OBJECT-RELATIONAL DATABASE
MANAGEMENT SYSTEMS (ORDBMS) FOR
MANAGING MARINE SPATIAL DATA:
ADCP DATA CASE STUDY

MOHAMAD ARIEF SYAFI'l

4 NEW PL4N
of the

SLTTLEMENTS “
1 in
L NEW SoUTH WALES, Ridges g
& taken by vrder of (‘)u\'emmpn: it "J, re .L“ "\\',“ . :L .
o o PR

-
| e -
Twecrpesive '\E'
o
, }j -

A‘&j Nt ™ B

nx-“;":f"
‘., . AR
. /'w (é.‘" Cuow pastize plaing

it T TN

Retany Bay

&
.\\1\3’*’ Jrale of 30 Miles,

fitoly ' Gl '+ Somho o sholt o S SRS _‘_ﬁ"w'l'ww'nng'
T T LTy s T

UNISURV S-58, 2000

Reports from

:
SCHOOL OF GEOMATIC ENGINEERING U

THE UNIVERSITY OF NEW SOUTH WALES SYDNEY NSW 2052 AUSTRALIA

UNISURV REPORT S-58, 2000

OBJECT-RELATIONAL DATABASE
MANAGEMENT SYSTEMS (ORDBMS) FOR
MANAGING MARINE SPATIAL DATA:
ADCP DATA CASE STUDY

MOHAMAD ARIEF SYAFI'l

Received: September 2000
Accepted: October 2000

SCHOOL OF GEOMATIC ENGINEERING
UNIVERSITY OF NEW SOUTH WALES
UNSW SYDNEY NSW 2052
AUSTRALIA

Copyright © 2000

No part may be reproduced without written permission.

National Library of Australia

Card No. and ISBN 0-7334-1704-3

FOREWORD

The latter part of the 1990’s has seen major database management systems vendors
implementing spatial concepts and models into their software. These concepts were
previously confined to the Geographic Information Systems area. However, object-
oriented concepts and technology have made the inclusion of complex spatial objects into

these systems possible.

In principle, these systems allow a rich set of queries to be undertaken, provided
appropriate relationships can be defined and implemented in the database. We can expect
to store features with coordinates in these systems and undertake queries that depend on
coordinates and other spatial relationships, such as adjacency, intersection and
containment. In GIS terms, these queries are probably still fairly simple. Nevertheless,
the extensibility of these systems means that complex analysis functions can be
implemented in the database. Most of the GIS vendors therefore have options to use the

spatial capabilities of these new database systems.

The uptake of this type of technology will depend on the difficulty of implementing
databases that can use the increased functionality, as well as depending on the improved
query efficiency and expanded query capability offered. This project investigates these
aspects of one particular marine application that uses spatial capabilities of the new
database technology. It gives a useful description of the database design and
implementation process for a multi-dimensional problem, including a comparison with

using standard relational database design procedures to implement the same capabilities.

I believe this report is a useful introduction to the use of object-relational database
technology for spatial applications. It describes the application, the new technology, the
database design including data definitions, the Java and SQL implementation for loading
data from the sensor into the database, as well as querying the database. Anyone
interested in using this type of technology should find this report a useful description of
the topic area, giving an overview of object-relational technology as well as the details of

designing and implementing a spatial database in this context.

Ewan Masters

October 2000

ACKNOWLEDGMENTS

In the Name of Allah, the Most Gracious the Most Merciful. All Praises be to Allah, the

Lord of the Universe, for His Help and Guidance to the Right Path throughout my life.

I wish to express my best gratitude to my supervisor, Dr. Ewan G. Masters, for his
supervision during my study in the School of Geomatic Engineering, UNSW. His
support, comment, invaluable suggestion and advice in the whole aspect of my study are

gratefully acknowledged.

My gratitude is also expressed to A/Prof. Chris Rizos and A/Prof. A W. Kearsley, for the
encouragement and providing me some invaluable advice during my study. Many thanks
are also expressed to all school office staff for their assistance especially in
administrative matters. My special thank is expressed to Mr. Brian Donnelly and Mr.

Christiaan Werner, the school system administrators for their assistance during my study.

My sincere gratitude also goes to the National Coordinating Agency for Surveys and
Mapping (BAKOSURTANAL) of Indonesia for providing me an opportunity to study
and to the Ministry of Research and Technology of Indonesia for supporting me with the

scholarship.

ii

Acknowledgments

I would like to thank to Australian Oceanographic Data Centre (AODC) staff especially
Mr. Ben Searle (Head of AODC), Mr. Greg Reed (IT Manager of AODC) and Dr.
Krystyna Jankowska (Data Manager of AODC) for their help, support, invaluable
suggestion and discussion during my research at the AODC office. The AODC also
provided me an opportunity to attend the Informix SQL and Formida Software training

courses, which gave me the required basic knowledge on completing the research project.

I wish to express my sincere appreciation to the CSIRO, Division of Physical
Oceanography, especially Mr. Terry Byrne for providing me the ADCP data set. My
sincere appreciation is also expressed to Mr. Peter Carew of Navigate GIS Consultants.

for the discussion and invaluable suggestion on completing my project.

Finally, I wish to express my deep gratitude to my beloved wife, Hanin and my lovely
kids, Hanif and ‘Ulya, for their support, encouragement, and patience when
accompanying me during the study. I am also indebted to my parents who have always

encouraged me to study.

iii

Abstract

In the last two decades, the relational data model and Relational Database Management
Systems (RDBMS) have been dominant in GIS and other spatial data management
applications. However, this technology is not without disadvantages, especially when
dealing with complex objects. The process of normalization in the relational model
generally leads to the creation of relations that do not correspond to entities in the ‘real
world’. The fragmentation of ‘real world’ entity into many relations is inefficient, leading
to many join operations being required during query processing. In the database context,

the join operation is one of the most costly operations to perform.

The Object-Relational Database Management Systems (ORDBMS) technology has
recently emerged in response to the increasing complexity of database application such as
GIS. Tt extends the SQL of Relational DBMS to support object-oriented features
(extensibility, encapsulation, inheritance). These capabilities enable users to store a
complete spatial object such as point, line (arc) or polygon into a single column of a
table. Furthermore, it enables users to store the complex attributes’ data associated with a
spatial object in the same table. These new approaches may lead to an effective and

efficient spatial data management that can be applied in the marine area.

For a case study, a set of water current velocity profiles measured by Acoustic Doppler
Current Profiler (ADCP) is used. This data can be considered as a complex object in the
marine area and provides an example on how ORDBMS could be used to store and
manage spatial objects with complex attributes. A database application has been created
using Java application programs to provide some examples of database transactions and

queries.

iv

L.

IL.

Table of Content

Introduction

1.1 Background
1.2 Objectives
1.3 Report Structures

Object-Relational Database Management
System (ORDBMS)

2.1 Introduction
2.2 DBMS Classifications
2.3 Database Management System Generations
2.3.1 First-Generation DBMS
2.3.2 Second-Generation DBMS
2.3.3 Third-Generation DBMS
2.4 ORDBMS Features
2.4.1 Extensibility
2.4.1.1 User-Defined Data Types (UDT)
2.4.1.2 User-Defined Routine (UDR)
2.4.2 Support Complex Data
2.4.2.1 Structured Complex Data
24211 Collection Data Type
2.42.1.2 Row Data Type
2.4.2.2 Unstructured Complex Data
2.4.2 3 Using Complex Data Types
2.4.3 Inheritance
2.4.3.1 Type Inheritance
2.4.3.2 Table Inheritance

10
10
12
14
14
15
16
19
20
20
21
21
23
23
24
24
26

I1L.

25

2.4.3.3 Function Inheritance
Overview of SQL3
2.5.1 Brief History of SQL
2.5.2 SQL3 Features

2.6 Spatial Data Management using ORDBMS

2.6.1 Spatial Data Overview

2.6.2 The Use of ORDBMS for Managing Spatial Data
2.6.3 Storing Spatial Data as Complete Objects

2.6.4 Summary

Acoustic Doppler Current Profiler (ADCP)

3.1
32
33
34
3.5

3.6
3.7

Overview of Doppler Effect
How ADCP Measures the Water Current Velocity?
Three-Dimensional Current Velocity Vector
Current Velocity Profiles
ADCP Data Structures
3.5.1 Configuration Parameters
3.5.2 Measurement Information
3.5.3 Bins Data
3.5.3.1 Current Velocity Components
3.5.3.2 Quality Control Statistics
3.5.3.3 Bin Depth
ADCP Data as a Complex Object
The Reasons to Store and Manage ADCP Data into a Database

Management System.

ADCP Data Management System (ADMS)

Development

4.1 Introduction

4.2 Planning

27
28
28
29
30
30
31
32
33

34
36
39
41
44
45
46
47
48
48
49
50

56
57

4.2.1 Data Collection
4.2.2 Resources
4.3 Requirement and Collection Analysis
4.3.1 Data Requirements
4.3.2 Transaction Requirements
4.4 Database Design
4.4.1 Conceptual Database Design
4.4.2 Logical Database Design
4.4.3 Physical Database Design
4.5 Application Design
4.5.1 Type Mapping
4.6 Implementation
4.7 Data Conversion and Loading
4.8 Query Examples
4.9 Summary

Discussion

5.1 Extensibility
5.1.1 User-Define Data Types (UDT)
5.1.2 User-Defined Routines (UDR)
5.1.3 Comparison in Relational Structure
5.2 Complex Data
5.2.1 Storing Complex Data into a Single Column of a Relation
5.2.2 Accessing Attribute Members of a Complex Data
5.2.3 Comparison in Relational Structure
5.2.4 Benefits of Storing Complex Data into a Single Column
of a Relation
5.2.4.1 Storing the Spatial Data and Its Associated
Attributes in The Same Relation
5.2.4.2 Reducing Join Operation between Tables

vii

57
58
58
58
59
60
61
63
68
69
71
73
77
78
32

83
84
85
87
88
89
91
92
94

95

96

5.3 Inheritance
53.1 Comparison to Relational Structures

5.4 Some New Approaches on Marine Spatial Data Management

V1. Conclusion

References

Appendices

A List of Entity Types, Attributes of Entity Types and Relationship
Types Used in ADCP Database

B Data Definition Languages of User-Defined Data Types (UDT) and
Relations for ADCP Database in Informix Dynamic Server with
Universal Data Option version 9.14.

C List of Accessor Functions in ADCP Database

List of Java Classes and Methods for ADCP Database

viii

96
97
98

103

108

110

113

117

List of Acronyms

ADCP Acoustic Doppler Current Profiler

ADMS ADCP Data Management Systems

ADT Abstract Data Types

ANSI American National Standard Institutes

BLOB Binary Large Objects

CAD Computer Aided Design

CLOB Character Large Objects

CSIRO Commonwealth Scientific and Industrial Research Organisation
DBMS Database Management Systems

DDL Data Definition Language

DML Data Manipulation Language

EER Enhanced-Entity Relationship

ER Entity Relationship

GIS Geographic Information Systems

GPS Global Positioning System

ISO International Organisation for Standardisation
IUs Informix Universal Server

JDBC Java DataBase Connectivity

OLTP On-Line Transaction Processing

OODBMS Object-Oriented Database Management Systems
OODM Object-Oriented Data Model

ORDBMS Object-Relational Database Management Systems
ORDM Object-Relational Data Model

RDBMS Relational Database Management Systems

SQL Structured Query Language
UDF User-Defined Functions
UDR User-Defined Routines

UDT User-defined Data Types

ix

Chapter 1

Introduction

1.1. Background.

Geographic Information Systems (GIS) have been widely used in many applications in
the last few years either in land or marine applications. The problems that can be solved
by GIS have increased (according to) the improvement of GIS technology. In offshore
applications there is much marine spatial information that can be analysed and visualised
by GIS technology such as bathymetry, basic oceanographic data sets (salinity,
temperature and current), marine geology and geophysics, sea level, waves, biodiversity,
and so on. All of this information is important for supporting decision making in related
marine activities. Thus, the marine spatial data management underlying the GIS also

plays an important role on the decision-making processes.

There are numbers of database management systems (DBMSs) that can be used to
manage marine spatial data. Based on its underlying data model, the database
management systems can be categorised into relational, object-oriented, and the most
recent database technology object-relational database management systems. All of these
database management systems provide their own advantages and disadvantages

depending on the applications.

Introduction

For years, Relational Database Management Systems (RDBMS) have been used as a
common database management system for storing and managing data in GIS. However,
this traditional DBMS is not without disadvantages, especially when dealing with
complex objects (namely, objects that require more than one structure to represent it)
such as spatial data and its attributes. The process of normalization in relational model
generally leads to the creation of relations that do not correspond to entities in the ‘real
world’. The fragmentation of ‘real world’ entities into many relations is inefficient,
leading to many join operations during query processing. In a database context, a join
operation is one of the most costly operations to perform. However, RDBMS can still be

used to manage spatial data for particular purposes.

In response to the increasing complexity of database applications such as GIS, two new
data models have emerged: Object-Oriented Data Model (OODM) and Object-Relational
Data Model (ORDM). The Object-Oriented Database Management System (OODBMS)
is actually ideal for storing, managing and retrieving complex objects. The object-
oriented data model, which the OODBMS is based on, enables users to model objects that
cotrespond to entities in the ‘real world’. However, for most GIS users and vendors, it is
hard to migrate from RDBMS to pure OODBMS, because they should leave their
previous investments on RDBMS and they have to establish new investments on
OODBMS. They also have to convert all their existing data stored on RDBMS to

OODBMS, in order to be able to use the existing data in the new database system.

Introduction

The Object-Relational Database Management System (ORDBMS), which is based on
object-relational data model, can be an alternative to the above situation. The ORDBMS
provides the necessary data modeling, scalability, and robustness to store, manage, and
retrieve highly interrelated, complex, and varied information. By ORDBMS, the GIS user
can gain object-oriented benefits while storing their data in relational structures. The
users may also keep the existing data in relational structure without converting them into
the new structure. The ORDBMS enables users to store the data in both object-relational
structure or in relational structures if they want. The ORDBMS also offers the possibility
of accessing complex data via WWW because they allow fast access to huge spatial

(complex) data.

1.2. Objectives.

The objective of this study is to develop a database application to store, manage and
retrieve marine spatial information, in particular water current velocity profile measured
by Acoustic Doppler Current Profiler (ADCP), in an Object-Relational Database
Management System (ORDBMS). The application is developed using Java Programming
language. The Informix Dynamic Server with Universal Data Option version 9.14, that
support object-relational data model, has been used to store the ADCP data. For a case
study, the CSIRO Division of Physical Oceanography in Hobart has provided a set of
ADCP data within an area of 20° x 20° (30°-40° S and 150°-170° E). ADCP data was
chosen as the main data in this study since it represents the complexity of marine spatial

information.

Introduction

1.3. Report Structures.

This report consists of six chapters and five appendices.

e Chapter I Introduction.

Chapter one describes the background of this project, the objectives to be achieved and

the structure of this report.

e Chapter I Object-Relational Database Management System (ORDBMS).
Chapter two describes the most recent object-relational database management system
technology. It begins by introducing the classification of the available database
management systems and the history of database management systems generation. The.
main features of ORDBMS are then explained in detail. The overview of SQL3, as the
new standard query language that support the ORDBMS, is described afterward. An
application of ORDBMS for spatial data management is described at the end of this

chapter.

e Chapter III Acoustic Doppler Current Profiler (ADCP).
This project used a set of water current velocity measured by Acoustic Doppler Current
Profiler (ADCP). Chapter three described ADCP data in detail. It starts by describing
the Doppler effect concept and how the ADCP used this Doppler effect technique to
measure water current velocity. The ADCP data is actually a three-dimensional current
velocity vector and forms a profile of current velocities over a water column. This is

described in sections 3.3 and 3.4. Having knowledge of ADCP data structures and

Introduction

viewing ADCP data as complex object is helpful to understand the reasons for storing
and managing ADCP data into a database management system, which is described at

the end of the chapter.

Chapter IV ADCP Data Management System (ADMS) Development.

Chapter four describes the development processes of ADCP Data Management System
(ADMS). It is a database application in java programming language to store, manage
and retrieve ADCP data as a complex object in Informix Dynamic Server with
Universal Data Option version 9.14. The processes include planning, requirement and
collection analysis, database design, application design, implementation, data
conversion and loading, and testing. Some appendices are attached as a supplement to

the materials covered in chapter four.

Chapter V Discussion.

Chapter five discusses how a complex object such as ADCP data can be stored,
managed and retrieved in an object-relational database management system. The
discussion focuses on the main features of ORDBMS, such as extensibility, support
complex object and inheritance, using ADCP as a case study. Some comparison to its
predecessor technology of relational DBMS, as well as some benefits of storing a
complex object in ORDBMS are also discussed. Some examples from ADCP database

are also provided to have a clear discussion on the topics.

Introduction

e Chapter VI Conclusion.
Chapter six summarises what has been done in the project and concludes with some

approaches that can be applied in marine spatial data management.

Chapter 11
Object-Relational Database Management Systems

(ORDBMS)

2.1. Introduction.

For many years, Relational Database Management Systems (RDBMS) have been used as
a common database management system for storing and managing data in many
applications. However, traditional RDBMS is designed to handle large volume of
transactions, against simple data such as character and numeric data and to build simple
relationships between data. This simplicity makes RDBMS not ideal for storing,
managing and retrieving complex data such as images, video, sound, or spatial data (data
that can be registered to a location on earth surface). The term complex data can be

thought as any data that requires more than one structure to represent it.

The Object-Relational Database Management System (ORDBMS) has emerged to
overcome the difficulties with the Relational DBMS when dealing with complex data.
The ORDBMS extend the capabilities of Relational DBMS to have object-oriented
features, that are required to model complex objects, while storing the data as tables with
rows and columns (relational structures). As with traditional relational DBMS, queries to
the data stored in ORDBMS can also be performed using a Structured Query Language
or SOL. A new SQL standard (commonly referred to as SQL3 or SQL99) has been

developed as an extension to the 1992 ISO SQL standard (commonly referred to as SQL2

Object-Relational Database Management Systems (ORDBMS)

or SQL92) to support these object-oriented features. Thus, the ORDBMS are relational in
nature because they support SQL but they are also object-oriented in nature because they

support complex data.

2.2. DBMS C(lassifications.

Stonebraker (1996) has proposed a four quadrants view of DBMSs classifications as
illustrated in figure 2.1. The horizontal axis shows data complexities that an application
may require, which are divided into simple data and complex data. The vertical axis
differentiates whether an application requires query capabilities, which are divided into
two choices, "query" and "no query". Depending on its characteristic, an application fits
into at least one of the four quadrants. However, many applications may fit more than one

quadrant.

With
queries

No
queries

Simple Complex
data data

Figure 2.1. Classification of DBMSs.

Object-Relational Database Management Systems (ORDBMS)

In the lower left quadrant are those applications that process simple data and do not need
querying of the data (using SQL). Most of the text editors, such as Microsoft Word, Word
Perfect, Frame Maker or vi (a Unix text editor), fall in this quadrant. Such kinds of text

editor deal with simple data such as characters and numeric and require no queries.

The upper left quadrant is those applications that process simple data and also have
requirements for complex querying. Many traditional business applications fall into this
quadrant and a Relational DBMS may be the most appropriate database management
system. There are hundreds of relational DBMS available in the market for both
mainframe and microcomputer environments. Oracle, Informix, MS-Access, FoxPro are
some examples of relational DBMSs available in the market. Relational DBMS have a
standard language for querying the data, which is called Structured Query Language or

SOL.

The lower right quadrant occupies applications that process complex data and has no
significant requirement for querying the data. The term complex data are often referred to
as “objects” or “rich data types” because they represent complex internal structures and
usually require special functions, or methods, to create and manipulate the data. For this
type of application, for example Computer-Aided Design (CAD) packages, an Object-

Oriented DBMS may be an appropriate choice of database management system.

Finally, in the top right quadrant are those applications that process complex data and

have complex querying requirements. A query of an image by content is an example of

Object-Relational Database Management Systems (ORDBMS)

this condition. As an illustration, a client would like to find images within a database,
which contain a specific object. The location of the object might be a good key to search
all images that match to the queries. Because it has complex data and query requirements,
this type of application belongs on the upper right quadrant of the matrix and Object-

Relational DBMS is an appropriate database management system to handle them.

2.3. Database Management System Generations.

Database management systems have been developed since 1960 to overcome a problem
of managing vast amount of data in many applications. The database management
systems development can be divided into three generations. The first generation of
database management system was developed in the period of 1960 to 1970s as a file-
based system to handle large amount of data. The second generation of database
management system was initiated by the development of relational DBMS in period of
1970s. The third generation database management systems have emerged in response to
the weakness of relational DBMS on handling complex data. The object-oriented DBMS
and object-relational DBMS represent the third generation database management

systems.

2.3.1. First-Generation Database Management Systems.

The development of database management systems was started in 1960s when Apollo
moon-landing project was initiated. The database was developed as a file-based system
to handle and manage the vast amount of information that the project would require. The

prime contractor of the project, North American Aviation (NAA - now Rockwell

10

Object-Relational Database Management Systems (ORDBMS)

International), developed a software known as GUAM (Generalised Update Access
Method). GUAM was based on the concept that smaller components come together as
parts of larger components, and so on, until the final product is assembled. This Structure,
which conforms to an upside-down tree, is also known as a hierarchical structure. In
mid 1960s, IBM joined NAA to develop GUAM into what is known as IMS (Information

Management Systems).

Another significant development of database system in mid 1960s was initiated by the

development of IDS (Integrated Data Store) from General Electric. IDS used a different

structure than IMS, which is known as network structure. This structure was developed
partly to address the need to represent more complex data relationships than could be
modelled with hierarchical structures, and partly to impose a database standard. To help

establish such standard COnference on DAta SYstems Languages (CODASYL) formed a

List Processing Task Force in 1965, subsequently renamed the Data Base Task Group

(DBTG) in 1967. The term of reference for the DBTG was to define standard

specifications for an environment that would allow database creation and manipulation.

The DBTG proposal identified three components:

e The network schema - the logical organisation of the entire database as seen by the
Database Administrator (DBA), which includes a definition of the database name, the
type of each record, and the components of each record type.

e The subschema - the part of the database as seen by the user or application program.

e A data management language to define the data characteristics and the data structure,

and to manipulate the data.

11

Object-Relational Database Management Systems (ORDBMS)

For standardisation, the DBTG specified three distinct languages:

e A schema Data Definition Language (DDL), which enable the DBA to define the
schema.

o A subschema DDL, which allows the application programs to define the parts of the
database they require.

e A Data Manipulation Language (DML), to manipulate data.

These two mainstream database approaches, hierarchical structure (IMS) and network

structure (CODASYL), represented the first-generation of DBMSs. However, these

two models have some fundamental disadvantages:

e Complex programs have to be written to answer even simple queries based on
navigational record-oriented access.

e There is minimal data independence.

e There is no widely accepted theoretical foundation.

2.3.2. Second-Generation Database Management Systems.

The second-generation database management system was initiated by the development of
relational database model, which was introduced by E.F. Codd of the IBM Research
Laboratory in 1970. The relational model approach was addressed to overcome the
disadvantages of the former approaches of hierarchical and network models. In the
relational model, data is perceived as tables with rows and columns. Many experimental

relational DBMSs were implemented thereafter, with the first commercial products

12

Object-Relational Database Management Systems (ORDBMS)

appearing in late 1970s and early 1980s. Of particular note is the System R project at

IBM's San Jose Research Laboratory in California. This project was designed to prove

the practicality of the relational model by providing an implementation of its data

structures and operations, and led to two major developments:

e The development of a structured query language called SQL, which has became the
standard language for relational DBMSs.

e The production of various commercial relational DBMS products during the 1980s;

for example, DB2 and SQL/DS from IBM, ORACLE from Oracle Corporation.

Nowadays, there are many relational DBMSs available for both mainframe and
microcomputer environments. Some other examples for multi-user relational DBMSs are
CA-Openlngres from Computer Associates, Informix from Informix Software inc.
Examples of microcomputer-based relational DBMSs are Access and FoxPro from

Microsoft, Paradox and Visual dBase from Borland.

Relational DBMSs has been used for many years as a dominant DBMS especially in the
area of traditional business applications, such as order processing, inventory control,
banking and airline reservations. A Relational DBMS has its strength in its simplicity, its
suitability for Online Transaction Processing (OLTP), and its support for data
independence. However, relational DBMSs have proven inadequate for advanced
database applications that require object-oriented features such as user-defined data type,
encapsulation, inheritance, polymorphism, dynamic binding of methods, complex objects

including non-first normal form objects, and object identity. These features are

13

Object-Relational Database Management Systems (ORDBMS)

extensively used by many advanced-database applications include: Computer-Aided
Design (CAD), Computer-Aided Manufacturing (CAM), Computer-Aided Software
Engineering (CASE), Office Information System (OIS) and Multimedia Systems, Digital

Publishing or Geographic Information Systems (GIS).

2.3.3. Third-Generation Database Management Systems.

In response to the increasing complexity of database applications that could not be
adequately handled by relational DBMS, two new data models have emerged: the Object-
Oriented Data Model (OODM) and Object-Relational Data Model (ORDM). As its
name, these data models have the main characteristics of supporting object-oriented
features such as user-defined data types and user-defined function, complex data, and
inheritance. These two data models represent the third generation of database

management systems.

In this project, the later data model of object-relational data model and object-relational
DBMS are used to manage the water current velocity measured by Acoustic Doppler
Current Profiler (ADCP). This data can be considered as complex data in the marine area.
Thus, a DBMS with object-oriented features would appear to be appropriate to be used.

The next section explains some features of ORDBMS.

2.4. ORDBMS Features.

Object-Relational Database Management Systems (ORDBMS) combine the relational and

object-oriented DBMS capabilities. ORDBMS has object-oriented features such as

14

Object-Relational Database Management Systems (ORDBMS)

extensibility (support user defined data types and Routines), support complex data, and
inheritance, while storing the data in relational structures. The term relational structure
means that the data is perceived as tables with rows and columns. The object-oriented
capabilities of an ORDBMS can be found in SQL mode. A new SQL standard, referred to
as SQL3 or SQL99 has been developed to support this object-oriented features of
ORDBMS. Although the object-relational structure extends the capabilities of the
relational structure, the users can still implement their data model as a traditional

relational database if they desire.

The ORDBMS stores objects by automatically decomposing them into table entries.
What the user sees looks like an object, but underneath, it uses the features of relational
model (storing data in rows and columns). This allows for objects on the front end, where
they are most visible to the users, while keeping the features of a relational database on

the back end.

As with any other object-oriented programming languages, ORDBMS has the common
features or capabilities of such kind of OO programming languages. Some of these
common capabilities, which are found in SQL mode, will be discussed briefly in the

following sections.

2.4.1. Extensibility.

In traditional relational database, users are limited to use only the built-in data types that

the database server defines and supports. Consequently, users can store and access only

15

Object-Relational Database Management Systems (ORDBMS)

those types of data that the built-in data type support. The built-in data type is atomic data
type; that is, it cannot be broken into smaller pieces. Some examples of built-in data types
are character (either fixed or variable length), numeric, date, decimal, float, integer,

money, real, etc.

The extensibility feature of ORDBMS extend the capabilities of the database server that
enables users to define new data types (user-defined data types), as well as the access
methods and functions to support them, and user-defined routines. This allows a user to
store and manage complex data such as spatial data, time series, image, audio, video,
large text documents and so forth. A data type is a descriptor that is assigned to a variable
or column and that indicates the type of data that the variable or column can hold. User-
defined data types are treated identically to built-in data types. Values of the user-defined
data types may be stored, examined, using queries or function calls, passed as arguments

to database functions, and indexed in the same way as the built-in data types.

2.4.1.1. User-defined data types (UDT).

There are several different ways to define a new data type. Users can create a new data
type by redefining some of the behaviour of the existing data type or they can create a
new data type by defining the behaviour of that new data type. In the first case, some
additional behaviour can be defined to the existing data type such as additional operations
that are valid to the new data type, new operator class for indexing or additional casting
function to convert between data types. Since it is created from existing data types, its

internal structure (which provides the format of the data type) has already known by the

16

Object-Relational Database Management Systems (ORDBMS)

database server and the database server will automatically define implicit cast between
the new data type and its source types. In the second case, the users are allowed to define
new data types and define the behaviour of these new data types to the database server.
As the first case, the behaviours those are defined for the new data types include their

internal structure, operation, operator class and casting function.

There are several categories of user-defined data types: simple distinct types, abstract
types with complex structure, and named-row types. The named row data types are also
referred to as complex data types and will be explained in the next section. Except the
abstract data type, these user-defined data types are created from the existing data types

(either built-in or UDT).

A distinct data type is created by renaming an existing data type to differentiate it from
the base type. For example we may create a distinct type of 1atitude from an existing
data type of float with a length of 12. The following SQL statement illustrate the

example:

CREATE DISTINCT TYPE latitude AS float(12);

The DBMS treats any column defined as a 1atitude type as a different data type than
a column defined as a generic float type, even though under the covers they are both

float types with the same physical representation.

17

Object-Relational Database Management Systems (ORDBMS)

An abstract data type (ADT) is a custom-coded type that represents arbitrarily complex
internal structures (Informix call ADT as ‘opaque’ data type). Since it is custom-coded,
the DBMS does not know the structure of this ADT. Thus, the user who created this ADT
should determine the internal structure (usually in C language) and provides a set of
external attributes and functions through which to access the data. This is implementing a
form of encapsulation, namely the application does not have to understand the internal
structure of the type in order to create and manipulate the data. For example, we might
want to create a circle as an ADT of ¢ircle data type. This data type includes (X,Y)
coordinate, to represent the centre of the circle and a radius value. The following shows

the internal data structure of the circle data type written in C language:

typedef struct
{

double x;
doubley;
} point_t;

typedef struct
{

point_t center;
double radius;
} circle_t;

The internal representation for circle requires three double values: two double values for
x and y that form the centre of point_t data type, and one for the radius. Because
each doub1e value is 8 bytes, the total internal length for the ¢ircle_t structure is 24

bytes. The following SQL statement register this new data type to the DBMS:

CREATE OPAQUE TYPE circle_t (INTERNALLENGTH = 24);

18

Object-Relational Database Management Systems (ORDBMS)

The user should also register the support functions in order to be able to access and

manipulate the data as well as casting to or from other data types.

In object-relational system, a data type is defined as a stored representation of particular
kind of information together with the appropriate operators and functions for the
information. The flexibility of object-relational systems makes user-defined data types a
powerful means to model complex database applications. But by themselves, new data
types are not very useful unless users can perform operations on instances of the type.

This issue will be discussed in the next section.

2.4.1.2. User-Defined Functions (UDF).

In a traditional RDBMS, there are only built-in operators provided by the database server
such as arithmetic and comparison operators. In ORDBMS, the users are allowed to use
the built-in operators as well as creating type-specific operations that are valid to the data
type they have created (user-defined). This user-defined function can be written in either
SQL or a general-purpose third-generation programming language such as C/C++ or

Java, and then register them to the system.

User-defined functions define the methods by which applications can create, manipulate,
and access the data stored in the defined data types. User-defined functions also support
the notion of overloading or polymorphism, which refers to the concept of using the same
name of functions but different inputs or arguments. This function will be executed based

on the data type of the arguments.

19

Object-Relational Database Management Systems (ORDBMS)

2.4.2. Support Complex Data.

The term complex data means any data that requires more than one structure to represent
it. The data structure of a complex object may be known by the database server or the
users may define and register it to the database. Such an object is referred to as structured
complex object. Sometimes, the database system does not know the data structure of
complex data and only the application program knows the data structure. This situation is
referred to as an unstructured complex object. In database context, unstructured complex

objects are sometimes known as Binary Large Objects (BLOB).

2.4.2.1. Structured Complex Data.

A structured complex data type is built from a combination of one or more existing data
types, either built-in or other complex data types, with an SQL type constructor. An
important characteristic of a structured complex data type is that we can easily access
each of its component data types using an SQL statement. There are two kinds of

structured complex data type: collection types and row types, as describe in figure 2.2.

Figure 2.2. Complex Data Types.

20

Object-Relational Database Management Systems (ORDBMS)

2.4.2.1.1. Collection data types.

A collection data type is a group of elements (array) of the same data type, which can be
atomic or complex data type. This data type allows multiple values to be stored in a
single column of a table. The requirements for elements with ordered position and
uniqueness among the elements determines whether the collection is a LIST, SET or
MULTISET. A LIST is a group of ordered elements, each of which need not be unique. A
SET is a group of elements, each of which is unique and the order of the elements is
ignored. A MULTISET is a group of elements, each of which need not be unique and the

order of the elements is ignored.

A group of sequence points that form a polygon is an example of LIST data type. Within
the LIST, each point is unique and the order of the points is a necessity to form a
polygon. A scattered set of sampling locations may be considered as SET data type. In

this situation, the order of the sampling locations is not important.

2.4.2.1.2. Row data type.

Row data type is a group of related data fields, of any data type, that form a template for a
record. The assignment of a name to the row type determines whether the row type is a
named row type or an unnamed row type. A named row type is a group of data fields that
are defined under a single name. This name is unique within the database. A field refers
to a component of a row type and should not be confused with a column, which is
associated with tables only. The fields of a named row type are analogous to the fields of

a C-language structure or members of a class in object-oriented programming. For

21

Object-Relational Database Management Systems (ORDBMS)

example, a geographic position is a complex type, since it can be subdivided into
horizontal and vertical (height) positions. It is acceptable for the components of a
complex type to be complex types themselves and form a hierarchy; for example, the
horizontal position of a geographic position can be further subdivided into two atomic

data: latitude and longitude as shown in figure 2.3.

position_t

horizontal_t

Figure 2.3. An example of complex type

An unnamed row type is a group of related data fields that is not assigned any name.
Unlike named row types that are identified by their name, unnamed row types are
identified by their structure. To construct a named row type, indicate the name of the row
type along with the name and data type of the constituent members. An unnamed row
type can be created by the same way but without assigning the name of the type. Figure

2.4 shows how to create a named row type:

Create row type horizontal_t (
Latitude float,

Tongitude float);

22

Object-Relational Database Management Systems (ORDBMS)

Create row type position_t (
Horizontal horizontal_t,

Height float);

Figure 2.4. Example of creating a named row typed.

A named row type can also be assigned to a table to create a typed table. Only a typed

table may have inheritance properties.

2.4.2.2. Unstructured Complex Data.

Unstructured complex data is also referred to as Binary Large Object (BLOB). This
includes maps, image, audio, video, large text documents and so forth. The database
server does not know the structure of this data type. Thus, using an application program
is the only way to access and manipulate this data type. The BLOB data types are
managed by the database in separate space optimised specifically for large objects. The
column of a BLOB type only stores the address of the BLOB data in the storage memory.
The BLOB data type provides several performance enhancements such as random access,
enabling the database to perform physical /O on the requested portion of the data.
Working with BLOB data type in an application program is very similar to that of a file

systems, allowing existing file-based applications to more easily use BLOB data types.

2.4.2.3. Using Complex Data Types.
In ORDBMS, a complex data type can be used in the same way as built-in or abstract
data types. For example, we can use complex data type as:

e column types.

23

Object-Relational Database Management Systems (ORDBMS)

e routine argument types and return types.

e field types in other complex types.

2.4.3. Inheritance.

Inheritance is the process that allows a type or a table to acquire the properties of another
type or table. The type or table that inherits the properties is called subtype or subtable.
The type or table whose properties are inherited is called supertype or supertable. The
subtype or subtable inherits all properties that are defined on the supertype or supertable
such as structure, behaviours (routines, aggregates, operators, constraint definitions,

referential integrity, access methods, storage options, triggers, etc.), and indexes.

2.4.3.1. Type Inheritance.

Type inheritance is only applied to named row data types. This type inheritance enables
us to group several named row types into a fype hierarchy in which each subtype inherits
the representation (data fields) and the behaviours (routines, aggregates, and operators) of
the super type under which it is defined. Suppose we construct a data type with two field

members called person_t:

Create row type person_t (
Name varchar(30),

Address address_t);

Figure 2.5. Creating a named row type.

24

Object-Relational Database Management Systems (ORDBMS)

We can now construct two additional data types, employee_t and student_t which

are sub types of supertype person_t:

Create row type employee_t (
Salary int,
Startdate date)

Under person_t;

Create row type student_t (
course varchar(30),
Gpa float)

Under person_t;

Figure 2.6 Inheritance hierarchy

The subtypes employee_t and student_t inherit all of the attributes and properties
from its supertype person_t. The type employee_t inherits name and address from
person_t and then specifies to additional attributes salary and startdate.

Similarly, student_t inherits the same attributes from person_t and adds two

25

Object-Relational Database Management Systems (ORDBMS)

additional attributes of its own (course and gpa). If the supertype person_t has
another property such as routines, aggregates, constraint definitions etc, they will be
inherited by the subtypes too. Figure 2.6 shows the schema of the above inheritance

hierarchy.

2.4.3.2. Table Inheritance.

As mentioned above, the data inheritance only applies to data types. If a table is
constructed that is not of a named type, then this table will be of an anonymous type and
cannot utilise inheritance. Therefore, we need to construct types and assign them to tables
rather than merely creating tables. In the former case, we can leverage inheritance while
in the latter case, we cannot. The following statement constructs the typed tables of

person, emp, and student:

Create table person of type person_t;

Create table emp of type employee_t

Under person;

Create table student of type student_t

Under person;

Similarly to type inheritance, the subtable of emp and student inherit all attributes
possessed by person table and thus create a table hierarchy, as shown in figure 2.6.

The scope of SQL statement in table hierarchy is the table and all tables underneath it or

26

Object-Relational Database Management Systems (ORDBMS)

specifically the subtables. A query on a table may retrieve data from its subtables but

never from tables, which are higher up in the hierarchy (supertables)

2.4.3.3. Functions Inheritance.

A function is a task that the database server performs on one or more values. There are
built-in functions such as cos(), abs() etc., and user-defined functions. Unlike the built-in
functions which can be used anywhere by the system, the user-defined function can only

be used by the type that the function is attached to and its underneath type.

The inheritance behaviour of a user-defined function is determined by its arguments. As
in type inheritance, the functions attached to any node (type) of inheritance hierarchy
will be inherited to its underneath types. This means that if the ORDBMS is asked to
evaluate a function and there is no function with the correct name and arguments, then
the system searches the type hierarchy for a supertype on which the function is defined

with the proper arguments. If one is found then the system uses this function.

It is permissible to have many functions with the same name but have different input
arguments. For example a function called sum (...) applied to integer data types would
perform conventional addition, while sum(..)applied to spatial data types would
perform vector addition. This is called as function overloading or polymorphism. This
polymorphism functionality is very convenient for users because potentially there can be
one function for each data type. By this functionality, users may make one function for

different data types as its arguments.

27

Object-Relational Database Management Systems (ORDBMSYS)

2.5. Overview of SQL3.

Structured Query Language or SOL is a standard language that is used to direct all
operations on the relational database. It composed of statements, each of which begins
with one or two keywords that specify a function such as SELECT, CREATE, UPDATE,

DELETE etc.

2.5.1. Brief history of SQL.

SQL was invented at IBM in 1970s along with the introduction of relational database
structure by E.F. Codd. Later, other vendors began to provide similar products for non-
IBM computers. Each SQL implementation was slightly different from the IBM version
and from other vendors. In 1986, a committee called X3H2, sponsored by American
National Standards Institutes (ANSI), issued the SQL1 standard which defines a core set
of SQL features and the syntax statements such as SELECT. Some database vendors had
implemented some extension to this SQL standard to take an advantage of local hardware
and software features. Another SQL standardisation was published in 1987 by
International Organisation for Standardisation (ISO). In 1989, ISO published an

addendum that defined an ‘Integrity Enhancement Feature’.

The first major revision to the ISO standard was occurred in 1992, which is referred to as
SQL2 or SQL92. Although some features have been defined in the standard for the first

time, much of this has already been implemented, in part or in similar form, in one or

28

Object-Relational Database Management Systems (ORDBMS)

more of the many SQL implementations. Features that are added to the standard by the

vendors are called extensions.

The requirements to support object-oriented features in relational database have created
an effort to add this functionality to SQL92 standard. In 1999, ANSI (X3H2) and ISO
(ISO/IEC JTC1/SC21/WG3) SQL standardisation committees issued a new standard of
SQL to support object-oriented data management, by adding features to SQL 92 standard.

This new SQL standard is referred to as SQL3 or SQL99.

2.5.2. SQL3 features.
The SQL3 standard is fully compliant to SQL92 standard with some additional features
to support object-oriented requirement of database application. The parts of SQL3 that

provides the primary basis for supporting object-oriented data modelling are:

User-defined data types (UDI), either abstract data types (ADT), distinct types or
named row types.

User-defined functions and procedures (all together referred to as user-defined

routines, UDR).

Type constructors for unnamed row types and reference types.

Type constructors for collection data types (LIST, SET and MULTISET).

Support for large objects either Binary Large Objects (BLOB) or Character Large

Objects (CLOB).

29

Object-Relational Database Management Systems (ORDBMS)

In the SQL92 standard, the users are restricted to only use the built-in data types that the
database server provided such as CHARACTER, CHARACTER VARYING, BIT,
BIT VARYING, NUMERIC, DECIMAL, INTEGER, SMALLINT, FLOAT,

REAL, DOUBLE PRECISION, DATE, TIME, TIMESTAMP, and INTERVAL.

The new SQLS3 data types give a relational database more flexibility in what can be used
as a type for a table column. For example, a column may now be used to store the new
type BLOB, which can store very large amount of data as raw bytes. A column may also
be of type CLOB, which is capable of storing very large amount of data in character
format. In addition to this BLOB and CLOB data types, the users are able to randomly
access as well as update only on the requested portion of the data. The new collection
data types make it possible to use multi-values or an array as a column value. Even the
new user-defined data types, named row types and distinct types, can now be stored as

column values.

2.6. Spatial Data Management using ORDBMS.

2.6.1. Spatial Data Overview.

The term spatial data means any data that can be registered to a location on the earth
surface. In other word, it has geographic location. There are several main characteristics
that spatial objects should have:

e Location: The objects exist at some known point on the surface of the earth.

e Form: The objects have a geometric representation. There are three basic spatial

objects: point (0D), line (1D) and polygon (2D).

30

Object-Relational Database Management Systems (ORDBMS)

o Attributes: properties that describe the spatial objects.

o Spatial relationship: relationship between objects.

2.6.2. The use of ORDBMS for Managing Spatial Data.

In the last two decades, the relational data model and Relational Database Management
Systems (RDBMS) have been commonly used in GIS and any other spatial data
management applications. However, the RDBMS has some weakness for managing
spatial data as a complex object. This was because the relational data model was designed
to support very limited data types ie. numeric, character and date, that make it not ideal
for storing, managing and retrieving complex objects. The first Normal Form (1NF) rule
of normalisation process in relational model requires any complex object to be broken
down into atomic values. This may lead to the creation of relations, which is inefficient
since it requires many join operations during query processing. In addition, another
applications such as CAD and image processing systems have developed their own data
formats, requiring anyone who wanted to integrate GIS, CAD and raster image data to

use multiple data translators.

The object-relational database management system (ORDBMS) provides facilities to
create user-defined data types (UDT) and user-defined functions (UDF) that enable users
to store and manage complex spatial data, as an object, along with data from other
sources such as CAD and raster image in the same database. Creating UDT and UDF for
the spatial object introduce some new approaches of spatial data management that

provides two key benefits:

31

Object-Relational Database Management Systems (ORDBMS)

o The spatial data types can be treated as any other built-in data types such as numeric,
character and date, enabling us to create UDF that work with spatial data as an
argument parameters in performing spatial-based analysis.

e The spatial database application can be developed as ‘thin’ as possible by reducing
application server tasks, since the database server may perform most of the required

tasks rather than implementing them in the application server.

2.6.3. Storing spatial data as complete objects.

There are three basic spatial objects to represent a geometric feature of an entity: point,
line and polygon. Any geographic features can be derived from these three basic objects.
The ORDBMS enables us to store the spatial objects in a single column, without
decomposing it into atomic values, as should be done in RDBMS. Furthermore, we may
perform a spatial analysis based on this spatial object data type. For example, we may
want to know the hospitals located at a radius of 10 km from a particular location (35S,

151E). The following SQL statement provides an example of the situation:

SELECT hosp_name, hosp_address
FROM hospital
WHERE Within(hosp_position, ¢(-35,151)’::point, 10000);

The above SQL statement will return the hospital names (hosp_name) and its address
(hosp_address) from hospital table that are located within radius of 10 km from
the specified location (35S, 151E). The within key word in the WHERE condition

statement is a user-defined function (UDF) to perform spatial analysis of proximity

against a spatial object of point data type. The hosp_position is also a spatial

32

Object-Relational Database Management Systems (ORDBMS)

object of point data type represent the geographical position (lat, long) of the hospitals.
As can be seen, the ORDBMS provides an efficient way of performing spatial analysis in
the database server with a single SQL statement, instead of performing the analysis in the

application.

2.7. Summary.

The object-oriented features of ORDBMS provide a better way of modelling complex
objects than RDBMS. 1t allows storing any complex object as a complete object into a
single column of relation by utilizing user-defined data types (UDT) and user-defined
function (UDF) capabilities. Moreover, ORDBMS provides a new approach on spatial
data management that enables users to store the spatial data and the associated attributes
(either simple or complex) into the same relation. This can be a benefit since users can
create a simple SQL statement to manage complex spatial data as well as performing
simple steps of spatial analysis. To examine the capabilities of ORDBMS in spatial data
management, a set of water current velocity profiles measured by Acoustic Doppler
Current Profiler (ADCP) is used in this project. The ADCP data may represent the
complexity of spatial data in marine area and ORDBMS would be an appropriate

database management system to manage them.

33

Chapter 111
Acoustic Doppler Current Profiler

(ADCP)

The Acoustic Doppler Current Profiler (ADCP) measures the current velocity and its
direction by transmitting high frequency acoustic (sound) waves, and then determining
the Doppler frequency shift of the return signal scattered from assemblages of “drifters”
in the water column. The sound wave is transmitted from a four-beam transducer in
different directions (either vessel hull-mounted or fixed positioned). Three beams are
required to determine the three-dimensional current velocity (two horizontal and one
vertical velocity components). The fourth beam is required to examine the quality of the

measured velocity.

This chapter will discuss about how the ADCP works and estimates the three-
dimensional water current velocities vector, the ADCP data as complex object and some
reasons why we need to store and manage ADCP data into a database management

systems.

3.1.0verview of Doppler Effect.

The Doppler Effect is a change in the observed sound pitch resulted from relative motions
between the sound source and receiver. If a sound source A moves relatively to a receiver

B, the sound transmitted from the sound source A will have different frequency when it is

34

Acoustic Doppler Current Profiler (ADCP)

observed at position of receiver B. A good example of this situation is the sound made by
a train as it passes by. The whistle has a higher pitch as the train (object A) approaches
the observer (object B), and a lower pitch as it goes away from the observer. This change
of pitch is directly proportional to how fast the train is moving. Therefore if we measure

the pitch and how much it changes, then we can calculate the speed of the train.

A sound wave is produced by the change of pressure in air, water or solids. When there is
a change of pressure at any point, this will be propagated to all directions in the media. In
case of water the propagation velocity depends on its frequency () and its wavelength

(A). Mathematically, this relationship can be expressed by the following equations:

C=fA 3.1

To provide more illustration of Doppler effect, imagine we are next to some water and
watching waves pass by. While standing still, we see eight waves pass in front of us in a
given interval. Now, if we start walking toward the waves, more than eight waves will
pass by in the same interval. Thus, the wave frequency appears to be higher. If we walk
in other direction, fewer than eight waves pass by in the same interval, and frequency
appears to be lower. This is the phenomenon of Doppler effect, and the wave frequency
difference appears, when we are standing still and when we are walking, is called by

Doppler shift.

The same situation happens in sound propagation in water. The receiver will hear the

sound with a higher frequency when moving towards the sound source and a lower

35

Acoustic Doppler Current Profiler (ADCP)

frequency when moving away from the sound source. In this situation, the Doppler shift

can be expressed by the following equations:

Fp=Fs(V/C) (3.2)

Where:
Fp = the Doppler frequency shift.
Fs = the frequency of the sound when everything is still.
V = the relative velocity between the sound source and the sound receiver (m/sec).

C = the speed of sound in water (m/sec).

As can be seen from equation (3.2), the Doppler shift increases if the sound
source/receiver moving towards one another (relative velocity increases), and decreases if
the sound source/receiver moving away one another (relative velocity decreases). The
Doppler shift also increases if the frequency of the sound increases and decreases if the

frequency of the sound decreases.

3.2. How ADCP Measures the Water Current Velocity.

ADCP use the Doppler effect to measure the water current velocities. By transmitting the
sound wave at a fixed frequency and listening to echoes returning from the sound
scatterers in the water, the three-dimensional water current velocities can be estimated
(Figure 3.1). These sound scatterers can be found anywhere in the ocean as small
particles or plankton. They float in the water and on average they move at the same

velocity as the water movement.

36

Acoustic Doppler Current Profiler (ADCP)

Transmitted
Sound pulse Scatterers
T
(a) I o -_':-_:
Transducer R
weasiuaty
R
e gtuyfa,
®) SREIeS.
petaatesy
waialn
Transducer i

Reflected
Sound pulse

Figure 3.1. The ADCP transmit the sound wave (a).
The scatterers reflect the sound wave

back to ADCP (b).
Sound pulse Moving scatterers
(a) I ‘}“HH‘\H" r.......-.-..
.'.p‘.' :' 1
Transducer s
Transducer

Il 2
o | <ITmT &8~

Transducer
Second Doppler-Shifte

Figure 3.2. The backscattered sound heard by the ADCP
is Doppler-shifted twice.

When sound scatterers move toward the ADCP, the transmitted sound heard by the
scatterers is Doppler-shifted to a higher frequency, or vice versa. The amount of this shift
is proportional to the relative velocity between the ADCP and scatterers (Figure 3.2). Part
of this Doppler-shifted sound reflects backward or is "backscattered" to the ADCP, and
part of them reflects to other directions. The backscattered sound appears to the ADCP as

if the scatterers were the sound source. In this situation, the ADCP hear the backscattered

37

Acoustic Doppler Current Profiler (ADCP)

sound Doppler shifted a second time. Therefore, since the ADCP both transmit and

receives sound, the Doppler shift is doubled, changing equation (3.2) to:

Fob=2F (Vv /C) (3.3)

The Doppler shift only works when there is a change in distance between sound source
and receiver. This is known as a radial motion. If the sound source and receiver are
moving at fixed relative position to one another, there will no Doppler shift.
Mathematically, this means that the Doppler shift results from the velocity component in

the direction of the line between the sound source and receiver. In ADCP case, this adds a

new term, cos(at), to equation 3.3:

Fo = 2 Fs (\"} / C) COS(G) (34)

Where o, is the angle between the relative velocity vector and the line between the ADCP

and scatterers (Figure 3.4).

Water Velocity

aned
: SRR
Acoustic Beam b A

Transducer wemeEs

Scatterers

Figure.3.4.Doppler shift occurs if there
is a radial motion.

38

Acoustic Doppler Current Profiler (ADCP)

3.3.Three-Dimensional Current Velocity Vectors.

As mentioned in section 3.2, each beam of the ADCP measures a single velocity
component of the current. Thus, to obtain three-dimensional velocity components (two
horizontal and one vertical velocity components), we require a minimum of three
measurements from three beams simultaneously. These beams are configured to point in
different directions to enable measuring different velocity components. For example, if
the beam point east and another north, the ADCP will measure east and north velocity
components. If the beams point in other directions, trigonometric relations can convert

the measured current velocities into east and north components.

To use such kinds of multiple beams and apply trigonometric relations, one must make an
assumption that the water currents are horizontally homogenous over layers of constant
depth. The trigonometric assumption will not work if the current velocities are not the
same at the measured place. Fortunately, this horizontal homogeneity assumption is

reasonable in the ocean, rivers and lakes.

Generally, most of the ADCP have four beams rather than the minimum requirement of
three beams. The fourth beam behaves as a redundant system to evaluate whether the
assumption of horizontal homogeneity is reasonable. It is a built-in means to estimate
data quality. This data quality is represented by the error velocity, which is computed
from the existence of the fourth beam. Figure 3.5 illustrate how to compute three velocity

components and error velocity using the four acoustic beams of an ADCP.

39

Acoustic Doppler Current Profiler (ADCP)

Current Velocity
Vector

Measured Velocity

Component
North
One Pair of Beams Second Pair of Beams
(seen 2-dimensionally) (seen 2-dimensionally)
Calculates E-W & Vertical Velocities Calculates N-S & Vertical Velocities

Figure 3.5. Two pairs of beams construct a three
dimensional current velocity.

As shown in figure 3.5., one pair of beams produces one horizontal velocity (E-W)
component and the vertical velocity component. The second pair of beams produces a
second horizontal velocity (N-S) component, which is perpendicular to the first one, as
well as the vertical velocity component. Thus there are two horizontal velocity
components and two vertical velocity components. As three velocity components are
required to form three-dimensional current velocity (east, north and vertical velocity
components), the remaining vertical velocity component is useful to produce the error

velocity.

The error velocity is the difference between the two vertical velocity components. This
represents the homogeneity of the current over layers of constant depth, which means the
quality of the measured current velocity. Since the current velocity measurement is
strongly depend on the scatterer over water layer, the homogeneity of scatterer density at

a constant depth plays a key role to the quality of the measured current velocity. Figure

40

Acoustic Doppler Current Profiler (ADCP)

3.6 shows two different conditions at a constant level of depth. In the first situation (a),
the velocity is the same in all four beams which means the water layer is relatively
homogenous. In the second situation (b), the velocity in one beam is different to the other
three. This means that the current velocity is homogenous in all four beams. The error
velocity in the second situation will, on average, be larger than the error velocity in the
first situation. The in-homogeneity in the second situation may be caused by either the
ADCP beam being bad or the actual currents are different. It does not a matter which one
the cause is. The key point is that the error velocity can detect errors due to in-

homogeneities of the water layers, as well as errors caused by malfunctioning equipment.

Current Vector

g LT

(a) Homogenous layer: (b) Inhomogeneous layer:
Small Error Velocity Larger Error Velocity
- Good Data - Data Error

Figure 3.6. Homogeneity of scatterers’ density in the water
layer determine the quality of the measured
current velocity.

3.4.Current Velocity Profile.

Unlike a conventional current meter, which measures water current at a point in a water
column, the ADCP measures current velocity profiles along a water column. ADCP
breaks up the velocity profile into several uniform segments called depth cells or often

called bins. Each bin is comparable to a single current meter. Therefore, an ADCP profile

41

Acoustic Doppler Current Profiler (ADCP)

is like a string of current meter uniformly spaced on a mooring current meter system (see
figure 3.7). Based on this analogy, we can make several definitions:
o Depth cell size = distance between two consecutive current meters.

o Number of depth cells = number of current meter.

Cell o

Depth< -—eee
~—

Averages Vectors Within
Complete Depth Cell Area

Measure Current only at a
localised Point in the Area

: : ; i : ;"’": Moored Line of

Current Meters

ADCP

Figure 3.7 An analogy of ADCP profile to a mooring
current meters system

However, this analogy is partly right, since there are two important differences between
ADCEP profile and a mooring current meters system. The first difference is that the depth
cells size in an ADCP profile are always uniformly spaced while in a mooring current
meter can be spaced at irregular interval. This regular spacing is intended to ease data
processing and interpretation. Like any other data collections, it is much easier to process
data collected at regular sample rate rather than irregular sample rate. The same benefit

applies to measurements in current velocity profile.

42

Acoustic Doppler Current Profiler (ADCP)

The second difference is that an ADCP measures average velocity over the depth range of
each depth cell, while the current meter measures current only at the current meter
position. This averaging reduces some random errors that may occur during the
measurements such as the effects of spatial aliasing. Aliasing in a time series is the
process where signals at frequencies higher than the time series can resolve, are mistaken
for low frequency signals. The effect of the aliasing is equivalent to increasing the noise
level of the lower frequency signals resolved by the time series. By averaging over the

range of the depth cell, the ADCP effectively rejects this kind of error.

Like any other measurements, the velocity measurement uncertainty from a single-
measurement (called a single-ping) of ADCP is too large to meet most measurement
requirements. Therefore, averaging data from several pings of measurements will reduce
the measurement uncertainty to acceptable level. The ADCP data that come from

averaging several pings of measurements is called an ensemble.

There are two kinds of error contributing to velocity uncertainty: random error and bias.
Random error is the variation of a single-ping of measurement to its actual current value,
while bias is the difference between the mean current value and its actual value. The
averaging will reduce errors caused by random errors but not bias. Typically, the order of
a single-ping random error is range from a few cm/sec to as much as 50 cm/sec. The size
of this error depends on factors such as the ADCP frequency, depth cell size, the number
of pings averaged together and beam geometry. Bias is typically on the order of 0.5 to 1.0

cm/ sec. This bias depends on a variety of factors including temperature, mean current

43

Acoustic Doppler Current Profiler (ADCP)

speed, signal/noise ratio, beam geometry errors, etc. Unfortunately, it is not yet possible

to measure ADCP bias and to calibrate or remove it in post-processing.

An ADCP system can calculate the ensemble averages inside of the ADCP, in the Data
Acquisition System, or in both. It is possible, for example, to average ensembles of
several pings in the ADCP and to send the results to Data Acquisition System, which then

computes averages of these ensembles.

3.5.ADCP Data Structures.

The ADCP Data Acquisition System records the measured data from ADCP as
ensembles. One ensemble is result from averaging several pings of measurements. Then,
the ADCP Data Processing System may post-process the raw data by re-averaging ADCP
ensembles over the desired averaging interval and stores the processed data to a binary
file. One file of processed ADCP data containing a sequence of ensembles within the
same cruise line is called a fransect. A transect and the contained ensembles all together
holds several kinds of data: configuration parameters, measurement information and bins
data of current profiles. For a case study, this project uses a set of ADCP data that is
provided by CSIRO. This data set is a processed ADCP data stored in CSIRO ASCII

format. Figure 3.8 shows an example of ADCP data in CSIRO ASCII format.

In figure 3.8, the first three rows are a header record which contains a configuration

parameters for that transect (the first and second rows are left blank). The data came after

44

Acoustic Doppler Current Profiler (ADCP)

the header record are ensembles data, which contain measurement information and

current profile in several bins.

0 1 2 3 4 5 6 7 8
01234567890123456789012345678901234567890123456789012345678901234567890123456789012

.11 5.9 99 -0
.14 6.3 97 -0.
.08 5.6 96 -0.
.05 5.5 97 -0

2.205 -0.982

.97 5.9 96 -2.
.25
.22
.29

.99 5.9 93 -2
.03 6.2 93 -2
.04 5.4 93 -2

1

2 60 8 8

3

4 | 07-APR-1994 02:40:00100 16 0.395 0.002
5] -0.50 -0.10 5.9 99 -0.50

6 | -0.49 -0.13 6.0 97 -0.46

7| -0.32 -0.12 6.3 97 -0.33

8 | -0.43 -0.06 5.5 97 -0.43

9 | 07-APR-1994 03:00:00100 20
10 | -2.31 0.99 6.6 96 -2.31
11 | -2.31 0.96 5.8 94 -2.26
12 -2.29 1.03 6.0 93 -2.26
13] -2.25 1.05 5.6 93 -2.29
14 | -2.21 1.12 6.1 88 -2.15

R RO O

.12 5.3 73 -2

1

D

.49

38
35

.43

D
32

.13

3 6 0.50 0.60

151.553
-0.10 7.
-0.15 6.
-0.09 6.
-0.06 5.
151.575
0.97 5.
1.00 6.
1.07 6.
1.06 5.
1.12 4.

-33.982100

7
3
1
4

28
97
96
97

-0.49
-0.31
-0.41
-0.43

-33.990100

9

W W NN

94
94
93
93
73

~-2.32
-2.26
-2.25
-2.26
-2.12

166 0 0 1200

-0.12 6.0 98
-0.12 6.4 96
-0.11 6.4 97
-0.06 5.5 67
212 0 0 1200
0.95 6.2 94
1.05 6.7 94
1.06 6.2 94
1.10 6.0 92
1.16 5.0 59

Figure 3.8. CSIRO ASCII format of ADCP data

The following are some interpretation of the CSIRO ASCII format of ADCP data:

Row no.
1-3
4
5-8

10-14

Description

Header record (configuration parameter).

Measurement information for the first ensemble profile.

The first ensemble data contains current profile in several bins.

Each bin holds 4 parameter values.

Measurement information for the second ensemble profile.

The second ensemble data contains current profile in several bins.

Each bin holds 4 parameter values.

3.5.1. Configuration Parameters.

The Configuration parameters are set up before the measurement is started. This

configuration parameter is very useful to know the situation during measurements and

45

Acoustic Doppler Current Profiler (ADCP)

provide information for further data processing and analysis. For most users, the first four
values in the second row are important to calculate the depth of bins and the maximum
depth of sampling. These first four are number of bins to sample, bin length (in vertical
meters), pulse length (in vertical meters) and delay after transmit (in vertical meters; also
known as depth to first bin, DTFB). In the example the number of bins to sample is 60,

the bin length is 8 m, the pulse length is 8 m, and the DTFB is 4 m.

3.5.2. Measurement Information.
The measurement information are very useful to know the situation during measurements
and provide information for further data processing and analysis. The measurement
information comes at the beginning of ensemble data. It contains:
¢ Date and time of ensemble’s measurement.
e percentage of averaging period covered by acceptable ensembles (AvgCover).
¢ bottom-most accepted bin in ensemble’s profile.
e Ship velocity components (East-West and North-South (u and v) components) in m/s.
¢ Navigation type code:
o B =Bottom track velocity
o P =GPS position-derived velocity
o D =GPS direct velocity
o Unc = No Navigation velocity (uncorrected)
o rel ="navigation" velocity is actually that of some reference layer, so corrected
velocities will be relative to that layer.

e Ensemble Position (longitude and latitude).

46

Acoustic Doppler Current Profiler (ADCP)

e percentage of interfix period for which there was bottom depth information (bottom

coverage).

mean bottom depth of ensembles for which a bottom depth was available.

mean of bottom track error velocity (BTError).

e mean of ensemble percent good bottom track pings (BT correction only).

integration period in seconds

In the example, the first ensemble profile began at 02:40 on 07-APR-1994 (UTC),
AvgCover is 100%, the deepest good bin is bin 16, the GPS ship's velocity is (u, v) =
(0.395,0.002) m/s, only Direct GPS velocities were used, the mean position during this
ensemble profile was 151.553 E —33.982 S, bottom information was available for 100%
of the profile, mean bottom depth was 166 m, and averaging period was 20 minutes

(1200 seconds).

3.5.3. Bins Data.

The measurement of current velocity profile is based on a uniform segment called bins.

The number of bins contained in an ensemble may vary depending on the bottom depth,

but the maximum number of bins to be measured is set in the configuration parameters

variable (bin to sample). Each bin in an ensemble contains four parameters, as follows:

o East-West components of the current velocity (east velocity) relative to the ship in m/s
(+vel = east),

¢ North-South components of the current velocity (north velocity) relative to the ship in

m/s (+vel = north),

47

Acoustic Doppler Current Profiler (ADCP)

e quality control value (avqc) and,
e attendance percentage or the percentage of the profile period for which there was good

data in the bin (pctok).

3.5.3.1. Current Velocity Components.
The water current velocity in each bin is measured relatively to the ship velocity. The

absolute velocity components can be obtained using the following equations:

Ucorrected(j) unav + u(j) (3.5)

Vcorrected(j) vnav + v(j) (3.6)

Where ;

Ucorrected (j), = corrected velocity components (east and north velocity) of bin j.
Vcorrected (3)

unav, vnav = ship velocity components (east and north ship velocity).

u,v measured velocity components (east and north velocity).

As can be seen, the current velocity is a vector, that is, it has a magnitude and direction.

We can find the magnitude (Vmag) and direction (Vd1 r) using the following equations:

(uz + v2)122 3.7

vmag

vdir atan(u/v) (3.8)

3.5.3.2. Quality Control Statistic.
The quality control value (avqc) contained in each bin is calculated from the major data

quality statistic produced by the ADCP logging system, using the following equation:

48

Acoustic Doppler Current Profiler (ADCP)

avqc = %Good / (verr + 0.05) (3.9)
where:
%Good = Percent Good pings after logging system screening.
verr = RMS Error Velocity in m/s.

The avqc has a possible range value of 0-20, and an expected range of 0-10, with values

of 0 to 4 indicating very poor data, and values above 8 being very good data.

The other quality statistic, called pctok, comes from the profile integrating process. It is
also referred to as the "attendance percentage”. For each bin, it is the percentage of the
pro-file period for which the data was acceptable. That is, if the data in a given bin (depth
level) was usable in only half the ensembles during a given integration period, then for

that bin pctok is 50.

3.5.3.3. Bin Depth.
Bin depth is the depth to the center of a bin, measured in vertical meters. The bins do
not store the bin depth data. The bin depth is approximately calculated from several

configuration parameters, using the following equation:

depth(j) = draught + (plen + blen)/2 + delay + blen*(j-1) + blen/10
(3.10)

49

Acoustic Doppler Current Profiler (ADCP)

Where:

Draught = 4m

blen = bin length

plen = pulse length

delay = delay after transmit (also known as DTFB - Depth To First Bin).

The depth bins are generated by the instrument using the assumption of a sound speed of
1475 m/s. The above approximation can therefore be refined by correcting for the
approximate real sound speed, that is, by multiplying the above-derived depth by
(estimated real sound speed) /| 1475. This sound speed estimate would be made by

estimating the mean temperature, salinity and depth for the main study area.

3.6. ADCP Data as a Complex Object.

As mentioned in Chapter II, the term complex object means any data that requires more
than one structure to represent it. Unlike an atomic object, which is an object that cannot
be subdivided into smaller components, a complex object may be composed ‘of several
atomic objects or other complex objects. In the 'real world', an object can be viewed as a
single object, but combines with other objects in a set of complex A-PART-OF
relationships. For example, a geographic coordinate is a complex object as it composed
of three other objects latitude, longitude, and height. However, in the real world it can be
viewed as a single object of point. The latitude, longitude and height are parts of point

object respectively (A-PART-OF relationship).

50

Acoustic Doppler Current Profiler (ADCP)

An ensemble of ADCP data can be considered as a complex object since it composed of
several other objects. An ensemble contains all measured values that come together with
ADCP measurement. For simplicity, an ensemble can be divided into two objects: spatial
and aspatial objects. The spatial object of an ensemble of ADCP data is actually a point
object that represent the ensemble position in a particular coordinate system. A series of
ensembles within a cruise line can also be considered as a line object of transect.
Meanwhile, the aspatial object is actually all attributes associated with the ensemble
position, representing all measured values contained in the bins as well as related
measurement information and configuration parameters. Figure 3.9 and 3.10 show the

member of spatial and aspatial objects of an ensemble.

Figure 3.9 Spatial object components

51

Acoustic Doppler Current Profiler (ADCP)

Figure 3.10 Aspatial object components of ensembles
in a transect

52

Acoustic Doppler Current Profiler (ADCP)

3.7. The Reasons to Store and Manage ADCP Data in a Database
Management System (DBMS).

So far, many oceanographic data centres store ADCP data on file based systems. This
would not be any problem if the data centre is the only user of ADCP data. Problems
arise if users from other organizations want to access the data. There are various user
categories that use ADCP data for their own purposes. Different users may require
different types of ADCP data. The data centre, however, should provide any required
information for a variety of users. For example, a user may require current velocity data
at 5 m depth interval within a particular area boundary, some other at 20 m depth interval
at different area boundary. In a file based systems, we have to find each file that contain
the data within the specified area boundary, extract the required data and interpolate them
according to the specified depth interval. All of these steps are carried out by an operator
and requires a long time to finish. In a database management system (DBMS), such a
query is carried out behind the scenes. What we need to do is send the SQL query to the
DBMS via the network according to the specified criterion, and get the result in just a

few seconds.

The following are some reasons to store and manage ADCP data using a database
management system:
o Spatially distributed.
ADCP data are usually measured along the cruise line of the ship (transect). The
measured data are then averaged within a specified time interval or specified distance

to form data ensembles. Thus the positions of ADCP ensembles are spatially

53

Acoustic Doppler Current Profiler (ADCP)

distributed according to the cruise line. In a file based data storage, any data query
should be based on the cruise line, since ADCP data that came from a cruise line of
measurement may be stored in a file or more. This kind of data management makes it
difficult to query ADCP data based on a specified area boundary that may intersect
one or more cruise lines as well as the whole or part of the cruise lines. Database
management systems may overcome this situation by allowing users to query ADCP

data based on spatial queries.

Vertically distributed.

An ensemble of ADCP data is also vertically distributed at a particular depth interval.
Each set of data at certain depth is called a bin. An ensemble may have bins up to
maximum of 128 bins. The number of bins may vary between each ensemble
depending on the bottom depth and bin interval. In query processing, some users may
only require the data at particular depth or depth range. Again, the same problem will
arise if the ADCP data is stored in a file-based system. A database management
system may overcome this situation by providing convenient access for variety of

users via SQL query.

Complex data.

Since a lot of data are associated with ADCP measﬁrement, some users may only
require some part of the data (for example velocity magnitude and velocity direction
only), some other may require the whole data of ensembles for further processing

(including all ensemble information and configuration parameters). A database

54

Acoustic Doppler Current Profiler (ADCP)

management system provides more convenient ways to facilitate this kind of query
rather than a file based system. Moreover, in dealing with complex data, the recent
object-relational database management system offers a better way to store and

manage ADCP data.

55

Chapter 1V

ADCP Data Management Systems (ADMS)
Development

4.1. Introduction.

As mentioned in the previous chapter, Acoustic Doppler Current Profiler (ADCP) data is
an important data set in marine area. This valuable data set is often required in any
decision-making processes in marine related activities. ADCP data is considered to be
complex data since it requires more than one structure to represent it. The complexity of
ADCP data requires an appropriate data management system and applications to enable
users to access, analyze and visualize the data in a convenient ways. The ADCP Data
Management Systems (ADMS) is developed to provide a better service for various users

in marine communities.

This chapter explains the development stages of ADCP data management system. In

general, the stages of ADMS development can be describg as follows:

e Database planning. This involves planning how the stages of ADMS development
can be realised most efficiently and effectively.

o System definition. This involves specifying the scope and boundaries of database
application, its users, and application areas.

e Requirements collection and analysis. This involves the collection and analysis of the

requirements of users and application areas.

56

ADCP Data Management Systems (ADMS) Development

o Database design. This includes the conceptual, logical, and physical design of the
ADCP database.

e Application design. This involves designing the user interface and the application
programs that used and process the ADCP database.

o Implementation. This involves creating the external, conceptual, and internal database
definitions and the application programs.

o Data conversion and loading. This involves converting the ADCP data of CSIRO
format and loading the data as well as all related information into the ADCP database.

e Testing. This involves testing the ADMS for errors and validated against the

requirements specified by the users.

4.2. Planning.

The planning stage is an important stage in the ADMS development. In this stage, all
work to be done and the required resources are defined. Good planning will make the
whole development processes work as efficiently and effectively as possible. This
planning stage also includes the identification of user’s requirements, how data will be
collected, what data format will be used, as well as evaluating available information |

systems technologies to determine the best possible resources to be used.

4.2.1. Data Collection.
For a case study, this project used the ADCP data set available at CSIRO Division of
Marine Research, in Hobart. This data sets consists of 37 transect files of ADCP data

within 20° x 20° area boundary (30° - 50° S and 150° - 170° E). The ADCP data used in

57

anNy

ﬁé&

NV300 NYFHLNOS

VIvda.Lsny

_YASANOAN!
o - & CoT IS T

ealy Apn)g jo9lold =——
SUOIISOd o|quiasuy e
:puaboa

NV300 NYIANI

V3V AANLS 103rodd

ADCP Data Management Systems (ADMS) Development

this project is a data set that had been processed to remove any obvious errors. This data

set is stored in ASCII format. Figure 4.1 shows the map of the project area.

4.2.2. Resources.
The following resources are used in completion of the project.
- Informix Dynamic Server with Universal Data Option ver 9.14, including Geodetic
Data Blade Extension.

- Java™ 2 SDK version. 1.2.2.

4.3. Requirements Collection and Analysis.

The requirement collection and analysis were carried out to produce the requirement
specifications for the user’s view. The users were categorized into two parts:.the data
center where ADCP data is held and public users including education, government
institutions, military, private companies as well as foreign users as part of data exchange

programs.

4.3.1. Data Requirements:

e Each bin of an ensemble has velocity parameters (east velocity and north velocity
components), as well as quality control parameter and percentage of the profile period
for which there was good data in the bin. Each bin within an ensemble is identified by
bin depth. An ensemble may compose of one up to 128 bins at particular bin depth

interval.

58

ADCP Data Management Systems (ADMS) Development

An ensemble stores a series of bins and one distinct piece of measurement
information for that ensemble. The measurement information includes percentage of
averaging period covered by acceptable ensembles, bottom-most accepted bin in
ensemble profile, ship’s East-West velocity for the profile (m/s), ship’s North-South
velocity for the profile (m/s), navigation type code, percentage of interfix period for
which there was bottom depth information, mean bottom depth of ensembles for
which a bottom depth was available, mean of bottom track error velocity, mean of
ensemble percent good bottom track pings, and integration period.

A Transect or a cruise line has several ensembles separated at particular distances.
Each transects hold a measurement configuration for all ensembles in that transect.
The measurement configuration includes number of bins to sample, length of bins (in
vertical meters), length of pulse (in vertical meters), delay after transmit (in vertical
meters), real-time reference layer averaging setup, threshold for ping by ping data
rejection on basis of error velocities (m/s), vertical velocity real-time threshold (m/s)

and bandwidth data screen threshold.

4.3.2. Transaction Requirements.

The main transactions required by the data center as well as public user include:

Inserting ADCP data into the database, when new data comes. The data may come
from the data center or other organizations.

Inserting all new related information if any, such as cruise information, vessel,
instrumentation, survey area, survey period, personnel’s in charge (both in

measurement and processing).

59

ADCP Data Management Systems (ADMS) Development

e Display part or all available transects lines as well as ensemble positions.

e Produce a list of water current velocities at particular depth within selected area.

e Load one or more complete ensembles of ADCP data for further analysis and
processing using external application programs.)

e Load data in the original format for further processing.

e List institutions that carried out the survey for particular ADCP data.

e List the cruise information as well as vessel information used at ADCP
measurements.

e List ensemble positions that meet particular conditions.

e List some or all ensemble elements such as ensemble information, ensemble bins

4.4. Database Design.

Database design is performed to assist in the understanding of meaning (semantics) of the
data and to facilitate communication about information requirements. The design
represents:

e Each user’s perspective of the data,

e The nature of the data it self, independent of its physical representations,

e The use of data across application areas.

In this project, the database design is divided into three stages, as follows:
o Conceptual database design: to build the conceptual representation of the database,

which includes identification of important entity and relationship types.

60

ADCP Data Management Systems (ADMS) Development

e Logical database design : to translate the conceptual representation to the logical
structure of the database, which includes designing the relations.
e Physical database design : to represent how the logical structure is to be physically

implemented (as tables) on the target database management system (DBMS).

The above database design stages of the development of ADMS are explained in the

following sections.

4.4.1. Conceptual Database Design.

The conceptual database design includes the process of identifying all available entity
types, attributes as well as its attribute domains, and relationships between entities. Entity
types are objects that have independence existence. Attributes are properties that describe
the entity types whereas a relationship is an association between entity types. In some
cases, a relationship type may have attributes. This stage also includes the process of
identifying all possible candidate keys. Among those candidate keys, one is chosen as an
appropriate primary key for each entity types. The primary key uniquely identifies the
record in the relation. Tables 4.1 and 4.2 show all available entity types for ADCP
database and relationship type respectively. The complete entity list can be found in

appendix A.

The documentation of components that are required in the data modelling process is
important prior to building the ADCP database. Data modelling is useful to visualize the
entities as well as the relationship between them. This enables users (either the data

centre or public users) to review and evaluate the data model to meet their requirements.

61

ADCP Data Management Systems (ADMS) Development

In this project, the data modelling is performed using Enhanced Entity-Relationship
(EER) modelling. This modelling is chosen since it is the most appropriate data
modelling to model a complex data such as ADCP data in an Object-Relational Database

Management System (ORDBMS).

Table 4.1. List of entity types used in ADCP database.

i

! Institutes

o Institution that

{ » An institution may perform one or

performed ADCP more projects of ADCP measurement
measurement. survey.
e Vessels owner ¢ An institution may own one or more
vessels
Projects ADCP measurement One project may consists of one or
survey { more cruise lines within particular area
{ boundary
Cruises trips within a project One project may have one or more
Cruises
Vessels The vessel used for One vessel may be used to performed
ADCP measurement one or more ADCP measurement
survey
Countries | The country where An institution may be located in one or
institution is located more countries
Instrumentations { Instrumentation used in One ADCP measurement uses one type
ADCP measurement both ADCP instrument and navigation
either ADCP or instrument
Navigational instruments
Transects Cruise line where ADCP | o A transect has a series of discreet
measurement is ensembles.
performed e A transect has one configuration
parameter for all ensembles within it.
Ensembles ADCP measured value An ensemble contains one date and time
of measurement, one measurement
information (Ensemblelnfo) and a series
of bins (EnsembleBins)
{ EnsembleInfo Measurement One ensemble contains one
information contained in | measurement information.
each ensemble.
1 EnsembleBins A series of bins within Each ensemble has one up to 128 bins
enscmbles
EnsembleConfig | Measurement Ensemble within a transect has the same
configuration configuration parameters

62

ADCP Data Management Systems (ADMS) Development

Table 4.2. List of Relationship Types of ADCP Database.

[Institutes . own‘)m le Vessels 1M P:T
e Located in e Countries M:1 T:P

e Perform e Projects M:N P:T

Projects Undertake Cruises 1:M T:P
Cruises e Equipped ¢ Instrumentations M:N T:P
e Consist of e transects I:M T:T

Vessels Used in Cruises 1:M T:T
{1 Transects Has Ensembles 1:M T:P
Persons e Work at o Institutes M:1 P:T
e Lecad e Projects 1'M P:T

| e Process e Transects 1:M P:T

Notes : P = partial participation, T = Total participation.

Unlike modelling in traditional relational data model where all attributes should be
decomposed into atomic values, the modelling in object-relational data model enables us
to maintained a complex data as an object without decomposing it into atomic values. Of
course, this violates some of the normal form rules of normalisation process that a
traditional relational data model has to meet. However, this provides some benefits such
as reducing join operation between relations, enabling a single data access to spatial data
and its complex attributes, which has an implication of increasing data access

performance. A more detail discussion about this would be found in chapter 5.

4.4.2. Logical Database Design.

The logical database design is carried out to refine the conceptual data model in the

previous stage by removing data structures that are difficult to implement in the DBMS.

63

ADCP Data Management Systems (ADMS) Development

Notes:
Entity Type

Partial Participation

Relationship Type Total Participation

Figure 4.2. Entity-Relationship (ER) model for
ADCP database.

64

ADCP Data Management Systems (ADMS) Development

In the relational data model, the process of normalisation is often used to validate this
logical model. However, the object-relational data model does not require fulfilling all
normalisation rules. To some extent, it is better to keep a complex object as it is, without
decomposing it into atomic values as required in the first normal form of normalisation

rules. Chapter 5 will discuss some reasons for doing this.

Meanwhile, on the completion of the database design stage, we should have a model that
is correct, comprehensive and unambiguous. This objective is achieved by undertaking
some activities, if any, such as removing many to many relationships, removing complex
relationships, validating the data model using normalisation as well as against

transactions. These activities provide a better ER diagram as shown in Figure 4.2.

In this logical database design stage, the mapping between ER diagram into relations is
derived. This mapping is DBMS independent and it is used to create the entire ADCP
database using Database Definition Language (DDL) regardless any target DBMS. The

following are ER to relations mapping for the entire ADCP database:

Countries(co_id, co_name)
Primary Key co_id

Institutes(inst_id, inst name, address, co_id)
Primary Key inst_id
Foreign Key co_id references Countries

Persons(pers_id, pers_name, inst_id)
Primary Key pers_id
Foreign Key inst_id references Institutes

Projects(p_id, p_name, p_area, survey_period, pers_id)
Primary Key p_id
Foreign Key pers_id references Persons

65

ADCP Data Management Systems (ADMS) Development

Collaboration(coll_id, inst_id, p_id)
Primary Key coll_id

Foreign Key inst_id references Institutes
Foreign Key p_id references Projects

Vessels(vs_id, vs_name, inst_id, vs_photo)
Primary Key vs_id
Foreign Key inst_id references Institutes

Cruises(cr_id, cr_name, s_port, €_port, p_id, serial_no)
Primary Key cr_id
Foreign Key p_id references Projects

Cr_Instrument(cri_id, cr_id, navigation, adcp)

Primary Key cri_id

Foreign Key cr_id references Cruises

Foreign Key navigation references Instrumentation (serial_no)
Foreign Key adcp references Instrumentation (serial_no)

Instrumentation(serial no, instrument_name, manufacturer, model, firmware_no)
Primary Key serial no

ADCP(transmit_freq, td_config, beam_angle, beam_width)
Under Instrumentation

Navigation(differential, p_code, ant_offset)
Under Instrumentation

Transects(tr_id, config, cr_id, pers_id, tr_notes)
Primary Key tr_id

Foreign Key cr_id references Cruises

Foreign Key pers_id references Persons
Ensembles(ens_id, ens_position, ens_data, tr_id)

Primary Key ens_id
Foreign Key tr_id references Transects

The mapping involves some user-defined data types (UDT) as well as user-defined
functions (UDF) to handle the complexities of ADCP data. These capabilities enable
users to store a complex data within a single column within a relation (table). The UDT

created in ADCP database as well as its field data members are shown in table 4.3, while

the UDF are shown in appendix C.

66

ADCP Data Management Systems (ADMS) Development

Table 4.3. User Defined Data Types for ADCP database.

{ Velocity t EastVelocity Smallfloat Holds velocity data components
NorthVelocity Smallfloat
Bin_t BinDepth Smallfloat Holds measured value in particular
BinVelocity Velocity t depth
Avqc Smallfloat
PctOK Integer
EnsInfo t AvgCovered Integer Measurement information of an
! ShipVelocity Velocity _t ensemble
NavType Varchar(3)
Beover Integer
BottomDepth Integer
BTError Integer
PctGood Integer
IntegrationPeriod | Integer
EnsConfig t Draught Smallfloat Measurement configuration for each
BinsToSample Integer transect
BinLength Integer
PulseLength Integer
TransmitDelay Integer
Refon Integer
Refbl Integer
Refb2 Integer
EvMax Smallfloat
WMax { Smallfloat
EnsBins_t Bins LIST(Bin t A series of bins in an ensemble at
not particular depth interval
null)
Ensemble t EnsDateTime DateTime year | Hold all measured ADCP data as well as
to second measurement information in a particular
EnsInfo EnsInfo_t position.
EnsBins EnsBins t
Address t Street Varchar(40) Hold address data of institutes
City Varchar(20)
State Varchar(3)
Phone Varchar(15)
Fax Varchar(15)
Zip Varchar(4)
Name t Firstname Varchar(15) Hold person name
‘ Lastname Varchar(15)
Offset t X Smallfloat { Hold antenna offset data of navigation
Y Smallfloat { instrument relative to the ADCP
Z Smalifloat transducer.

67

ADCP Data Management Systems (ADMS) Development

4.4.3. Physical Database Design.

The physical database design determines how the data model, represented in the logical
database design, will be stored in a specific target DBMS. Since it is dependent on the
target DBMS, the way the data is stored will be different for different DBMSs. In this
project, the ADCP data is stored in Informix Dynamic Server with Universal Data Option
version 9.14, which is referred to as Informix Universal Server (IUS). This DBMS
supports Object-Relational Database Management System (ORDBMS) technology that
enables user to gain all functionality of Relational DBMS technology as well as object

oriented features such as extensibility, support complex data, and inheritance.

This project also utilized the Informix Geodetic Data Blade extension module to support
the spatial part of ADCP data. This extension module enables us to store spatial objects
such as point, line or polygon in a single column of a relation. There are two spatial
objects in ADCP database that use Informix Geodetic Data Blade Data Type. ensemble

position and boundary definition of project area.

Besides the translation of logical data model for target DBMS, the physical design also
includes the design of the constraint for each relation, choosing primary and or secondary
index methods, as well as designing security mechanisms. In this project the R-free index
method is used as a secondary indexes for ensemble position (ens_position) column
in the ensembles relation. The ensemble position used the GeoPoint data type of

Informix Geodetic Data Blade.

68

ADCP Data Management Systems (ADMS) Development

The implementation of the physical database design is performed using SQL Data
Definition Language (DDL) that is precompiled in a Java programming language.
Appendix B shows the complete list data definition language used to create the user
defined data type (UDT) as well as tables for ADCP database in Informix Universal

Server (IUS) version 9.14.

4.5. Application Design.

The application design stage is actually a parallel activity to the database design stage. It
involves designing the application programs (user interface) to access the data in the
database, and designing the data access methods (transaction design). A database
application program or user interface is a tool for the users to interact with the database
and performing transactions as specified in the requirement collection and analysis. In
ADCP database, there are two categories of transaction: retrieval transaction and update

transactions depend on the type of users.

The retrieval transaction is opened to all users. However, some users may only have
privilege to access public data sets, while some other specific users may access restricted
data set. The data centre that maintains the data set drives this user access policy. The
update transaction privilege is restricted to the data centre that maintains the ADCP
database only. It involves inserting new records, deleting old records, or modifying

records in the database.

69

ADCP Data Management Systems (ADMS) Development

The ADCP Data Management System (ADMS) application programs to support the
ADCP database is developed using Java™ 2 SDK ver 1.2.2. Java programming language
is chosen to be used in the ADMS development since it has an advantage of platform
independence. This capability is important on developing a cross-platform application
that can be run by various users. The following are some of the main tasks of the ADMS:

Reading the ADCP data from the original format in ASCII file format and wrapping it

into ensemble object prior inserting the data into the database.

e [Inserting new ADCP data as well as all related information (cruise, project,
institution, instrumentation, and personnel in charge).

¢ Sending queries to the database as well as receiving query results.

e Displaying query result either as tables, list, forms or graphical displays.

e Loading selected data into original format or output standard format for data

exchange.

Several Java classes are required to implement the above tasks. These Java classes utilize
the Java DataBase Connectivity Application Programming Interface (JDBC API) in
order to be able to connect to the ADCP database. The JDBC used in this project is the
Informix JDBC API version 2.0, which is available from Informix and can be
downloaded freely via the Internet. Informix JDBC API is a Java API for accessing
virtually any of tabular data stored in Informix. There are some other JDBC specific to
particular DBMS as well as standard JDBC-ODBC that can be applied to any DBMS.

The JDBC consists of a set of classes and interfaces written in Java programming

70

ADCP Data Management Systems (ADMS) Development

language that provides a standard API. Figure 4.3 shows the connectivity between

ADMS, JDBC and ADCP database.

Figure 4.3. ADMS, JDBC and ADCP database connectivity.

4.5.1. Type Mapping.

The ADCP database utilizes custom mapping of SQL user-defined types (UDTs). A
custom mapping maps a UDT to a class in the Java programming language where each
attribute of the UDT is mapped to the corresponding field in the class. However, a class
in a custom mapping must implement the SQLData interface. The SQLData interface is a
special interface in Java programming language that is used only for the custom mapping
of SQL user-defined types. The mapping from Java classes to some of Informix Geodetic
DataBlade Data Type is also defined to facilitate spatial based queries and analysis. Table
4.4 lists the Java classes and the corresponding Informix Geodetic DataBlade Data Types,
while table 4.5 lists the Java classes and the corresponding UDT defined for the ADCP

database. A more detail description on these Java classes can be found in Appendix D.

Table 4.4. Mapping from Java class to Informix
Geodetic DataBlade Data Type.

[GooCoords | GeoCoords |
{ GeoAltRange GeoAltRange

GeoTimeRange | GeoTimeRange

71

ADCP Data Management Systems (ADMS) Development

Table 4.5. Mapping from Java class Type to
SQL3 UDTs in ADCP database

| Velocity Velocity t

| Bin Bin t
Ensemblelnfo Enslnfo t

'EnsembleConﬁg EnsConfig t

{ EnsembleBins EnsBins t
Ensemble Ensemble t

| Address | Address t
Name Name t

| Offset Offset t

The custom mapping enables us to store a Java class as an object directly into the
database, as well as retrieving a UDT object directly from the database. Instead of
working with the whole object on an ensemble, someone may want to work with some
part of the ensemble data. This is enabled by accessing some of the class member of
Ensemble Java class (in the application) or the attribute member of the Ensemble_t
UDT (in the database). Each field member of a Java class can be accessed using the
methods associated with the Java class. The same situation is also applied to the UDT in
the ADCP database where each attribute member can be accessed using the available
functions as part of SQL Queries. To facilitate this purpose, seventy functions have been
created. Accessing an attribute member of a UDT can be perceived as accessing a single
column in relational DBMS. This is similar to accessing a single column in a relational

database management system. The difference is that, it does not require any join

72

ADCP Data Management Systems (ADMS) Development

operation when we use functions to access attribute members of a UDT in object-
relational DBMS, while in relational DBMS join operation is a necessity. Appendix C &
D list all methods associated with the Java class as well as UDT’s functions defined for

the ADCP database.

4.6. Implementation.

The implementation stage is a physical realization of the database and application designs
as described in the previous sections. This implementation is achieved using the Data
Definition Language (DDL) to create database schema and empty database files. The
Data Manipulation Language (DML) is also used to facilitate database transactions, either
update transaction or retrieval transaction. In this project, either DDL or DML is
precompiled in Java programming language and implemented via Informix Java
Database Connectivity Application Programming Interface (JDBC API) version 2.0.

Several Java classes have been created to facilitate ADCP database creation as shown in

table 4.6.
Table 4.6. List of Java Classes to create ADCP database.
JaVa Classes 7 Description
CreafeDB Create erripty ADCP‘database
CreateTables Create all tables in ADCP database
CreateFunctioh Create User—defmed Functions (UDF) in ADCP database

The classes must be run in sequence, otherwise it may generate errors. One should

noticed that afier creating the empty ADCP database, the Informix Geodetic DataBlade

73

ADCP Data Management Systems (ADMS) Development

must be registered to the database using the DataBlade Manager, prior to creating the
tables. This enables the database to utilise the functionality of Geodetic DataBlade on
manipulating the spatial data of ADCP. A shell script can be created to simplify the

procedure and it must contain the following command lines:

java CreateDB
blademgr < adcp.txt
java CreateTables
java CreateFunction

The above script will create the ADCP database, register the Informix Geodetic
DataBlade, create the required tables as well as all user-defined functions. The
adcp. txt as shown in the second line of the script is a redirect input to the Blade

Manager (b1ademgr) and it contains the following command lines:

set confirm off
Tist adcpdb
register geodetic.2.11.uUC3 adcpdb

The following is an example of DDL to create the ensembes table:

create table ensembles (

ens_1id serial8 not null primary key
constraint pk_ensembles,

ens_position GeoPoint,

ens_data ensemble_t,

tr_id integer references transects

constraint ens_fk_tr):

Figure 4.4. Data definition language (DDL) for creating the ensembles table.

74

ADCP Data Management Systems (ADMS) Development

As can be seen in figure 4.4., the ensembles table stores the spatial data and its attributes
(aspatial data) in a single table. The ensemble position, as the spatial data, is stored in
column ens_pos1ition of GeoPoint data type while the ensemble data of ADCP, as
the attributes of ensemble position, is stored in a column called ens_data of
ensemble_t data type. This can be a benefit since the spatial data and it’s complex
attributes can be retrieved in a single data access. The complete DDL for all tables, as

well as user define data types, in the ADCP database can be found in Appendix C.

As part of the application, several Java classes as well as it’s associated methods were
created to facilitate the database transactions. A Java class is simply a type code for an
instance of a class defined in the Java programming language that is stored as a database
object. These Java classes are custom mapped to SQL3 user-defined types (UDTs) via the
Informix JDBC so that they can be stored directly into the database as any other built in
data types. In addition, the custom mapped UDTs can be used in the query as part of the
SQL statement. The following query is an example of retrieving ensemble positions and

it’s complete ensembles data using SQL statement:

Select ens_position, ens_data from ensembles
where ensYear(ens_data) between 1990 and 1992;

Figure 4.5. SOQL query example

Several functions were also created in Informix Universal Server associated with each
user-defined data type. These functions are used to access each element of UDTs in
ADCP database. Furthermore, these functions can also be used as part of the SQL

statement in Java application programs. They have the same functionality to the

75

ADCP Data Management Systems (ADMS) Development

corresponding methods of Java classes. For example, the function ensYear() in figure
4.5, returns the ensemble year of measurement. Appendix C lists the complete available

functions in ADCP database as well as corresponding methods of the ADCP Java classes.

In the application side, the ADCP Java classes are also used to store the query results.
These results can then be used in the application such as graphical displaying, table
listing, form listing or further analysis. For example, the query results of the SQL
statement in figure 4.5. can be stored in GeoCoords and Ensemble classes

respectively, as shown in the following fragments of a Java program:

pstmt = IfxCon.prepareStatement(query);
rs = pstmt.executeQuery(Q;

while(rs.next())

{
GeoCoords EnsPositon = (GeoCoords) rs.getObject(l);

// get the object returned by the first column, cast it to GeoCoords class and store it in the
// EnsPosition variable of GeoCoords class.

Ensemble Ens = (Ensemble) rs.getObject(2);

// get the object returned by the second column, cast it to Ensemb1e class and store it in the

// Ens variable of Ensembe class.
Ens.p rinteEnsemble () s // print the ensemble data to standard output

Figure 4.6 Java class for materializing query resulls.
In the above fragment, the variable EnSP0OS1t10n stores the first column of the query

result (ens_position of GeoPoint data type) while the variable Ens stores the

second column of the query result (ens_data of ensemble_t data type).

76

ADCP Data Management Systems (ADMS) Development

4.7. Data Conversion and Loading.

The original ADCP data comes in a particular format that can not be inserted into the
database directly. This requires data conversion before loading the data into the database.
This project used ADCP data provided by CSIRO, which is available in an ASCII file
format. Several Java classes were created to facilitate this data conversion and loading.
Table 4.5 lists all Java class classes used for data conversion and loading in this project.

Table 4.6 Java classes that are used for data conversion and loading.

i

Inserting countries data into Countries table.

InsertCountries.class

{ InsertInstitutes.class Inserting institution information that performs ADCP
survey or owns the survey vessel into Institutes
table.

{ InsertPersons.class Inserting personnel data that lead a project or process the

ADCP data into persons table.

InsertProjects.class Inserting projects information into projects table.

InsertCollab.class | Inserting institutions that perform collaboration in one or

more projects into collaboration table.

InsertVessels.class Inserting survey vessel information that is used in ADCP
| | survey into vesseTs table.

InsertADCP .class Inserting ADCP instrument specification that is used in an
ADCP survey into ADCP table.

InsertNavigation.class | Inserting navigation instrument specification that is used
in an ADCP survey into Navigation table.

InsertCruises.class Inserting cruise information into cruises table.

InsertCl class { Inserting information of ADCP and navigation instrument
that are used in a cruise into CruiseInstrument table.

{ RCsiro.class Reading ADCP data from files (in ASCII format) as well
as inserting the data into Transects and Ensembles

table directly.

77

ADCP Data Management Systems (ADMS) Development

4.8. Query Examples.

Some testings has been performed to find errors against the application and validate the
database transactions. There were some errors found in this testing stage. All significant
errors had been fixed either by refining the application program or improving the

database transaction strategy.

As part of the testing stage, some queries had been performed through the database
application that is developed using Java application program, to evaluate that both the
database and the application are working well. The following are several examples of the

SQL statements and the application fragment to materialise the query result.

o Query I

SELECT ens_id, Coords(ens_position), ens_data
FROM ensembles

WHERE ensmonth(ens_data) = 9

AND ensyear(ens_data) = 1993;

The above SQL statement returns the ensemble id (ens_1id), the ensemble position
(ens_position) which is composed of latitude and longitude, and the ensemble of
ADCP data (ens_data) for any ensemble that are measured during September 1993.
The ensmonth() and ensyear() are user-defined function that return the month and
year of ensemble measurement date respectively. The ensmonth() and ensyear()
take ensemble_t user-defined data type as input parameters (see Appendix D for

detail).

78

ADCP Data Management Systems (ADMS) Development

The following is a fragment in the database application program to materialise the above

query result:

long EnsId = rs.getLong(l);

GeoCoords enspos = (GeoCoords) rs.getObject(2);
Ensemble ens = (Ensemble) rs.getobject(3);
enspos.printGeoCoords();

ens.printEnsemble();

As can be seen, the returned values are stored in the corresponding variables/classes in
the database application. Once they are stored in the Java variables/classes, they can be
used by the users for any purposes such as displaying, plotting, printing, saving or
analysis. In the above example the latitude and longitude of the ensemble position as well
as the ensemble of ADCP data are printed out to a standard output (monitor screen) using

printGeoCoords() and printEnsemble () methods respectively.

o Query?

SELECT ens_id, Coords(ens_position), ens_data
FROM ensembles

WHERE intersect(ens_position, setdist(
'(((-30,150),(-35,155),(-40,165),(-50,170)),
any,any) '::GeoString, 15000));

The above SQL statement returns the ensemble id (ens_1id), the ensemble position
(ens_position) which is composed of latitude and longitude, and the ensemble of
ADCP data (ens_data) for any ensemble that are located within 15 km of the specified
line ((-30,150), (-35,155),(-40,165),(-50,170)). The setDist() is a Geodetic

DataBlade function to create buffer or proximity at the specified distance (in this case 15

79

ADCP Data Management Systems (ADMS) Development

km). The intersect() in WHERE condition is a Geodetic DataBlade operator function
to overlay (intersect) two spatial objects (in this case ensemble position and the specified
line).

To materialise the query result the same fragment, as described in query 1, is used since

the returned values are also the same.

Tong EnsId = rs.getLong(l);

GeoCoords enspos = (GeoCoords) rs.getObject(2);
Ensemble ens = (Ensemble) rs.getObject(3);
enspos.printGeoCoords();

ens.printEnsembie();

e Query 3.

SELECT Coords(ens_position), velocityMag(ens_data, 30),
velocitybir(ens_data, 30)

FROM ensembles

WHERE 1intersect(ens_position, setdist(

'(((-30,150),(-35,155),(-40,165),(-50,170)),

any,any) '::GeoString,15000));

The above SQL statement returns the ensemble position (ens_position) which is
composed of latitude and longitude, the velocity magnitude and the velocity direction at
30 m depth for any ensemble that are located within 15 km of the specified line ((-
30,150),(-35,155),(-40,165),(-50,170)). The velocityMag() and velocityDir() are
user-defined functions to calculate the velocity magnitude and velocity direction at the
specified depth of an ensemble of ADCP data. These two functions take the
ensemble_t user-defined data type and depth value as input parameters (see Appendix

D for details).

80

ADCP Data Management Systems (ADMS) Development

The following is the corresponding Java fragment to materialise the query result in the

database application:

GeoCoords enspos = (GeoCoords) rs.getObject(l);
float vMag = rs.getFloat(2);

float VDir = rs.getFloat(3);
enspos.printGeoCoords();
system.out.println("vMag:

+ VMag + " vDir: " + VDir);

o (uery 4

SELECT Coords(ens_position), ens_data, config

FROM ensembles e, transects t

WHERE inside(ens_position,

'((-40, 155),(-35,160),any,any) ' : :GeoBox)

AND e.tr_id = t.tr_id ;
The above SQL statement returns the ensemble position (ens_position) which is
composed of latitude and longitude, the ensemble of ADCP data (ens_data) and the
configuration parameter (Conf1ig) for any ensemble positions that are located inside the
specified boundary box ((-30,150),(-35,155),(-40,165),(-50,170)). The

inside() is a Geodetic DataBlade operator function to perform spatial analysis

whether one object is located inside another object.

The following is the corresponding Java fragment to materialise the query result in the

database application:

GeoCoords enspos = (GeoCoords) rs.getobject(l);

Ensemble ens = (Ensemble) rs.getObject(2);

Ensembleconfig config = (EnsemblecConfig) rs.getobject(3);
enspos.printGeoCoords();

config.printEnsembleconfig();

ens.printEnsemble();

81

ADCP Data Management Systems (ADMS) Development

4.9. Summary.

In this project the ADCP database had been developed to evaluate some approaches of
ORDBMS on managing marine spatial data. Some user-defined data types (UDT) were
created to facilitate object-based transactions to enable users to query part or whole
ensemble of ADCP data. Appendix B lists the UDT created for ADCP database as well as
its attribute members. Several user-defined functions (UDF) have also been created to
enable a user to retrieve the UDT’s attribute members as well as performing data
manipulation and analysis in the database server. Appendix C lists all user-defined

functions that can be used for these purposes.

A database application written in Java programming language had also been created to
optimise the benefits of ORDBMS approaches on managing ADCP data. This database
application includes several Java classes and it’s associated methods to enable users
sending queries in SQL3 statements as well as materialising the query results. Once the
query results are stored in the Java variables or classes, the users can use them for any
purposes according to their requirements. The next chapter discusses various approaches
of using ORDBMS for managing ADCP data as a spatial data that can be applied to other

marine spatial database management.

82

Chapter V

Discussion

Object-Relational Database Management Systems (ORDBMS) have emerged to
overcome the difficulties of Relational DBMS in response to the increasing complexity of
database applications. The ORDBMS extends the capabilities of Relational DBMS to
have object-oriented features while storing the data in relational structures. The object-
oriented features of ORDBMS include extensibility, supporting complex data (data that is
composed from other existing data types either atomic or complex data types), and
supporting inheritance. This chapter discusses some features of ORDBMS compared to
its predecessor technology of Relational DBMS. The discussion uses examples from

ADCEP database.

5.1. Extensibility.

The extensibility feature of ORDBMS provides a freedom to the database designer to
create their own data types and functions to meet their requirements. Creating new data
types can be achieved by extending the existing data types or defining new data types as
well as functions to support them. The ADCP data can be divided into two kinds of data,
the spatial and aspatial (attributes) data. This project used user-defined data types (UDT)
and functions (UDF) provided by Informix Geodetic DataBlade module to handle the
spatial part of the ADCP data. Several other UDT and UDF were created by extending

the existing data types to support the complexity of ADCP data (discussed in section 5.2).

83

Discussion

5.1.1. User-defined Data Types (UDTs).

The Informix Geodetic DataBlade module enables us to store and manipulate — in an
Informix Universal Server database — objects in space referenced by latitude and
longitude, and provide additional attributes representing an altitude range and a time
range. With this datablade module, we can create several spatio-temporal objects such as
points, line segments, strings, rings, polygons, boxes, circles and ellipses. The Informix
Geodetic DataBlade module provides data types that represent these spatial objects on an

ellipsoidal representation of the earth.

In this project, the ADCP data only dealt with one spatial object of points. This spatial
object represents an ensemble position of ADCP measurement. The GeoPoint data
type of Informix Geodetic DataBlade is used to hold the ensemble position of ADCP data
and store it into a single column of ens_position in ensembles table. Several
functions have been provided to access the attribute members of this spatial data as well
as to manipulate them. It also enables spatial query using spatial operators to be
performed - in SQL statement - such as beyond, inside, intersect, outside and within, as

shown in the following example:

SELECT ens_position, ens_data

FROM ensembles

WHERE inside(ens_position,
“((-35,160),(-40,165) ,ANY,ANY) ’ : :GeoBoOX) ;

Figure 5.1. Retrieving spatial data and its attributes
based on spatial query.

84

Discussion

The SQL statement in figure 5.1. returns ensemble positions (ens_position) and its
attributes of ADCP data (ens_data) from ensembles table where the ensemble
positions are located inside the specified boundary box (SouthWest corner: 35° S and
160° E; NorthEast corner: 40° S and 165° E). The ens_position column is a
GeoPoint data type that holds the latitude and longitude values of the ensemble

position. The following is a representation of GeOPO1Nnt data type:

GeoPoint((lat, long), altrange, timerange)

Where :

Tat and long are the latitude and longitude of the GeoPoint.
Altrange is the altitude range.

Timerange is the time range.

The ens_data column is an ensemble_t data type that holds an ensemble of water
current velocity profile (explained in section 5.2). The GeoBOX is an Informix Geodetic
DataBlade data type that represents an area bounded by four orthogonal edges parallel to

the coordinate axes (defined by SouthWest and NorthEast corners).

5.1.2. User-defined Functions (UDFs).

A function is merely a task that the database server perform on one or more values. There
are built-in functions such as cos(), max(), avg(), etc., and user-defined functions (UDFs).
A UDF is a function created by the user to support a specific task on either built-in or

user-defined data types. Unlike the built-in functions which can be used anywhere by the

85

Discussion

system, the user-defined function can only be used by the type that the function is

attached to and its subtypes.

This project utilizes two kind of UDFs; the UDFs that are provided by the Informix
Geodetic DataBlade to manipulate the spatial data as well as performing spatial analysis,
and the UDFs that are created in this project to manipulate the ADCP data. For example,
we might want to retrieve all ensemble positions and its associated ADCP data within a
distance of 15 km along a proposed underwater pipe line. The following SQL query will

provide the desired data:

SELECT ens_position, ens_data

FROM ensembles

WHERE intersect(ens_position,
SetDist((((-30,150),(-40,160), (-45,165),
(-50,170)) ,ANY,ANY): :GeoString, 15000:: GeoDistance));

Figure 5.2. Example of spatial analysis using SetDist
function of Informix Geodetic DataBlade.

The following are external representation of SetDist function as well as GeoString and

GeoDistance as the arguments of the function in figure 5.2:

e SetDist function:

SetDist(GeoString, GeoDistance)

e GeoString data type:

(((latl, longl),(lat2,long2),. . .,(latn,longn)), altrange, timefange)
or
Geostring(((latl,longl), (1at2,long2), ..., (latn,Tongn)),altrange, timerange)

86

Discussion

Where:
GeoString a connected, non-branching sequence of line segments
(may intersect itself).
GeoDistance domain-enforcing type for distance.
Tatand Tong are the latitude and longitude of the nodes.
altrange is the altitude range.
timerange is the time range.

The flexibility to create user-define function is a great feature of ORDBMS. It enables a
lot of the application tasks to be carried out in the database server rather than in the client
application. This reduces the amount of data sent to the client application as well as
transaction load. It also reduces the access time of a transaction which means increasing

the database and application performances.

5.1.3. Comparison to Relational Structures.

As a comparison to relational structures, the creation of user-defined data types and user-
defined function is not supported. In relational DBMS, the users are restricted to only use
the built-in data types and functions that the database server defined such as numeric,
character and date. The built-in data type is atomic; that is, it cannot be broken into
smaller pieces. As a consequence, any complex objects should be decomposed into
atomic values before storing them into columns of a relation. For example, a geographic
position that is composed of latitude and longitude should be decomposed into atomic
values of built-in data type. Thus, the ensemble position of ADCP data should be stored

into two columns of numeriic data type in a relation. Decomposing a complex object

87

Discussion

into atomic values is one of the normalization processes, in order to meet the requirement
of First Normal Form (INF). INF is the situation where a relation contains only atomic
(or single) values at the intersection of each row and column. The purpose of
normalisation is to produce a set of relations with desirable properties and ensures no
update anomalies will occur. However, the process of normalization in the relational
model generally leads to the creation of relations that do not correspond to entities in the

‘real world’.

The extensibility feature of ORDBMS provides a better real-world representation of an
object rather than the traditional relational DBMS. As can be seen in the previous
example (figure 5.1), we can view a point as an object (composed of latitude and
longitude) rather that viewing it as two numeric values representing latitude and
longitude. Moreover, with ORDBMS we can use the UDTs as any other built-in data

types in the database as well as SQL statements.

5.2. Complex Data.

As mentioned in the Chapter III that ADCP data is considered as complex data since it
composed from several other data (measurement information, bins data etc.) and it
requires more than one structure to represent it. The object-relational database
management system (ORDBMS) technology is an appropriate database management
system to store and manage this kind of complex data. Using this technology, it is
possible to store an ensemble data in a single column of a relation rather than

decomposing the data into atomic values of several relations.

88

Discussion

5.2.1. Storing Complex Data into a Single Column of a Relation.

Storing complex data into a single column of a relation can be perceived as storing nested
relations into a single column. For example, a complex data of an ensemble position of
type GeoPoint is stored in column ens_position of ensembles relation. The
GeoPoint holds another complex data of GeoCoords, which is composed of
GeoLatitude and GeoLongitude; GeoAltRange, which is composed of
LowAltitude and HighAltitude; and GeoTimeRange, which is composed of
LowTime and Hi ghTime. In case there are only one value of altitude and time, the
values of LowLatitude and HighAltitude as well as LowTime and HighTime
will be the same. In this situation, the GeoCoords, GeoAltRange and
GeoTimeRange can be perceived as another relation, that holds atomic data

respectively, within a single column of ens_position.

Another example is the ens_data column of ensembles relation that holds a
complex data of an ensemble of ADCP data. An ensemble data is stored as
ensemble_t data type (UDT) and holds another complex data of ensemble date and
time of measurement of DateTime data type; measurement information of
EnsInfo_t data type (UDT); and a series of Bins data of EnsBins_t data type
(UDT). The suffix _t is used to name a user-defined data type (UDT) that are created in
this project. The EnsInfo_t holds several atomic values of measurement information
(AvgCovered, NavType, Bcover, BottomDepth, BTError, PctGood,

and IntegrationPeriod) and one complex data Shipvelocity of

89

Discussion

velocity_t data type, which holds EastVelocity, and Northvelocity component

values.

GeoAltRange

GeoCoords GeoTimeRange

(GeoPoint

Ensembles
relation

Ensemble t

Velocity t

EnsBins_t

i
!
Figure 5.3. '.___"_'__I--;:--.E--.';‘--.T--;:___'
Graphical representation of storing complex ;
object into a single column of a relation. By P SRR SRREEEE SRREEE -

Meanwhile, the EnsBins_t holds a series of complex data of Bin_t data type. The

Bin_t data type composed of three atomic values of Bin data (BinDepth, Avqc,

90 .

Discussion

and PctOK) and one complex data of water current value, which holds
EastVelocity and Northvelocity components. One important thing here is that,
the ENSBinsS_t is a resizable data type. It can hold one up to 20 bins. The limited
maximum number of bins this data type can hold is due to the limitation of Informix
database on handling row and collection data types where the EnsBins_t data type is
built from. The Informix DBMS restricted the number of data that row or collection data
types can hold up to 32 Kbytes. There is a solution to overcome this problem. One
should make an opaque data type which can hold unlimited size of ADCP data.
Unfortunately, this was not done in this project due to the limited time of the project
completion. Figure 5.3 shows a graphical representation of storing complex data into a

single column of a relation.

5.2.2. Accessing Attribute Members of a Complex Data.

There are two methods of accessing each attribute member of a UDT: by using cascading
dot and accessor functions. We can use a cascading dot if we know the data structure of a
UDT. However, for most users who do not know the UDT’s data structure, the accessor
functions provide a more convenient way of accessing an attribute member of a UDT.
The following two SQL statements provide examples of accessing Shipvelocity

components contained in an ensemble:

e Using cascading dot.

SELECT ens_data.ensinfo.shipvelocity.eastvelocity,
ens_data.ensinfo.shipvelocity.northvelocity

FROM ensembles

WHERE tr_id = 9001;

91

Discussion

o Using accessor functions.

SELECT eastshipvelocity(ens_data), northshipvelocity(ens_data)
FROM ensembles
WHERE tr_id = 9001;

Figure 5.4 Examples of accessing attribute member of a UDT using cascading
dot and accessor function methods in SOL statements.

The SQL statements in figure 5.4 return the same value of ShipVvelocity components
contained in an ensemble that is stored in ens_data column of ensembles relation.
As can be seen, the second statement that uses accessor functions looks simpler than the
first one. This can be understood since the second statement used the function that has the
same name with it’s returned value. Moreover, using functions may retrieve an aggregate
value of some data members. For example, we may retrieve the Shipvelocity
magnitude and direction that are calculated from Shipvelocity components, as

shown in the following example:

SELECT shipVvelocityMag(ens_data), ShipvelocityDir(ens_data)
FROM ensembles
WHERE tr_id = 9001;

Figure 5.5. An example of aggregate functions within an SQL statement.

In this project, 70 accessor and aggregate functions have been created to facilitate
convenient database transactions of ADMS. The complete list of the functions can be

seen in Appendix C.

5.2.3. Comparison to Relational Structure.

As a comparison to relational structure, any complex objects should be broken into

smaller pieces of atomic values, as required by the First Normal Form (I1NF) rule of

92

Discussion

normalisation process. As mention in section 5.1.3, the process of normalisation in the
relational model generally leads to the creation of several relations with relationships

between relations, which may be complicated.

The ability of ORDBMS to support complex object leads to the creation of simple tables
in the database. Simple table means that the number of columns in a table as well as the
number of tables in the database can be reduced to a minimum level. As an impact, the
SQL statements to access complex data can be written as simple as possible. For
example, the ensemble of ADCP data is stored in a single column of ens_data in
ensembles table (see Figure 5.3). One instance of ensembles occupies only one row in
the table. If an ensemble holds 20 bins of current velocity profile, then the ensemble will
be composed of 110 atomic values (10 atomic values of measurement information and
100 atomic values of bin data (20 bins x 5 atomic data each)). However, all of these data

are stored in a single column, one row per instance.

In relational structures, two separate tables are required to store the ensemble of ADCP
data (see Figure 5.6) and each column of the tables can only store an atomic value of built
in data type. Thus, decomposing the ensemble of ADCP data into atomic values is a
necessity. These two tables will store the measurement information and the bins data of
current velocity profile. If an ensemble has 20 bins, then a ten-column table is required to
store measurement information (Info table) and another five-columns table is required

to store the current velocity profile (Bins table). This situation excludes one column of

93

Discussion

table requires 20 rows to hold one instance of 20 bins ensemble.

foreign key in each table to represent the relationship between tables. Moreover, the Bins

P id Ensinfo_id
Latitude P id
Longitude AvgCovered
EnsDateTime LastBin
EastShipVel
NorthShipVel
NavType
Bceover
BtDepth
BtError
PctGood
‘ IntPeriod
M BinDepth
Pid
EastVelocity
NorthVelocity
Avgc
PctOK

Figure 5.6. Relations that are required to store ensembles of
ADCP data in relational DBMS.

As can be seen in this example, the ORDBMS provides an efficient way of storing and
managing complex data than the RDBMS. This can be considered as a new approach of
managing spatial data such as ADCP data that can be applied in marine spatial data

management.

5.2.4. Benefits of Storing Complex Object into a Single Column of a
Relation.

Some new approaches for spatial data management have been introduced by the

emerging ORDBMS technology. One of these approaches is storing a complex object

94

Discussion

into a single column of a relation. This approach could not be implemented in the former
RDBMS where a column of a relation could only store an atomic value of built-in data
type. There are some benefits of storing a complex object into a single column of relation

as explained in the following sections.

5.2.4.1. Storing the spatial data and its associated complex attributes in

the same relation.

The Object-Relational Database Management System (ORDBMS) enables users to store
the spatial data and its complex attributes in a single relation. This allows a single data
access to retrieve the spatial data and its attributes. For example, the ensembles
relation in ADCP database stores the spatial data of ensemble position in a column
ens_position of GeoPoint data type, and it’s complex attributes of ensemble data
in a column ens_data of ensemble_t data type. The query to these two attributes
can be performed in one SQL statement as shown in the following example (rewritten

from Figure 5.1):

SELECT ens_position, ens_data
FROM ensembles
WHERE 1inside(ens_position,
“((-35,160), (-40,165) ,ANY,ANY)’ : :GeoBoXx) ;

Figure 5.7. Retrieving spatial data and its attributes based
on spatial query.
The SQL statement in figure 5.7, returns ensemble positions (€ns_position) and its

attributes of ADCP data (ens_data) from ensembles relation where the ensemble

95

Discussion

positions located inside the specified boundary box. As can be seen, this statement

retrieves the spatial data and it’s associated attributes in a single data access.

As a comparison to the relational structure, the spatial data and its attributes are usually
stored in separate relations. This requires join operations between relations to retrieve the

attributes based on the spatial data queries.

5.2.4.2. Reducing joins operation between relations.

Storing a complex data into a single column may have a benefit of reducing the number
of relations that are required to store the data. This has an implication of reducing join
operation between relations. In the relational structure, where a complex data should be
decomposed into atomic values, several relations are required to store them and the join
operation is a necessity to access the data across relations. In a database context, a join
operation is considered as one of the most expensive operation to perform. For example,
an ensemble of ADCP data is stored into a single column of a relation in ORDBMS, but
it requires at least three relations to store the same data in RDBMS, as can be seen in

Figure5.6, join operations are required to access data from these relations.

5.3. Inheritance.

Inheritance is the process that allows a type or a table to acquire the properties of another
type or relation. The type or relation that inherits the properties is called the subtype or
subtable. The type or relation whose properties are inherited is called the supertype or

subtable. The subtype or subtable will inherit all properties that are defined on the

96

Discussion

supertype or supertable such as structure, behaviors (routines, aggregates, operators,
constraint definitions, referential integrity, access methods, storage options, triggers,
etc.), and indexes. In this project, inheritance is applied to adcp and navigation
tables that inherit the properties of instrumentation table. It should be a typed-table
in order to utilise inheritance, thus the adcp, navigation and
instrumentation tables are typed-tables of adcp_t, navigation_t,
instrument_t respectively. Figure 5.8 shows the inheritance hierarchies of the

specified tables.

Instrument_t

Adep t Navigation_t

Inherited
attributes

Inherited
attributes

Xmit_freq Differential
Td_config P _code .
Beam_angle | Antena offset [
Beam_ width : o

Figure 5.8 Inheritance hierarchies.

5.3.1. Comparison to Relational Structures.

Inheritance is not supported in relational DBMS. Three separate relations should be

created to holds all attributes of instrumentation information both for ADCP and

97

Discussion

Navigation instruments. Moreover, joins between tables should be performed to query all

data regarding ADCP and Navigation instruments.

5.4. Some New Approaches on Marine Spatial Data Management.

The object-oriented features of ORDBMS provide flexibility in data modelling especially
when dealing with complex data such as marine spatial data. Unlike relational data
modelling, where any complex object should be broken down into atomic values before
storing them into columns of relations, the object-relational data modelling enables us to
model complex objects that correspond to entities in the ‘real world’. Moreover, the
ORDBMS allows us to store an entity as a complete object into a single column of a
relation. As can be seen in the example (figure 5.6), the ensemble position of ADCP data
as the spatial data is stored in the same table with its complex attributes of water current
velocity profiles, each of which in a single column. This is a new approach to spatial data
management that leads to the creation of simple tables as well as simple database

application.

The extensibility feature of ORDBMS, that allows us to create user-defined data types
(UDT) and user-defined functions (UDF), enables us to perform most of the application
tasks in the database server rather than in the application server. This situation may have
an implication of creating a ‘thin’ database application and reducing the transaction load
in the network that may lead to improve the application’s performance. The following
points summarise some new approaches that can be applied to marine spatial data

management as well as any other spatial data management in general:

98

Discussion

o The spatial data and its complex attributes can be stored as a complete object in a
single column respectively, in the same relation. If there are more than one object of
attributes, they can be stored in separate columns.

e Accessing each component member of the spatial data as well as its complex attribute
can be performed using user-defined functions.

e Most of the spatial analysis tasks can be implemented in the database server instead
of in the application server by creating user-defined functions that work with spatial

data.

99

Chapter VI

Conclusion

The recently developed Object-Relational Database Management System (ORDBMS)
technology has increased the ability of a database application, such as spatial data
management and GIS, to handle complex data in a better way than its predecessor
technology of Relational DBMS. The object-oriented features of ORDBMS enable users
to model objects that correspond to entities in the ‘real world’. In relation to marine
spatial data management, the ORDBMS provides several benefits that allow us to store,
manage and retrieve spatial data - as well as its associated complex attributes - effectively

and efficiently.

The water current velocity profiles measured by Acoustic Doppler Current Profiler
(ADCP) is one of the complex data types in the marine field that can be considered as
spatial data since it has geographic position. The ORDBMS is an appropriate data
management system to store and manage marine spatial such as ADCP data. The object-
oriented features of ORDBMS provide some new approaches on marine spatial data

management that may provide an effective and efficient method of data management.

The following are some new approaches that can be applied to marine spatial data
management:
e In ORDBMS, an entity in the ‘real world’ can be stored as a complete object in a

single column of a relation. There is no requirement to decompose an entity of

100

Conclusion

complex object into atomic values as required by the First Normal Form (INF) rule of
normalisation process in the relational model. This provides an appropriate data
modelling of an entity that corresponds to the ‘real world’ phenomena. In ADCP case,
the ensemble position as well as its complex attributes of water current velocity profile
are stored in a single column respectively.

o The spatial data (geographic position) and its attributes can be stored in the same table,
each of which is stored in a single column. In ADCP data case, the ensemble position
- as the spatial data - is stored in the same table with its attributes of water current
velocity profile.

e Most of the spatial analysis tasks can be performed in the database server by creating
user-defined functions that work with the spatial data, instead of performing the
analysis in the client application. However, the same functions can also be created in
the application program to provide users a freedom of performing analysis tasks either
in the database server or in their application programs. In this project, 70 user-defined
functions have been created to facilitate some analysis tasks in the database server as
well as the application program. The Java programming language has been used to

develop the application programs.

The new approaches of ORDBMS on marine spatial data management provides several

benefits as summarized in the following:

e The object-oriented features of ORDBMS enables users to reduced the number of
tables and columns that are required for managing marine spatial data. In ADCP

database, one table of four columns is required to store the ensemble position and the

101

Conclusion

water current velocity profile (the other two columns are for ensemble id and the
foreign key of transect id respectively).

Storing an entity as a complete object into a single column of a relation enables users
to create a simple SQL query to retrieve and manipulate any complex data stored in
the database.

Storing the geographic position as the spatial data and its attributes in the same tables
enables users to retrieve the spatial data in a single disk access, reducing many join
operation between tables as found in the relational DBMS, which means reducing
access time.

The extensibility features of ORDBMS may lead to the creation of ‘thin’ database
applications since most of the application tasks are performed in the database server
via user-defined functions rather than in the application programs. This situation may
also reduced the transaction load since the data to be returned to the users are the

analysis result instead of the whole data to be analysed.

102

10.

11.

12.

13.

14.

References

Bancilhon, F. (1996), Object, Relational, Object-Relational & Relational-Object,
New York, SIGS Publication (www.sigs.com).

Basu, A., and Nalamotu, C. (1997), Marine Geographic Information System for
the Exclusive Economic Zone, Marine Geodesy, 20: 255-265.

Bobbitt, Andra M., 1997, GIS Analysis of Remotely Sensed and Field Observation
Oceanographic Data, Marine Geodesy, 20:153-161.

Chamberlin, Donald D., 1996, Anatomy of An Object-Relational Database, DB2
Online Magazine, Winter 1996 (www.db2mag.com).

Cokelet, E.D., 1996, ADCP-Referenced Geostrophic Circulation in the Bering
Sea Basin, Journal of Physical Oceanography, July 1996.

Connolly, T., 1999, Database Systems — A Practical Approach to Design,
Implementation, and Management, Addison Wesley Longman.

Cook, Rick, 1997, Is a Hybrid Database in Your Future?, Sun World Online,
February 1997.

Date, C.J., 1998, Back to the Relational Future, DBSummit, September 1998.
Davis, Judith R., 1996, Informix Universal Server - Extending the Relational
Database Management System to Manage Complex Data, Database Associate
Int., November 1996.

Dick, Timothy, 1997, Object/Relational Database Vendors Map Their Strategies,
PC Week, January 1997.

Dinger, Kari Richards, , Lowered ADCP (LADCP) Application Note, RD
Instrument Research Report (www.adcp.com/resrep/ladcp/ladcp.htm).

Elmasri, R, and Navathe, S.B., 1994, Fundamentals of Database Systems,
Addison Wesley Longman.

Embley, David W., 1998, Object Database Development, Concepts and
Principles, Addison Wesley Longman, Inc.

Falconer, Robin K.H., 1990, Experience with Geographic Information Systems
(G1S) in the Marine World, The Hydrographic Journal, 58:19-22.

103

References

"

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

T G ad

Fowler, Cindy, 1998, Geographic Infoymation Systems, Mapping, gnd Spatial
Data for the Coastal and Ocean Resaz{rce Management Community, Surveying
and Land Information Systems, 58:135-]40.

Frazer, Donald, 1998, Object/Relatl'ohal Grows Up, DB Summit, September
1998.

Fussel, Mark L., 1997, Foundations of Object-Relational Mapping, Chi Mu
Publications (www.chimu.com)

Gold, Christopher M., 1995, Spatial Data Structure Integrating GIS and
Simulation in a Marine Environment, Marine Geodesy, 18:213-228.

GreenWood, Len, 1995, The PostRel:qtional Database, The case for NF2,
Database and Network Journal, 25:3-5.

Grimes, Seth, 1998, Modeling Object/Relational Databases, DBMS Magazine,
April 1998.

Grimes, Seth, 1998, Object Relational Reality Check, Database Programming and
Design, July 1998. '

Group, Gartner, 1995, Universal Server: RDBMS Technology for the Next
Decade, Informix Corp., June 1995.

Group, Gartner, 1998, Application Par(jtioning with Informix-New Era (IM),
Informix Corp.

Hall, Robert K., 1995, Geographical [nformation Systems (GIS) to Manage
0ceanogméhic Data for Site Designatio;q and Site Monitoring, Marine Geodesy,
18:161-171.

Humphreys, R.G., 1989, Marine Information Systems, The Hydrographic Journal,
54:19-21.

Informix, 1997, An Introduction to Informix Universal Server Extended features
Training Manual, Informix.

Informix, 1998, Developing DataBlade Modules for Informix Dynamic Server
with Universal Data Option, Informix.

Informix, Extending & Enhancing ERP Applications by Using Complex Data

Types, Informix.

104

References

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.
40.

41.

42.

43.

44,

AL a s it ua

Informix, 1997, Extending Informix Universal Server, Data Types versign 2.1,
Informix. B |

Informix, 1997, Inform?x-Enterprise Command Center, A Complete Entérprise
Data Management SOjuﬁon, Informix.

Informix, 1997, Informix Geodetic DataBlade Module, User’s Guide version 2.1,
Informix.

Informix, 1996, Informix and Illustra Merge to Create Informix Universal Server,
Infbrmix Corp.

Informix, 1998, Informix Object-Relational Database Leads the Industry with
1, QOO Customers, Infqrmix Corp. |
Keeler, Michael, 1997, TIreasure Mq()s for Decis{on Support, Dq’quase
Programming and Design, November 1997.

Kumar, S., and Nor, A., 1997, Oracle8 Object Relational database: An Overview,
Oracle Corp., June 1997.

Li, Rongxing, 1993, Development of an Integrated Marine Geographic
Information Sxstem, Marine Geodesy, 16:293-307.

Mason, JY M, 1993, Management of Hydrographic and Oceanographic
Databases using GIS, The Hydrographic Journal, 68:21-26.

McClure, Steve, 1997, Object Database vs. Object-Relational Datgbase, IDC
Bulletin, April 1997.

Miller, Glenn, 1999, Informix Basics, Prentice Hall.

OSMOS, Object-Relational Technology and OSMOS, Business White Paper,
OSMOS Corp (www.osmos.com).

OSMOS, OSMOS Object-Relational Database Management System, Technical
White Paper, OSMOS Corp (Www.osmos.com).

RD Instruments, 1995, User's Manual for the RD Instruments BBLIST.EXE
Program (For Use with Broadband ADCP), RD Instruments Corp.

RD Instruments, 1994, User's Manual for the RD Instruments Transect Program
(For Use with Broadband ADCP), RD Instruments Corp.

RD Instruments, 1995, User's Manual for the RD Instruments Play Back Program
(For Use with Broadband ADCP), RD Instruments Corp.

105

References

45.

46.

47.
43.

49.
50.

51.
52.

53.

54.
55.

56.

57.
58.
59.

60.

RD Instruments, 1988, RD-VM Acoustic Doppler Current Profilers, Operation
and Maintenance Manual, RD Instruments Corp.

Renhnhackkamp, Martin, 1997, Extending Relational DBMSs, DBMS Magazine,
December 1997.

Rosenblatt, Bill, 1996, Informix Leaps to Objects, SunWorld, May 1996.

Rudin, Ken, 1997, Are Object/Relational Databases Scalable, PCWeek, June
1997.

Rudin, Ken, 1997, Quantifying Scalability, PC Week, November 1997.

Sanchez, Angela, 1997, Informix Dynamic Server with Universal Data Option:
Best Practices, Prentice Hall.

Sontek, ADP Principles of Operation, Sontek Corp.

Stephens, R., 1997, Current Measurements and Forecasting for Deep Water Site
Investigation, The Hydrographic Journal, 84:21-25.

Stonebraker, M., 1997, Limitations of Spatial Simulators for Relational DBMS:s,
Informix Corp.

Stonebraker, M., 1998, Object-Relational DBMS, The Next Wave, Informix Corp.
Stonebraker, M., 1996, Object-Relational DBMSs, The Next Great Wave, Morgan
Kaufmann.

Stonebraker, M., 1997, Performance Penalties for Simulating Object-Relational
DBMSs, Informix Corp.

Taylor, Art, 1999, Informix Power Reference, Prentice Hall.

Weber, J.L., 1998, Using Java™ 2 Platform, Special Edition, Que Publishing.
White, Seth., 1999, JDBC ™ API Tutorial and Reference, Second Edition —
Universal Data Access for the Java™ 2 Platform, Addison Wesley Longman.
Wilson, John T., 1996, Bathymetric Surveys of Morse and Geist Reservoirs in
Central Indiana Made with Acoustic Doppler Current Profiler and Global
Positioning Systems Technology, U.S. Geological Survey.

106

Appendix A

List of Entity Types, Relationship Types and
Attributes of Entity Types
Used in ADCP Database

A.1. List of entity types.

1 Institutes Institution that ¢ An institution may perform one or more
performed ADCP projects of ADCP measurement survey.
measurement. s Aninstitution may own one or more

e Vessels owner vessels
Projects ADCP measurement survey § One project may consists of one or more
' cruise lines within particular area boundary
Cruises trips within a project One project may have one or more cruises
Vessels The vessel used for ADCP | One vessel may be used to performed one
measurement or more ADCP measurement survey
Countries The country where An institution may be located in one or
institution is located more countries
Instrumentations | Instrumentation used in One ADCP measurement uses one type
ADCP measurement either] both ADCP instrument and navigation
ADCP or Navigational instrument
instruments
Transects Cruise line where ADCP e A transect has a series of discreet
measurement is performed ensembles.
e A transect has one configuration
parameter for all ensembles within it.
Ensembles ADCP measured value An ensemble contains one date and time of
measurement, one measurement
information (EnsembleInfo) and a series of
bins (EnsembleBins)
Ensemblelnfo Measurement information One ensemble contains one measurement
contained in each ensemble.] information.
EnsembleBins A series of bins within Each ensemble has one up to 128 bins
, ensembles
EnsembleConfig | Measurement configuration | Ensemble within a transect has the same
: configuration parameters

107

Appendix

Countries co_id Varchar(10) Not null primary key

CO_name Varchar(30)
Institutes inst id Varchar(10) not null primary key

inst name Varchar(50)

Address Address t

co_id Varchar(10) foreign key references countries
Persons pers_id serial Not null primary key

pers_name Name t

inst id Varchar(10) Foreign key references institutes
Projects p_id serial Not null primary key

p_name Varchar(50)

p_area GeoPolygon

survey_period GeoTimeRange

co_id Varchar(10) foreign key references countries
Collaboration Coll_id Serial Not null primary key

Inst_id Varchar(10) Foreign key references institutes

1P id Integer Foreign key references projects

Vessel vs_id Varchar(10) not null primary key

vS_name Varchar(40)

inst_id Varchar(10) foreign key references institutes

vs_photo BLOB

{ Cruises cr id Varchar(10) Not null primary key constraint pk_cruises
{ cr_name Varchar(50)

vs_id Varchar(10) Foreign key references vessels

s_port Varchar(50)

e_port Varchar(50)

p_id Integer Foreign key reference projects

serial no Varchar(10) Foreign key reference instrumentation
Transects tr_id Serial not null primary key

tr_config Ensconfig_t

cr id Varchar(10) foreign key references cruises

pers_id Varchar(10) foreign key references Persons.

tr_notes CLOB foreign key references processing
Ensembles ens_id Serial8 not null primary key

ens_position GeoPoint R-tree index not null

ens_data Ensemble t

tr_id integer foreign key references transects
Instrumentation { Serial no Varchar(10) Not null primary key

Instrument name Varchar(30)

Manufacturer Varchar(30)

Model Varchar(10)

Firmware number | Varchar(10)
ADCP transmit_freq Smallint

Transducer_config | Varchar(10)

Beam_angle Smallint

Beam_width Smallint
Navigation Differential Boolean

P_code Boolean

Antena_offset Offset t

108

Appendix

A.3. List of Relationship Types.

Institutes * Oown o Vessels 1:M T
e Located in e Countries I'M T:P
e Perform e Projects M:N pP:T
Projects Undertake Cruises 1:M T:P
Cruises ¢ Equipped e Instrumentations M:N T:P
e Consist of e transects 1:M T:T
Vessels Used in Cruises 1:M T:T
Transects Has ensembles 1:M T:P
Persons e Work at o Institutes M:1 P:T
e Lead e Projects 1:M P:T
] e Process e Transects 1:M P:T

Notes : P = partial participation, T = Total participation.

109

Appendix

Appendix B

Data Definition Languages
Of User-defined Data Types (UDT) and Relations
For ADCP Database in Informix Dynamic Server
With Universal Data Option version 9.14

B.1. Data Definition Languages of User-defined Data Types (UDT)

) UDTName h

Velocity t | create row type velocity_t (
EastVelocity smallfloat,
NorthVelocity smallfloat);

1 bin_t create row type bin_t (
" BinDepth smalifloat,

BinVelocity velocity t,
Avqgc smallfloat,
PctOK Integer);

Ensinfo_t create row type ensinfo_t (
AvgCovered Integer,
ShipVelocity velocity_t,
NavType Varchar(3),
BCover Integer, .
BottomDepth Integer,
BTError Integer,
PctGood Integer,
IntegrationPeriod Integer);

ensconfig_t create row type ensconfig_t (
Draught smallfloat,
BinsToSample Integer,
BinLength Integer,
PulseLength Integer,
TransmitDelay Integer,
Refon Integer,
Refbl Integer,
Refb2 Integer,
EvMax smalifloat,
WMax smalifloat);

ensbins t create row type ensbins_t (
Bins LIST(bin_t not null));

110

Appendix

[UbTNa

ensemble;s-_ t

create row type ensemble t (

EnsDateTime
EnsInfo
EnsBins

Datetime year to second,
ensinfo t,
ensbins _t);

address_t create row type address t (
street Varchar(40),
city Varchar(20),
state Varchar(3),
phone Varchar(15),
fax Varchar(15),
zip ‘Varchar(4)),

B.2. Data Definition Languages of Relations

Coll_id
Inst id
P id

Serial notu null primary key,
Varchar(10) references Institutes,
Integer references Projects);

| TableName | n Language . j
Countries create table countries (
co_id Varchar(10) not null primary key
constraint pk_countries,
co_name Varchar(30));
Institutes create table institutes (
inst_id Varchar(10) not null primary key
constraint pk_inst,
inst name Varchar(50),
address address _t,
co_id Varchar(10) references countries
constraint inst_fk co);
Persons create table persons (
pers id Serial not null primary key
constraint pk_persons,
pname name_t
inst_id Varchar(10) references institutes
constraint pers_fk inst);
Projects create table projects (
p_id Serial not null primary key
constraint pk_projects,
p_name Varchar(50),
p_area GeoPolygon,
survey_period GeoTimeRange,
co_id Varchar(10) references countries
constraint p_fk co);
Collaboration Create table collaboration (

111

Appendix

~ Data Definition Language

Vessels

create table vessels (

vs_id Varchar(10) not null primary key
constraint pk_vessels,
vs_name Varchar(40),
inst_id Varchar(10) references institutes
constraint vs_fk_inst,
vs_photo BLOB);";
{ Cruises create table cruises (
cr_id Varchar(10) not null primary key
constraint pk_cruises,
Cr_name Varchar(50),
vs_id Varchar(10) references vessels
constraint cr_fk vs,
s port Varchar(50),
¢ _port Varchar(50),
pers_id Varchar(10) references person
constraint cr_fk proc);";
Instrumentation Create table instrumentation of type instrument t
| Primary key (serial_no);
{ ADCP Create table adcp of type adcp t
Under instrumentation;
Navigation Create table navigation of type navigation_t
{ Under instrumentation;
Transects create table transects (
tr id serial not null primary key
constraint pk_transects,
config ensconfig t,
cr id Varchar(10) references cruises
constraint tr_fk_cr,
pers_id integer references persons
constraint tr_fk_pers,
tr_notes CLOB);
{ Ensembles { create table ensembles (
ens_id serial8 not null primary key
constraint pk_ensembles,
ens_position GeoPoint,
ens_data ensemble t,
tr_id integer references transects

constraint ens_fk_tr);";

112

Appendix

Appendix C

List of Accessor Functions in ADCP Database

The following are the accessor functions associated with ADCP database. These

functions can be used to access each element, parts of or the whole ensemble object. The

functions can be run as part of SQL Queries either from database specific application

(such as DBAccess) or any external programming languages. In this project, the functions

are run from java applications programs.

[Return vame |
Int | avgCovered(e! ensinfo t)
Get the percentage of averaging period covered by acceptable ensemble from set
of measurement information data.
Int { avgCovered(ens ensemble_t)
Get the percentage of averaging period covered by acceptable ensemble from
~contained in each ensemble.
Smallfloat avqc(b bln_t)
Get the quality control value of this bin.
Smallfloat { avqe(ens ensemble t, 4 smallfloat)
Get the quality control value of this ensemble at d depth bin.
Bin_t { binAtDepth(eb ensbins_t, 4 smallfloat)
Get the bin object at the specified depth.
Bin_t { binAtDepth(ens ensemble _t, d smallfloat)
Get the bin object at the specified depth contained in this ensemble.
Smallfloat § binDepth(b bin t)
Get the bin depth of this bin.
Int 7 binInterval(eb ensbins_t)
Get the bin interval in this ensemble bins object, in vertical metre.
Int { binInterval(ens ensemble t)
Get the bin interval in tthis ensemble, in vertical metre.
Int] binLength(ec ensconfig t)
7 Get the length of bin in vertical metres.
Int { binSize(eb ensbins_t) '
Get the number of bins contained in the ensemble associated with this ensemble
bins object.
Int 1 binSize(ens ensemble t)
Get the number of bins contained in this ensemble.
Int { binsToSample(ec ensconfig t)
Get the number of bins to sample of each ensemble.
Int | bottomCover(ei ensinfo _t)
Get the percentage of interfix period for which there was bottom depth
information.

113

Appendix

Return Vale |

Int] bottomCover(ens ensemble t)

Get the percentage of interfix period for which there was bottom depth
information.

Int § bottomDepth(ei ensinfo t)

Get the mean bottom depth of the ensemble associated with this measurement
information, for which a bottom depth was available.

Int | bottomDepth(ens ensemble t)

Get the mean bottom depth of this ensemble, for which a bottom depth was
available.

Int § btError(ei ensinfo t)

Get the bottom track error velocity of the ensemble associated with this
measurement information (used for bottom track correction).

Int { btError(ens ensemble t)

Get the bottom track error velocity of this ensemble (used for bottom track
correction).

Smallfloat { draught(ec ensconfig t)

Get the transducer depth correction in meter.

Smallfloat { eastShipVelocity(ei ensinfo t)

Get the cast velocity component for this ensemble from measurement
information.

Smallfloat { eastShipVelocity(ens ensemble t)

Get east velocity component contained in this ensemble.

Smallfloat { eastVelocity(d bin t)

Get the east current velocity component contained in this bin object, relative to
the ship.

Smallfloat { eastVelocity(ens ensemble t, d smallfloat)

Get the east current velocity component contained in this ensemble object at d
bin depth, relative to the ship.

EnsBins_t { ensBins(ens ensemble t)

Get a series of bins data contained in each ensemble.

DateTime { ensDateTime(ens ensemble t)

Y:ZEO Ez get date and time of measurement of each ensemble.

Int § ensDay(ens ensemble t)
get date of measurement of each ensemble.
EnsInfo_t { ensInfo(ens ensemble t)
Get the measurement information for each ensemble.
Int | ensMonth(ens ensemble t)
~ Get month of measurement of each ensemble.
Int | ensYear(ens ensemble t)
7 Get year of measurement of each ensembles.
Smallfloat { eyMax(ec ensconfig t)
Get the threshold for ping by ping data rejection on basis of error velocities, in
m/s,
Bin_t { firstBin(eb ensbins_t)
Get the first bin of this ensemble bins object.
Bin_t | firstBin(ens ensemble t)
Get the first bin of of the ensemble bins object in this ensemble.

114

Appendix

Bin t | interpolateBin(b] bin_{ b2 bin t, d smallfloat)
Interpolate a bin object at the specified depth.

Bin t { lastBin(eb ensbins t)
Get the last bin of this ensemble bins object.

Bin_t { lastBin(ens ensemble t)
Get the first bin of the ensemble bins object in this ensemble.

Float { latitude(position GeoPoint)
Get the latitude of ensemble position.

Float § longitude(position GeoPoint)
Get the longitude of ensemble position.

Varchar | pavType(ei ensinfo _t)
Get the navigation type used in this ensemble from measurement information.

Varchar { navType(ens ensemble t)
Get the navigation type used in this ensemble measurement.

Smallfloat { porthShipVelocity(ei ensinfo_t)
Get the north velocity component for this ensemble from measurement

information.

Smallfloat ndrthShipVelocity(ens ensemble t)
Get north velocity component contained in this ensemble.

Smallfloat | pnorthVelocity(b bin t)
Get the north current velocity component contained in this bin object, relative to
the ship.

Smallfloat { northVelocity(ens ensemble t, 4 smallfloat)
Get the north current velocity component contained in this ensemble object at d

bin depth, relative to the ship.

Int § petOK(b bin_t)
Get the “attendance percentage”, or the percentage of the profile period for
which there was good data in this bin.

Smallfloat § petOK(ens ensemble t, d smallfloat)
Get the “attendance percentage”, or the percentage of the profile period for
which there was good data in this ensemble at d bin depth.

Int { pulseLength(ec ensconfig_t)
Get the length of pulse used in the ADCP measurement, in vertical metres.

Velocity_t § shipVelocity(ei ensinfo t)
Get the ship velocity object for this ensemble from measurement information.

Velocity_t | shipVelocity(ens ensemble_t)
Get the ship velocity object contained in this ensemble.

Smallfloat { shipVelocityDir(e/ ensinfo t)
Get the ship velocity direction from measurement information.

Smallfloat { gshipVelocityDir(ens ensemble t)
Get the ship velocity direction for this ensemble.

Smallfloat { shipVelocityDir(ve! velocity t)
Get the ship velocity direction from velocity object.

Smallfloat § shipVelocityMag(ei ensinfo t)
Get the ship velocity magnitude for this ensemble from measurement
information.

Smallfloat § shipVelocityMag(ens ensemble t)
~ Get the ship velocity magnitude for this ensemble.

115

Appendix

Smallfloat { shipVelocityMag(vel velocity t)
7 Get the ship velocity magnitude from velocity object.
Int 1 transmitDelay(ec ensconfig t)
~ Get the delay after transmit in vertical metres.
Smallfloat § yelocityDir(b bin_t)
Get the current velocity direction of the velocity object contained in this bin
object, relative to the ship.
Smallfloat | yelocityDir(ens ensemble t, d smailfloat)
Get the current velocity direction of the velocity object contained in this
; ensemble object at d bin depth, relative to the ship.
Smallfloat { velocityMag(b bin_t)
Get the current velocity magnitude of the velocity object contained in this bin
object, relative to the ship.
Smallfloat { velocityMag(ens ensemble t, 4 smallfloat)
Get the current velocity magnitude of the velocity object contained in this
ensemble object at d bin depth, relative to the ship.
Smallfloat { wMax(ec ensconfig t)
Get vertical velocity real time threshold, in m/s.

116

Appendix

Appendix D
List of Java Class and Methods for ADCP Database

D.1. Ensemble Class

Constructors:

{ Ensemble()
Construct an empty ensemble object.

Ensemble(Ensemblelnfo ensinfo, EnsembleBins ensbins)
Construct an ensemble from measurement information and a series of bins measurement data.

Methods:

[e vame T T ~ Function Name

EnsemblelInfo ensInfoO
Get the measurement information for each ensemble.

EnsembleBins ensBinsO
Get a series of bins data contained in each ensemble.

TimeStamp { ensDateTime()
get date and time of measurement of each ensemble.

int { ensYear()
Get year of measurement of each ensembles.

int { ensMonth()
Get month of measurement of each ensemble.

int { ensDay()
get date of measurement of each ensemble.

int § binsSize()
get number of bins contained in this ensemble.

117

Appendix

D.2. EnsembleConfig Class

Constructors:
EnsembleConfig()
Construct an empty configuration parameter object.

EnsembleConfig(String seader)
Construct a configuration parameter object from header data of CSIRO ADCP data file.

Methods:

[retmvaiel = T

I draughf()l '
Get the transducer depth correction in meter.
int ¢ binsToSample()
Get the number of bins to sample of each ensemble.
int { binLength()
Get the length of bin in vertical metres.
int § pulseLength()
‘ Get the length of pulse used in the ADCP measurement, in vertical metres.

int [transmitDelay()
Get the delay after transmit in vertical metres.

float

float § eyM axO
Get the threshold for ping by ping data rejection on basis of error velocities, in

m/s.

float wMaxO

Get vertical velocity real time threshold, in m/s.

118

Appendix

D.3. Ensemblelnfo Class

Constructors:
Ensemblelnfo()
Construct an empty measurement information object.

{ EnsembleInfo(String info)
Construct a measurement information object from CSIRO ADCP data file.

Methods:

ki i R "
Return- Value :

int { avgCovered()
Get the percentage of averaging period covered by acceptable ensemble from set
of measurement information data.

Velocity § shipVelocity()
Get the ship velocity object contained in this ensemble.

float § eastShipVelocity()
Get east velocity component contained in this ensemble.

float § northShipVelocity()
Get north velocity component contained in this ensemble.

float { shipVelocityMag()
Get the ship velocity magnitude for this ensemble.

float { shipVelocityDir()
Get the ship velocity direction for this ensemble.

String navapeO
Get the navigation type used in this ensemble from measurement information.

int { pottomCover()

int { bottomDepth()
Get the mean bottom depth of this ensemble, for which a bottom depth was

available.

int { btError()
Get the bottom track error velocity of this ensemble (used for bottom track

correction).

119

Appendix

D.4. EnsembleBins Class

Constructors:

| EnsembleBins()
Construct an empty ensemble bins object.

'EnsembleBinsW ector binsdata)
Construct a series of bins ensemble from bins data of CSIRO ADCP data file.

EnsembleBins(EnsembleConfig ensconfig, Vector binsdata)

configuration parameter.

Construct a series of bins ensemble from bins data of CSIRO ADCP data file with the specified

Methods:

© Return Value | . =

[~ int | binSize()
Get the number of bins contained in this ensemble.

int { binInterval()
Get the bin interval in this ensemble, in vertical metre.

Bin t 1 firstBin()

Get the first bin of the ensemble bins object in this ensemble.

Bin_t | lastBin()

Get the first bin of the ensemble bins object in this ensemble.

Bin_t 1 binAtDepth(float depth)
Get the bin at the specified depth in this ensemble.

120

Appendix

D.5. Bin Class

Constructors:

Bin()
Construct an empty bin object.

{1 Bin(float eastvelocity, float northvelocity, float avgc, int pctOK)
Construct a bin from measured current velocity components, quality control value and attendance
percentage as float data input, with unspecified bin depth.

{ Bin(float depth, float eastvelocity, float northvelocity, float avqgc, int pctOK)
Construct a bin from measured current velocity components, quality control value and attendance
percentage as float data input at specified bin depth.

Bih(Siring eastvelocity, String northvelocity, String avgc, String pctOK)
Construct a bin from measured current velocity components, quality control value and attendance
percentage as String data input, with unspecified bin depth.

Bin(String depth, String eastvelocity, String northvelocity, String avge, String pctOK)
Construct a bin from measured current velocity components, quality control value and attendance
percentage as String data input at specified bin depth.

Methods:

o i G

{ Return value |

float 'ﬁ eastVelocity()
Get the east current velocity component contained in this bin object, relative to
the ship.

float { northVelocity()
Get the north current velocity component contained in this bin object, relative to

the ship.

float 1 velocityMagnitude()
Get the current velocity magnitude of the velocity object contained in this bin

object, relative to the ship.

float { velocityDirection()
Get the current velocity direction of the velocity object contained in this bin

object, relative to the ship.

float | binDepth()
Get the bin depth of this bin.

float avqco
Get the quality control value of this bin.

int { pctOK()
Get the “attendance percentage”, or the percentage of the profile period for
which there was good data in this bin.

121

Appendix

D.6. Velocity Class

Constructors:
Velocity(float eastvelocity, float northvelocity)
Construct a velocity object from each velocity components as float data inputs.

Velocity(String eastvelocity, String northvelocity)
Construct a velocity object from each velocity components as String data inputs.

Methods:

Re‘turn \?'élueq s

float § eastVelocity()
Get the east velocity component contained in this velocity object.

Float northVelocity()
Get the north velocity component contained in this velocity object.

float { yelocityMagnitude()
Get the velocity magnitude of the velocity object.

float | velocityDirection()
Get the velocity direction of the velocity object.

D.7. GeoAltRange

Constructors:
GeoAltRange()
Construct an empty GeoAltRange object.

{ GeoAltRange(double /)
Construct a GeoAltRange from height value.

GeoAltRange(double /o, double /i)
Construct a GeoAltRange object from lowest and highest height values.

Methods:

doubiwe T A.ltLOW()
Get the lowest altitude value from GeoAltRange.

double A]tHighO
Get the highest altitude value from GeoAltRange.

122

Appendix

D.8. GeoCoords

Constructors:

| GeoCoords()
Cinstruct an empty GeoCoords object

GeoCoords(double /at, double lon)
Construct a GeoCoords object from latitude and longitude as double values.

GeoCoords(String /at, String lon)
Construct a GeoCoords object from latitude and longitude as String values.

Methods:

‘Return Value | =

void setCeoLatitu”dme(double 'lAat‘) -
Set the GeoLatitude of GeoCoords to lat.

~void setGeoLongitude(double /on)
Set the GeoLongitude of GeoCoords to lon.

double { getGeoLatitude()
Get the GeoLatitude from GeoCoords object.

double { petGeoLongitude()
Get the GeoLongitude from GeoCoords object.

D.9. GeoTimeRange

Constructors:
GeoTimeRange()

Construct an empty GeoTimeRange object.
GeoTimeRange(long /)

Construct GeoTimeRange object using a millisecond value.
GeoTimeRange(long #o, long thi)

Construct GeoTimeRange object from lowest and highest time value in millisecond
GeoTimeRange(String /)

Construct GeoTimeRange object using a String value.
GeoTimeRange(String to, String thi)

Construct GeoTimeRange object from lowest and highest time value in Strin_gL

Methods:

[Return value|

B String timeL:wO
Get the Lowest Time as String from GeoTimeRange object.
String { timeHigh()

Get the Highest Time as String from GeoTimeRange object.

long § timeLowValue()
Get the Lowest Time value as millisecond from GeoTimeRange object.

long { timeHighValue()
| Get the Highest Time Value as millisecond from GeoTimeRange object.

123

Publications from the

SCHOOL OF GEOMATIC ENGINEERING
THE UNIVERSITY OF NEW SOUTH WALES
ABN 57 195873 179

To order, write to:
Publications Officer, School of Geomatic Engineering
The University of New South Wales, UNSW SYDNEY NSW 2052, AUSTRALIA

NOTE: ALL ORDERS MUST BE PREPAID. CREDIT CARDS ARE ACCEPTED.
SEE BACKPAGE FOR OUR CREDIT CARD ORDER FORM.

UNISURV REPORTS - S SERIES

(Prices effective October 2000)

Australian Prices *: S8 - S20 $11.00
$29 onwards Individuals $27.50

Institutions $33.00

Overseas Prices **: S8 - S20 $10.00
S29 onwards Individuals $25.00

Institutions $30.00

* Australian prices include postage by surface mail and GST.

** Overseas prices include delivery by UNSW's air-lifted mail service (~2-4 weeks to Europe and North America).

S8.

S10.

S12.

S14.

S16.
S17.

S18.

S19.

S29.
S530.

S31.

S33.

Rates for air mail rates through Australia Post on application.

A. Stolz, "Three-D Cartesian Co-ordinates of Part of the Australian Geodetic Network by the Use of Locall
Astronomic Vector Systems”, Unisurv Rep. S8, 182 pp, 1972.

A. J. Robinson, "Study of Zero Error and Ground Swing of the Model MRA101 Tellurometer”, Unisurv
Rep. S$10, 200 pp, 1973.

G. J. F. Holden, "An Evaluation of Orthophotography in an Integrated Mapping System", Unisurv Rep.
S$12, 232 pp, 1974.

E. G. Anderson, "The Effect of Topography on Solutions of Stokes’ Problem®, Unisurv Rep. S14,
252 pp, 1976.

K. Bretreger, "Earth Tide Effects on Geodetic Observations", Unisurv 516, 173 pp, 1978.

C. Rizos, "The Role of the Gravity Field in Sea Surface Topography Studies”, Unisurv S17, 299 pp,
1980.

B. C. Forster, "Some Measures of Urban Residential Quality from LANDSAT Multi-Spectral Data", Unisurv
518, 223 pp, 1981.

R. Coleman, "A Geodetic Basis for Recovering Ocean Dynamic Information from Satellite Altimetry",
Unisurv S19, 332 pp, 1981.

G. S. Chisholm, "Integration of GPS into Hydrographic Survey Operations", Unisurv S29, 190 pp, 1987.

G. A. Jeffress, "An Investigation of Doppler Satellite Positioning Multi-Station Software", Unisurv S30,
118 pp, 1987.

J. Soetandi, "A Model for a Cadastral Land Information System for Indonesia", Unisurv S31, 168 pp,
1988.

R. D. Holloway, "The Integration of GPS Heights into the Australian Height Datum", Unisurv S33,
151 pp, 1988.

S534.
S35.
S536.

S$37.

S38.

S39.

S40.

S41.

S42.
S543.

S44,

S45.

S$46.
S47.
548.

S49.
S50.

S51.
S52.
S53.

S54.

S55.

S56.
S57.

558.

R. C. Mullin, "Data Update in a Land Information Network", Unisurv S$34, 168 pp, 1988.
B. Merminod, "The Use of Kalman Filters in GPS Navigation", Unisurv S35, 203 pp, 1989.

A. R. Marshall, "Network Design and Optimisation in Close Range Photogrammetry", Unisurv S36,
249 pp, 1989.

W. Jaroondhampinij, "A model of Computerised Parcel-Based Land Information System for the
Department of Lands, Thailand," Unisurv S37, 281 pp, 1989.

C. Rizos (Ed.), D. B. Grant, A. Stolz, B. Merminod, C. C. Mazur "Contributions to GPS Studies", Unisurv
S38, 204 pp, 1990.

C. Bosloper, "Multipath and GPS Short Periodic Components of the Time Variation of the Differential
Dispersive Delay", Unisurv S39, 214 pp, 1990.

J. M. Nolan, "Development of a Navigational System Utilizing the Global Positioning System in a Real
Time, Differential Mode", Unisurv S40, 163 pp, 1990.

R. T. Macleod, "The Resolution of Mean Sea Level Anomalies along the NSW Coastline Using the Global
Positioning System®, 278 pp, 1990. ‘

D. A. Kinlyside, "Densification Surveys in New South Wales - Coping with Distortions", 209 pp, 1992.

A. H. W. Kearsley (Ed.), Z. Ahmad, B. R. Harvey and A. Kasenda, "Contributions to Geoid Evaluations
and GPS Heighting", 209 pp, 1993. ,

P. Tregoning, "GPS Measurements in the Australian and Indonesian Regions (1989-1993)", 134 +
xiii pp, 1996.

W.-X. Fu, "A Study of GPS and Other Navigation Systems for High Precision Navigation and Attitude
Determinations"”, 332 pp, 1996.

P. Morgan et al, "A Zero Order GPS Network for the Australia Region", 187 + xii pp, 1996.
Y. Huang, "A Digital Photogrammetry System for Industrial Monitoring", 145 + xiv pp, 1997.

K. Mobbs, "Tectonic Interpretation of the Papua New Guinea Region from Repeat Satellite
Measurements”, 256 + xc pp, 1997.

S. Han, "Carrier Phase-Based Long-Range GPS Kinematic Positioning”, 185 + xi pp, 1997.

M. D. Subari, "Low-cost GPS Systems for Intermediate Surveying and Mapping Accuracy Applications”,
179 + xiii pp, 1997.

L.-S. Lin, "Real-Time Estimation of lonospheric Delay Using GPS Measurements", 199 + xix pp, 1997.
M. B. Pearse, "A Modern Geodetic Reference System for New Zealand", 324 + xviii pp, 1997.

D. B. Lemon, "The Nature and Management of Positional Relationships within a Local Government
Geographic Information System", 273 + xvi pp, 1997.

C. Ticehurst, "Development of Models for Monitoring the Urban Environment Using Radar Remote
Sensing", 282 + xix pp, 1998.

S. S. Boey, "A Model for Establishing the Legal Traceability of GPS Measurements for Cadastral
Surveying in Australia", 186 + xi pp, 1999.

P. Morgan and M. Pearse, "A First-Order Network for New Zealand", 134 + x pp, 1999.

P. N. Tiangco, "A Multi-Parameter Radar Approach to Stand Structure and Forest Biomass Estimation”,
319 + xxii pp, 2000.

M. A. Syafi'i, "Object-Relational Database Management Systems (ORDBMS) for Managing Marine Spatial
Data: ADCP Data Case Study", 123 + ix pp, 2000.

MONOGRAPHS

Australian prices include postage by surface mail.

Overseas prices include delivery by UNSW's air-lifted mail service (~2-4 weeks to Europe and North America).

M1.

M2.
M3.
M4.

M8.
M11.
M12.

M13.

M14.

M15/1

M15/2

M16.
M17.

Rates for air mail rates through Australia Post on application.
Australian prices include GST.

(Prices effective September 2000)

R. S. Mather, “The Theory and Geodetic Use of some Common Projections”,
(2nd edition), 125 pp, 1978.

R. S. Mather, "The Analysis of the Earth's Gravity Field", 172 pp, 1971.
G. G. Bennett, "Tables for Prediction of Daylight Stars", 24 pp, 1974.

G. G. Bennett, J. G. Freislich & M. Maughan, "Star Prediction Tables
for the Fixing of Position", 200 pp, 1974.

A. H. W. Kearsley, "Geodetic Surveying", 96 pp, 1988.

W. F. Caspary, “"Concepts of Network and Deformation Analysis", 183 pp, 2000.

F. K. Brunner, "Atmospheric Effects on Geodetic Space Measurements",
110 pp, 1988.

B. R. Harvey, "Practical Least Squares and Statistics for Surveyors",
(2nd edition, reprinted with corrections), 319 pp, 1998.

E. G. Masters and J. R. Pollard (Eds.), "Land Information Management",
269 pp, 1991. (Proceedings LIM Conference, July 1991).

E. G. Masters and J. R. Pollard (Eds.), "Land Information Management -
Geographic Information Systems - Advance Remote Sensing Vol. 1", 295 pp,
1993 (Proceedings of LIM & GIS Conference, July 1993).

E. G. Masters and J. R. Pollard (Eds.), "Land Information Management -
Geographic Information Systems - Advance Remote Sensing Vol. 2", 376 pp,
1993 (Proceedings of Advanced Remote Sensing Conference, July 1993).
A. Stolz, "An Introduction to Geodesy", 112 pp, 1994.

C. Rizos, "Principles and Practice of GPS Surveying", 565 pp, 1997.

Price
Australia
(incl. GST)
$ 16.50
$ 8.80

$ 5.50

$ 8.80
$ 13.20
$ 27.50

$17.60

$ 33.00

$ 22.00

$ 33.00

$ 33.00

$ 22.00
$ 46.20

Price
Overseas

$ 15.00
$ 8.00
$ 5.00

$ 8.00
$ 12.00
$ 25.00

$ 16.00

$ 30.00

$ 20.00

$ 30.00

$ 30.00

$ 20.00
$ 42.00

Credit Card Orders / Payment

from / to

School of Geomatic Engineering

The University of New South Wales

Name and postal address of ordering person/organisation

Date :

Day time phone number :

Credit Card debit for

Total $

Please debit my credit card: [Mastercard [] Visa [] Bankcard

Card Name: Signature:

Expire Date :

Card No:

Note: UNSW requires that you attach a photocopy of your credit card to this order

	s58a
	s58b
	s58c
	s58d

