
693
396
113
677
488
.511
. 981
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Appendix D

Station Coordinate Repeatability between GAMIT solutions

This appendix contains diagrams showing the individual daily GAMIT solution
corrections to the a priori coordinates for each New Zealand station, plus a selection of
global stations, after a forward and backward adjustment in GLOBK. The error bars
indicate the formal uncertainty at 16. The 1o (67%) standard deviation (sd) of the
residuals has been computed for stations that contained data on six or more days.

Comments have been included on the possible cause of the larger corrections and
uncertainties for some stations.

Identical a priori coordinates were maintained between days, with stochastic mode
constraints of 0.05 m in the horizontal and vertical being applied to the four New
Zealand regional fiducial sites to maintain a consistent reference frame. However, to
obtain the repeatability information for HOB1, MCMU and PAMA, each site had to be
independently set to stochastic mode in separate GLOBK solutions, so as to ensure a
stable reference frame was maintained. DS42 was never run through GLOBK in
stochastic mode as it is the closest IGS core site to the New Zealand network, thus was
required to remain deterministic to position the reference frame.
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The following table lists those figures that are contained in this appendix. The code in
the square brackets indicates the stations status in this adjustment, where GF = Global
Fiducial, RF = Regional Fiducial, LF = Local Fiducial and LS = Local Station.

Figure D - 1 MCMU McMurdo [GF & RF].ooiiiiiiiiiiecteeteeecvee st 249
Figure D - 2 PAMA  Tahiti [GF & RF].cciiiiiiiiieee e 250
Figure D - 3 DS60 Madrid  [GF] .o 251
Figure D - 4 YELL  Yellowknife [GF] ..o 252
Figure D -5 HOB1  Hobart CIGNET [RF] .ccoiiieiiieeieec v 253
Figure D - 6 WELL  Wellington CIGNET  [LF].ccccciniiiriiiiririeeecsee e 254
Figure D - 7 D045 XVII Whangaparaoa [LE]......cccooviiiiiiiecee e 255
Figure D - 8 D474 Three Sisters [LE]....ccccooveocininiiiinrcneiee e 256
Figure D - 9 D026 Pukearenga NO. 2 [LS].ccicoioiiiieiceeiccree e 257
Figure D - 10 D072 FMakettl [LS]. .ot ise ettt 258
Figure D-11 D078 201 Te Pohue [LS]..ccoovvireiireienieniesierieieeeeeieeeereer s s s 259
Figure D-12 D100 106 Okahuatiu [LS]...ccocioiiiiiiiiieseree et 260
Figure D-13 D105 A Huirangi [LS]. .ottt e 261
Figure D-14 D131 MEStEWart [LS] ..ottt 262
Figure D-15 D143 Eringa [LST...ooiiiiiiceeree e 263
Figure D-16 D158 Jenkins Hill NO. 2 [LS].cciiiiiiiiieiecececeee et 264
Figure D-17 D191 Isolated Hill [LST ..ottt 265
Figure D- 18 D212 Mt Pleasant [LS].....cococviomioiirirnercrcr e 266
Figure D-19 D229 MEMAEY [LST oottt ere e 267
Figure D-20 D233 A Mt Horrible [LS] .c.ocovivinrierreieieriere e seesse e 268
Figure D -21 D253 T Hyde Rock [LS] .o 269
Figure D-22 D286 X The BIUT [LS] .ottt 270
Figure D - 23 D302 MEYOrK [LS] oottt e e ennas 271
Figure D-24 D309 HB Mt Greenland [LS]...c.cccoiiiriniiriiieieceeee e sineene s 272
Figure D-25 D320 JF (Gillespies Survey District) [LS]..ccoocvvviiveiivr e seeieneceereereene s 273
Figure D-26 D338 BT4T [LS] ettt ettt ans 274
Figure D-27 D425 A (Cape Campbell Survey District) [LS] ...ccovieinininieneriece i 275
Figure D-28 D431 BIIff HIIINO. 3 [LST ittt ettt 276
Figure D -29 D452 79 (Rangiriri Survey District) [LS] .ccocoooeiiiiieirivcenecenre e 277
Figure D -30 D469 T Parapara [LS] ..o e aa e eene e 278
Figure D-31 D473 Marotiri No. 2 [LST ..ot 279
Figure D -32 D482 HHR9 (Heaphy House Roof Mark 9) [LS].....ccccooviiieiiiiiieiicenen, 280
Figure D-33 D483 HHR9A (Heaphy House Roof Mark 9A) [LS]....coovevicieiciiiicnrnee 281
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MCMU sd (mm): NZ=29.44, SI0=27.25
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Figure D-1: MCMU - M¢c Murdo [GF & RF]

MCMU, PAMA (Figure D-2) and DS42, are sites which were included in both the New
Zealand regional network and the SIO global network. One is able to compare the
variability and uncertainty for the daily solutions between the SIO solution (shown as 0)
and the New Zealand regional solution (shown as X). It is clear from the standard
deviations (sd) that both solutions are almost identical. Notice that there is a tendency
for systematic differences between the global SIO solution and the regional solution.
These differences are thought to be due to the different weights and errors that each
network brings to the combined least squares solution. The level of differences has
since been lowered by improved modelling of the observables (Morgan et al., 1996).
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PAMA sd (mm): NZ=29.5, SIO= na
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Figure D-2: PAMA - Tahiti [GF & RF]

For general details refer back to MCMU (Figure D-1) (o = SIO solution, X = New
Zealand regional solution). As can be seen in Figure D-2, the SIO solution did not
always run a fully consistent network when compared to the New Zealand regional
solution. This could have been due to the data arriving after the SIO solution was
computed or there were difficulties in processing the data, resulting in it being dropped
from the solution. For the second session on DOY 070, the East component has what
appears as an outlier. When PAMA was removed from the second session, the solution
for all other sites in the second session became unstable. This was probably due to the
fact that only HOB1 and MCMU were available as Regional Fiducial stations (see
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Appendix A). Therefore PAMA was kept in the solution, though in hindsight this may
have contaminated the results.

DS60 sd (mm) 3.872
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Figure D-3: DS60 - Madrid [GF]

DS60 is one of the IGS core sites and 1s located in the Northern Hemisphere. In
comparison with MCMU (Figure D-1) or PAMA (Figure D-2), the variability at DS60,
from the SIO processing, is approximately an order of magnitude smaller. This is
probably due to the denser Northern Hemisphere permanent tracking network. Similar
results are reported by Morgan et al. (1996).
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Figure D-4: YELL - Yellowknife [GF]

YELL, like DS60 (Figure D-3), is one of the IGS core sites located in the Northern
Hemisphere which also shows variability that is approximately an order of magnitude
smaller than MCMU (Figure D-1) or PAMA (Figure D-2).
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HOB1 sd (mm) 77.96, no 073=14.15
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Figure D-5: HOBI - Hobart CIGNET [RF]

On DOY 073 HOBL1 only collected the last 1.5 hours of data. As is very obvious, the sd
of HOBI on this day is considerably larger than for the other days. HOB1 on DOY 073
was left in the solution as it was thought that the large sd will downgrade the
contribution of this data in the GLOBK adjustment since the solution is a weighted
solution. However, not removing the DOY 073 data for HOB1 may have contaminated
the solution (see Figure D-16). When DOY 073 data is removed from the calculation of
the sd, HOBI is shown to perform at a similar level to MCMU (Figure D-1) and PAMA
(Figure D-2).
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WELL sd (mm) 22.48
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Figure D-6: WELL - Wellington CIGNET [LF]

The largest uncertainties for WELL occur on DOY 070. On DOY 070 DS42 only
collected the first 7 hours of data, though HOB1, MCMU and PAMA collected a full 24
hours of data. The larger uncertainties on the second session of DOY 070 are is
probably due to there being no data from DS42 in this session, resulting in a less
desirable network geometry. Other large uncertainties occur on DOY 078, which
contained no data from PAMA or MCMU and was split into two sessions. The smallest
uncertainties occur on days 071, 074, 075 and 076 which contain data from all four
regional fiducial sites. This illustrates the need for a well balanced external fiducial

network.
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Figure D-7: D045 - XVII Whangaparaoa [LF]

The receiver stationed at D045 (alias Ashtech number 5) began to develop an
unresolved problem on DOY 078. This resulted in only data for the first session on
DAY 078 being able to be processed. No data from the second session or any of DOY
079 was able to be processed in GAMIT. As can be seen from the diagram the first
session results for DOY 078 had significantly larger sd than other days. When the
scatter (ie. |x — x| yfor D045 is compared with the known sd of the Ashtech receiver at
WELL (Figure D-6), D045 results are within 3. Due to the large sd values on the
DOY 078 result this data should not contribute significantly in the GLOBK adjustment.
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D474 sd (mm) 14.79
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Figure D-8: D474 - Three Sisters [LF]

D474 site repeatability has been discussed in detail within Section 3.5.3.3. Most of the
comments referring to WELL (Figure D-6) are also applicable to D474. Note that the sd
on the North (N), East (E) and Up (U) components of D474 are 35%, 20% and 35%
smaller than the respective components of WELL. This deterioration at WELL could be
due to internal receiver quality, or more probable is that there is a larger chance of radio
noise and interference at a WELL than D474. D474 sd values of 15, 30, and 38 mm for
the N, E, U components are the lowest of any of the New Zealand local fiducial sites.
These sd values represent approximately the level of coordinate recovery for any of the
New Zealand sites, and have been used to validate the scatter on New Zealand sites that
had less than six days of processable data.
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Figure D-9: D026 - Pukearenga No. 2 [LS]

Comparing the scatter of D026 results for each component against the respective sd
values from D474 (Figure D-8) reveals that N <30, E <20 and U < lo.
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D072 - F Maketu [LS]
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D072 is the only site to be occupied by both an Ashtech (DOY 077) and Leica receiver
(DOY 079). Both receivers appear to generate similar levels of variability and
uncertainty, when the problem with the second session on DOY 079 is removed. Refer
to D078 (Figure D-11) for comments on the second session of DOY 079. Comparing
the scatter of D072 results for each component against the respective sd values from
D474 (Figure D-8) reveals that N <30, E > 30 and U < 25. Note that the problem with
the second session on DOY 079 only seriously affected the East component.
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Figure D-11: D078 - 201 Te Pohue [LS]

The larger second session uncertainties for DOY 079 in the North and East components
is clearly seen also at D072 (Figure D-10), D100 (Figure D-12), D431 (Figure D-28)
and D483 (Figure D-33). The cause of this larger uncertainty has not been resolved.
Though between sessions the number of double differences between the sites and
satellites is not that dis-similar. The first session with 7 satellites has 27670 differences,
while for the same sites in the second session with 8 satellites the total was 21546.
Comparing the scatter of D078 results for each component against the respective sd

values from D474 (Figure D-8) reveals that N > 30, E> 30 and U < 2.
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80
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Figure D-12: D100 - 106 Okahuatiu [LS]

Refer to D078 (Figure D-11) for comments on the second session of DOY 079.
Comparing the scatter of D100 results for each component against the respective sd
values from D474 (Figure D-8) reveals that N > 35, E > 30 and U < 36. Note that as
was the case for D078, the Up component is not effected by the second session of DOY
079.

260



Appendices

D105

0.39 —

0.385 -

T

T

0.38 —

North m

0.375 .

0.37 i

0.365 ! | ! I ! L ) B
66 68 70 72 74 76 78 80

008 T T T T T

Qo

o

N
T
1

66 68 70 72 74 76 78 80

-0.36

-0.38 B

E -0.4 -

=.0.42 .

-0.44 .

i I i 1
66 68 70 72 74 76 78 80
Day of Year

Figure D-13: D105 - A Huirangi [LS]

Comparing the scatter of D105 results for each component against the respective sd
values from D474 (Figure D-8) reveals that N < 1o, E<1cand U < lo.

261



Appendices

0.375
0.37
0.365

E

= 0.355
5]
0.35
0.345
0.34

66

80

0.15

0.1

T

m

East

80

S

W

(2]
T

o

@

o]
T

U
A
o
~
S
T

-0.44

-0.46-

66

Figure D -14:

D131

T T

1 i
72 74

T T

[ L
72 74

T T

L |
72 74

Day of Year

D131 - Mt Stewart [LS]

80

Comparing the scatter of D131 results for each component against the respective sd

values from D474 (Figure D-8) reveals that N < 1o, E<2cand U< lo.
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Figure D-15: D143 - Eringa [LS]

Comparing the scatter of D143 results for each component against the respective sd
values from D474 (Figure D-8) reveals that N < 1o, E <30 and U < 30.
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The larger uncertainty in the second session of DOY 073 remains unexplained, though it
is not problematic. This larger uncertainty does exists at all sites (D158; D425, Figure
D-27; and D469, Figure D-30) that observed 2 four-hour data sets on DOY 073. One
possible cause is that the larger than normal uncertainty for HOB1 (Figure D-5) on DOY
073 (due to only collecting data for 1.5 hours) has propagated through the solution.
Comparing the scatter of D158 results for each component against the respective sd

values from D474 (Figure D-8) reveals that N < 1o, E< locand U < lo.
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Comparing the scatter of D191 results for each component against the respective sd
values from D474 (Figure D-8) reveals that N < lo, E<locand U < lo.
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Figure D - 18 : D212 - Mt Pleasant [LS]

Comparing the scatter of D212 results for each component against the respective sd
values from D474 (Figure D-8) reveals that N < 16, E< 1o and U < 36.
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Comparing the scatter of D229 results for each component against the respective sd
values from D474 (Figure D-8) reveals that N < 20, E <20 and U > 36. The first
session on DOY 070 has an outlier in the Up component. This outlier was not detected
during processing and in hindsight should have been investigated. The effect of the
outlier would have been partially mitigated in GLOBK due to its larger uncertainty. The
probable cause of the outlier is that the height of receiver was either incorrectly
measured or entered. This is supported by the second session not being affected so it is
unlikely to be due to network geometry problems due to no DS42 data being available.
Also the North and East components remain unaffected.
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Figure D -20: D233 - A Mt Horrible [LS]

Comparing the scatter of D233 results for each component against the respective sd
values from D474 (Figure D-8) reveals that N < lo, E< lcand U < lo.
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These three days of data show no distinct variation in variability or uncertainty even
though DOY 067 was split into two sessions and SINCLN used, while DOY 068 and
069 used AUTCLN with one session. The regional and local fiducial network were
consistent for all three days. Comparing the scatter of D253 results for each component
against the respective sd values from D474 (Figure D-8) reveals that N < 20, E < 20 and

U <30.
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No data from D286 for the first session of DOY 067 was able to be processed in
GAMIT. As a consequence the second session of DOY 067 is the only result for this
station. Therefore there are no checks on D286 coordinates.
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Figure D -23: D302 - Mt York [LS]

Comparing the scatter of D302 results for each component against the respective sd
values from D474 (Figure D-8) reveals that N < 16, E<2cand U < 1o.
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Comparing the scatter of D309 results for each component against the respective sd
values from D474 (Figure D-8) reveals that N < 20, E <20 and U < 3c.
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78

80

Comparing the scatter of D320 results for each component against the respective sd

values from D474 (Figure D-8) reveals that N <26, E <3¢ and U < 20.
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Figure D -26 : D338 - 8741 [LS]

Comparing the scatter of D338 results for each component against the respective sd
values from D474 (Figure D-8) reveals that N < 1o, E<2cand U< lo.
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Refer to D158 (Figure D-16) for comments on the larger than normal uncertainty for the
second session of DOY 073. Comparing the scatter of D425 results for each component
against the respective sd values from D474 (Figure D-8) reveals that N < 25, E < 26 and

U< 26.
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Refer to D078 (Figure D-11) for comments on the large uncertainty in the East
component on the second session of DOY 079. Comparing the scatter of D431 results

for each component against the respective sd values from D474 (Figure D-8) reveals

that N<20,E>3cand U< lo.
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Comparing the scatter of D452 results for each component against the respective sd

values from D474 (Figure D-8) reveals that N < 16, E<2cand U < 1o.
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Refer to D158 (Figure D-16) for comments on the larger than normal uncertainty for the
second session of DOY 073. Comparing the scatter of D469 results for each component
against the respective sd values from D474 (Figure D-8) reveals that N < 20, E < 2o and

U<le.
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D473 was observed with a Leica system 200 receiver. Comparing the scatter of D473
results for each component against the respective sd values from the Ashtech receiver at
D474 (Figure D-8) reveals that N < 30, E <30 and U < 26. Therefore it can be
concluded, with the supporting results at D072 (Figure D-10), D482 (Figure D-32) and
D483 (Figure D-33), that the Leica system 200 receivers performed in a similar manner

to the Ashtech LM-XII receivers.
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Figure D - 32 : D482 - HHRY (Heaphy House Roof Mark 9) [LS]

D482 was observed with a Leica system 200 receiver. Comparing the scatter of D482
results for each component against the respective sd values from the Ashtech receiver at
D474 (Figure D-8) reveals that N < lo, E < lo and U < 1o. Refer to D473 (Figure D-
31) for further comments on the performance of the Leica and Ashtech receivers.
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D483 was observed with a Leica system 200 receiver. Comparing the scatter of D483
results for each component against the respective sd values from the Ashtech receiver at
D474 (Figure D-8) reveals that N < 30, E <20 and U < 26. Refer to D473 (Figure D-
31) for further comments on the performance of the Leica and Ashtech receivers.
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Appendix E

GPS data quality plots from CVIEW

The diagrams contained in this Appendix were generated from CVIEW (the interactive
data editing module) screen dumps for DOY 067. The data displayed in these following
cviews diagrams is the residual phase data (ie. observed - computed) but the satellite
orbits and station coordinates are at their a priori input level. As a result there is no
orbit modelling. From the examples given in this appendix it can be seen that data
collected by different receivers were influenced by a number of effects (ie. varying
atmospheric conditions or type of hardware).

Figure E-1 is an example CVIEW screen dump which highlights those main features
that need to be considered when analysing the remaining Figures. For all Figures the
first four panels display the L1, L2, LC and LG combinations (Section 3.5.1). The fifth
panel

displays either the WL combination (if a receiver records the P-code) or the elevation of
the satellite at the site being considered. The mean (O@) and standard deviation (s -
95% confidence interval) statistics given for each panel are computed from the data
displayed in that panel only. Each panel’s vertical axis is in cycle units of the respective
combination, while the horizontal axis is the UTC time for the span of data currently
displayed.

8 P}RR a3 18 PRN?S 0...00 6 MCMU O .... POLY 3
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= 03T 15
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Figure E-1: Sample CVIEW screen dump
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The following table lists those figures that are contained in this appendix.

E-10:
E-11:

E-12:
E-13:

Sample CVIEW SCIEEN AUITIP ......ccvvemieeriieeiiere st et esstes et re et sesesensseeaens 282
One-way combination of DS42 and PRN25.........ociiiiiiiicceeeeeee e 284
One-way combination of DS42 and PRN25 with a first order polynomial removed. ........... 285
One-way combination of DS42 and PRN25 with a third order polynomial removed. .......... 286

One-way combination of HOB1 and PRN25 with a third order polynomial removed. ......... 287
One-way combination of MCMU and PRN25 with a first order polynomial removed. ........ 288

One-way combination of PAMA and PRN25 with a first order polynomial removed. ......... 289
One-way combination of D474 and PRN25 with a third order polynomial removed. .......... 290
Two-way combination between the sites of DS42 and D253, and the satellites of

PRN15 and PRN2S, with a first order polynomial removed. .............cooeveemiecvviniiicceee 291
One-way combination of D269 and PRN2S with a third order polynomial removed. .......... 292

Two-way combination between the sites of DS42 and D269, and the satellites of

PRN15 and PRN25, with a first order polynomial removed. .............ccooovveviiviiiiirerecne 293
One-way combination of WELL and PRN25 with a third order polynomial removed. ........ 294
Two-way combination between the sites of DS42 and WELL, and the satellites of

PRN15 and PRN25, with a first order polynomial removed. .........ccocovverrevcninncccniiinnnn, 295

. Two-way combination between the sites of DS42 and WELL, and the satellites of

PRNO! and PRN14, with a first order polynomial removed. ..........ccoveevriverecreveicrecriene e 296

: Two-way combination between the sites of D269 and WELL, and the satellites of

PRNO1 and PRN14, with a first order polynomial removed. ...........cccocooveevecreinnieceneienneens 297

. Two-way combination between the sites of DS42 and HOB1, and the satellites of

PRNO1 and PRN11, with a first order polynomial removed. ...........c.ccoeevieieirinecriereirennen, 298
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Figure E - 2: One-way combination of DS42 and PRN25

The one-way combination of the mid-latitude station DS42 and satellite PRN 25 (Figure
E-2) shows the lack of orbit modelling clearly as longer term features. These long term
features have influenced the standard deviations and hide the true variability of the data.

It should be noted that there are no gaps in the data, which is indicated by each
measurement of data (dots) being joined by a line.

The LG combination has a standard deviation of 0.06. This indicates that the L.1 and L2
data is good, but is being hidden by the long term features.

DS42 had a Rogue receiver (which is capable of recording the P-code) so the wide-lane
(WL) combination can be formed. Note that the WL is not affected by the lack of
modelling and has a standard deviation of only 0.08 cycles. This is an example of high
quality wide-lane data.
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Figure E - 3: One-way combination of DS42 and PRN2S5 with a first order
polynomial removed.

Figure E-3 displays the same data as Figure E-2 except that a first order polynomial has
been removed from the data. The statistics are now relative to the the first order
polynomial. The small scale variations in the data are now visible in the L1, L2 and LC
combinations (Figure E-3). This figure shows that no cycle slips exist in any of the
combinations. Note that the data is very smooth, with jumps being generally less than
0.1 cycle for all combinations.

This is an example of well behaved data and will be used to compare other receivers and

satellites against.
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Figure E -4: One-way combination of DS42 and PRN2S5 with a third order
polynomial removed.

Figure E-4 displays the same data as Figures E-2 and E-3, except that a third order
polynomial has been removed from the data. The LC combination is relatively well
behaved since the noise is commensurate with the L1 and L2 noise. The third order
polynomial was removed from the DS42 to PRN25 combination to show its affect on
well behaved data. Figure E-4 will be used as a reference data set against which other
station and satellite combinations having a third order polynomial removed can be
compared.

Note that the statistics are now in terms of the third order polynomial, which is
introducing effects into the data which have wavelengths of approximately the data
span.
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Figure E -5 One-way combination of HOB1 and PRN25 with a third order
polynomial removed.

The one-way combination of the mid-latitude station HOB1 and satellite PRN 25
(Figure E-5) has had a third order polynomial removed to reduce the influence of
plotting the residual phase data without orbit modelling.

It is clearly seen by comparing Figures E-4 and E-5, that the Rogue receiver at HOB1
performed as reliably as the DS42 receiver for this period. Comparison of the LC and
LG combinations for both HOB1 and DS42 show that both receivers experienced
similarly low levels of atmospheric disturbance.

In Figure E-5, at approximately 10:30, no data was collected for both the L1 and L2
phase data. This data loss did not result in any cycle slips, due to no jumps being
present in any of the combinations at the following epoch.
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Figure E - 6 : One-way combination of MCMU and PRN25 with a first order
polynomial removed.

The one-way combination of the Antarctic station MCMU and satellite PRN 25 (Figure
E-6) has had a first order polynomial removed. What is first noticed with this
combination is that the .1, L2 and LG combinations have a significantly larger standard
deviations than those of DS42 with a first order polynomial removed (Figure E-3).
Comparison of the LC combination (which is not sensitive to the ionospheric effect)
reveals that its standard deviation has only been marginally affected.

Inspection of all combinations in Figure E-6 did not reveal the presence of any cycle
slips. Closer inspection of the data between 10:45 and 10:55, shows that there is a
medium wavelength effect influencing the L1, L2 and LG combinations, but not the LC
combination. It is therefore concluded that since this medium wavelength effect is not
apparent in the LC (or WL) combination, that it is an ionospheric disturbance at this
Antarctic site.

The WL combination has decreased in quality by about 50% when compared to both the
DS42 and HOBI results (Figures E-3 and E-5, respectively). This highlights that
different sites operating the same type of receiver (in this case Rogues) can produce
varying quality data due to the combination of instrument and site effects.
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Figure E - 7: One-way combination of PAMA and PRN25 with a first order
polynomial removed.

The one-way combination of the equatorial station PAMA and satellite PRN 25 (Figure
E-7) has had a first order polynomial removed.

The L1, L2 and LC combinations all have a similar standard deviations of about 0.2
cycles, with maximum differences between epochs in the order of only 0.2 cycles. The
LG combination (which is insensitive to geometric effects) has a small standard
deviation of 0.05. This indicates that PAMA was not experiencing varying geometric
effects, such as tropospheric delay, during this period.

PAMA does not appear to have been affected by ionospheric disturbances during this
period since L1, L2 and LC show similar features.

The WL combination of PAMA has further decreased in quality when compared to the
DS42, HOB1 and MCMU results (Figures E-3, E-5 and E-6, respectively).
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Figure E - 8 : One-way combination of D474 and PRN2S5 with a third order
polynomial removed.

The one-way combination of the New Zealand station D474 and satellite PRN 25
(Figure E-8) has had a third order polynomial removed. As can be clearly seen from
Figure E-8, the third order polynomial was unable to represent this data well and as a
result the unmodelled changes due to sation coordinates and station clocks dominates
the L1, L2 and LC combinations.

D474 was occupied by an Ashtech LM-XII receiver which was not capable of tracking
the P-code. Consequently no WL combination could be plotted to help with cycle slip
detection. In place of the WL, the fifth panel has been used to display the elevation (EL)
of PRN25 with respect to D474 and shows that PRN25 has a minimum elevation of 58°
for this displayed period with respect to the local horizon at D474 . Notice that the L1,
L2 and LC combinations for D474 have significantly larger irregularities than those for
the Rogue receiver sites (DS42, HOB1, PAMA and MCMU). Due to the fact that the
LG combination shows no apparent cycle slips, it can be concluded that the L1, L2 and
LC combinations are also likely to have no cycle slips.

The D474 and PRN 25 combination is typical of other Ashtech and Leica System 200
receivers that were operated during the campaign. The data collected at D474, as with
the previously discussed sites of DS42, HOB1, PAMA and MCMU, was able to be
processed in GAMIT and GLOBK.
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Two-way combination between the sites of DS42 and D253, and the

satellites of PRN15 and PRN2S5, with a first order polynomial

removed.

The New Zealand station D253 was occupied by an Ashtech LM-XII receiver. The plot
of the one-way combination of D253 and satellite PRN 25 (not included) with a third
order polynomial removed showed very similar characteristics to those of D474 (Figure
E-8). To remove what appeared to be mainly receiver effects (ie. clock effects), the
two-way combination between the sites of D253 and DS42, and satellites PRN15 and
PRN25, was formed and a first order polynomial removed (Figure E-9). The forming of
the two-way combination cancels the between satellite and receiver differences.

In Figure E-3 it was shown that the data between DS42 and PRN2S5, for this same
period, was free of cycle slips. From analysing the two-way combinations in Figure E-9
it can be safely concluded that since no cycle slips exist in any of these combinations, no

cycle slips also exist in the D253 to PRN15 one-way combination.

A similar two-way combination plot using D474 instead of D253 (not included)
produced similar good quality results on all combinations. The data collected at station

D253 was able to be processed in GAMIT and GLOBK.
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Figure E - 10 : One-way combination of D269 and PRN25 with a third order
polynomial removed.

The one-way combination of the New Zealand station D269 and satellite PRN 25
(Figure E-10) has had a third order polynomial removed.

The L1, L2 and L.C combinations all have a similar large abrupt changes at
approximately 10:45 and 10:50. These abrupt changes are not expected in the data. The
LG combination has no apparent cycle slips where the abrupt changes occur in the L1,
L2 and LC combinations. However, the .G combination does have differences between
epochs of approximately 0.5 cycles at a number of epochs (ie. approximately 10:29 and
10:35). As D269 was observed using an Ashtech LM-XII receiver (alias Ashtech
number 4) the WL combination could not be formed to help in understanding the cause
of these abrupt changes.

The two-way combination between the sites of D2269 and DS42, and satellites PRN15
and PRN25, was formed and a first order polynomial removed (Figure E-11). This two-
way combination was formed in an attempt to understand the abrupt changes in Figure
E-10 at approximately 10:45 and 10:50.
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Figure E - 11 : Two-way combination between the sites of DS42 and D269, and the
satellites of PRN15 and PRN25, with a first order polynomial
removed.

The L1 combination (Figure E-11) shows no apparent cycle slips, however the L2
combination shows three cycle slips of approximately 1.0 cycles near 10:45 and 10:51.
The effect of a single cycle slip in the L2 combination with no corresponding slip in the
L1 combination would produce the following effect on the LC and LG combinations
(when L1 =0):
ifL2=-1, LC=2.546%0.0-1.984*-1.0 =1.984, LG=L2-0.779*%1.0=-1.0
ifL2=+1, LC=2.546%0.0-1.984*1.0 =-1.984, LG=L2-0.779*1.0=1.0

The L1 combination at 10:45.5 and 10:51.0 appears to have -1.0 cycle slips. This is
confirmed by the LC combination having approximately +2.0 cycle slips and the LG
combination having approximately -1.0 cycle slips. The L1 combination at 10:51.5 and
10:52.0 appears to have +1.0 cycle slips. This is confirmed by the LC combination
having approximately -2.0 cycle slips and the LG combination having approximately
+1.0 cycle slips. These cycle slips alone are not normally a problem to fix in GAMIT,
but when they occur in successive epochs (ie. 10:51.0, 10:51.5 and 10:52.0) with the
varying sign (ie L2 slips of £1.0 cycle), detection becomes difficult.

The only difference between this two-way combination (Figure E-11) and the two-way
combination in Figure E-9 (which had no apparent cycle slips) is that D269 is compared
instead of D474. Therefore, it can be concluded that all cycle slips in Figure E-11 were
caused by the receiver at D269. This data was not able to be processed in
GAMIT/GLOBK. It was diagnosed by a high normalised rms in GAMIT.

293



Appendices

NN [0

8 MAR 93 18 PRMN25 O .,,00 8 WELL O ..., POLY 3

80.0 |

L1 {(cycles) 40.0 |

oe 17.53 o

s = 31,59 -40.0 ]

60.0 |

L2 {(cuycles) 40.0 _
20.0

0@ 13.80 0 :
-20.0

s= 24,59 _40.0 |

80.0 |

LC (cucles) 40,0 ]

o@ 17.24 o]

s = 31,63 -40.0 ]
0.3

LG tcycles) 0.2 ]

cyeles 1.0E-01

08 2,44E-02 o ]

.15 -0.1 |

s= : -0.2 7

-0.3

Cannot form WL,

| | | | | i | ! i | |
: ;25 10.30  10:35  10:40  10:45  10.50  10:55 11:00 11:05  11:10
—--nBuRT--—ISPnN: 1loiie 1< T >>I>> T << JMARGE JFIDE[ 1 >>

Figure E - 12 : One-way combination of WELL and PRN25 with a third order
polynomial removed.

The one-way combination of the New Zealand station WELL and satellite PRN 25
(Figure E-12) has had a third order polynomial removed.

The L1, L2 and LC combinations all have a similar features, with the steep slopes near
10:20 and 10:45 being of concern. Of larger concern are the three approximately 0.5
cycle slips in the LG combination near 10:25, 10:50 and 11:03). As WELL was
observed using an Ashtech LM-XII receiver (alias Ashtech number 4) the WL
combination could not be formed to help in the cycle slip detection.

A cycle slip in LG of approximately +0.5 can be caused by a number of combinations of
L1 and L2 cycle slips. Some of the combinations include:

ifLl1=+3andL2=43, LC=1.686, LG =0.663
ifLl=+2and L2=+2, LC=1.124, LG =0442
if L1 = 0and L2 =+0.5, LC=-0.992, LG=0.5

Since the Ashtech LM-XII receiver is designed on the principle of squaring the
incoming signal to extract the carrier beat phase it is possible to have 0.5 cycle slips on
the L2 frequency. Closer inspection of the LG cycle slip at approximately 10:50 is
contained in Figure E-13.
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Figure E - 13 : Two-way combination between the sites of DS42 and WELL, and
the satellites of PRN15 and PRN25, with a first order polynomial
removed.

It is not possible to see cycle slips in L1 or L2 with a magnitude of 1-3 cycles in Figure
E-12. It was therefore necessary to choose a smaller sample of data in an attempt to
determine the cause of the LG cycle slips. Figure E-13 displays the data in the
immediate vicinity of the LG cycle slip at approximately 10:50 through the two-way
combination of stations DS42 and WELL and Satellites PRN15 and PRN25.

The LG combination (Figure E-13) clearly shows a cycle slip of approximately 0.5
cycles at 10:50.5. Inspection of the L1 combination at this epoch shows no apparent
cycle slips, though the L2 combination shows a 0.5 cycle slip. If this +0.5 cycle slip
exists then the LC and LG combinations should also show cycle slips of approximately -
0.992 and +0.5, respectively. These LC and LG cycle slips can be seen in Figure E-13
and therefore it can be concluded that the 0.5 LG cycle slip in Figure E-12 at 10:50.5
was caused by a +0.5 cycle slip in the L2 data. The two other LG cycle slips of Figure
E-12 were also confirmed to be due to +0.5 cycle slip on L2, through similar analysis as
described above.

The inclusion of this data from WELL produced a large normalised rms in GAMIT
solution for DOY 067.
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Figure E - 14 : Two-way combination between the sites of DS42 and WELL, and
the satellites of PRNO1 and PRN14, with a first order polynomial
removed.

The two-way combination of Figure E-13 was changed to include two new satellites,
PRNO1 and PRN14 (Figure E-14). By changing the satellites it possible to show that
the cycle slips in Figure E-13 are caused by the receiver at WELL.

One-way plots of DS42 to PRNOI1 and 14 (not included) revealed no cycle slips between
this receiver and these satellites. From Figure E-14 it is clear that there are no cycle
slips on L1, but L2 has +0.5 cycle slips at 10:45.5 and 10:48.5. Analysis of the LC and
LG combinations show cycle slips of approximately -0.992 and +0.5, respectively, at
10:45.5 and 10:48.5. What cannot be determined from this plot alone is which satellite
the cycle slip recorded by the receiver at WELL was between.

It is interesting to note that the cycle slip at 10:50.5, in Figure E-13, is not in the two-
way combination of Figure E-14. This indicates that the receiver at WELL was able to

maintain lock to some of the satellites at this epoch.

Due to the large number of cycle slips in the data from the receiver at WELL no data on
DOY was able to be processed in GAMIT/GLOBK.
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Figure E - 15 Two-way combination between the sites of D269 and WELL, and
the satellites of PRNO1 and PRN14, with a first order polynomial
removed.

The two-way combination between the stations D269 and WELL and satellites PRNO1
and PRN14 (Figure E-15) has been included as an example of the poor data collected by
the Ashtech receivers located at these two sites.

From Figure E-15 it is clear that the L1 data for both stations contained apparently no
cycle slips. The L2 data however contained an excessive number of cycle slips with a
sample of these being shown in Figures E-11 and E-14. What should be noted in the L2
and LG combinations (Figure E-15) is the 0.5 cycle oscillatory nature throughout most
of the displayed data; a particularly nasty segment is near 10:45. The LG combination
shows similar oscillations though having the associated magnitude of 0.99 cycles. What
is also a disturbing feature of Figure E-15 is that the LC combination is negatively
correlated with the .2 and LG combinations.

No data collected at these two sites on DOYO067 were able to be processed in
GAMIT/GLOBK.
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Figure E - 16 : Two-way combination between the sites of DS42 and HOB1, and
the satellites of PRN0O1 and PRN11, with a first order polynomial
removed.

The two-way combination between the stations DS42 and HOB1 and satellites PRNO1
and PRN11 (Figure E-16) has been included as an example of some of the high quality
data collected by receivers used in this GPS campaign.

It should be noted that all five combinations show low standard deviation values without
the removal of a polynomial. The data is continuous and has small variations between

epochs.
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Appendix F

Flow diagram for UNSW Gravity software suite
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The above flow diagram outlines the main features of the GRAV suite of software held at The University
of New South Wales. The Ring Intergration (RINT) module is represented by the box containing “Calc

Short Wavelength N at N Points”.
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Appendix G

WGS84 coordinates of the lower North Island control stations

This appendix contains the summary of two emails from Jim Hall, DOSLI, describing
the method used to obtain WGS84 coordinates for the GPS points used in the
Wellington to Palmerston North horizontal control investigation. A selection of these
GPS stations were used as control for the lower North Island geoid investigations of

Chapter 4.

From: IN%*JIME@hh.dosli.govt.nz" 20-JAN-1995 16:00:28.02
To: IN%*P2143202@csdvax.csd.unsw.EDU.AU"

CC:

Subj: GPS DATA FILES

The input station is H/H GPS Pillar (D475) where the
value 37.800 is the WGS84 ellipsoidal height in metres.

Regards
Jim Hall

From: IN%*JIM@hh.dosli.govt.nz" 24-JAN-1995 14:23:31.20
To: IN%"P2143202@csdvax.csd.unsw.EDU.AU"

CC:

Subj: More GPS data

I have now done SNAP adjustment for GPS stations only on WGS84 with no geoid, holding
the WGS84 coordinates and ellipsoidal height of HH GPS Pillar fixed.

Coords for all stations wellington palmerston north investigation

wgs84

no_geoid

! Updated by SNAP version 2.0d at 24-JAN-1995 09:12:09

CODE LATITUDE LONGITUDE ELLP HT STATION NAME

768.7261 WAIPUNA

127.9957 MT SARAH

143.7486 MT STEWART
57.6080 E ORUARONGO
781.3927 AA ARAWARU
531.7349 KAPITI NO 2

1561.2606 GIRDLESTONE
469.4390 BELMONT

740.1737 RIMUTAKA

127.2275 BIDWILL

590.8576 ERINGA

470.3358 F TERAWHITI
176.1517 MT CRAWFORD
458.1703 KAUKAU

496.8275 TE KOPAHOU
915.9022 PAPATAHI

735.1928 WAINUI NO 2
876.0633 CLIMIE NO 2
558.5754 B TARAKAMUKU

RANGITUMAU NO 2
37.8000 HEAPHY HOUSE GPS PILLAR
35.3580 HEAPHY HOUSE HHR9
34.8624 HEAPHY HOUSE HHR9A
35.3227 HEAPHY HOUSE HHR6
36.6464 BM LA81 NO 2
96.2210 MOUTERE NO 2
39.7136 WAIMEA NO 4
30.2944 BM L25

390.0654 E ARAPAEPAE NO 1
50.3596 A WAITOHU
926.5762 A TAUNGATA

1115.8921 A KAPAKAPANUI
42.2352 BM LA35

207.1887 BM KA66

641.0829 A MT BARTON
134.1310 MANA

445.1373 NABHRA

361.6625 TOWAIL

645.6814 DEVINE

175 11 53.005561
175 16 54.002021
175 29 17.913817
175 15 31.231141
175 37 31.225694
174 54 55.542775
175 26 36.112017
174 52 26.387142
175 13 48.595721
175 23 55.991053
175 39 07.786816
174 37 40.445384
174 49 42.544366
174 46 40.708244
174 42 40.356358
175 02 51.685659
174 58 42.685884
175 08 36.191846
175 45 29.910224
175 44 11.536216
174 46 58.625510
174 46 58.893965
174 46 58.898335
174 46 59.129723
175 27 35.451633
175 14 25.582688
175 01 15.941448
174 57 59.031640
175 20 50.119080
175 07 58.179297
175 15 21.494133
175 09 43.457413
175 04 02.225923
175 42 53.988009
175 06 07.738249
174 46 52.175756
174 59 52.921985
174 55 42.568580
175 02 16.464567

D115 39 27 35.857506
D126 40 06 28.643231
D131 40 14 24.726502
D133 40 29 34.580202
D134 40 30 36.531846
D136 40 50 53.262154
D137 40 47 47.582018
D138 41 11 00.318561
D139 41 07 08.574312
D141 41 11 32.428274
D143 41 10 48.524095
D145 41 16 35.665751
D146 41 17 39.996452
D147 41 13 53.328270
D150 41 20 27.991979
D151 41 19 02.716119
D427 41 00 45.804779
D428 41 09 01.247753
D443 40 22 47.914149
D446 40 50 57.929792
D475 41 16 29.625950
D482 41 16 29.755054
D483 41 16 29.332333
D485 41 16 29.671587
D499 40 30 51.606135
D500 40 35 19.486877
D501 40 52 20.413395
D502 40 58 55.603738
D503 40 38 58.543219
D504 40 44 16.397492
D505 40 48 42.351296
D506 40 55 56.500454
D507 40 52 30.202922
D508 40 35 56.170920
D509 41 02 18.678658
D510 41 04 44.381995
D511 41 06 45.155445
D512 41 14 07.592781
D513 41 13 09.786844

* % % %
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D514 41
D515 40
D516 40
D517 41
D518 40
D519 40
D520 40
D521 40
D522 40
D523 41
D524 40
D525 41
D526 41
D527 41
D528 41
D529 41
D530 41
D531 41
D532 41
D533 41
D534 41
D535 41
D536 41
D537 41
D538 40
D539 40
D540 40
D541 40
D542 40
D543 40
D544 40
D545 40
16063
160813cCC
MT_COOPER
PIKARERE
PKRRN2
16091
BXTRSKNB
160917
RBRTSN2
TIDEMAN
BRADEY
16031
16032
16064
16065
PORIRUA
WRKN2

RM1
WLKRSHLLN2
160610
16062
16069
RTNPNTN2
5307

BAKER
DGGNGSN2
GRAYS_NO2
PKKRK
ABBOTT
MLHRNN2

EE

5502
EDSBLK
16033
WAINUI
LNDNN2
RLWYN2

.358141
.937099
.294951
.765357
.611053
.652979
.348997
.505839
.513118
.137077
.094104
.314423
.828748
.285411
.332437
.224794
.946785
.818067
.060994
.103833
.952440
.887196
.579511
.667864
.622597
.493512
.272471
.659027
.919674

Nununinununninninmninunnininunnininununinmnununmnmnunmnin
=
~3
=

.569071
.666710
.857913
.581374
.259236
.633425
.445674
.399121
.630762
.087774
.122139
.852487
.361116
.325892
.641631
.201128
.981417
.618817
.849291
.899273
.566067
.902246
.478551
.868900
.106812
.475802
.064884
.247998
.477801
.155607
.876859
.647891
.796785
.602453

hnhnnnhnnMinhhhhnhnuhLhnhhntunununhnnnninninnnnn n

.671907
.990840
.304547
.902373
.559266
.677663
.980228
.014215
.607507
.717702
.813473
.061784
.666862
.013561
.365700
.330491
.136128
.641731
.938073
.307236
.419878
.420289
.909565
.537292
.425131
.997046
.659529
.111602
. 742426
.164489
.363976
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PARA
15881
BM KA80 *
16211
BM L72 NO 2 *
BM L65 *
BM L57 *
BM L49 *
BM L40 *
BM KA9 *
BM KA49 NO 2 *
ORM 8 S035860 *
BM6A S035872 *
BM L9 NO 2 *
BM L14
BM L20 *
BM KC2 *
TERAWHITI ECC *
COLONIAL KNOB ECC *
BELMONT ECC *
CRAWFORD ECC *
TE KOPAHOU ECC *
KAUKAU ECC *
COLONIAL KNOB NO 3
HIMATANGI
14943
FITZHERBERT NO 2
BB KAIHINU
CC (ARAWARU SD)
D TE MATA
14972
15311
.7569 16063
.8387 160813 Ecc *
.1009 MT COOPER
.8949 PIKARERE
.0769 PIKARERE NO 2
L1795 16091
.8782 BAXTERS KNOB
.4576 160917
.7694 ROBERTS NO 2
9656 TIDEMAN
3116 BRADEY
7691 16031
5929 16032
3633 16064
1641 16065
5982 PORIRUA
5801 WAIRAKA NO 2
5426 RM1 (MOANA ROAD) *
0968 WALKERS HILL NO 2
9857 160610
7837 16062
3870 16069
3821 RATION POINT NO 2
3672 5307 (IGNS STATION) *
0292 BAKER
6912 DIGGINGS NO 2
4653 GRAYS NO2
3365 PAEKAKARIKI
9324 ABBOTT
4934 MULHERN NO 2
0878 EE (PAEKAKARIKI SD)
1702 5502 (IGNS STATION) *
7182 EDS BLK EE (IGNS) *
6055 16033
2229 WAINUI
9702 LONDON NO 2
4500 RAILWAY NO 2
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Appendix H

Orthometric heights of the lower North Island control stations

This appendix contains information extracted from two emails from Jim Hall, DOSLI,

that listed the orthometric height and order of the stations in the Wellington to
Palmerston North control investigation. A selection of these stations were used as

control for the lower North Island geoid investigations of Chapter 4. It should be noted

that besides the EDS survey points the last 3 sites (Ken, Fitzherbert, Mowlem No. 3)
were also not occupied by GPS.

From: IN$"JIM@hh.dosli.govt.nz" 20-JAN-1995 16:01:02.77
To: IN%$"P2143202@csdvax.csd.unsw.EDU.AU"

ccC:

Subj: GPS DATA FILES

Coords for all stations wellington palmerston north investigation

{Note this listing includes stations in the Wairarapa as well as points in the
tsouthern part of the New Plymouth -~ Castle Point EDS and the northern portion
1of the Wellington - Karamea EDS surveys. Stations are listed in three groups
\first, second and third order as determined by WN DO (some points have been
lupgraded and others downgraded. Except for eccentric marks, new stations and
Isome bench that were very poorly fixed for position, latitudes, longitudes and
theights agree with those shown in the geodetic data base.

I1Stations marked with an * at the end of the name are not currently

1in the geodetic data base or in the case of bench marks the coordinates are

inot reliable and better values have been used to clarify the analysis of results
1All stations listed below are GPS stations except for the following which are

{EDS points for which the terrestial observations were included in the adjustment.
1D120,D123,D127,D135,D144,D152,D429,D430,D439,D440,D441,D442,D444,D445,D447,D448.

NZGD49

! Coordinate file created by SNGEOID version 1.0

STN ORTHO HT GEOID STATION
iD LATITUDE LONGITUDE HEIGHT ORDER UNDULATION NAME
M M

'First order stations

D115 39 27 42.177800 S 175 11 52.269000 E 748.2900 3 -0.934 WAIPUNA

D120 39 43 22.789800 S 174 57 02.437600 E 558.3000 4 -3.859 RANGITATAU

D123 39 45 24.364300 S 175 28 51.869000 E 698.5700 3 -3.384 I MANGAMAHU
D126 40 06 34.937200 S 175 16 53.250800 E 116.4000 4 -5.370 MT SARAH

D127 40 12 44.091200 S 175 52 50.580200 E 1053.1100 3 -1.744 B ROSS

D131 40 14 31.009700 S 175 29 17.158600 E 131.3750 1 -4.194 MT STEWART

D133 40 29 40.852300 S 175 15 30.482200 E 45.8400 3 -3.785 E ORUARONGO
D134 40 30 42.73%9700 S 175 37 30.471700 E 767.1000 3 ~-1.568 AA ARAWARU

D135 40 34 54.539400 S 176 00 22.642200 E 763.5700 3 0.964 L. PUKETOI

D136 40 50 59.509600 S 174 54 54.819000 E 521.2400 3 -2.063 KAPITI NO 2
D137 40 47 53.828300 S 175 26 35.379300 E 1545.9900 3 -0.219 GIRDLESTONE
D138 41 11 06.528100 S 174 52 25.693100 E 456.2900 3 0.024 BELMONT

D139 41 07 14.778700 S 175 13 47.8843%00 E 725.3200 3 1.075 RIMUTAKA

D141 41 11 38.626700 S 175 23 55.293100 E 112.0500 3 1.967 BIDWILL

D143 41 10 54.721200 S 175 39 07.077200 E 574.9000 3 2.566 ERINGA

D144 40 59 40.878200 S 175 59 27.884800 E 483.5000 3 2.568 FLAGSTAFF NO 3
D145 41 16 41.866400 S 174 37 39.769200 E 457.8000 4 -0.204 F TERAWHITI
D146 41 17 46.188400 S 174 49 41.864200 E 163.1000 4 0.272 MT CRAWFORD
D147 41 13 59.531100 S 174 46 40.024300 E 445.3000 4 -0.058 KAUKAU

D150 41 20 34.179700 S 174 42 39.684000 E 484.8000 4 0.078 TE KOPAHOU

D151 41 19 08.900000 S 175 02 51.000000 E 902.3000 4 0.995 PAPATAHT

D152 41 24 02.740300 S 175 19 54.987800 E 979.2600 3 1.813 S TE MAUNGA
tSecond order stations

D427 41 00 52.031700 S 174 58 41.976700 E 722.0000 4 ~0.559 WAINUI NO 2
D428 41 09 07.451800 S 175 08 35.489600 E 861.8000 4 0.873 CLIMIE NO 2
D429 41 31 07.940700 S 175 29 35.735900 E 363.9500 3 1.559 PUKEMURI

D430 41 19 06.240700 S 175 46 00.147500 E 663.8500 3 2.557 MT ADAMS

D439 39 41 38.613800 S 175 12 44.847900 E 713.6000 4 -3.512 A TAUAKIRA
D440 39 55 54.626000 S 175 05 33.697900 E 128.1000 4 -5.350 BB IKITARA
D441 39 57 20.548200 8 175 29 31.970700 E 447.8000 4 -4.383 ASHCROFT NO 2
D442 40 07 42.311700 S 175 20 29.626700 E 143.2900 3 ~-5.158 14361

D443 40 22 54.190200 S 175 45 29.147900 E 544.2500 3 -1.642 B TARAKAMUKU
D444 40 34 09.262300 S 175 47 05.355000 E 349.5600 3 -0.204 MT HEALE NO 2
D445 40 46 50.144700 S 175 53 06.764800 E 531.3700 3 1.585 U TINTOCK

D446 40 51 04.162000 S 175 44 10.803700 E 604.2400 3 1.459 RANGITUMAU NO 2
D447 40 47 11.553300 S 176 11 16.082100 E 391.9500 3 2.300 MANGAHOEKA NO 3
D448 41 03 34.212900 S 175 58 54.303300 E 578.2100 3 2.704 REWA

D475 41 16 35.821800 S 174 46 57.945100 E 24.9800 2 0.113 HEAPHY HOUSE GPS PILLAR
D482 41 16 35.950500 S 174 46 58.213700 E 22.5400 2 0.113 HEAPHY HOUSE HHR9
D483 41 16 35.528200 S 174 46 58.217%00 E 22.0300 2 0.113 HEAPHY HOUSE HHR9A
D485 41 16 35.867500 S 174 46 58.449500 E 22.5400 2 0.113 HEAPHY HOUSE HHR6
D499 40 30 57.867300 S 175 27 34.691200 E 23.3490 1 -2.550 BM LA81 NO 2

* o %
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D500 40
D501 40
D502 40
D503 40
D504 40
D505 40
D506 40
D507 40
D508 40
D509 41
D510 41
D511 41
D512 41
D513 41
D514 41
D515 40
D516 40
D517 41
D518 40
D519 40
D520 40
D521 40
D522 40
D523 41
D524 40
D525 41
D526 41
D527 41
D528 41
D529 41
D530 41
D531 41
D532 41
D533 41
D534 41
D535 41
D536 41
D537 41
D538 40
D539 40
D540 40
!Third order
D541 40
D542 40
D543 40
D544 40
D545 40
16063 41

160813CC 41
MT_COOPER 41

PIKARERE 41
PKRRN2 41
16091 41

160917 41
BXTRSKNB 41
RBRTSN2 41
TIDEMAN 41

BRADEY 41
16031 41
16032 41
16064 41
16065 41
PORIRUA 41
WRKN2 41
RM1 41

WLKRSHLN2 41

160610 41
16062 41
16069 41
RTNPNTN2 41
5307 41
BAKER 41

DGGNGSN2 41
GRAYS NO2 41
PKKRK 41
ABBOTT 41

MLHRNN2 41
EE 41
5502 41
EDSBLK 41
16033 41
WAINUI 41
LNDNN2 41
RLWYN2 41
KEN 41
FTZHRBRT 41
MWLMN3 41

35 25.
52 26.
59 01.
39 04.
44 22.
48 48.
56 02.
52 36.
36 02.
02 24.
04 50.
06 51.
14 13.
13 15.
24 25.
56 53.
28 06.
01 40.
28 22,
32 53.
38 05.
43 51.
49 03.
05 31.
44 09.
17 15.
20 51.
09 00.
06 20.
01 58.
08 50.
16 42.
09 25.
11 07.
17 46.
20 34.

747700
649700
831900
798300
643100
592100
738700
438824
434678
896600
600900
367000
794900
986600
536700
157800
572681
977700
886510
921461
609088
757380
755282
352373
348672
507954
016306
497240
547700
449260
160184
015137
270783
311500
147632
077822
13 59.781403
09 25.881200
26 36.891000
19 29.772600
25 49.541000

stations

30 09.922500
27 25.187100
27 22.894300
28 55.768500
29 29.054700
06 20.581100
08 45.435368
05 50.628900
07 07.784200
07 12.882000
08 46.069300
09 26.470800
07 43.795900
09 40.845200
07 52.658200
06 30.614700
03 20.853000
02 25.311700
04 25.342000
03 55.073800
03 16.583100
02 19.551100
04 19.856569
05 28.420100
07 29.194800
06 59.833500
06 43.064200
05 50.116000
06 22.775914
04 10.123100
02 26.702500
04 50.088400
00 30.333400
04 27.694300
06 27.278300
03 07.467800
06 56.685761
03 12.367951
01 53.101500
00 51.874800
06 41.012300
03 15.823800
12 11.702300
13 12.595500
15 17.401400

NnonunununununnhnuuhnnununhLuLuonnlhnonunununhnnmnuLnnnnninnnm
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175
175
174
175
175
175
175
175
175
175
174
174
174
175
174
175
175
175
175
175
175
175
175
175
175
174
174
174
174
174
174
174
174
174
174
174
174
174
175
175
175

175
175
175
175
175
174
174
174
174
174
174
174
174
174
174
174
174
174
174
174
174
174
174
174
174
174
174
174
174
174
174
174
174
174
174
174
174
175
174
174
174
174
174
174
174

14
01
57
20
07
15
09
04
42
06
46
59
55
02
52
40
49
31
17
16
16
12
06
26
37
48
47
50
52
53
59
37
48
52
49
42
46
48
24
38
34

33
38
36
32
30
51
49
50
49
49
52
51
51
50
53
53
53
53
52

51
52
51
52
54
52
53
54
54
55
55
53
56
57
57
59
57
00
53
58
52
52
58
57
57

24.
15.
58.
49,
57.
20.
42,
0l1.
53.
.023400

07

51.
52.
41,
15.
40.
01.
36.
38.
04.
21.
31.
20.
36.
57.
15.
12.
28.
17.
11.
46.
56.
39.
12.
25.
41,
39.
40.
12.
38.
46.
24.

22.
38.
15.
35.
05.
24.
15.
21.
14.
35.
35.
13.
43.
53.
12.
44.
10.
38.
00.
11.
14.
40.
13.
16.
03.
22.
08.
46.
25,
04.
11.
35.
08.
44,
24.
58.
07.
03.
54,
42,
15.
30.
56.
32.
51.

840900
221000
318500
371400
447900
763200
729100
500366
246517

474500
218500
875300
769200
992900
264800
564467
184600
820727
942573
243685
286450
881774
988923
068476
380470
985141
317547
668400
631540
430120
968655
255162
617898
735436
742775
227008
842600
662200
237600
894200

349700
980300
401400
602300
742400
139600
475720
815700
195500
663300
689200
955100
144700
645600
077800
274000
895500
082900
178400
746300
022500
229000
623130
276900
300800
997300
579800
252500
184728
429100
001200
303800
781900
888100
572300
742200
158457
113694
878700
123000
710500
090000
749100
385200
239800
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26.
376.
37.
912.
1101.
29.
191.
626.
120.
431.
348.
631.
166.
110.
119
77.

—
=

21.
35.
51.
19.
55.

318.

10.

45.
38.
457
459.
453.
162.
483.
444
458.
44
65.
48.

673.
556.
450.
378

45,

92.
289.
104.
188.
135.
152.
256,
138.
248,
194

71.
165.
146.
115.
114
261.
216.

97
142.
156.
108.

26.

321.
439.
169.
274
433
130.
551.

39.
551.

61.
722.
122.

57.
391.
376.
386.

9240
90C0
2283
6600
7100
4200
6000
0750
8130
6000
5800
4000
2300
8800
7000
5168

.5303

1182

.4030

5320
4680
4040
3700
1287
4660

. 9550
.2210

7840

.8376

8072
2440

L2294

0879
4048
3513
6126

.5496

5400

L0100

0300
8000

1800
6000
8900

.5900

2410
9300
9970
4000
1000
3000
1000
4300
9300
7300

. 9000

2000
7800
6000
4900

L2700

8200
7700

. 6810
.2000

8000
8000
3000
3000

L3033

9000
6000
3000

.3000
.4000

1000
5000
9457
3885
6000
1000

82

82
00
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-3.
~-1.
-0.
-2.
-2.
-0.
-0.
-1.
-0.
.119
-0.
L1112
.375
.136
.515
.759
. 698
. 799
.830
.241
.539
.089
. 640
.806
.100
.190
271
.228
.355
.704
.276
.204
.289
.025
.272
.078
.058
.288
.437
L7126
.544

O OO0 OO0

-2.
-1.
-2.
-2.
-2.
-0.
-0.
~-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
~-0.
-0.
-0.
-0.
-0.
~0.
-0.
-0.
-0.
-0.
~-0.
-0.
-Q.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
-0.
.443
L421
.566

096
522
928
055
315
995
506
332
409

723

044
936
182
363
539
393
293
486
425
402
136
151
261
150
176
264
590
663
541
581
690
720
586
430
165
290
276
270
240
411
581
424
745
234
069
234
043
185
706
559
323
631
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MOUTERE NO 2
WAIMEA NO 4

BM L25

E ARAPAEPAE NO 1
A WAITOHU

A TAUNGATA

A KAPAKAPANUT
BM LA35

BM KAG6

A MT BARTON
MANA

NABHRA

TOWAI

DEVINE

PARA

15881

BM KA80

16211

BM L72 NO 2

BM L65

BM L57

BM L49

BM 140

BM KA9

KA49 NO 2
ORM 8 5035860
BM6A S035872
BM L9 NO 2

BEM L14

BM L20

BM KC2
TERAWHITI ECC
COLONIAL KNOB ECC
BELMONT ECC
CRAWFORD ECC
TE KOPAHOU ECC
KAUKAU ECC
COLONIAL KNOB NO 3
HIMATANGI
14943
FITZHERBERT NO 2

BB KAIHINU

CC (ARAWARU SD)

D TE MATA

14972

15311

16063

160813 Ecc

MT COOPER
PIKARERE

PIKARERE NO 2
16091

160917

BAXTERS KNOB
ROBERTS NO 2
TIDEMAN

BRADEY

16031

16032

16064

16065

PORIRUA

WAIRAKA NO 2

RM1 (MOANA ROAD)
WALKERS HILL NO 2
160610

16062

16069

RATION POINT NO 2
5307 (IGNS STATION)
BAKER

DIGGINGS NO 2
GRAYS NO2
PAEKAKARIKI
ABBOTT

MULHERN NO 2

EE (PAEKAKARIKI SD)

5502 (IGNS STATION)
EDS BLK EE (IGNS)
16033

WAINUI

LONDON NO 2
RAILWAY NO 2
KEN

FITZHERBERT
MOWLEM NO 3

L

R
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From: IN%"JIM@hh.dosli.govt.nz" 20-JAN-1995 16:00:28.02
To: IN%"P21432028¢csdvax.csd.unsw.EDU.AU"

cC:

Subj: GPS DATA FILES

The orthometric heights in the above file are followed by the

accuracy code which has the following meaning

1 Precise levelling

2 Good levelling or simultaneous verticals from reliable fixed
points

3&4 Heights derived from vertical angles where the relative accuracy
is dependent on the strength of the adjustment network and
reliability of the fixed points.

Regards
Jim Hall

Appendix I

GPS surveys for New Zealand datum investigation studies

The March 1993 GPS survey was the first campaign undertaken specifically by DOSLI
for datum investigations within New Zealand. Listed in the table below are further GPS
surveys that have been undertaken by DOSLI (since July 1996 Land Information New
Zealand) for datum investigation studies.

Date Coverage Network ! Stations Sessions
March 1993 AllNZ 1st Order 2000 28 2 of 4 hours
Feb-March 1994 AlINZ 1st Order 2000 30 1 of 24 hours
Feb+April 1995 ° AlINZ 1st Order 2000 29 3 of 24 hours
January 1995 Gisborne, Taupo 2nd Order 2000 52° 8 hours
February 1995 Canterbury 2nd Order 2000 69° 8 hours
February 1995 West Coast 2nd Order 2000 477 8 hours
March-April 1995 Otago, Southland 2nd Order 2000 83° 8 hours
March-April 1995 Wellington 2nd Order 2000 100 ° 8 hours
February 1996 AllNZ 1st Order 2000 29 3 of 24 hours
Notes
1. The “Order 2000 networks are described in Blick, 1996.
2. Observations from one station were lost in the February campaign. It was brought in to the
network by re-observation of 7 stations in April.
3. Includes all NZGD49 1st order stations in the area plus new 2nd Order 2000 stations with better
access.
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Appendix J

W-curve investigations

Following the new emphasis given to determining the origin of the W-curve after the Western Pacific
Geophysical Meeting in Brisbane, a number of tests were trialed during the visit by Jon Kirby, from
Curtin University, to UNSW during 5 - 16 August 1996.

In Kearsley (1988) the W-curve was first noted and was thought that curve approximated half the
wavelength recovered in theory by the GGM when summed to fy,,x (i€. 180/npy,,). Test using OSU81
(Nmax = 180) showed that this was not the case for the lower North Island test area (Section 4.5.2.1).
Further tests using OSU91A as the reference GGM in RINT with z,,,, being set to 180 and 360 showed
insignificant variation in the W-curve wavelength, though the amplitude of the ny,, = 180 results were
larger than the n,,, = 360 results. The other name given to the W-curve was a bi-modal curve. However
results found in this study show that the curve has more than two maximum and therefore should not be
referred to as bi-modal, when using model gravity.

AIM

To try and develop an understanding of how the W-curve was generated based on model data as input to
the Ring Integration software held at UNSW. Two different types of data sets were used. The first was
using the higher degree and order terms of the OSU91A model (ie. 180 to 360). The second type of data
sets were generated by sine functions.

TESTING WITH OSU91A DATA

This test is emulating a residual gravity field in terms of OSU91A computed to n,,,, = 180 (ie. degree and
order 180).

Method

1) generate a gravity anomaly field for input to RINT using only the coefficients from degree and

order 181 to 360 inclusive of the OSU91A GGM.
2) compute the geoid height values using RINT for a grid of stations using as input the data from 1.

The contribution per compartment (Cy) in m/mGal was set at 0.0003 and compartments had a fixed 10.0°
apex angle (dor) which results in approximately a 0.1° (=10km) step between the rings.

3) generate geoid height values for the same grid of stations as in 2 using only the coefficients from
degree and order 180 to 360 inclusive of the OSU91A GGM.
4) compare the difference between the N values generated directly from the model (ie. step 3) with

the N values obtained by using RINT on the gravity anomalies (ie. step 2).

Results for Southern NSW

A grid of gravity anomalies was generated for an area in south eastern NSW (S34° to S38°, E146° to
E150°). The 4°x4° block was generated with a 0.1° grid spacing. The 1681 gravity anomalies generated
had the following statistics (units = mGal): Average 0.240, Standard Deviation (16) 12.411, Minimum -
37.248 and Maximum 38.487

By choosing Ring 12 (approx 1.2° or 120 km) as the maximum cap size allowed a grid of computation
points for testing that consisted of 14 by 18 (252) points with a spacing of 0.1° over the area of $S35.2° to
S36.9° and E147.3° to E148.6°. (Note there is a 0.5° border added to the maximum cap size for the
required data.)

Then by subtracting the model N value for each grid point from the RINT N value a difference was
obtained, ie. Ngizr = NRint - Nggm. Statistical analysis of all these differences for each ring were then
computed and are shown in Table 1 and plotted in Figure 1.
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ring1 ring2 ring3 ring4 ring5 ring6
std dev (o) 0.2023 0.0774 0.0676 0.1384 0.1851 0.2021
min -0.435 -0.160 -0.188 -0.323 -0.408 -0.429
max 0.399 0.167 0.097 0.241 0.335 0.370
mean -0.038 -0.037 -0.037 -0.037 -0.038 -0.039

ring7 ring8 ring9 ring10 ring11 ring12
std dev (10) 0.1965 0.1726 0.1419 0.1142 0.0973 0.0938
min -0.401 -0.342 -0.271 -0.230 -0.216 -0.208
max 0.353 0.295 0.264 0.251 0.220 0.176
mean -0.040 -0.040 -0.040 -0.041 -0.041 -0.041

Table 1 : Difference of Model generated N values and RINT generated N values in metres for each
ring at all 252 grid points in the Southern NSW area.

From Table 1 the Ring 3 cap size (approx 30 km) has the smallest standard deviation for the Ngis; values.
Varying the cap size also varied the mean Ny but only by 0.004m.

Results for Western SA

A grid of gravity anomalies was generated for an area in western South Australia (S26° to S30°, E130° to
E134°). The 4°x4° block was generated with a 0.1° grid spacing. This grid had the same dimensions and
spacing as the Southern NSW grid. The 1681 gravity anomalies generated had the following statistics
(units = mGal): Average 0.442, Standard Deviation (15) 17.993, Minimum -51.981 and Maximum
50.145.

The new grid of testing points consisted of 14 by 18 (252) points with a spacing of 0.1° over the area of
$27.2° to $28.9° and E131.3° to E132.6°.

Statistical analysis of all these differences, Nuigr = NRin - Noom, for each ring were then computed and are
shown in Table 2 and Figure 1.

ring1 ring2 ring3 ring4 rings rnge
std dev (10) 0.4685 0.2518 0.0717 0.1120 0.2242 0.2977
min -0.641 -0.361 -0.137 -0.319 -0.536 -0.641
max 0.929 0.451 0.135 0.164 0.321 0.427
mean 0.099 0.053 0.013 -0.021 -0.045 -0.061
ring7 ring8 ring9 ring10 ring11 ring12
std dev (19) 0.3307 0.3274 0.2934 0.2365 0.1663 0.0983
min -0.645 -0.603 -0.546 -0.443 -0.309 -0.171
max 0.484 0.487 0.448 0.376 0.280 0.181
mean -0.067 -0.066 -0.059 -0.046 -0.031 -0.014

Table 2 : Difference of Model generated N values and RINT generated N values in metres for each
ring at all 252 grid points in the Western SA area.

From Table 2 the Ring 3 cap size (approx 30 km) has the smallest standard deviation for the Ny values.
Varying the cap size also varied the mean Ny by up to 0.166m. The mean value closest to zero occurs at
rings 3 and 12,

Examining the effect of data density
The grid of gravity anomalies that was generated for the area in south eastern NSW (534° to S38°, E146°
to E150°) at a spacing of 0.1° was thinned and densified to form two new data sets. These data sets were
generated as follows:
Thinned input data
Every third data point was extracted from the 0.1° data set to give an input file for RINT that
had a 0.3° grid spacing.
Densified input data
The method of triangulation with linear interpolation was used to densify the 0.1° data set to
obtain a 0.02° grid. By using triangulation with linear interpolation the chance of introducing
new gridding induced features to the data should be minimised.
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Geoid height’s were then computed using RINT at the same 252 grid points that were used for the
Southern NSW test. For these tests, on the effect of varying the input data density, the intention was to try
and minimise the chance of introducing any new features to the data structure. For this reason the input
data was not recomputed from the GGM coefficients.

Results from using thinned input data

ring1 ring2 ring3 ring4 ring5 ring6
std dev (1) 0.2154 0.0970 0.0478 0.1027 0.1463 0.1640
min -0.470 -0.221 -0.151 -0.260 -0.322 -0.346
max 0.411 0.202 0.056 0.159 0.253 0.286
mean -0.038 -0.037 -0.037 -0.037 -0.037 -0.038
ring7 ring8 ring9 ring10 ring11 ring12
std dev (16) 0.1608 0.1429 0.1200 0.1023 0.0972 0.1023
min -0.336 -0.291 -0.227 -0.228 -0.221 -0.257
max 0.270 0.261 0.271 0.269 0.239 0.201
mean -0.039 -0.039 -0.040 -0.040 -0.040 -0.040

Table 3 : Differences of Model generated N values and RINT generated N values in metres using as
input the thinned (0.3° spacing) for each ring at all 252 grid points in the Southern NSW

arca.

Results from using densified input data

ring1 ring2 ring3 ring4 ring5 ring6
std dev 0.2143 0.0956 0.0485 0.1046 0.1485 0.1662
min -0.441 -0.207 -0.151 -0.260 -0.322 -0.346
max 0.411 0.202 0.069 0.235 0.334 0.368
mean -0.037 -0.036 -0.036 -0.036 -0.036 -0.036
ring7 ring8 ring9 ring10 ring11 ring12
std dev 0.1628 0.1448 0.1215 0.1033 0.0976 0.1022
min -0.336 -0.291 -0.227 -0.228 -0.221 -0.257
max 0.348 0.291 0.271 0.269 0.239 0.201
mean -0.037 -0.038 -0.038 -0.039 -0.039 -0.039

Table 4 : Differences of Model generated N values and RINT generated N values in metres using as
input the densified (0.02° spacing) for each ring at all 252 grid points in the Southern NSW

area.

Summary of input data density

When Tables 1, 3 and 4 are compared (NSW area) it is clear that ring 3 in all cases produces the minimum
standard deviation (Figure 1). It should also be noted that the thin and dense input grids (0.3° and 0.02°,
respectively) produce approximately equivalent results that are significantly different to the original grid
with the 0.1° spacing. This may indicate that the amplitude of the W-curve could be influenced by the
RINT input data density.
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Figure 1 : Standard deviations (10) for all 4 tests using OSU91A gravity anomalies from degree and

order 180 to 360

TESTING WITH DATA GENERATED BY A SINE FUNCTION

Method

1) generate a hypothetical residual gravity anomaly field for input to RINT using only a sine

function.
2) compare the difference between the known wavelength features of the sine function with the

wavelength of the N values generated by using RINT on the hypothetical gravity anomalies.

Two different sine functions were used. One was dependant only on the longitude of the grid point for
generating the gravity anomaly field (ie. 1D sine function). The second was dependant on both the
latitude and longitude of the grid point (ie. 2D sine function).

Results for a Longitude only dependant sine function

A grid of hypothetical anomalies were generated using the respective longitude dependant (1D) sine
function for an area of 20°x20° (S10° to $30°, E150° to E170°). This gave a corrugated iron effect with
the ridges and troughs running from north to south. The following input sine functions were tested.

Amplitude of Zero, Wavelength of Infinity (ie constant horizontal field)

A constant horizontal field of 1.0 mGal anomalies was generated. Once each mid-compartment anomaty
value is determined RINT merely computes the sum of each compartment value and multiplies the total by
the pre-defined contribution per compartment to the residual geoid height. As for all these tests the
contribution to the geoid height per compartment (Cy) was 0.0003 m. Therefore using a constant input
field to RINT results in an ever increasing geoid height the higher the maximum ring (cap) size used.
RINT was run on the centre point of the grid using 120 rings (approx 12° maximum cap size).

Figure 2 shows that for each ring consisting of 36 compartments the geoid height increases by 0.0108 m
for an input field of 1.0 mGal. This can be clearly seen with equation 1. If the constant horizontal field
was changed to 2.0 instead of 1.0 then the contribution to N would double to 0.0216 per ring. When a
constant residual anomaly field is input into RINT there is no oscillation (W-curve) in the results.
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IJ
Ninr =Cy ZZAQU ie. 0.0003x1x36x1=0.0108 (1)
i=1 j=1
where Ag i is the residual mean free-air gravity anomaly, assumed in practice to equal the value at

the mid point of compartment i,j.
[ is the index for the rings.
I is the upper limit of the index for the rings (I = yo).
jis the index for the sectors, apex angle do.
J = 2n/de, ie. maximum number of compartments per ring.
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Figure 2 : Results from running RINT on the mid grid point out to 120 rings using as input a) a
constant residual anomaly of 1.0 mGal (0 degree), b) a longitude dependant sine function
with a 3° wavelength and amplitude of 1 mGal (3 degree), and ¢) a longitude dependant sine
function with a 9° wavelength and amplitude of 1 mGal (9 degree).

Amplitude of One, Wavelength of Three degrees

Instead of generating a constant residual gravity field a hypothetical one was generated using a longitude
dependant sine function with a wavelength of 3° and an amplitude of 1. The results are shown in Figure 3
for RINT being run on the centre point of the grid for 120 rings (approx 12° maximum cap size). The
oscillation has clearly returned to the results. Analysing the wavelength in terms of distance rather than
ring number shows that the wavelength is approximately 312 km. This agrees well with the distance that
3° represents on the ground at a Latitude of S20° (ie. cos(20) x 111 x 3 =313 km).

Amplitude of One, Wavelength of Nine degrees

A hypothetical residual gravity field was generated using a longitude dependant sine function with a
wavelength of 9 degrees and an amplitude of 1. The results are shown in Figure 3 for RINT being run on
the centre point of the grid for 120 rings (approx 12° maximum cap size). The oscillation has remained in
the results. Analysing the wavelength in terms of distance rather than ring number shows that the
wavelength is approximately 942 km. This agrees well with the distance that 9° represents on the ground

at a Latitude of S20° (ie. cos(20) x 111 x 9 =938 km).

Amplitude of Two, Wavelength of Three degrees

A hypothetical residual gravity field was generated with an amplitude of 2 and a wavelength of 3°. The
results are shown in Figure 3 for RINT being run on the centre point of the grid for 120 rings (approx 12°
maximum cap size). The oscillation has clearly doubled in amplitude from the 3° wavelength with an
amplitude of 1, but the wavelength remains at 3°. Note also that the oscillations are dampened with
increasing ring number.
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Effect of vary the computation point location within the grid

When comparing the 3° and 9° wavelength results (Figure 3) it is interesting to note that they have
different signs. The sign of the results from RINT appeared to be directly related to the sign of the
residuals at the computation point. To test this hypothesis a set of 27 computation points were used as
input to RINT. The 27 points all had the same latitude but the longitude incremented in steps of 0.1°.

Results of computing N values out to ring number 70 using as input the 3° wavelength, amplitude of 1
data for the 27 points are summarised in Figure 4. It is obvious from this figure that the location of the
computation point in the residuals affects the amplitude of the oscillations but not the wavelength. On
inspecting the location of the computation points in the residuals grid it was confirmed that the sign of the
N values from RINT were directly related to the magnitude of the surrounding residuals. This is of course
want one expected and requires. However the important point to realise from Figure 4 is that if all your
control points for determining the optimum ring size were to be located at residual minimums then no
optimum ring size can be determined. Also the location of the control points with respect to residual
gravity anomaly minima and maxima affects the amplitude of the oscillations.

0.25

——9 degree
——3 degree
—e— Amplitude 2

Neine {metres)

-0.05 +

01+

- © - © - © - © - © - © - © — © - ©
-~ - o o o m <t A w wn ©w ©w ~ ~ «© @«

- [{ed had © s o
(2] -] (= = - —
ot g p p

Ring number

Figure 3 : Results from running RINT on the mid grid point out to 120 rings using as input a) a
longitude dependant sine function with a 9° wavelength and amplitude of 1 mGal (9
degree), b) a longitude dependant sine function with a 3° wavelength and amplitude of 1

mGal (3 degree), and c) a longitude dependant sine function with a 3° wavelength and
amplitude of 2 mGal (Amplitude 2).

310



Appendices

0.08

0.06 1

0.04 1

0.02 1§

Nrint {metres)
o

-0.02 +

-0.06 1

21
26
M
46
51
56
61
6

s 8
Ring number
Figure 4 : Results from running RINT on a line of points out to 70 rings using as input a longitude

dependant sine function with a 3° wavelength and amplitude of 1 mGal. Each line
represents a separate computation point, that vary only in longitude.

Results for a Latitude and Longitude dependant sine function

A grid of hypothetical anomalies were generated using two latitude and longitude dependant (2D) sine
functions for an area of 20°x20° (S10° to $30°, E150° to E170°). This gave an egg carton type effect for
the residuals. The two latitude and longitude dependant sine functions were generated so as to have an
amplitude of 1mGal though to vary the wavelength. One data set had a 2° wavelength while the other had
a 3° wavelength. The computation point was chosen so as to be coincident with an area of maximum
positive residuals. This results in maximum W-curve amplitude but does not affect the wavelength.

Two degree wavelength

Analysing the Ngi,, wavelength for the 2° wavelength (Figure 5) in terms of distance rather than ring
number shows that the wavelength is approximately 153 km. This is 25% less than the distance that
2° represents on the ground at a Latitude of S20° (ie. cos(20) x 111 x 2 = 208 km).

Three degree wavelength

Analysing the Ng;, wavelength for the 3° wavelength (Figure 5) in terms of distance rather than ring
number shows that the wavelength is approximately 227 km. This is 25% less than the distance that
3° represents on the ground at a Latitude of S20° (ie. cos(20) x 111 x 3 = 313 km).

The reason for the 25% reduction in the wavelength is not fully understood.
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Figure 5 : Results from running RINT at a the maximum residual point out to 70 rings using as input
a) a latitude and longitude dependant sine function with a 2° wavelength and amplitude of 1

mGal (2 degree), and b) a latitude and longitude dependant sine function with a 3°
wavelength and amplitude of 1 mGal (3 degree).

Summary

Tests using the higher degree and order coefficients (180 to 360) of OSU91A showed that the W-curve
still is present in this data. Determining whether the W-curve is a feature of RINT or OSU91A was
attempted using hypothetical residual gravity anomalies that were of a known wavelength and amplitude.
The tests using the 1D and 2D sine functions indicate that the W-curve is a feature of the input residual
data used by RINT. Determining whether the oscillations in the real residual data are caused by the GGM
or the observation of the gravity data (or possibly the orthometric or ellipsoidal height control) requires

further work.

Final comments and possible next steps

In Figure 1 it is hard to determine where the actual minimum value occurs between 20 and 30 km (ie. Ring
2 & 3). If RINT were to be run using a Cy value of say 0.00015m then it may highlight that the minimum
occurs at about 25 km (what would be ring 5). Now if this were the case then the diameter of the cap used
be RINT would be approximately 50 km which approximates half the resolution of OSU91A when np,x =
180 (1.0°). From the tests with the simulated data the W-curve is a feature that is influenced by the input
residual data characteristics. Therefore tests on the residual gravity auto-correlation function or possibly
the power at different wavelengths in a Fourier analysis of the residual gravity may help to understand
further the cause of the W-curve.

It would be unlikely that a residual anomaly field would only have a structure similar to the 1d sine
functions. The reason why the 2D function data input to RINT results in an output that is 25% smaller ,
than the 1d sine function, needs to be understood. Once this is understood it may be possible to estimate
the wavelengths that are driving the W-curve on real data.

Finally, it is worth noting that the amplitude of the W-curve is reduced between using OSU81, OSU91A
and EGM96. This indicates that the residual gravity features driving the W-curve are being generated
from the GGM, rather than the physical gravity observations.
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Appendix K

Seven parameter Transformation output

An example of an output file from the School of Geomatic Engineering TRANS3D
software, which was used in this research for determining transformation parameters
between ITRF93 and NZGD49. This 7 parameter example has had some less critical
information removed to save space.

The units are: metres for XYZ coordinates; Ellipsoidal latitude and longitude
coordinates are in degrees, minutes and seconds, with ellipsoidal height in metres; VCV
matrix has radians? for latitudes and longitudes, and km? for the X, Y, Z and height
coordinates.

The input ITRF93 GPS coordinates and associated VCV matrix for NET A was
obtained from the output of the GLOBK adjustment (Section 3.5.2). The NZGD49
three dimensional coordinates were generated by combining the latitude and longitude
coordinates for the stations with their orthometric heights. These coordinates were
obtained from DOSLI’s geodetic database during October 1994. The orthometric
heights were converted to ellipsoidal heights by adding on the geoid heights. The geoid
heights were determined firstly in terms of GRS80 using the OSU91A GGM to degree
and order 360, then transformed using the parameters in Table 5-5 to obtain geoid
heights with respect to the NZGD49 International (Hayford) ellipsoid.

BURSA WOLF TRANSFORMATION OF 3D COORDINATES WITH FULL VCV MATRIX.
THIS CALCULATION WAS DONE ON - DATE : 9-0CT-96 TIME : 12:13:52

INPUT DATA FOR 26 COMMON SITES.

NET A DATA DESCRIPTION -
The New Zealand sites from GAMIT processing without WELL eccentrics
DATA TYPE / ELLIPSOID = XYZ FLAT = 1/ 0.00 RADIUS = 0.000

A PRIORI XYZ COORDINATES OF NET A

X Y Z SITE
-5042731.013 140230.725 -3890300.801 D078
~4989460.436 191252.616 -3955757.082 D100
-4922647.699 265115.124 -4033579.382 D431
-5039298.744 311182.353 -3884430.722 D072
-4977955.114 355512.095 -3959578.095 D473
-4794050.688 364491.748 -4177890.760 D143
-4860522.481 383529.132 -4098474.090 D131
-5041354.991 441059.442 -3869625.181 D452
~-5105842.378 461788.364 -3781953.900 D045
-4780648.721 436507.180 -~4185440.834 WELL
-5167214.257 496239.264 -3693852.811 D026
-4929040.021 498221.640 -4004033.826 D105
-4741512.895 480470.733 -4225019.053 D425
-4763996.242 561250.914 -4190671.927 D158
-4660964.326 571445.603 -4302316.858 D191
-4590224.056 585796.161 -4375478.977 D212
-4802026.061 617521.335 -4138428.458 D469
-4509242.339 709568.105 -4440279.479 D233
-4616400.151 745241.656 -4324328.876 D309
-4519608.804 774369.429 -4419877.604 D229
-4566344.357 808430.382 -4364477.378 D320
-4408673.332 841182.535 -4518905.322 D253
~-4521641.647 878624.057 -4396964.934 D338
-4298487.995 887139.084 -4612663.478 D286
~-4303267.131 894811.260 -4606633.939 D474
-4371448.523 950019.339 -4531599.627 D302

THE A PRIORI VARIANCE COVARIANCE MATRIX OF NET A

0.172D-09

0.197D-09 0.714D-08

0.557D-10 0.103D-10 0.361D-09

0.915D-10 0.247D-09 0.194D-10 0.161D-09

0.179D-09 0.704D-08 0.524D-11 0.257D-09 0.699D-08

0.197D-10 0.530D-11 0.328D-09 0.505D-10 0.842D-11 0.361D-09
0.662D-10 0.309D-09 0.218D-11 0.675D-10 0.305D-09 0.186D-11
0.166D-09
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0.170D-09 0.693D-08 0.110D-11 0.234D-09 0.686D-08 0.110D-11

0.328D-09 0.679D-08

0.685D-11 0.346D-11 0.312D-09 0.650D-11 (.342D-11 0.312D-09

0.534D-10 0.123D-10 0.346D-09

0.876D-10 0.412D-09 0.136D-10 0.889D-10 0.406D-09 0.129D-10

0.811D-10 0.399D-09 0.814D-11 0.324D-09

0.178D-09 0.710D-08 0.337D-11 0.244D-09 0.703D-08 0.321D-11

0.310D-09 0.692D-08 0.330D-11 0.463D-09 0.714D-08

0.137D-10 0.473D-11 0.325D-09 0.128D-10 0.435D-11 0.326D-09

0.364D-11 0.264D-11 0.314D-09 0.120D-09 0.248D-10 0.400D-09
[...Removed 22 stations VCV information...]

NET B DATA DESCRIPTION -
NZGD49 coordinates of all stations with Gamit ITRF coords
DATA TYPE / ELLIPSOID = Hayford FLAT = 1/297.00 RADIUS = 6378.388

A PRIORI COORDINATES OF NET B. ELLIPSOID IS Hayford

LATITUDE LONGITUDE ELLIPSOIDAL HEIGHT SITE
~-37 49 34.71660 178 24 24.79430 334.551 D078 201 TE POHUE
-38 34 36.91160 177 48 16.69550 299.902 D100 106 OKAHUATIU
-39 28 50.68510 176 55 1.31150 99.914 D431 BLUFF HILL NO
-37 45 40.49930 176 27 58.31010 70.353 D072 F MAKETU
-38 37 4.15020 175 54 53.33350 737.283 D473 MAROTIRI NO 2
-41 10 54.72120 175 39 7.07720 577.755 D143 ERINGA
-40 14 31.00970 175 29 17.15860 127.265 D131 MT STEWART
-37 35 28.22590 174 59 59.37350 292.717 D452 79 (Rangiriri
-36 36 7.29690 174 49 54.69760 112.881 D045 XVII WHANGAPAR
-41 16 35.82180 174 46 57.94510 25.107 D475 H HOUSE GPS PIL
-35 37 8.62500 174 30 51.02240 141.207 D026 PUKEARENGA NO
-39 8 8.72990 174 13 40.84230 242.187 D105 A HUIRANGI
~-41 45 2.73200 174 12 49.06250 243.068 D425 A (CAPE CAMPBE
-41 20 0.07910 173 16 50.62690 777.841 D158 JENKINS HILL N
-42 41 20.81970 173 0 36.48020 396.272 D191 ISOLATED HILL
-43 35 26.29530 172 43 37.89690 504.451 D212 MT PLEASANT
-40 42 53.11690 172 40 19.37660 155.208 D469 I PARAPARA
-44 24 7.99330 171 3 26.10300 393.398 D233 A MT HORRIBLE
-42 57 17.83510 170 49 46.34090 908.933 D309 HB MT GREENLAN
-44 8 25.82620 170 16 39.06460 999.699 D229 MT MARY
-43 27 26.94790 169 57 36.79660 105.864 D320 JF (GILLESPIES
-45 23 21.36610 169 11 51.42730 1679.117 D253 T HYDE ROCK
-43 51 44.96720 169 0 12.59570 7.621 D338 8741
-46 36 59.52590 168 20 19.33550 271.739 D286 X THE BLUFF
-46 32 18.64140 168 15 12.06220 179.085 D474 THREE SISTERS
-45 33 49.40000 167 44 19.91020 409.402 D302 MT YORK
THE A PRIORI VARIANCE COVARIANCE MATRIX OF NET B
0.376D-13
0.000D+00 0.376D-13
0.000D+00 0.000D+00 0.100D-05
0.000D+00 0.000D+00 0.000D+00 0.376D-13
0.000D+00 0.000D+00 0.000D+00 0.000D+00 (.376D-13
0.000D+00 0.000D+00 0.000D+00 0.000D+00 (.000D+00 0.100D-05
0.000D+00 0.000D+00 0.000D+00 0.000D+00 0C.000D+00 0.000D+00
0.376D-13
0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00
0.000D+00 0.376D-13
0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00
0.000D+00 0.000D+00 0.100D-05
0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00
0.000D+00 0.000D+00 0.000D+00 0.376D-13
0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00
0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.376D-13
0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00
0.000D+00 0.000D+00 0.000D+00 0.000D+00 ©0.000D+00 0.100D-05
[...Removed 22 stations VCV information...]

THE A PRIORI VCV MATRIX OF THE PARAMETERS

0.100E+06
0.000E+00 0.100E+06
0.000E+00 O0.000E+00 O0.100E+06
0.000E+00 0.000E+00 0.000E+00 0.100E+06
0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.100E+06
0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.100E+06
0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.0C0E+00 0.000E+00 0.100E+06
THE APRIORI ESTIMATES OF THE TRANSFORMATION PARAMETERS
SCALE FACTOR 0.000 ppm +/- 0.316E+09
ROTN ABT X AXIS 0.000 SECS +/- 0.652E+08
ROTN ABT Y AXIS 0.000 SECS +/- 0.652E+08
ROTN ABT Z AXIS 0.000 SECS +/- 0.652E+08
TRANS ALONG X AXIS 0.000 m +/- 0.316E+06
TRANS ALONG Y AXIS 0.000 m +/- 0.316E+06
TRANS ALONG Z AXIS 0.000 m +/~- 0.316E+06

THERE ARE 325 BASELINES

APRIORI BASELINE LENGTHS BETWEEN NET A SITES
[...Removed...]

APRIORI BASELINE LENGTHS BETWEEN NET B SITES
[...Removed...]

314



ITERATION NUMBER 1 OF 1

The a posteriori estimate of the variance factor (sigma sq)
vtPv = 73.3318 DxtPxDx = 0.387758E-06 Ux = 0.153343E-08

is 1.03284
Approx degs

Appendices

free = 71

A priori weights on the parameters contribute 0.0% to the estimated variance factor.
Results HAVE passed the F test of the variance factor at the 95% confidence level

ADJUSTED BASELINE LENGTHS BETWEEN NET A SITES
[...Removed...]

ADJUSTED BASELINE LENGTHS BETWEEN NET B SITES
[...Removed...]

THE ADJUSTED PARAMETERS

PARAMETER ADJUSTED VALUE SIGMA ADJUSTMENT
SCALE FACTOR (ppm) 4.562 +/~ 0.514 4.562

ROTN ABT X AXIS (secs) 0.072 +/- 0.241 0.072

ROTN ABT Y AXIS (secs) -0.049 +/- 0.208 ~0.049

ROTN ABT Z AXIS (secs) 1.344 +/- 0.242 1.344

TRANS ALONG X AXIS (m) -60.788 +/- 4.465 -60.788

TRANS ALONG Y AXIS (m) -9.188 +/- 10.035 -9.188

TRANS ALONG Z AXIS (m) -187.073 +/- 5.718 -187.073

CORRELATIONS OF ADJUSTED PARAMETERS

CORRELATION & STANDARD DEVIATION MATRIX
1) 0.5141E-06
2) 0.6330E-01 0.1170E-05

3) -0.2260E-01 0.8047 0.1007E-05

4) 0.7713E-01 -0.8312 -0.8033 0.1174E-05

5) 0.5557 -0.6021 -0.8377 0.6533 0.4465E-02
6) -0.4182E-01 0.9487 0.8398 -0.9633 -0.6736

7) 0.3660 0.8110 0.9188 -0.7375 -0.5591

ADJUSTED XYZ COORDINATES OF NET A
[...Removed...]

NET A

CORRELATION & STANDARD DEVIATION MATRIX
[...Removed...]

ADJUSTED COORDINATES OF NET B. ELLIPSOID IS Hayford
[...Removed. ..}

NET B

CORRELATION & STANDARD DEVIATION MATRIX
[...Removed...]

ALL REQUESTED ITERATIONS COMPLETED
NORMAL PROGRAM END - NO FATAL ERRORS DETECTED

0.1004E-01
0.7948

0.5718E-02
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Appendix L

Commonly used heights in Geodesy

There are a number of different vertical reference systems available in geodesy, with some being able to
detect which direction water will flow due to the height being referred to a natural equipotential surface,
while others are simply mathematical approximations of the Earth. A brief summary of different vertical
reference systems that are commonly used in geodesy is contained in the following subsections, which
were adapted from Heiskanen and Moritz (1967) and Vanicek and Krakiwsky (1986).

L.1 Geopotential Number

Since only one equipotential surface (W;) passes through any point (P;), the gravity potential represents
one possible way of defining a unique vertical position. The negative potential difference between the
point P; and the geoid is referred to as the geopotential number, C; (Vanicek and Krakiwsky, 1986, eqn.
16.85).

P
G=-(W-Woy= [ g dl @1
P

As was described in Section 4.2.2 the geoid is the equipotential surface (W,) that approximates mean sea
level. g is the value of gravity at P; and d! is the continuous function of height difference along the terrain
from a point on the geoid. dl is approximated in reality by 8/, being the observed (levelled) height
difference. C is measured in geopotential units (gpu), where 1 gpu = 1 kGal m.

Its Advantages are:
i)  independent of levelling path used
ii) points with the same height are on the same potential surface
iii) no hypothesis needed about the composition of the Earth’s interior
iv) independent of reference ellipsoid or reference gravity
Its Disadvantages are:
i)  not expressed in length units
iiy requires the potential at the geoid

The geopotential number is used by height datums of the world (eg. NAVD 88) as the basic quantity for
the definition and computation of the vertical reference system.

L.2 Dynamic Height

To overcome the intuitive problem of geopotential numbers not being expressed in length units, the
dynamic height (H) was developed. Dynamic height is obtained by dividing the geopotential number by
a constant reference gravity, often chosen to be the value of the current normal gravity (Yo) formula
adopted by the IAG (Section 4.2.1) at a standard latitude (usually 45°, v,) (Heiskanen and Moritz, 1967,
eqn. 4-9).

HY =—- L.2)
Yo

Dynamic heights are numerically about 2% less than orthometric heights.

Its Advantages are:

i)  independent of levelling path used

ii) points with the same height are on the same potential surface

iii) no hypothesis needed about the composition of the Earth’s interior

iv) expressed in length units
Its Disadvantages are:

i)  height can be wrongly interpreted as the geometrical distance between the geoid and P;, when

P; not at the reference latitude.

ii)  its dependant on chosen reference gravity

iii) it requires the potential at the geoid
The dynamic height difference (AHP) between two points P; and P; can be expressed as a summation of
the levelled height difference (Al;) plus a correction referred to as the dynamic correction (DCy) (Vanicek
and Krakiwsky, 1986, p. 370)
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J -
AHP = Al + DC; = Al + ZM Sl (L.3)
k=i Yo
The dynamic correction can be very large because gravity varies from the equator to pole by about 5000
mGal (Heiskanen and Moritz, 1967). For a levelling line with a difference in height of 1000 m at the
equator, g = 978.0 Gal, computed with 7, = Y45c = 980.6 Gal then DC = -2.7 m.

L3 Orthometric Height

The orthometric height (H;) of a point P; is defined as the geometrical distance between the geoid (P) and
the point P;, measured along the plumb line (Figure 4-2) (Vanicek and Krakiwsky, 1986, p. 371).

ig=G
g g

where g is the mean value of gravity along the plumb line between the geoid (P) and the point P;. Since

it is not practically possible to measure g along the plumb line between P and P;, some assumption has to

be made as to the behaviour of the density of the Earth in this region. Heiskanen and Moritz (1967) show
that a density error of 0.6 g/cm?®, which corresponds to the maximum variation of rock density in practice,
introduces an error in H; = 1000m of only 0.025 m.

L.4)

There are a number of different approaches to approximate g , each of which result in a different kind of
orthometric height usually referred by the name of the proponent, eg, Helmert, Niethammer or Mader.
The Helmert orthometric height is one of the most commonly used in practice (Vanicek and Krakiwsky,
1986, p. 371) and is defined as:

HY =C /g = C /(g +0.0424H,) @.5)
where g; is the gravity at P; on the Earth’s surface (in Gal). The numerical coefficient (0.0424) follows
directly from the use of Poincare-Pray’s gravity gradient considered to be constant along the plumb line
between the geoid and terrain, thus allowing g to be directly computed for the midpoint of the plumb line

of P;. H;is the observed height in km.

The Helmert orthometric height is used in the USA to convert the NAVD88 geopotential numbers to an
orthometric height.

Its Advantages are:
i)  itis independent of levelling path used
ii) its expressed in length units
Its Disadvantages are:
1) it requires observed gravity data at the Earth’s surface
ii)  that a hypothesis is needed about the composition of the Earth’s interior
iii) that points with the same orthometric height are not necessarily on the same equipotential
surface, especially at high altitudes because of the uncertainty of the Earth’s density and
equipotential surfaces not being parallel to each other.

The orthometric height difference (AH) between two points P; and Pj can be expressed as a summation of
the levelled height difference (Al;) plus a correction referred to as the orthometric correction (OCy)
(Heiskanen and Moritz, 1967, p. 168)

AH = Alij + OCij (L6)
where

i _ 7 — -
Ocij:zgk YO 5l+g1 YHj_g} YHJ
k=i Yo Yo Yo
In reality, as mean gravity along the plumb line unknown, OC is approximated by equations based on
normal gravity (See Rapp, 1961). Therefore in theory, since the levelling differences have been corrected
using an orthometric correction based on normal gravity rather than observed gravity the heights should
be referred to as normal orthometric heights. In practice if g; - ; is 10 mGal, an error of only 0.001 m in

L.7)
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100 m of measured height difference (&) will result. This is trivial unless it accumulates systematically
(Bomford, 1980).

The Australian Height Datum and the New Zealand levelling networks are based on normal orthometric
heights (Roelse et al. 1975 and Gilliland 1987).

L4 Normal Height

The normal height (H") of a point P; was proposed in 1954 by Molodenskii et al. (1962) to overcome the
problem in orthometric heights of having to determine the mean value of gravity along the plumb line.
The normal height is obtained by dividing the geopotential number by the mean normal gravity along the
normal plumb line of P; (Vanicek and Krakiwsky, 1986, p. 372):

e
=i 1.8)
Yi

where ¥, is computed between the reference ellipsoid surface and the telluroid (Section 4.2.3)

HY =

1

As no gravity observations or assumptions for the Earth’s density are made, some countries (eg. France,
Germany and some Eastern European countries) use normal heights for their national vertical reference
system.

Its Advantages are:
i)  itis independent of levelling path used
if) itis expressed in length units
iii) it does not require observed gravity data at the Earth’s surface
iv) there is no hypothesis needed about the composition of the Earth’s interior
Its Disadvantages are:
if) it is dependant on the chosen reference gravity and ellipsoid
iii) that points with the same normal height are not on the same equipotential surface.

L.5 Ellipsoidal Height
The ellipsoidal height (h) is the distance along the normal to the reference ellipsoid between P; and the
surface of the ellipsoid (Section 5.2.4).

Its Advantages are:
i)  itis independent of the levelling path used
ii) itis expressed in length units
iii) it does not require observed gravity data at the Earth’s surface
iv) there is no hypothesis needed about the composition of the Earth’s interior
v) it can be directly measured in terms of a geocentric reference ellipsoid using satellite techniques
(ie. Satellite Altimetry or GPS)
Its Disadvantages are:
i)  itis dependant on reference ellipsoid
ii)  that points with the same ellipsoidal height bear no common relationship with the actual gravity
field of the Earth.

Ellipsoidal height when combined with the geoid height using 4.1 provides orthometric heights. However,
the determination of geoid heights when combined with ellipsoidal heights are not currently accurate
enough to satisfy first order levelling standards (Table 2-3) to be met (Section 4.8).

L.6 Summary of Vertical reference systems

Out of the five different vertical reference systems described above, the ellipsoidal height is least able to
predict the direction water will flow. A reference ellipsoid can be chosen to minimise the difference
between the ellipsoid surface and the geoid for a portion of the Earth, but a geocentric reference ellipsoid
surface (ie WGS84) can vary by up to 100 m from the geoid (DMA 1987a). This variation makes
ellipsoidal heights unsuitable for topographic mapping and for use in general. With the introduction of
space based techniques, such as Satellite Altimetry, Satellite Laser Ranging and GPS, absolute ellipsoidal
heights in terms of the Earth’s geocentre are attainable in a globally consistent reference system. These
ellipsoidal heights are useful, since being a directly determinable quantity, to monitor the relative change
of a station with respect to the chosen reference system (eg. monitoring the crustal deformation).
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The geopotential number is of great scientific importance since it uniquely defines an equipotential
surface, and is the most direct result from spirit-levelling (Heiskanen and Moritz, 1967). However, it is
not a height in a geometrical or practical sense.

The difference between dynamic, normal or orthometric height is only in the choice of scaling the
geopotential number. Dynamic heights are not suitable as practical heights due to the large dynamic
corrections. Normal heights have less obvious physical and geometrical meaning than orthometric
heights, due to the dependence on the reference ellipsoid used, but can be easily computed rigorously.
Orthometric heights are the natural height above the geoid and thus have an unequalled geometrical and
physical significance. However, orthometric heights have relatively involved computations due to
requiring surface gravity data, unless Helmert orthometric heights are used (Heiskanen and Moritz, 1967,
p. 172.)

Table L-1 compares the different vertical reference systems described in the preceding sections.
Considering the geometrical and physical significance of orthometric heights, this system is recommended
for the development of any national vertical datum in New Zealand. It should be remembered that, due to
the definition of orthometric heights, points on the same equipotential surface (except on the geoid) do not
generally have the same orthometric height; water may appear to flow “up hill” - from a lower to higher
orthometric height (Vanicek and Krakiwsky, 1986).

Geopotential Dynamic Orthometric Normal Ellipsoidal
Number Height Height Height Height

independent of levelling yes yes yes yes yes
path
hypothesis required for no no yes no no
Earth’s crust density
dependant on reference no no no yes yes
ellipsoid
small reductions no no yes yes no
same height on same yes yes no no no
potential surface
in length units no yes yes yes yes

TableL-1: Comparison of vertical reference systems (adapted from Brouwer and De Min,
1994)

The problem with all the heights discussed above, except ellipsoidal height, is that the position of the
geoid is not directly measurable.
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Appendix M

An alternative analysis technique for the RINT solutions

This Appendix outlines an alternative method, referred to as the ‘power of prediction’,
to evaluate the RINT solutions and compares it against the method described in Section
4.3.5.1.

The power of prediction (p) statistic to compare different methods of computing gravity
anomalies is stated by Tscherning (1979) as
root mean square variation (observed - computed)

= —r - M.1
p root mean square variation of the observations M.1)

The terminology ‘root mean square variation’ is somewhat confusing in that it could be
interpreted in a number of ways, three of these being: i) the square root of the sum of the
data squared divided by the number of observations, ie. root mean square (rms), ii) the
rms of the data with the mean removed, ie. standard deviation (sd), or iii) the variance of
the data, ie. standard deviation squared (var).

If each different integration cap radius of RINT is thought of as a different method then
it is possible to use the power of prediction to analyse the results. Stating (M.1) in terms
of geoid heights (N) one obtains
rms variation of dN
p= - M.2)
rms variation of N ¢,

where 6N is defined in (4.64) and Nggo is defined in (4.1a). Depending on how the term
rms variation is interpreted then (M.2) can be written as

1 n
—> (8N)*
B rms of 6N B n;( ) (M.3)
Prms = s of Noo  [1& ) '
;,; (NGEO ) ,
i=1
or
1 n 1 n 2
—>| 8N, ——ZSNJ]
3 sd of 6N B n'in noio MA
" sd of Ngyo | 1 2 (M4
- N . —— >N
ns ( GEO | n; GEO]}
or
2.
1& 1&
—> | 8N, =—D 8N,
variance of ON nio ng
= (M.5)

var

variance of N g,
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Merry (1980) has also evaluated different methods of computing gravity anomalies by
applying (M.1) in the following form

1 n
s \/;Z(Ag,- - A§,~)2

- (M.6)

p:Ag*z 1 & 1 2
;Z[A& —;;Ag,,)

i=1

where Ag is the observed free-air gravity anomaly and Ag predicted free-air gravity
anomaly. In (M.6) Merry has the denominator being in terms of computed values rather
than being observed values as described by Tscherning. As the computed values can
vary depending on the method used it is more appropriate to have the denominator in
terms of the observed values which are constant. When (M.6) is written in terms of
geoid heights (N) one obtains

rms of N

= M.7
p sd of N g0 M7
The version of (M.1) which is used to test the RINT solution will depend on what use is
to be made of the results. If absolute geoid heights are required one can argue that
(M.3) should be applied so that any bias in the solution is included in the analysis.
However, for relative geoid heights the bias can be removed so (M.4) or (M.5) could be
used.

Testing of (M.3), (M.4), (M.5) and (M.7) was undertaken using the same data that was
used in Section 4.5.2.2 with the new results in Table M-1 and Figure M-1. That data
being the reference GGM of OSU91A to nmax = 360, 0N values computed for 14 first
order control stations using the DEM to calculate the mean compartment height.

The rms of Nggo is an order of magnitude larger than any of the other statistics (Table
M-1) and therefore (M.3) 1s an order of magnitude smaller than the other p variations
(see Table 5-1 and Figure 5-1).

As the denominator for M.3, M.4, M.5 and M.7 is constant for each cap size then the
variations between the different cap sizes is due only to the changes in the computed

geoid heights.

Comparison of the results from using (M.3) and (M.7) show that the inclusion of gravity
data for cap sizes of 10 through 70 km produces approximately the same result which is
a marginal improvement over the GGM only solution (0 km cap size). For cap sizes of
80 through 110 km there is a steady improvement. For cap sizes from 120 to 150 km
the results are approximately the same as the 110 km cap size which is approximately an
80% improvement over the GGM only solution.

If one compares the standard deviation of SN with (M.7) then the major difference is
that ON produces a minimum at the 30 km cap size as well as the 110 km cap size. The
minimum using the 30 km cap size is an improvement over the GGM only solution of
approximately 65%. Comparison of (M.4) against the standard deviation of 8N shows
that both statistics produce approximately equal results. As was described in Section
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4.5.2.3, there are considerable savings in both computer time and data requirements by
choosing the 30 km as opposed to the 110 km cap size.

Cap size| sd Ngeg |  rms sd 8N | rms 8N Prms Psd Pvar p
Ngeo M.3) (M.4) (M.5) (M.7)
(km) (m) m) (m) (m) (unitless) | (unitless) | (unitless) | (unitless)
m
0 1.267] 14.012 0.303 0.548 0.039 0.239 0.057 0.432
10 1.267| 14.012 0.231 0.437 0.031 0.182 0.033 0.345
20 1.267| 14.012 0.167 0.428 0.031 0.132 0.017 0.338
30 1.267] 14.012 0.110 0.472 0.034 0.087 0.008 0.372
40 1.267| 14.012 0.148 0.473 0.034 0.117 0.014 0.374
50 1.267| 14.012 0.239 0.461 0.033 0.189 0.036 0.363
60 1.267| 14.012 0.303 0.459 0.033 0.239 0.057 0.362
70 1.267| 14.012 0.298 0.422 0.030 0.235 0.055 0.333
80 1.267 14.012 0.235 0.353 0.025 0.185 0.034 0.278
90 1.267| 14.012 0.156 0.265 0.019 0.123 0.015 0.209
100 1.267| 14.012 0.098 0.190 0.014 0.078 0.006 0.150
110 1.267] 14.012 0.071 0.112 0.008 0.056 0.003 0.089
120 1.267| 14.012 0.075 0.076 0.005 0.060 0.004 0.060
130 1.267| 14.012 0.094 0.102 0.007 0.074 0.006 0.080
140 1.267| 14.012 0.092 0.111 0.008 0.073 0.005 0.088
150 1.267] 14.012 0.103 0.130 0.009 0.081 0.007 0.103

Table M-1 : Comparison of using the standard deviation of SN (sd 8N) against the ‘power of
prediction’ (p) for determining the optimum cap for the RINT solution. Test data used
was OSU91A to mypa, = 360 as the reference GGM with the DEM mean compartment
heights and AN values at the first order control stations.

0.45

0.40 +

0.35

0.30

0.256 1+

0.20 1

0.15 1

0.10 1

—m—sd dN

—O—p_rms

—¥—p_sd

—A—p_var

—O—p

(m)

{unitless)

{(unitless)

(unitless)

{unitless)

Rihg number (x10 for km)

Figure M-1 : Comparison of using the standard deviation of 6N (sd dN) against the ‘power of
prediction’ (p) for determining the optimum cap for the RINT solution. Test data used
was OSU91A to myax = 360 as the reference GGM with the DEM mean compartment
heights and AN values at the first order control stations. [Notation used: the standard
deviation of 8N (sd dN); power of prediction using (M.3), (M.4), (M.5) and (M.7)
(p_rms, p_sd, p_var, and p)]
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For relative geoid heighting the use of either (M.4), (M.5) or the standard deviation of
ON does not alter the two cap sizes (30 km and 110 km) which produce optimum geoid
heights. It is therefore concluded that the use of the power of prediction statistic in the
form of (M.4) or (M.5) would result in the same conclusions being reached as those
based on the use of the standard deviation of 8N as used in Chapter 4.

From the results presented in Table 5-1 and Figure 5-1 it is clear that the choice of
optimum cap size for use in the RINT solution can be influenced by whether the geoid
height results are to be used for absolute or relative heighting purposes. If absolute
heights are required and results are compared using (M.3) then the optimum cap size
would be 120 km. However for relative heights using (M.4) or (M.5) to analyse the
results one would chose either the 30 km or 110 km cap size as optimum.
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