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Foreword

Digital image processing is currently an active area of research in photogrammetry.
Topics include digital elevation model determination, and the extraction of features
required for digital map updating and GIS database compilation. Development of
automatic procedures for these operations is required so that the full potential of digital
imaging in photogrammetry can be achieved. The School of Geomatic Engineering at
UNSW has undertaken research on semi-automatic or automatic methods of feature
extraction, in particular roads and buildings, since the early 1990s. Recently this work
has been undertaken in collaboration with Associate Professor Arcot Sowmya of the
School of Computer Science and Engineering. The research described in this thesis on
automatic road extraction from low and high resolution images, has been supported by an
ARC Small Grant and a grant from the Strategic Partnerships with Industry — Research
and Training scheme (SPIRT) in 1996-1998, in collaboration with Associate Professor
Sowmya. The research work is also supported by a Large ARC grant to investigate,
Jjointly between the Schools of Geomatic and Computer Science and Engineering, the

extraction of features by machine learning.

This thesis presents a knowledge-based method, using Prolog programming language,
for automatic road extraction from aerial images based on a semantic road model in which
roads are defined in both high- and low-resolution images and relationships between
roads are defined. The method uses image analysis methods for feature extraction, and
generation of symbolic representation of road structures and artificial intelligence
techniques for manipulation of knowledge and recognition of roads. The recognition of
roads includes hypothesis generation of roads from high-resolution images, verification
of hypotheses, prediction of missing road segments and detection of occlusions occurring
in images. Hypotheses of roads are generated from high-resolution images in a bottom-

up process, which includes three different levels, i.e. low-, intermediate- and high-level.

The methods have been tested on a series of aerial photographs in Australia and on SPOT

satellite images. The tests demonstrate examples of the procedures that can be taken to



detect and recognise roads on remote sensing images. While the methods achieve
satisfactory results on many of the samples tested, there are examples where the
algorithms do not perform satisfactorily. Further developments are required to overcome
some of these deficiencies, as well as test the scalability of the algorithms over a range of

image scales.

Emeritus Professor John C. Trinder
Visiting Professor

March 2001



Abstract

This thesis presents a knowledge-based method for automatic road extraction from aerial
images based on a semantic road model in which roads are defined in both high- and low-
resolution images and relationships between roads are defined. The method uses image
analysis methods for feature extraction and generation of symbolic representation of road
structures and artificial intelligence techniques for manipulation of knowledge and
recognition of roads. The recognition of roads includes hypothesis generation of roads
from high-resolution images, verification of hypotheses, prediction of missing road
segments and detection of occlusions occurring in images. Hypotheses of roads are
generated from high-resolution images in a bottom-up process which includes three
different levels, i.e. low-, intermediate- and high-level. In low-level processing, features,
such as edges, lines points are extracted from the original images. Intermediate-level
processing concentrates on the generation of symbolic representation of road structures.
It consists of generation of road structures, computation of their attributes and grouping
of generalised antiparallel pairs. A generalised antiparallel pair is proposed to represent
the structure of a road in high-resolution images, and its position in object space is
determined by the Snake technique. To remove the effects of occlusions, such as trees,
shadows, cars on road surface, etc., generalised antiparallel pairs are grouped based on
their similarities in geometric and photometric properties. The generated road-like
objects are represented symbolically in terms of a number of geometric and photometric
attributes. In high-level processing, the knowledge of roads is applied to the generated
road-like objects to yield recognition of road segments. The knowledge of roads includes
their geometric and photometric properties and characteristics of road networks, which

is expressed as rules in Prolog.

As hypotheses of road segments are generated in a local context, non-road objects may
also be hypothesised if they have similar shapes and properties as roads. Therefore, a
verification process is required to remove spurious hypotheses. In this study, a novel

approach for verification of hypotheses has been developed, which is based on the



relationships between hypothesised road segments from high-resolution images and road

networks derived from low-resolution images.

Occlusions are a common phenomenon in images. They usually break a road into several
short segments which may not be hypothesised in the process of hypothesis generation.
A process has been developed for finding missing road segments, based on the spatial
relationships between verified road segments. It first uses the knowledge about context
of roads and the established relationships between verified road segments to infer missing
road segments. A top-down procedure is then invoked to find the road-like objects

between them.

Occlusions not only break a road into segments, but also cover some parts of roads
which cannot be recognised in the recognition process and found in detection of missing
road segments. Therefore, detection of occlusions on road surface is very important as
relationships between detected occlusion and verified road segments can be used to infer
the existence of road segments in the occluded areas. A method based on supervised
classification is used to detect occlusions in this study. It uses the maximum likelihood
classification method to classify the pixels in the occluded area. If they are classified as
trees, shadows or road surface, a road segment is then reasoned, and the disjoined road

segments are linked using interpolation.
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Chapter One

Introduction

1.1 Background

With the rapid development of computer technology, a transition from analytical to
digital is under way in photogrammetry. Digital photogrammetry uses digital or
digitized images and methods of image processing and image understanding to
automatically derive geometric, radiometric, and semantic information about objects in
the real world. With the revolutionary progress in computer vision and image
understanding, digital photogrammetry has the potential of automating most processes
in photogrammetric production and thus, increasing the efficiency of photogrammetric
production. During the last two decades, digital photogrammetry has received
considerable attention and remarkable progress has been made in automatic
determination of positions of terrain points. This includes automatic interior orientation
(Lu, 1997), automatic relative orientation (Tang and Heipke, 1996; Heipke, 1997), high-
precision image matching (Ackermann, 1984; Griin, 1985; Rosenholm, 1987; Li, 1989;
Baltsavias, 1991), automatic selection and transfer of tie points, automatic aerial
triangulation (Schenk, 1997; Tang et al, 1997), automatic exterior orientation (Giilch,
1995; Drewniok and Rohr, 1997), and automatic generation of digital terrain models
(DTM) and digital orthophotos (Greve, 1996). There are a number of commercial digital
photogrammetric systems on the market (Ebner et al, 1991; Heipke, 1995) which can
automatically generate DTMs and digital orthophotos, although human intervention is

still required to handle difficult situations.

The procedure that is limiting the full implementation of automation in digital
photogrammetry is the automatic location and recognition of objects, i.e. extraction of
semantic information about objects, their description and characteristics. Objects in

images have traditionally been recognized by an operator. This is a time-consuming
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process. Therefore, there is a high demand for the automation of object recognition in
order to increase the efficiency of photogrammetric production. In recent years, research
on the automatic recognition of objects in photogrammetry has attracted considerable
attention, but progress has been relatively slow. This is because the recognition of
objects from images is an inherently more difficult task than the determination of their
positions. With the successful solution of automatic determination of positions of terrain
points, future research of digital photogrammetry will be focused on the extraction of
semantic information of objects, and this trend has been reflected in a series of recent
workshops on this subject (Griin et al, 1995; Griin et al, 1997; Fo6rstner and Pliimer,
1997).

Object recognition from images is the central task of image understanding, which
concentrates on the establishment of relationships between objects in the real world and
features in images with respect to specific knowledge about the objects. In contrast to
conventional image analysis, it emphasizes the extraction of semantic information of
objects from an image, rather than transforming an image from one form to another. It
uses image analysis methods and artificial intelligence techniques for knowledge
representation and manipulation. Up to now, a number of systems for object recognition
using artificial intelligence techniques have been developed. The methods used in these
systems can be adopted in the field of photogrammetry together with rigorous
photogrammetric models for accurate measurement and interpretation. This study will
explore methods of image understanding for automatic extraction of roads from aerial

images.

1.2 Objectives of the Research

This thesis aims at developing a knowledge-based method for automatic road extraction

from aerial images. Its main objectives include:

e The development of a general procedure for automatic extraction of roads from
acrial images. According to current image understanding methods, object

recognition is a complex process which consists of a number of interrelated stages.
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Object recognition is usually performed in a certain order defined by a control
strategy. Different control strategies may produce different results. Therefore, it is

very important to select a suitable strategy for automatic extraction of roads.

e The definition of a suitable semantic road model for the recognition of roads. In
image understanding, objects are recognized using a semantic model in which object
classes and their relationships are defined. It is recognized that the scale of the
image affects the appearance of an object in the image. Different aspects of the
object are reflected in different resolutions of images. A combination of different
resolutions of images can provide information of objects from different aspects, and
therefore, better recognition results can be expected. This study will explore the use

of different resolutions of images in automatic road extraction.

e The exploration of the use of knowledge of roads in automatic road extraction. A
road is a man-made object which has distinct properties that distinguish it from
other objects. Photogrammetrists have accumulated rich experience in interpreting

remotely sensed imagery which can be used for automatic road recognition.

e The investigation of a suitable method for knowledge representation for road

extraction from aerial images based on the first-order logic.

e The analysis of the effects of occlusions in the process of road recognition, and the
development of a method for their detection. Occlusions are a difficult problem in
road extraction which has not been studied thoroughly in previous research. They
cause a loss of information about roads in images which will cause the recognition
to be more difficult. On the other hand, they can provide contextual information
about the environment in which roads occur, which will be useful in the recognition
process. In this study, the characteristics of occlusions in aerial images and their
detection will be analyzed. The use of contextual information relating areas of

occlusions and roads will be studied in the process of road recognition.
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1.3 Organization of the Thesis

This thesis consists of eight chapters. Following the introduction, Chapter 2 reviews the
existing methods of road extraction from digital images, based on their classification
into semiautomatic and automatic, and their suitability is analysed. The problems with

these existing methods are also discussed.

Chapter 3 introduces the basic concepts and processes of image understanding,
techniques for knowledge representation in artificial intelligence and control strategies
used in image understanding systems. Problems in these processes are presented. Some
existing knowledge-based systems for object recognition from aerial and satellite

images are reviewed.

Chapter 4 deals with the methods of feature extraction in image understanding. Some
commonly used algorithms and methods for extraction of edges, lines and points in
computer vision and photogrammetry are introduced and their performances are
analysed. This chapter also presents a number of techniques for preprocessing involved
in low-level image processing, and methods for edge/line tracking, split-and-merge and

linking developed in this study are described.

Chapter 5 describes the generation of symbolic representation of roads. It includes the
generation of road structures in high-resolution images based on generalised antiparallel
pairs, determination of their positions in 3-D space, computation of their attributes and
grouping of generalised antiparallel pairs. To determine the positions of generalised
antiparallel pairs in 3-D space, a modified active contour model is developed, in which
the geometric constraints on the smoothness and parallelism of road boundaries are
incorporated into the geometric energy model. Generalised antiparallel pairs are
grouped based on their similarities in geometric and photometric properties, and two

spatial constraints, i.e. collinearity and proximity.
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Chapter 6 describes the method developed for road recognition from aerial images
which includes bottom-up hypothesis generation of roads from high-resolution images,
verification of hypotheses and detection of missing road parts and occlusions. Feature
extraction and generation of symbolic representation of roads in the hypothesis
generation are described in Chapters 4 and 5, thus only high-level processing will be
presented in this chapter. Before presenting the details of the recognition methods, a
semantic road model in which roads are defined in both high- and low-resolution
images together with their relationships and associated knowledge is described.
Hypotheses of roads are generated by applying the knowledge of geometric and
photometric properties of roads expressed as rules in Prolog to the road-like objects.
These hypotheses are verified using the relationships between them and the road
network extracted from low-resolution images. Once the hypothesised roads are
verified, their spatial relationships are determined for inferring the missing road parts

caused by occlusions.

Test results of the developed methods for aerial images are presented in Chapter 7 in
terms of four aspects: generation of hypotheses of roads from high-resolution images,
verification of hypotheses, locating missing road parts, and detection of occlusions.
Chapter 8 presents the conclusions and some recommendations for future research in

automatic road extraction.



Chapter Two

Review of Road Extraction from Digital Images

Automatic road extraction from remotely sensed imagery has been an active research
area in computer vision and digital photogrammetry for more than two decades. A
number of methods and algorithms have been developed for road extraction from aerial
photographs and satellite images. These methods and algorithms can be classified into
semi-automatic and automatic according to the way and degree of human intervention.
Semi-automatic methods usually delineate a road in the image, based on the edge
information of the image or the analysis of road surface profiles. The starting position
and direction, or the approximate position of a road, are provided by an operator.
Automatic approaches aim to locate a road in the image without a priori knowledge of
its initial position. They have two tasks, ie. automatic recognition of a road and
determination of its position. A road is recognised based on its specific properties,
including its geometric and radiometric properties, while its position is determined
using edge or surface information of the image. This chapter reviews existing methods

of automatic road extraction and comments on their suitability and efficiency.
2.1 Semi-automatic Road Extraction

Semi-automatic methods delineate a road in the image based on the information on its
initial position provided by an operator. The conventional methods consist of three
major steps, i.e. road finding, road tracking and road linking. In road finding, the local
properties of the image are tested. At this stage, an algorithm based on edge or surface
information, or an algorithm combining edge and surface information is used to detect
seed points. The detected seed points are then tracked to form road segments based on
the contextual information of the image. In the case where occlusions exist due to
shadows cast by trees and overpasses, vehicles on the road, surface anomaly, etc., the

tracked road segments are ofien separated. Therefore, a linking process follows to
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connect the separated road segments based on the geometric constraints. Table 2.1 lists
some major semi-automatic methods and algorithms for road extraction developed

during the last two decades. The following are the abbreviations used in the table:

LR-AP Low Resolution Aerial Photograph
HR-AP High Resolution Aerial Photograph
MSS Multi-Spectral Scanner images

™ Thermatic Mapper images

SPOT-P SPOT Panchromatic images
SPOT-XS SPOT Multi-Spectral images

Quam (1978) developed an algorithm for road tracking in high-resolution aerial
photographs based on a road surface model and a path model. The path model is a list of
the detected road points used for extrapolation of the road path. The surface model is an
array of intensity values selected from the image in the direction perpendicular to the
road path. With the initial position, direction and width of the road provided by an
operator, the position of the next road point is predicted using the path model. The
cross-section is then extracted from the image at the predicted point, and a cross-
correlation is performed based on the surface model to determine the error in the
predicted position. If the correlation peak is poor, the algorithm uses the path model to
predict ahead for another point and an another profile is selected for testing the cross-
correlation. This process will continue until a good match is found or the length
skipped is larger than the longest expected anomaly. If there is a large number of
anomalous points, a surface change is hypothesized and a new surface model is
extracted. The system assumes that a road has a consistent surface pattern and a
constant width, and that there are possible anomalous points and change in the surface
material. However, the problems which may be caused by road width changes due to
gradual changes in surface patterns that occur where a new lane is added to the road or a

lane is deleted, are not considered.
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Kestner and Kazmierczak (1978) used a correlation follower and a region-based
follower for road extraction from medium resolution images. The correlation follower
compares the road intensity profile with the expected road intensity profile against the
background in the direction of the predicted road path, when the initial position and
direction of the road are given by an operator. When the correlation follower fails to
find an acceptable path, a region-based method is utilized to re-acquire the road. The
region-based method extracts a 2-D area from the image and searches the whole area for
points with the expected intensity profile. Each point in the area is marked with a score
which indicates how well it matches the expected profile. All points except the best
points are removed and the remaining points are then linked together using geometric
constraints to find the most likely road path. It is reported that both correlation follower
and region-based tracker complement each other perfectly, but it is not clear how they
work together. A binary method is also described. The method first generates a binary
image of the section of the image containing the road by thresholding all points within
the expected road intensity range to 1 and other points to 0. It then eliminates regions

which are too wide to be part of the road and links the remaining thin regions.

A road tracing algorithm based on least squares profile matching and Kalman filtering is
presented in Vosselman and Knecht (1995). With the initial road segment selected by an
operator, an estimation of parameters that describe the position and shape of the road is
made using Kalman filtering. This estimate allows the prediction of the position of the
next road profile. The profile at the predicted position is chosen and matched with the
model profile which is the average of the cross-section profiles of the initial segment.
The shift between the selected profile and the model profile is determined and used by
the Kalman filter to update the parameters describing the position and shape of the
road. The above process is applied again to estimate the road path until some stop
criterion is fulfilled. The advantage of least squares matching is that it can estimate the
precision of the profile shift which can be used to evaluate the success of the matching
algorithm. Moreover, in least squares profile matching, not only the road position, but
also the road width can be estimated. When the road width changes, least squares
matching can obtain good results, while cross correlation will fail. Thus, the algorithm

can cope with intersections, fly-overs and cars.
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McKeown and Denlinger (1988) argue that a single correlation road tracking algorithm
or a single edge-based road tracker cannot generate satisfactory results and presented a
cooperative method for road tracking in aerial imagery. The proposed method consists
of three different levels, i.e. low-level road tracking, intermediate-level feature detection
and high-level symbolic description. In low-level road tracking, a Quam’s road tracker
and an edge-based tracker incorporating the road tracking method of Nevatia and Babu
(1980) are used. These two trackers work independently to generate the estimate of the
centre line of the road, its width and other local properties. Intermediate-level processes
monitor the state of the low-level road tracking and evaluate the results of each tracker.
Six detectors are used to detect road intersections, width changes, overpasses, surface
material changes, vehicles and occlusions. The high-level provides overall control and
user interface. When one tracker fails, it will be restarted by the model generated by
other trackers. Finally a symbolic description of the road will be generated in terms of a
number of attributes of the road, such as positions of the centre line, road width, surface

material, overpasses, and an indication of potential vehicles on the road.

A method for detecting roads in low-resolution aerial imagery is introduced in Fischler
et al (1981), which combines local information from multiple sources, including various
line and edge detection operators, maps which can be used to derive information about
the likely path of roads in the image, and the generic knowledge about roads, to
facilitate road extraction. The image operators are classified into two types based on
their error characteristics. Type I operators almost never incorrectly classify artifacts as
instances of the structure they are searching for, but may often miss correct instances of
the structure. Type Il operators can accurately determine the parameters of all true
instances, but may falsely classify and incorrectly parameterize non-instances. Type I
operators generate a score for each pixel which indicates the likelihood of local feature
presence and Type II operators produce a cost array. The results produced by both Type
I and Type II operators are combined in such a way that the cost array is modified so
that zero cost corresponds to a very high likelihood of local road presence. The a priori
knowledge can be introduced through the cost transformation. The best path of the road

is found by minimising the sum of the costs along the road.
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A model-driven method for road extraction from aerial and satellite images based on
dynamic programming is presented by Griin and Li (1994). This method uses a generic
model to describe a road in the image with geometric and photometric properties. The
model is formulated by some constraints and a merit function. The optimization of the
model is achieved by a time-delayed dynamic programming algorithm. Once the
approximate position of the road is provided by an operator, the algorithm can
automatically find the optimal road path. For road sharpening, a wavelet function is
applied to enhance the image and generate a multi-resolution representation of the
image. Because the geometric and photometric constraints are enforced globally, small
gaps such as those caused by sparse trees can automatically be bridged. It can work in a
monoplotting mode and in 3-D where two or more overlapping images are used to
derive 3-D coordinates with an existing digital terrain model (DTM). The knowledge

used includes photometric and geometric properties of a road.

Geman and Jedynak (1996) presented a model-based approach for road extraction from
SPOT images. In their method, a road is represented as a set of segments. The
difference in direction between two neighbouring segments is represented by a number
in the set {0,1,-1} in which 0 means no change in direction while 1 and -1 stand for
small deviations to the left and right. Thus, a road in the image is described by a
sequence of numbers in {0,1,-1}, which is modelled as a stochastic process. Based on
the assumption that the curvature of a road has an upper bound and that a road surface is
homogeneous and has distinct contrast against its background, road tracking becomes a
process of computing the Maximum A4 Posterior (MAP). The method has a good
foundation in mathematics, however, it does not consider the problems caused by

disturbances, such as trees, shadows, etc. which may cause tracking to fail.

In recent years, Snakes technique has attracted considerable attention from computer
vision and digital photogrammetry. Snakes are active contour models in which a linear
feature is represented as an energy model (Kass et al, 1988). The energy model contains
internal and external energies which are defined by the geometric constraints and

photometric properties of linear features respectively. The extraction of a linear feature
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is achieved through the minimisation of total energies. A model-driven method for road
extraction from aerial images based on the snake technique is presented by Fua and
Leclerc (1990). In their method, the photometric energy of a linear feature is defined by
the sum of image gradients along the feature, and the geometric energy is the sum of the
squares of the curvatures of the feature. In their implementation, a road is represented
by a polygonal curve forming the centre of the road and the associated road width. The
sum of the photometric energies of the two boundaries is taken as its photometric
energy, and its geometric energy is the sum of geometric energies of the two boundaries
plus an additional term which is the sum of the squares of the differences in road width
between two neighbouring vertices along the polygonal curve. This additional term
enforces the parallel constraint. Therefore, problems such as occlusions or ill-defined

edges on one side of the road can be overcome.

Trinder and Li (1995) developed a 3-D snake for road extraction from satellite images
in which two or more overlapping images are used. In 3-D space, a linear feature on the
ground is described by a cubic B-spline curve. Its geometric energy is defined by the
first and second derivatives of the curve, and photometric energy is defined by the sum
of the photometric energies in each image. The photometric energy in the image is
computed from a Chamfer image which is derived from the edge image and in which
the value of a point is determined by its distance to the closest edge. The total energy
contains a third term which is used to define the boundary conditions. Once a few seed
points are given in one image, the approximate 3-D coordinates of the feature are
calculated using an existing DTM. During the iterative computation, the feature points
are interpolated using the defined cubic B-spline. This method has been extended to
road extraction from aerial images (Trinder and Wang, 1997a). In aerial images, a road
is described by a ribbon. When the seed points are provided along one side of the road
by an operator, the snake can automatically determine the positions of both sides of the

road using the extracted edge information.

Griin and Li (1996) combined the least squares template matching with Snakes
technique and presented a least squares B-spline snake (LSB-Snake) for road extraction

from satellite and aerial images. In LSB-Snakes, a linear feature is approximated by a



3
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B-spline curve and three types of observations are used to describe its properties. The
first is the photometric observations in which a template describing an edge point in the
image is used. The relationship between the template and the image patch is given by
six parameters that model the geometric transformation (Griin, 1985). The seed points
given by an operator are considered as the second type of observations. The smoothness
constraints of the feature are introduced as the third type of observations. The final
position of the feature is determined by minimising the L,-norm of the residuals in all
three types of observations which is equivalent to the total energy of Snakes. To obtain
3-D coordinates of the feature, two or more images and an existing DTM are used.
Because the solution of the feature position is achieved by least squares method, a
theoretical accuracy of the feature location can be determined. Another advantage of
LSB-Snakes is that it has the ability to detect occlusions. In LSB-Snakes, occlusions are
detected as blunders, and the photometric energy in the portion of the occlusion is
adjusted as zero. In this case, the solution is totally determined by the geometric

constraint.

2.2 Automatic Road Extraction

In contrast to semi-automatic approaches, automatic road extraction aims at locating a
road in the image without input of its initial position from an operator. It has two tasks,
i.e. recognition of a road and determination of its position. There are two types of
automatic methods. The first follows the paradigm of the conventional methods, i.e.
road finding, road tracking and road linking. They concentrate on the automatic
determination of the starting position of the road. Road tracking and linking are then
performed to determine the position of the whole road. The second type of approaches
use artificial intelligence techniques to detect and recognise a road automatically. In
these methods, a knowledge base containing the knowledge of a road and a priori
knowledge about the image and the real world is used to recognise the road. Some

major automatic road extraction methods are given in the Table 2.2.
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An early attempt in automatic road detection was made by Bajcsy and Tavakoli (1976)
when the first generation of earth resource satellite Landsat-1 images became available.
The IFOV of Landsat-1 MSS images is 57x79 m’, thus only major roads with three or
four lanes could be found. A model for recognition of roads in Landsat-1 MSS band 2
images was presented based on its physical and geometric properties in the image. The
road extraction starts with a threshold technique to detect road points. Road segments
are found using 52 defined templates and are linked based on the criteria of proximity
and collinearity. After linking, the short isolated segments are treated as noise and
removed. The remaining segments are then labelled based on the positions and
directions of their end points. In this method, it is assumed that the grey values of the
road surface in the image are within a given threshold. In reality, they are often beyond
the defined threshold because the grey value of the road surface in the image depends
on not only the spectral properties of the surface material, but also on other factors such
as the time and season of imaging, weather conditions, the spectral signatures of the
surrounding objects, etc. Therefore, it is unavoidable that some non-road points may be

detected or some road segments missed.

Nevatia and Babu (1980) presented a method for road extraction based on antiparallel
lines. In their method, six masks with different edge directions are used to detect edge
points. Each mask has a size of 5x5 pixels and an edge direction from 0’ to 150" in
intervals of 30°. The image is first convolved with the defined masks. The results of the
convolution are the magnitudes and directions of edge points. Meaningful edge points
are extracted by thresholding. The boundaries are traced by checking the directions of

edges in a 3x3 window and are approximated to straight lines by linear segments
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piecewise. It is assumed that a road has two parallel boundaries with opposite contrasts,
called antiparallel lines. Therefore, road segments are found by searching antiparallel
lines in the image. One obvious limitation of the method is that no information about
the specific properties of a road is applied to the generated antiparallel lines. This means

that the generated antiparallel lines do not necessarily correspond to road segments.

Due to the effects of image noise, poor contrast, occlusions, etc, the extracted segments
are highly fragmented. They must be linked to form roadlike features before high-level
processing is performed. An algorithm based on the criteria of proximity and
collinearity was developed by Vasudevan et al (1988). The algorithm works in two
steps. It first finds all segments within a given distance around one end of the given
segment. The difference in spatial directions between the given segment and the found
segments is then computed. The segment which has a difference within the given
threshold is selected as the neighbour of the given segment. The algorithm can work
well when the image has a simple structure. However, it may lead to wrong linking in

the case where other features exist around the segments to be linked.

A low level expert system for road extraction from aerial photographs is described in
Zhu and Yeh (1986). In this system, a road is defined as a homogeneous area bounded
by two parallel edges. The road extraction starts with the generation of antiparallel pairs
based on the extracted edges. Antiparallel pairs with grey values which are close to the
mean of grey values of all antiparallel pairs are selected as seeds for road growing. In
road growing, the focus of attention is defined on an end of the selected road segment,
based on its width and end direction, and edge information is extracted. A road segment
is extended by virtue of the goodness of the detected edge being considered. To judge
the goodness of an edge, four measures, i.e., continuity, sharpness, straightness and
divergence are used. A number of production rules are formed based on these four
measures for the acceptance of the detected edge. One problem with the system is that
the knowledge used for the selection of road seeds is not always true. Therefore, a
verification process is required to testify the detected road segments. As well, the
situation in which more than one edge occurs in the region of attention is not considered

in the system.
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An automatic road network interpretation system was developed at the French Institut
Geographique National (Ruskoné et al, 1994). The system consists of a low-level
process invoking starting point detection and road following, and high level hypothesis
checking. The starting points are detected based on the heuristic knowledge of a road
segment. Parallel edges with a considerable length and distinct contrast against the
background are selected as road seeds. Road growing is based on the homogeneity of
the texture of the road surface. On both sides of a road seed, regions with similar texture
to the road seeds are selected as the possible extension. All possible road segments
being tracked form a number of road paths. Each path has a cost, the minimum
corresponding to the optimal path. In high level hypotheses checking, topological
information is used to link disconnected road segments. Finally, the positions of road
points are adjusted by the Snakes technique. The method suffers from the same problem
as the method of Zhu and Yeh (1987) in the selection of road seeds because only limited

knowledge is used and the texture of the road surface is easily affected by disturbances.

Barzohar and Cooper (1993) use a geometric-stochastic model for the automatic
extraction of main roads from aerial images. This model is based on the assumption of
the photometry and geometry of a road. Auto-regressive processes are designed to
model the road centre line, road width, grey level within the road, edge strength at the
road boundary, and regions outside the roads and adjacent to road boundaries. Roads are
found by MAP (Maximum A Posteriori probability) estimation. To obtain road
candidates, the image is divided into square windows and a dynamic programming
technique is used to find the segments that fit the road model with high probability. The
detected road segments are then extended by moving a test window in which dynamic
programming is used again to produce the best estimation of road extension. Finally
short segments which do not connect to the recognised roads are removed from the

hypotheses.

Wang and Howarth (1987) developed a method for automatic road network extraction
from Landsat TM imagery. Due to the low spatial resolution of Landsat TM imagery
(30 m), a road in the image appears as a line feature with a width of one to two pixels.

To detect lines, an operator based on the second derivative of a road n its normal
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direction is presented, and 14 masks with eight different directions for the calculation of
second derivatives are designed. The convolution of the image with the defined masks
gives the magnitudes and directions of lines, ie. a magnitude image and a direction
image. A point with a magnitude larger than the given threshold and with two among its
8-neighbours having similar magnitudes and directions is selected as the starting point.
Line following is then performed as graph searching, in which the pixels in the direction
image are nodes and connections between two neighboring nodes that have similar
directions are arcs. Each arc is associated with a cost which is defined by the magnitude
of the first node. The path with minimum cost is taken as the final result. Because only
local magnitude is taken into account in the selection of the starting points, the selected

road seeds may not be true road points.

To overcome the problem of Wang and Howarth (1987) method, a two-phase method
was developed for the automatic road detection from Landsat 4 TM images (Ton et al,
1989). The method consists of low-level road detection and high-level road labelling.
The low-level road detection is similar to the method of Wang and Howarth, except that
the definition of the masks is slightly different. The magnitude of the road operator is
not only used for the selection of road seeds, but also to classify pixels in the image into
different levels. In high-level road labelling, the detected road segments in low-level
processing are linked using geometric constraints, which are represented in rules and are
classified into different levels according to their lengths and curvatures. One advantage
of the two-phase method is that it can avoid errors in the selection of road seeds, using
the geometric measures of road segments. However, simple geometric measures cannot

solve the problem completely.

Gong and Wang (1997) applied classification techniques to road network extraction
from multi-spectral aerial images. They use a clustering algorithm, a supervised
maximum classifier and a cover-frequency based contextual classifier to recognize
roads from images. Four different types of road surfaces, i.e. new asphalt, old asphalt,
concrete and railroad, and four different land covers, i.e. residential area, industrial area,
well irrigated grass and dry grass, are selected for training. The classification results

show that the highest accuracy, 74.5 percent, is achieved by the clustering method. To
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compare them with other automatic road extraction methods, a gradient direction profile
analysis (GDPA) method is selected. It was found that GDPA is superior to all three

classification methods and it reached an accuracy of 78.7 percent.

Existing maps exhibit abundant information about objects in an image, including roads.
Such information is very useful for road extraction from images. Maillard and Cavayas
(1989) developed an automatic method for road extraction from SPOT imagery under
the guidance of topographic maps with a scale of 1:50,000. The process starts with the
extraction of the roads in the image that exist in the map after the map and image are
registered correctly. It is assumed that there may be a deviation between the positions of
a road in the map and in the image. Therefore, a search area for the road point in the
image is defined along the existing road segment. A point in the search area is taken as a
road point if its grey value and edge magnitude, and the ratio between the edge
magnitude and absolute difference of grey values with its preceding point, are within the
predefined thresholds. Small gaps between the detected road points are bridged by
linear segments. Intersections between new roads and the existing roads are found by
searching both sides of the extracted roads in a similar way. After the intersections are
detected, the same procedure as above is applied to look for the new road segments.
With the guidance of information about the existing roads, road extraction becomes

easier and its reliability is improved.

Cleynenbreugel et al (1990) argue that the road model used in the existing methods is
not complete because only the photometric and geometric properties of a road are
utilized. The information about the terrain type and land cover is actually very important
since different types of land cover correspond to different types of road network
topologies, and different terrain types usually correspond to different road patterns. To
incorporate the knowledge of terrain type and land cover into road extraction, a
knowledge-based method for road extraction from multispectral SPOT imagery was
developed. Based on the expert’s knowledge, two different road models for forest path
networks and mountain roads are given. An existing GIS is used to derive the
information on the terrain type, land cover and existing roads. For each land cover

subclass or terrain type, there is a specific knowledge base for implementing a typical
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road network model, which consist of two types of knowledge: procedural and
declarative. The procedural knowledge activates the segmentation algorithm to extract
line features and the declarative knowledge is applied to the generated line features to
derive the final road network. The use of knowledge about the terrain type and land
cover can improve the quality of road extraction. However, the road models only
contain the general properties of road structures and no specific properties of a road are

used. This may generate spurious recognition of roads.

Heipke et al (1995) presented a hierarchical approach for automatic road extraction
from aerial imagery. In their method, two different scales of images are used. In low
resolution images, pixels exhibiting significant contrast against the background and grey
values within the given threshold are detected and grouped into contours. To eliminate
non-road points, the local properties of the detected points are examined. Only pixels
which are the local maximum in the direction perpendicular to the contour are accepted
as road points, and contours with a larger percentage of accepted pixels than the given
value are retained. In high resolution images, edges with approximate directions are
detected. The mean and variance of the grey values in the areas bounded by the paraliel
edges are computed and used to test the homogeneity of the road surface. Parallel pairs
are accepted as road segments only if their mean and variance are within the predefined
thresholds. Parallel pairs are extended in their neighbouring regions by checking the
homogeneity in these areas. To increase the reliability of road extraction, the results
from these two different scales of images are combined using a number of heuristic
rules. The use of two different scales of images can improve the quality of road
extraction because their results are used to verify each other. But this still cannot

guarantee that the extracted roads are true.

Baumgartner et al (1997) explored the use of context in automatic road extraction. They
analysed various situations at which roads are possibly related to other objects and
classify context into context sketches and content regions. Context sketches describe
relationships between roads and related objects while content regions define the type of
an area. Road segments are extracted using the method described in Heipke et al (1995),

starting from the easiest area using the knowledge of content regions derived from
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texture analysis of the image. The gaps between the extracted road segments are then
analysed using contextual information of roads, i.e. context sketches which are
generated by using a Digital Surface Model (DSM). If the classified object
corresponding to the gap between two road segments is consistent with the knowledge

of context of roads, a road part is then hypothesised and the gap is bridged.

A knowledge-based system for automatic road extraction from aerial images was
developed by Gunst (1996). The system uses a multi-scale semantic road model in
which a road is represented in three different scales, ie., small, medium and large
scales. The model includes the definition of object classes that correspond to the
meaningful parts of a road network, object-specific properties and the relationships
between the object classes. Objects in three different scales are related by part-whole
relationships and the generalised objects in each level correspond to specialised objects.
The knowledge base is developed based on the semantic model, in which the properties
of the object classes and relationships are represented in the form of object definitions
and object relations. Object definitions contain the properties of geometric and
radiometric properties of the each object class which are used for recognition, and
object relations define the spatial, part-whole and specialisation-generalisation
relationships between object classes. Priorities are attached in the object relations which
determine the order of the subsequent reasoning. The contextual information is utilized
to infer other objects and invoke image segmentation for searching new objects based
on the recognised objects. The knowledge base also includes alternative object
definitions and relations to generate alternative hypotheses and trigger re-segmentation
with upgraded parameters, if inconsistencies occur. Outdated maps are used to generate
hypotheses. When a hypothesis is generated, a chain of actions are taken using the

relationships in object relations.

2.3 Summary of Previous Work

A large number of existing methods and algorithms for automatic road extraction from

aerial images and satellite imagery have been reviewed. These methods and algorithms
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are classified into semi-automatic and automatic, according to the degree of human
intervention. In semi-automatic methods, a road is defined as a linear feature or a
homogeneous surface. Thus, the task of road detection becomes the tracking of an edge
or a homogeneous surface after the initial position and orientation of a road are given by
an operator. Road points are detected using an edge operator or a surface profile
analyser, or their combination. An edge operator works in a local area and computes the
magnitudes of gradients of an image. A thresholding process is applied to classify pixels
into road points and non-road points. As only local radiometric properties of pixels are
used, it is impossible to determine road points accurately. Surface profile analysers
detect road points by comparing road surface profiles with the surface model. When
surface anomalies occur, no or wrong points will be found. The combination of an edge
operator and a surface profile analyser can improve the quality of road detection as they
can supplement each other. However, they may fail when poor contrast and a surface
anomaly occur at the same time. In road tracking, detected road points are traced using
simple geometric constraints. Since these constraints are enforced locally, non-road
segments may also be tracked. Due to the effect of occlusions, such as trees, shadows,
vehicles, overpasses, etc., the tracked roads are usually separated. Therefore, a linking
process is usually included to connect separated road segments. In road linking,
geometric constraints are used locally. This may lead to wrong connections. To solve
these problems completely, knowledge of context and the overall structure of the road

network should be used.

In active contour models (Snakes), a road is modelled by energy which is represented
by the geometric and radiometric constraints. The extraction of a road is achieved
through the optimization of the energy. The Snakes technique has two advantages: (i)
the geometric constraints are directly used to guide the search for the feature, and (ii)
the photometric information is integrated along the entire length of the curve, providing
large support without including the irrelevant information of points not on the feature
(Fua and Leclerc, 1990). As the initial positions of the feature are provided by an
operator, the overall structure of the road is implicitly defined. This can ensure that the
extracted results are reliable and accurate. Even when there are some points which

cannot be detected by an edge operator or small occlusions such as trees, shadows,
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overpasses, change of surface materials, etc. Snakes can determine the positions of the
feature correctly, as geometric constraints are enforced during the optimisation process.
Therefore, the Snakes technique is more robust and efficient than the traditional
methods. However, it cannot completely solve the problem caused by large occlusions,
e.g. a road going through a forest. To solve these problems, knowledge of the context of

objects is required.

Automatic road extraction includes automatic determination of positions and
recognition of a road. In most existing methods, much effort has been made on
automatic detection of the starting point or segment of a road. The radiometric
properties of the point or segment, such as intensity values and contrast against the
background, are usually used to classify pixels as the starting point or segment of a
road. Since they vary with many factors, such as time, season and weather conditions of
photography, the same object in different images may have different grey values, while
different objects in one image may have similar intensity. Therefore, the radiometric
properties alone cannot classify an image point (segment) as a road point (segment) or a

non-road point (segment) reliably.

Classification is a common technique for interpretation of an image, which uses spectral
information of objects in different spectral bands. However, in aerial images or high-
resolution satellite imagery, the spectral values of an object may change greatly due to
the image noise, its texture, different weather conditions, sun angle and slope, etc. This

may lead the existing classification methods to fail.

To recognise an object from an image correctly, not only the geometric and radiometric
properties of the object should be used, but also the relationships between the object and
its surrounding objects should be considered. Knowledge-based systems provide a good
mechanism for representing and manipulating various types of knowledge. They use the
knowledge of geometric and radiometric properties of objects, their structures,
relationships with other objects, and a priori knowledge of the imaging system and the

related world to interpret the objects. As various types of knowledge are used, more
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reliable results can be achieved by knowledge-based methods. Most existing methods
are based on a specific road model in which specific properties of a road are included.
To generate reliable results for most cases, more general semantic road model is needed

and more complete knowledge should be used.



Chapter Three

Concepts in Image Understanding

Image understanding has been an important research area in computer vision for decades.
Its purpose is to construct a corresponding relationship between image features and
objects in the real world, i.c. to derive recognition of objects from images with respect to
domain knowledge. During the last two decades, a number of theories and methods have
been developed for object recognition, including Marr’s theory of vision. These theories
and methods can be adopted for photogrammetry for recognition of objects from aerial
and satellite images. This chapter will introduce some general concepts of image
understanding and processing involved in image understanding. Some existing image

understanding systems will also be reviewed.
3.1 Process of Image Understanding

Image understanding is a very complex process. This is mainly because there is a
significant difference in the representation of an image and objects in the real world. An
image records the radiometric properties of objects in the real world by projection. It is
an array of pixels which only possess information of intensities and positions while
objects in the real world are usually linked by relations (Ballard and Brown, 1982). It is
impossible to apply object matching process to the image directly unless the domain is
extremely simple and heavily constrained (Hanson and Riseman, 1988). To bridge this
gap, intermediate representations such as points, edges/lines, regions, object structures
and their relations are required. With these features, object structures and relations, a link
between the image and objects in the real world may be established with respect to
domain knowledge. Therefore, an important task of an image understanding system is to
design the appropriate representations and algorithms to relate them to each other.

Representations are generally classified into three levels, i.e. low-, intermediate- and
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high-levels (Marr, 1982; Hanson and Riseman, 1988; Forstner, 1993) although they
might be categorized into four levels (Ballard and Brown, 1982). Low-, intermediate-
and high-level representations correspond to iconic, symbolic descriptions of objects,

and knowledge and models of objects respectively (Figure 3-1).

At low-level representation, input data, i.e. the image is represented. An image is the
projection of objects in the real world. It consists of an array of pixels which have
intensity or grey values and positions in the image plane. With intensity values of images,
it is only possible to classify large areas in satellite images or objects with very simple
structures and distinguishable spectral properties. However, it is impossible to generate
recognition of objects in large scale images if only intensity values are used because
different objects may have similar or even same spectral properties. The image must be
processed to derive meaningful information about the objects, such as points, edges/lines

and regions.
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Intermediate-level representation refers to symbolic representation. At this level,
symbolic tokens for points, edges/lines and regions with attributes which can be
extracted from the input data, are represented. At the same time, object structures which
are formed by grouping image features are also represented symbolically in terms of their
associated attributes and relations. They are stored in what is called the “Short Term

Memory (STM)” of the knowledge base.

At high-level representation are the knowledge and models of the objects, which are the
highest abstraction of objects. It describes the structures of objects to be interpreted,
their properties and relationships in the real world. They are expressed in explicit forms
such as rules and frames, and stored in the so called “Long Term Memory (LTM)” of the
knowledge base. They are applied to the derived symbols from images to generate
interpretation of objects, or to invoke appropriate processes to find instances of objects

to be interpreted.

To derive recognition of objects from the image, a number of processes are usually
required, which can be divided into three levels, i.e. low-, intermediate- and high-level
(Hanson and Riseman, 1988) (Figure 3-1). Low-level processes manipulate pixel data
and produce features such as points, lines /edges and regions. These features constitute
the structures of objects. They can be extracted using a single algorithm or several
algorithms or operators. There are numerous operators available for the extraction of
these features. Most edge and point operators are based on the discontinuity of intensity,
while region segmentation algorithms usually use homogeneity property of the image
such as texture, chromatic values, etc., to extract homogeneous areas. For edge and area
extraction, their direct results are feature points with attributes. Therefore, some
processes such as edge tracking and linking, region growing, splitting and merging are
included in low-level processing to form continuous edges and regions. Generally, no

knowledge about the objects to be interpreted is used at this stage.

The results of low-level processing are unstructured points, lines/edges and areas. They

are meaningless before the structures of objects are formed. For recognition of objects,
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these features produced in low-level processing need to be grouped to form the
structures of objects. At the same time, relationships between objects should also be
established. This process is referred to as intermediate-level processing. Grouping is a
process of aggregating relevant features to form the structures of objects using the
attributes of features and their relationships. At this level, some general knowledge of
objects, e.g. a road has two parallel boundaries, an industrial building has rectangular
shape, etc., may be used. The use of general knowledge of objects can save computation
time and overcome problems caused by image noise occlusions (Ballard and Brown,

1982).

High-level processing is based on the knowledge and models of objects stored in the
knowledge base. It has the function of generation of object hypotheses and goal-directed
inference. Generating object hypotheses is a process in which a priori knowledge and
models of objects are applied to the structures and relationships of objects produced in
intermediate-level processing. If the structures and relationships match the models or
definitions of some objects in the knowledge base, the corresponding objects are
hypothesised. Goal-directed inference starts with hypothesis generation of objects and
invokes appropriate image processing algorithms to find instances of the hypothesised
objects in the image, or triggers grouping algorithms to find complete structures of
objects, based on partial hypotheses made in the previous stage. When the found features
or structures meet the definitions of objects in the knowledge base, the objects are
confirmed. Which processes are performed strongly depends on the selected control

strategy. This will be discussed in detail in Section 3.3.

In Ballard and Brown (1982) and Sonka et al (1993), processes involved in image
understanding are classified into two levels, ie., low- and high-levels. High-level
processing corresponds to cognitive processes, while low-level processing includes all
processes for generating symbolic representations of objects. The number of processing
levels in image understanding is not so important. However, it is generally believed that

processes for generation of symbolic representation of objects are necessary, unless the
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domain is extremely simple and heavily constrained so that object matching processes

can be applied directly to the image to derive the interpretation of objects.

3.2 Knowledge Representation

The information which can be derived from the image consists of image features such as
edges/ lmes and regions and structures with their attributes and relations. They are
insufficient for recognition of objects in an image. To recognize objects, the specific
properties of objects, their relationships and the knowledge related to the image and
objects such as a priori knowledge of the imaging system, etc., are required. In artificial
intelligence, knowledge is defined as the understanding of a given subject (Durkin,
1994). It refers to all known and useful information that would lead to the recognition of
objects. It includes the types of objects which may occur in the image, geometric and
radiometric properties of the objects, and their mutual relationships. It also includes a
priori knowledge about the world related to the objects and the imaging system, such as
the terrain type of the area where the objects are located, and orientation parameters of

the imaging system.

A knowledge base is a collection of knowledge related to solving a specific problem.
Research in cognitive psychology has found that humans use different types and
organisation of knowledge for solving a problem. Scientists in artificial intelligence have
used the results of these studies to develop techniques to best represent these different
types of knowledge in the computer. This section will introduce the types of knowledge

and some major methods of knowledge representation.
3.2.1 Types of Knowledge
According to the discovery of cognitive psychologists, there are different types of

knowledge humans commonly use to solve problems. These include heuristic,

procedural, declarative, meta- and structural knowledge (Durkin, 1994). Heuristic
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knowledge describes a rule-of-thumb that guides the reasoning process. It is empirical
and is formed through the experience of solving past problems by an expert. Heuristic
knowledge is simple and easy to implement. However, it may not lead to a correct

solution in exceptional circumstances because of its experimental nature.

Procedural knowledge describes how a problem is solved. This type of knowledge is
represented in the form of explicit process descriptions. Like a computational program,
procedural knowledge not only defines the step-by-step sequences of performing a task,
but also specifies the optimal algorithms to accomplish the sub-tasks. In an image
understanding system, knowledge used to search for the evidence of objects or object
parts is usually procedural. It contains the description of a search area and what image

processing algorithms will be performed to find the instances of objects.

Declarative knowledge describes what is known about a problem. It is an assertion of the
existing facts. This type of knowledge includes simple statements that are asserted as
either true or false. It may also include a list of statements that more completely describe
objects. For example, the following is a piece of declarative knowledge describing a

table:

— amotorway has a smooth surface and two parallel boundaries.

In image understanding, the properties and relationships of objects are described by
declarative knowledge. They include geometric and photometric properties of objects

and object parts, semantic and spatial relationships.

Meta-knowledge describes knowledge about knowledge. It is used to guide the use of
knowledge for solving a problem. It can improve the efficiency of problem solving as it
can direct reasoning to the most promising areas and determine the most suitable

knowledge for the given task.
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Structural knowledge describes knowledge structure. The expert’s mental model of

concepts, sub-concepts and objects belongs to this type of knowledge.

3.2.2 Knowledge Representation

Knowledge representation is a major subject of artificial intelligence. Researchers in
artificial intelligence have developed a number of methods to represent different types of
knowledge. An excellent survey of these techniques is given in Barr and Feigenbaum
(1981), Durkin (1994) and Crevier and Lepage (1997). Here only four of the most

common techniques are introduced. They are rules, semantic networks, frames and logic.

3.2.2.1 Rules

A commonly used form of knowledge representation is rules. A rule is a knowledge
structure that relates some known information to other information which can be inferred
or concluded to be known. In a rule, known information is expressed as premises or
conditions, while information to be inferred is expressed as conclusions. They are

logically connected in the form of IF-THEN clauses. For example:

IF It is raining

THEN Take an umbrella

The action contained in the THEN part may be an assertion of a new fact or some
procedures to be performed. In this sense, a rule can represent both declarative and
procedural knowledge. In order to perform more complex operations, most rule-based

systems are designed to access an external program. For example:

IF Two neighbouring road segments are not connected

THEN “find missing_segment” between two segments
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In general, a rule can have multiple premises joined by AND statements, OR statements,
or a combination of both. Its conclusion part can also include several statements joined

by an AND. The following is an example of a general rule:

IF It is a road segment
AND It is connected to a house

THEN It is a driveway

In a rule-based system, domain knowledge is represented in a set of rules in the
knowledge base. The system uses these rules together with information stored in the
working memory (facts) to solve a problem. When the IF part matches the information
contained in the working memory, the rule will be fired and the action defined in the
THEN part of the rule is performed. The result of action may be a new fact or execution
of a procedure. The produced new fact or the result of executing the procedure is added

to the working memory in the knowledge base.

For solving complex problems, different sets of rules are required, which can be
structured in such a way that they can exchange information with each other. Such a
structure is called a blackboard in which each set of rules, called a module, performs a
sub-problem. It shares and uses information with other modules by writing information

on a blackboard and reading information from other modules to accomplish its task.

Since rules are an explicit representation of knowledge, they are easy to understand.
Inference and explanations can be easily derived from them. Rules are stored
independently, and hence they can be easily modified and maintained. However, solving a
complex problem often requires many rules, as each rule can only represent one aspect of
the problem. This may create problems in using and maintaining the system. Searching

for the solution is also a problem in systems with many rules.
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3.2.2.2 Semantic Networks

A semantic network is a method of knowledge representation using a graph structure. It
was first introduced by Quinlian (1968). A semantic network consists of a number of
nodes and arcs connecting the nodes (Giarratano and Riley, 1994). Nodes represent
objects, object properties or property values, while arcs represent relationships between
nodes. Common relationships used in semantic networks are “IS-A”, “AKO” and
“pPART-OF”. The IS-A means “is an instance of” and refers to a specific member of a
class. For example, a canary is a bird. Thus, their relationship can be represented by IS-
A. The AKO relates an individual class to a parent class to which the individual class
belongs. For example, a bird is a kind of mammal. Therefore, a hierarchy among objects
can be established through this relationship. The AKO is not used to relate a specific
individual member to a class. “PART-OF” relate parts of an object to the object. It is

used to describe part-whole relationships of objects. Figure 3.2 shows a simple example

Road
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Figure 3.2 An Example of a Semantic Network

of a semantic network.




Chapter 3 Concepts in Image Understanding 35

One important characteristic of semantic networks is inheritance. The information
possessed by an object in the semantic network can be automatically inherited by objects
related to it with the relationship “IS-A”. The inheritance nature of semantic networks
can ease the task of coding knowledge as some common properties of different objects in

the semantic network are not required to be represented repeatedly.

The semantic network represents knowledge in visual form, which is easy to understand.
A knowledge base built up in this form can be extended by simply adding new nodes and
arcs to the defined network. However, knowledge does not appear in a computer in
graphic form. Instead, various objects and their relationships are represented in the
knowledge base in other forms of representations, e.g. rules. Searching within a semantic
network with many nodes and arcs may be difficult. Another problem is that procedural
knowledge is difficult to represent as the sequence and time are not explicitly

represented. Therefore, the technique is used mainly for analysis purposes.

3.2.2.3 Frames

A frame, also called schema, is an object-oriented method of knowledge representation
which was first proposed by Minsky (1975). In contrast to other representation methods,
the knowledge that describes one object is grouped into a single unit, a frame. A frame
contains a name, usually the name of the object to be represented, its associated
attributes and relationships with other objects. In a frame, the knowledge is partitioned
into slots. Each slot contains one property and a value or a range of values of the object.
An external procedure that performs a certain action can be attached to a slot. It can be
used to derive the slot values or remove slot values. Therefore, both declarative and
procedural knowledge can be represented in frames. A basic structure of a frame is

shown in Figure 3.3.

Frames can be classified into class frames and instance frames. A class frame represents
the general properties of some common objects. For example, a frame “bird” which

describes the general characteristics of birds is a class frame. The common properties of
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Figure 3.3 Structure of a Frame

various types of birds are included in the frame. An instance frame describes the
properties of a specific object, e.g. a canary. It contains information more specific to its
individual category. A relationship is defined in an instance frame which relates the
frame with a class frame. The defined relationship usually has the form of “IS-A” or
“AKO”. Therefore, a hierarchy among frames can be established. More generic frames
are at the top of the hierarchy, and specific instance frames are at the bottom. Each
instance frame at the bottom of the hierarchy inherits the properties of objects from its

top level frame.

There are significant advantages to object-oriented knowledge representation. First,
Jrames add a third dimension by allowing objects to have structures, while semantic
networks are basically a two-dimensional representation of knowledge. Such an
important feature of frames is very useful in representing objects with complicated
structures which are not easily represented by nodes and links. Secondly, a slot can have
external procedures or frames attached to it. This enables spatial and contextual

reasoning in frame-based image understanding systems.
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3.2.2.4 Logic

The oldest form of knowledge representation is logic. Logic uses symbols to represent
knowledge and operators applied to symbols to produce logical reasoning. Two widely
used logic representation techniques in artificial intelligence are propositional logic and
predicate logic. Propositional logic represents and manipulates knowledge with
propositions. A proposition is represented by a symbolic variable, which can be of any
form, e.g., A, PERSON, ROAD etc. They are connected by logical operators such as

G‘A’), $GV’9, GG~,9 and “—%”. For example,

If it is raining then take an umbrella

can be represented in the form:

A->B

where
A =1t is raining

B = take an umbrella

and — stands for IF... THEN.

Although the propositional logic is useful, it does have some limitations. The major
problem is that the propositional logic can only manipulate complete statements. In
other words, it cannot deal with the internal structures of statements. To provide a finer

representation of knowledge, predicate logic was developed.

Like prepositional logic, predicate logic uses symbols to represent knowledge. The first
order logic is the simplest form of predicate logic. Instead of representing a complete

proposition with a single symbol, the first order logic permits symbols representing
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constants, predicates, variables and functions. In this way, the properties of objects and
their relationships can be represented by the use of variables, predicates and functions.

Thus, knowledge processing is enhanced.

In the first order logic, variables are used to denote objects or object properties. The
relationships between objects or properties are represented by predicates. For example,

the connectivity relationship between two objects can be expressed as:

adjacent (X, Y)

The properties of an object are described by functions, e.g.

tall (X).

The first order logic operates with knowledge using the same operators found in
propositional logic. At the same time, it introduces two other symbols called quantifiers
which define the scope of variables in a logical expression. The two quantifiers are
universal quantifier V' and existential quantifier 3. The universal quantifier ¥ indicates
that the expression has a true value for all values of the designated variable while the

existential quantifier states that the expression is true for some values of the variable.

As the first order logic uses symbols to represent knowledge, the properties of objects
and relationships between objects can be easily represented and implemented. Therefore,
it is selected as the knowledge representation tool in this study. It should be pointed out

that some statement may not be expressed by the first order logic properly, e.g.
It probably rains today!
In this statement, the “probably” means with large chance. It cannot be expressed in

terms of the universal existential qualifiers. To describe “probably”, a logic must provide

some predicates for counting, as in fuzzy logic which is beyond this study.
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3.3 Control Strategy

Control strategy plays an important role in image understanding. It determines the
execution order of various processing involved in object recognition. This section
explores different strategies for controlling information processing involved in image

understanding.

3.3.1 Hierarchical Control Strategy

Under hierarchical control, different levels of processing are organized according to their
order in the process of image understanding. Hierarchical control has three different

forms, i.e. bottom-up, top-down and hybrid control strategies.

3.3.1.1 Bottom-up Control Strategy

Bottom-up control, also called data-driven control, proceeds from image data to
interpretation of objects through the formation of object structures and relationships
(Figure 3.4). Bottom-up image understanding starts with feature extraction in which raw
image data are converted into feature points, lines/edges and regions which are supposed
to correspond to the meaningful parts of objects. As no knowledge is used at this stage,
the processing is domain-independent. The extracted points, lines/edges and regions are
then grouped to form the object structures and relationships. Symbolic descriptions of
objects are generated for the high-level recognition process. Finally, the knowledge and
models of the objects are applied to the derived object structures and relationships to

generate recognition of the objects.

Obviously, the results of bottom-up image understanding are heavily dependent on the
quality of low- and intermediate-level processing. Good results can be expected if
unambiguous data are processed and the lower levels of processing give reliable and

precise representations for later processing steps. This is true when the objects have
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simple structures and the image is of high quality, e.g. recognition of industrial parts in
robot vision. However, when the image data contains complex structures and
disturbances, e.g. aerial and satellite images, the derived structures of the objects by low-
and intermediate-level processing may not be complete and correct, as errors may be
introduced and useful information could be lost in this process. Thus, unreliable

interpretation of objects may occur.
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Figure 3.4 Bottom-up Control Figure 3.5 Top-down Control

3.3.1.2 Top-down Control Strategy

Top-down control, also called model-driven control, is a goal-directed process (Figure
3.5). Goals at higher processing levels are divided into sub-goals at lower processing
levels, which are divided again into sub-goals until they are simple enough to find
instances in the image. A common top-down procedure is “hypothesise-and-verify””. The
hypotheses of objects or object parts are generated based on the knowledge in the

knowledge base, in which the structures of the objects or object parts and their positions
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in the image are predicted. The appropriate image processing algorithms are then
invoked to find the instances of the predicted objects or object parts in the predicted
area. If the evidences of the objects or object parts are found in low-level processing, the
hypotheses are confirmed. Otherwise, the alternative processing algorithms will be

selected and tested again.

Model-driven image understanding relies on the knowledge and models of objects stored
in the knowledge base. To achieve reliable results, the properties of objects and their
relationships should be included in the knowledge base. This is especially true for natural
objects. Goal-directed processing can avoid a large amount of low-level processing and
potential errors introduced at this stage, as algorithms and parameters suitable to the
tasks to be performed are selected. However, goal-directed inference needs information

about the initial positions of the objects. Otherwise, its advantages will be lost.

3.3.1.3 Hybrid Control Strategy

Hybrid or combined control strategy uses a combination of both bottom-up and top-
down control strategies (Figure 3.6). It usually gives better results than a single control
strategy and is widely used in today’s image understanding systems. The top-down
process uses knowledge in the knowledge base to guide the search for objects at lower
levels of processing, so it makes low-level processing easier. However, when the
knowledge representing the objects is not complete and accurate, it might be difficult to
predict object appearances and positions precisely and reliably. In this case, the
incorporation of bottom-up control is very useful since some properties of the objects

can be derived through this process.

In hybrid control, the way of combining bottom-up and top-down control strategies
depends on the problem to be solved. One common hybrid control strategy uses bottom-
up control to generate initial interpretation of objects and top-down control to find the
missing object structures and instances in the image, based on the derived partial

interpretation in the bottom-up process. Both bottom-up and top-down control strategies
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Figure 3.6 Hybrid Control Strategy

complement each other and therefore, better results can be produced.

3.3.2 Heterarchical Control Strategy

In heterarchical control, the processes are viewed as cooperating and competing experts
at the same level, and the expert who can help most in finding the solution of the subtask
is selected. Knowledge is shared among the experts. While new pieces of evidence are
found and new hypotheses are generated, an appropriate expert is chosen to analyse

them and create new hypotheses. Each expert relies on the information the other experts

supply.

Blackboard is an application of the heterarchical control strategy. In a blackboard
system, the results derived from independent knowledge sources are directly written on
the blackboard or short term memory (STM). Different knowledge sources exchange

information by writing on the blackboard. Potential actions awaiting execution are
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recorded in the agenda of the blackboard. A scheduler is used to decide which
knowledge source should be performed next, based on those stored in the agenda. The
consistency among the representations of the emerging solutions is maintained by a

consistency enforcer.

3.4 Overview of Knowledge-based Image Understanding Systems

Over the last two decades, a large number of knowledge-based systems for interpretation
of objects from remotely sensed imagery have been developed. These systems use
different knowledge representation techniques and control strategies and, therefore,
exhibit different structures. A good survey of the existing knowledge-based image
understanding systems can be found in Argialas and Harlow (1990), Crevier and
Lapage(1997) and Trinder and Sowmya (1997). This section will review some of the
existing systems based on the knowledge representation approach and control strategy

used. Some examples are listed in Table 3.1

VISIONS is an early knowledge-based system for interpreting natural scenes developed
at the University of Massachusetts (Hanson and Riseman, 1978, 1987). VISIONS is
based on a number of assumptions. The first assumption is that the initial segmentation
proceeds in a bottom-up fashion by extracting information from the image without
knowledge of its contents. The second is that every stage of processing is inherently
unreliable. Finally it assumes that local ambiguity and uncertainty in object hypotheses
can be removed only by satisfying the relations between objects and object parts. The
system consists of three different levels of representation and processing, i.e. low-,
intermediate- and high-level. It uses a hybrid control strategy in which a bottom-up
process is performed to generate partial interpretation of objects through building
intermediate symbolic tokens of objects. A top-down control is then applied to direct
further grouping, splitting and labelling processes at the intermediate level, to construct
complete object structures by activating the knowledge related to the hypothesised
objects. The knowledge of objects is represented by schemas (frames) each of which has
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a declarative and procedural component. The class and instance schemas are related by
PART-OF and IS-A relations. Low-level processing includes two distinct parallel
segmentation algorithms. The first aggregates edges into boundaries while the second
uses a global histogram and a local spatial analysis procedure to form regions. The
extracted regions, lines and surfaces with attributes are aggregated to form structures by
grouping, splitting, and/or modifying and represented symbolically in intermediate-level
processing. The initial hypotheses of objects are created by applying the object
hypothesis rules to the generated tokens. Once an object is hypothesised, the knowledge
about its properties will be used to guide further intermediate-level processing to find a

complete object structure and instance in the image.

Levin and Shaheen (1981) described an image understanding system for segmentation
and interpretation of natural scenes. The system has a modular structure and interprets
scenes in a bottom-up mode. The modules incorporated in the system include low-level
processors, a measure analyser, hypothesis initialiser, hypothesis verifier, focus of
attention and scheduler. They communicate through the long-term memory and short-
term memory similar to blackboard architecture. The low-level processors determine
basic properties of regions such as the mean value and standard deviation of three colour
features. The feature analyzer computes measures over regions and other structures. The
hypothesis initialiser utilizes the region descriptions and model information stored in the
long-term memory to create interpretations. The hypothesis verifier uses measures of
regions, relations between regions and the generated hypotheses to confirm and update
interpretations. The focus of attention module recognises situations of interest and
generates actions. The scheduler controls execution of modules. The knowledge of

objects are represented as rules and stored in the long-term memory.

Strat and Fischler (1991) argue that it is possible to describe natural objects using precise
geometric models and devised a context-based vision system - Condor for interpretation
of natural scenes. Condor interprets objects using relationships between objects and
context, instead of using specific object models. The central component of the system is

a special-purpose knowledge base, in which the knowledge is represented as context sets
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(rules). Each context set (rule) contains a set of conditions and an action. The action is
fired only when all the conditions in the context set are satisfied. The interpretation is
performed in a top-down process and contains four major steps: candidate generation
(hypothesis generation), candidate comparison (hypothesis evaluation), clique formation
and clique selection. In candidate generation, all candidate generation context sets are
evaluated, and their associated operators produce candidates for each class. They are
evaluated using candidate comparison context sets and a preference ordering is set up
among them. In clique formation, candidates which are mutually coherent are grouped
together. Finally, one clique is chosen as the best interpretation of the image, based on
the portion of the image that is explained and the reliability of the operators that

contributed to the clique.

Nagao and Matsuyama (1980) presented a blackboard system for the interpretation of
suburban scenes from multispectral aerial images. The system consists of a number of
object-detection subsystems. Each subsystem concentrates on detection of a specific
object and contains the knowledge related to that object. The knowledge is represented
as production rules, and each specified method for locating a specific object is expressed
as one rule. There is no direct link between two different subsystems. They communicate
via a blackboard, i.e. by writing information to the blackboard or reading information
from the blackboard. The blackboard contains the information derived by low-level
processing and properties of detected objects. The system itself does not set up a
schedule for activation of subsystems. Which subsystem is invoked depends on the
current information stored in the blackboard. When the conditions for activating a
specific sub-system are satisfied, the subsystem will be fired and a goal-oriented analysis
will be performed to locate a specific object. Once the subsystem locates the object, its
properties are written onto the blackboard and can be shared with other subsystems. This
enables other subsystems to find “ambiguous” objects which were not recognized
because of poor reliability. The updated information in the blackboard will fire other

subsystems and another goal-oriented object locating cycle commences.
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A knowledge-based system for interpretation of suburban scenes from aerial images is
described by Nicolin and Gabler (1987). Their system is composed of four main modules:
method-base, long-term memory, short-term memory and control module. The method-
base module comprises a set of domain-independent processing methods, such as image
preprocessing, segmentation and structural analysis. The long-term memory stores the
generic knowledge about suburban scenes, which is represented by semantic networks
and meta-knowledge used to control knowledge during the course of interpretation,
while the short-term memory contains the results obtained in the image analysis process.
The control module controls the whole process of image interpretation and decides
which process is executed in a certain situation. The system uses a hybrid control and
starts with building initial hypotheses of objects in a bottom-up process. The top-down
process is performed to generate hypotheses about possible instances of the objects and
to find instances of the objects in the image, based on the initial interpretation of the
objects and object models stored in the long-term memory. It is believed that reliable
interpretation of objects may not be obtained through a single pass of bottom-up and
top-down. Therefore, an iterative process is applied in this system in order to achieve

more reliable results.

McKeown et al (1985) developed a rule-based system - SPAM for interpretation of
airports from aerial images. The system is composed of three major components: a map
database, image processing tools and a knowledge base. The map database collects the
facts about the existence and locations of man-made or natural objects. It provides
facilities to compute geometric properties and relationships of objects which serve as
constraints during hypothesis verification. Image processing tools include a region-
growing program, a road/road-like feature follower, a stereo analysis program and an
interactive segmentation system. These tools perform low- and intermediate-level tasks
and generate primitives of objects for high-level processing. The knowledge about the
spectral and geometric properties of objects, spatial and semantic relationships of
objects, etc., is represented as production rules and loosely organized into six classes in
the knowledge base. The interpretation consists of build, local evaluation, consistency

check, and a functional area model evaluation processes. It starts with the interpretation
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of individual objects based on their geometric and spectral properties derived in low- and
intermediate-levels of processing. The hypothesised objects are then combined to form
functional areas such as runways, taxiways and tarmac if they are compatible with each
other, after a consistency check is performed. Finally, a model evaluation is done to

resolve the inconsistency among the generated functional areas.

A knowledge-based system - SIGMA for interpretation of houses and roads in urban
areas is described by Matsuyama and Hwang (1985) and by Hwang et al (1986). The
system consists of three major parts: geometric reasoning expert, model selection expert
and low level vision expert. The geometric reasoning expert is the central reasoning
module of the system which uses the accumulated evidence obtained during
interpretation to produce new hypotheses of objects. The model selection expert reasons
about the most promising models of object appearances for searching for the objects in
the image, based on the contextual information provided by the geometric reasoning
expert. Once the appearance model of the object is selected, the low-level vision expert
performs image processing to extract image features corresponding to the specified
appearance model. The knowledge of objects is represented by frames. Each frame
includes the attributes of the objects, constraints among object attributes, and relations
between the objects. The system integrates bottom-up and top-down processes during
interpretation. It starts with hypothesis generation of objects with simple appearances. A
goal-oriented low-level image processing is then performed to extract object features.
The features which match the selected appearance model are returned to the model
selection expert, which instantiates the corresponding object instances. The geometric
reasoning expert uses the generated object instances and evidences to infer the missing
parts of the objects and generate hypotheses of new objects based on the knowledge of

object relations.

Existing maps and databases in geographical information systems (GIS) exhibit abundant
information about terrain and various types of objects on the terrain. They offer
information on terrain types, locations, shapes and sizes of objects and their

relationships. Such information is very useful in image understanding, as it can be used to
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predict the initial positions and appearances of objects to be interpreted, and improve the
reliability of interpretation. Stilla (1995) presented a method for interpretation of aerial
images based on structural analysis of existing digital maps. In his method, digital maps
in GIS are analysed to derive contextual information of objects. Using a production net,
objects are represented as image description graphs in which they are decomposed into
primitives. The objects and associated image description graphs are stored as rules in a
blackboard. The interpretation of the image starts with image processing to detect image
primitives such as straight lines. The extracted image primitives are assessed and
assigned an expectation based on their deviation from the attributes produced from
maps. The control unit selects the primitives with best assessment. This process stops

when the objects to be examined have been found in images with sufficient instances.

A similar method is described by Koch et al (1997). In their method, two types of
knowledge, i.e. fact knowledge and procedural knowledge are defined. Fact knowledge
describes the generic models of objects, their attributes and relationships. It is
represented by semantic networks in which nodes represent objects or object features.
Nodes are implemented by frames and related by a set of defined relations such as
instance-of, part-of, con-of, etc. Procedural knowledge defines the order of the image
interpretation process and is represented as rules. The image is interpreted in a top-down
procedure. Firstly, objects and their relationships in maps are generated and stored in the
knowledge base. With the generated object types, their positions and relationships from
maps, and hypotheses of objects in the image are generated. They are verified in the

image by selecting specific algorithms.

Gunst (1996) developed a knowledge-based system for updating road networks. The
system uses a multi-scale semantic road model in which road networks are represented in
three different scales, and are related by spatial relations and specialisation-generalisation
relationships. The knowledge of road properties and the internal relationships of road
parts is derived from road construction manuals and is represented as frames. The system
works in a top-down scheme. The information of the existing road networks is generated

from GIS and used to guide the search for roads in the image. When any change is
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detected in the image, specific algorithms incorporated in frames are executed to locate
the road. Spatial relationships between road parts are used to generate hypotheses of
corresponding road parts and specially designed algorithms are selected to find their

instances in the image.

3.5 Summary of Chapter

In this chapter, the elements of an image understanding system, some techniques for
knowledge representation and control strategies were introduced. Image understanding
is a complex process which generally consists of low-, intermediate- and high-level
processing. Each processing step performs specific tasks and is related to other
processing steps. Knowledge representation is of primary importance in artificial
intelligence and image understanding systems. Knowledge can be classified as heuristic,
procedural, declarative, meta- and structural. It is represented in a knowledge base in a
certain form Production miles, semantic networks, frames and logic are common
approaches for knowledge representation in image understanding systems. Each of them
has advantages and disadvantages. Which method is selected depends on the problem to
be solved. Control strategy is also an important issue in image understanding. It has four
different forms, i.e. bottom-up, top-down, hybrid and heterarchical. Each control
strategy has its own characteristics. Previous research shows that reliable results may not
be achieved by pure bottom-up or top-down control, especially when the image to be
interpreted contains complex structures. What control strategy is used is determined by

the problem to be solved and the knowledge representation scheme selected.



Chapter Four

Feature Extraction

Feature extraction is an important step in image understanding. It aims at detecting
features of objects such as points, edges, lines and regions from an image without using
specific knowledge about the structures of the objects. These features are aggregated in
the subsequent processing to form the symbolic representations of the objects which are
used in high-level processing to generate interpretation of the image. As no specific
knowledge about object structures are used in feature extraction, this process is often

called low-level processing.

Feature extraction has been an active research area in computer vision over the last three
decades. A large number of methods and algorithms for feature extraction have been
developed, which are generally based on two basic properties of an image: discontinuity
and similarity. In the first category, the approaches are to partition an image based on
abrupt changes in grey value to detect isolated points, edges and lines in the image. The
approaches in the second category are based on thresholding, region growing, region
splitting and merging to generate distinct regions. This chapter will concentrate on the
first category, ie. detection of point, edge and line features. Some preprocessing
involved in feature extraction such as noise removal, edge tracking, edge linking, etc.

will also be discussed.
4.1 Edge, Line and Point Detection

Edges, lines and points are primitive features of objects. They play a very important role
in generating object structures for interpretation of images. Numerous methods and
algorithms for feature extraction from images have been developed. Surveys of early

development of feature extraction can be found in Davies (1975), Peli and Malah (1982),
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Ballard and Brown (1982), Rosenfeld and Kak (1982), and Venkatesh and Kitchen
(1992). Recent developments are investigated by Sonka et al (1993), Pal and Pal (1993),
and Lemmens (1996). This section will introduce some of the existing methods and

describe the method which will be used in this study.

4.1.1 Edge Detection

4.1.1.1 Definition of Edge

an edge is a local grey value discontinuity in the image

An edge in an image corresponds to a boundary or part of a boundary of an object,
which separates one part from the other. There is a distinct difference in reflectance on
both sides of a boundary in object space. In the ideal case, it is a step function (Figure
4.1(a)). An edge in the image is the result of convolution of a boundary in object space
with the Point Spread Function (PSF) of the imaging system (Figure 4.1(b) and (c)).
Therefore, the intensity profile of an edge in the image is a smooth curve rather than a
step function. Due to the effects of image noise and texture of object surfaces, the real
distribution of an edge profile in the image may deviate from the curve shown in Figure
4.1(c). As an edge is defined locally, it is sometimes called a “local edge” (Ballard and
Brown, 1982).
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Figure 4.1 Definition of an Edge (a) Profile of a boundary in object space (b) Profile
of point spread function in 1-D (c) Profile of an edge evolved from (a) and (b)
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4.1.1.2 Edge Operators

Based on their definition, formulation of algorithms to detect edges is straightforward.
An edge in an image can be detected by computing the intensity gradients of the image.
Early edge operators such as the Roberts operator (Roberts, 1965), the Prewitt operator
(Prewitt, 1970), the Sobel operator, the Laplacian operator, etc., work in this way. The
Roberts operator is the earliest edge operator which computes the gradient of a pixel in a
2x2 window in two diagonal directions (Figure 4.2). The magnitude of an edge at pixel

(i, j) is computed as:

gradient = |Ay| + |Ao] = [g(, j) - g(i+1, j+DI + g, j+1) - g+, )| 4.1)
® = tan (A1/A2) (4.2)

g is the grey value of a pixel and i, j are its image coordinates. A;, A, are the difference
of grey values in two diagonal directions at the pixel (i, j) and @ is the gradient direction.
As only four neighbouring pixels are used in the computation of gradients, the advantage
of the Roberts operator lies on its simplicity in computation. However, it is very

sensitive to image noise and scene details (texture).

Al A2

Figure 4.2 Roberts Operator
To suppress the effects of image noise, the Prewitt operator uses local averaging of

neighbouring pixels (Figure 4.3), which is actually a process of low-pass filtering. The

magnitude and direction of the gradient at point (i, j) are computed as:

A1 =1/3*(g(-1, j-1) + g(i-1, ) + g(-1, j+1) - g(i+1, j-1) -g(i+1, j) - g(it1, j+1) - (4.3)
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Ay = 1/3*(g(-1, j+1) + g, j+1) + gG+L, j+1) - gG-1, j-1) - g - D) - g1, j-1)) - (34)

gradient = (A2 + A)"? (4.5)
@ =tan (A/A2) (4.6)
1 1 1 -1 0 1
0 0 0 -1 0 1
-1 -1 -1 -1 0 1

Figure 4.3 Prewitt Operator

There is a generalisation of the Prewitt operator which employs 8 masks representing
different edge directions as shown in Figure 4.4 (Rosenfeld and Kak, 1982). The
magnitude of an edge is determined by the convolution of the masks with the image. The

direction of the magnitude is given by the mask showing maximum response.

1] 1] 1 1 {110 10 |1 0| -1] -1
olo]o 1o | - 1] 0|1 110 ]| -1
A -1 -1 0| -1] -1 10 |1 1|1]o0
a1 -1 1| 1] 0 10| -1 0|1 |1
0|01} o0 1] 0|1 10| -1 10 |1
1] 1|1 0|1 |1 10| -1 1] 110

Figure 4.4 Generalization of the Prewitt Operator

Instead of using the same weights for all neighbouring pixels in the Prewitt operator, the
Sobel operator employs different weights, yielding better smoothing results. Larger

weights are assigned to pixels lying closer to the central pixel (Figure 4.5).
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1 2 1 -1 0 |
0 0 0 -2 0 2
-1 -2 -1 -1 0 1

Figure 4.5 Sobel Operator

The Laplacian is a gradient operator which uses second derivatives of the image to

represent the gradient magnitude, i.e.
V2= V2 +V} 4.7

V.2, V,? are the second derivatives of the image in the direction x and y respectively. It

has the discrete form:

V2= g(i, j) - 14*(g(i, i+1) + g j-D + g(i+1, j) + gG-1, ) (4.8)

The disadvantages of the Laplacian are that the image noise is enhanced doubly and

there is no directional information available (Ballard and Brown, 1982).

Kirsch (1971) presented an operator for edge detection which uses a number of
templates with different sizes and orientations, four of which are shown in Figure 4.6.
The magnitudes and orientations of the gradients are computed through the convolution
of the template and a local area of the image. The operator gives the magnitude and
orientation associated with the maximum gradient magnitude. Some other template
operators can be found in Robinson (1977), Nevatia and Babu (1980) and Griin and
Agouris (1994).

An edge in an image can also be detected by fitting a designed function such as a step
function to a local area in the image. The magnitude and orientation of an edge are then

determined by the parameters included in the function which can be calculated through a
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number of condition equations. The Hueckel operator (Hueckel, 1971), the Hummel

operator (Hummel, 1979) and the operator presented by Ghosal and Mehrotra (1993) fall

into this category.
-1]-1]0]1 (1 1{110]-1]-1
-1]-110431 (1 1(1[10(-1}-1
-1 -1]0]1]1 1}11}10]-1]-1
-1]-110] 11 1[1[0]-1]-1
1 -1j0]1}1 111]10]-1]-1
0 1111 1{1|1]1/0
-110 1 {1 1{1 01-1
-1]-1]0] 11 1{1]0]-1]-1
-1 ]-1]-110(1 1{0]-1]-1}-1
-1]-1}{-1]-1;0 0(-1]-1]-1/-1

Figure 4.6 Kirsch Templates

Abdou and Pratt (1979) studied the performance of some gradient edge operators based
on their localisation errors and ability to detect true edge points. The study shows that
the Prewitt operator and Sobel operator have similar performance, and both are superior
to the Roberts operator. The performance of the Hueckel operator ranks between the
Prewitt operator and the Roberts operator, but is closer to the Prewitt operator. Similar
results were carried out by Venkatesh and Kitchen (1992) based on four criteria: false
negatives-failure in detecting a true edge, false positives detecting non-edge points,
multiple detection and localisation error. All of these studies show that the performance
of the gradient edge operators decrease with the increase of image noise. This is not

surprising because all gradient edge operators work in small areas in the image.

Marr and Hildreth (1980) presented an edge detection method using the zero-crossings

of the second derivatives of intensity values across an edge based on the assumption
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Figure 4.7 Second-zero Crossing of an Edge Profile (a) Edge profile (b) First

derivative of edge profile (c) Second derivative of edge profile

that the first derivative of the image should have its maximum at the position where an
edge occurs and in the direction perpendicular to the edge, and the second derivative
should be zero at the same position and direction (Figure 4.7). To alleviate the effects of

the image noise, the image is smoothed with a Gaussian filter which has the form :

2 2
x +y
T 4.9
Gx y)=e 2°
o is the standard deviation of the Gaussian function. The second derivatives of the

smoothed image can be computed using the Laplacian operator, 1.¢.

VA(G(x, ¥, 0) ® g(x, Y)) (4.10)

® stands for convolution. In the V?G image, points with value of zero correspond to
edges. As the image is smoothed using a Gaussian filter, the influence of all pixels
within the distance of 3¢ is suppressed (Sonka et al, 1993). Therefore, the Marr-Hildreth
operator yields smoother results. This is its advantage compared with other local edge
operators. Another advantage of the Marr-Hildreth operator is that it does not need to
define a threshold to detect edge points. However, the operator suffers from some

deficiencies (Lemmens, 1996):
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e Theoretically, edges defined by the zero-crossings should be continuous, but breaks

occur due to the effects of image noise, texture and quantisation.
¢ T junctions or trihedral vertices are incorrectly detected.

e Gaussian smoothing causes merging of closely spaced edges, yielding phantom

edges.
e A good method for combining the results at different scales is lacking.

e The operator is sensitive to image noise since it uses second derivatives for

detection.

Canny (1986) formulated edge detection as an optimization problem based on three

performance criteria:

e Good detection. True edge points should be detected and non-edge points should be

avoided.

e Good localization. The detected edge points should be located as closely as possible

to the centre of the true edge.

e Only one response to a single edge.

Using the above criteria, an optimal operator for a step edge in 1-D is derived, which
can be approximated by the first derivative of a Gaussian function. In two dimensions, a
2-D Gussian function G given in Equation 4.9 is used. Suppose the first derivative of

the Gaussian function in the direction normal to an edge is Gy, i.€.

oG
Go= > =neVG (4.11)

The normal direction of the edge can be estimated from the smoothed gradient

direction,
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V(G®I)
n=-——_———_
IV(G® )|

I stands for the image. An edge point is defined to be a local maximum of the smoothed

4.12)
image. It is determined by the following equation:

a —_—

a(GnQbI)—O 4.13)

By substitution of Equation 4.11 into the above equation, it can be rewritten as:

2

(G®DH=0 (4.14)

2

The magnitude of an edge point can be computed by:

Ga ®1)=|V(G ® )| (4.15)

Thus, edges are located by finding zeros of second derivative in their normal directions.
To avoid streaking, a scheme with two thresholds is used, in which a high threshold is
used to eliminate the edges caused by the image noise and texture while a low threshold
is utilized to detect weak edge points.

The Canny operator in one dimension is similar to the Marr-Hildreth operator. In two
dimensions, however, the directional properties of the Canny operator enhance its
detection and localisation performance. Another important characteristic of the Canny
operator is that it can provide a good estimate of the edge strength. The Canny operator
has been extended for different types of edges, e.g. extraction of ramp edges (Petrou and
Kittler, 1991). Some other optimal operators have been developed for extraction of
edges with different shapes (Shen, 1992; van der Heijden, 1995).

Forstner (1993, 1994) presented a scheme for feature extraction. In his method, an

image area is described by three types of features, ie. points, edges and regions which
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are assumed to be piecewise smooth. To distinguish these features, a homogeneity or
smoothness measure is generated based on the average squared gradients of the image,

ie.
Go(x, y) ® I'g(x, ) (4.16)

with

gz(X,Y) gx (Xﬁy).gy (X>Y) (4'17)

Tg(x,y)=V V(xy)' = i
g(x,y) = Vg(x, y) V(% y) g (xy)e g, (x,Y) g, (x,¥)

Regions are distinguished from points and edges using the trace of the average squared
gradients. If the trace is less than a predefined threshold Tw(c), the image area is a
region, otherwise it is an edge or point. Another quantity, the curvature, is used to

separate points and edges, which is:

1 A
K@= 22 (4.18)

0')\'1

M and A, are two eigenvalues of the homogeneity measure. If it is smaller than a given
threshold Ti(c), the detected feature is an edge, otherwise a point. Both Ty(c) and Ti(c)
can be estimated from the image noise, the width of the Gaussian kernel G; and a

predefined significance level.

Heitger (1995) developed a novel approach, the SE operator, for edge and line detection.
The operator is based on a complex combination of the first and second derivatives of
the response modulus and the even and odd filter responses in different orientations. It
detects edge and line features by suppressing filter responses which are unlikely to
characterize the type and position of an image feature and enhancing the responses that
correspond to well-defined image features. The SE operator has the following

advantages (Heitger, 1995):
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e Providing better continuity at locations of edge/line transitions,
e Dealing with periodic signal variations and feature interference, and

e Being not limited to a particular class of filter kernels (e.g. Gaussian derivatives)

The comparison study shows that the SE operator can produce better representation of
line features than the Canny (Heitger, 1995). But more computational time is needed by

the SE operator as it contains complex computations in different orientations.

4.1.1.3 Edge Operator in This Study

It can be seen that numerous operators and algorithms have been developed for edge
detection. Simple gradient operators can easily be implemented, but they are not suitable
to edge extraction of remotely sensed images because of their serious shortcoming - their
sensitivity to image noise and texture. Optimal operators developed by mathematical
operations are usually based on some assumptions about an edge. They may work very
well for images in which edges are similar to those defined by the operators, but
unsatisfactory results may be produced for other images. There are no optimal operators
which can work well in all situations. From this point of view, the selection of an
operator for edge detection is task dependent. The purpose of this study is not to design
an edge operator for automatic road extraction. Therefore, an existing operator will be
chosen according to their performances. As described in Chapter 2, automatic road
extraction has two tasks, i.e. automatic location and recognition of roads from images.
For the purpose of location, a high positioning accuracy of road boundaries is required
while all useful features in the image should be used for recognition. This means that
true image features should be extracted and non-feature information caused by the image
noise and object texture should be avoided. Thus, the criteria for selecting an edge

operator can be summarized as:

e Good localisation of road boundaries,

e Good detection of road boundaries.
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The above study has show that both the Canny and SE operator can provide accurate
localisation and good detection of road boundaries, and they are insensitive to image

noise. Therefore, they are used for Jow-level feature extraction in this study.

4,1.2 Line Detection

A line in an image corresponds to an abrupt change in intensity against its background.
Figure 4.8 shows some examples of line profiles that are commonly encountered in a

digital image.

A line in the image can be detected by computing the intensity gradients, usually by the
convolution of the image with designed masks (Rosenfeld and Kak, 1982; Fischler et al,
1981). One possibility is to use 14 different masks, each of which has a size of 5x5 and
corresponds to a defined line orientation (Sonka et al, 1993). Four of them are listed in
Figure 4.9 and the others can be obtained by rotation. The magnitude of the gradient is
determined by the convolution of the image with the masks and the direction is the
orientation of the mask giving the maximum gradient. One serious shortcoming of this
type of line operator is that it may detect other patterns which are not line-like, e.g. an
edge. To avoid this problem, some conditions should be used. For example, the

following conditions should be satisfied for a vertical dark line:
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Figure 4.8 Common Line Profiles in Image
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Figure 4.9 Masks for Line Detection
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As these types of operators work in small areas, they are sensitive to image noise. Also,

when the width of a line is different from that defined by the masks, the line will not be
detected.

Mathematical morphology provides a flexible mechanism for image processing. It uses
four basic operations, i.e. dilation, erosion, opening and closing, for computing intensity
gradients of an image. One typical edge operator, referred to as the morphological
gradient, uses the difference of the dilated image and eroded image for computation of

image gradients (Dougherty, 1992). It is defined as:

GRAD(g)=(g®s)-(g¢59) (4.19)
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@ and ¢ stand for dilation and erosion operations respectively, and s is a flat structuring

element which is constant on its domain.

A dark line in an image can be detected by the fop-hat transform which has the

following form:

HAT(g)=g-(go5) (4.20)

o stands for the opening operation, and s is a flat structuring element. As opening is an
antiextensive operation, the image after the opening operation lies below the original

image. So HAT(g) is always non-negative. This is illustrated in Figure 4.10.

A bright line in an image can be detected in a similar way. The corresponding operator is

defined by the operation (g e s) - g. ® means closing operation. It is equivalent to:
-g - [(-g) o s] = HAT(-g) (4.21)
It is also called a top-hat transform.

To detect both dark and bright lines, the above operators can be applied separately, or

both the opening and closing are performed simultaneously and then subtracted to obtain

(ges)-(gos)

10 10 10 5
8 8 8 |
6 6 6 1
4 4 4
2 2 2 4
0 . 0 0
0 2 4 6 0 2 4 6 0 2 4 6
(@ (b) ©

Figure 4.10 Top-hat Transform (a) Image section containing a line (b) Image section

after opening operation (c ) Image profile after top-hat transform
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A line profile in the direction perpendicular to the line direction can be approximated by
a second or third order Taylor polynomial. Line points are then detected by selecting
points with high directional second derivatives, i.e. high curvature. There are two ways
to determine the coefficients of the polynomial. One uses a least squares method to fit
the polynomial to the image data (Haralick et al, 1983; Busch, 1994). The advantage of
this approach is that lines can be detected with sub-pixel precision, but it usually leads to
multiple responses to a single line (Steger, 1996). The other method determines the
coefficients of the second order polynomial by convolving the first derivative of a
Gaussian kernel with the image (Steger, 1996). One obvious advantage of this approach
is that it can be scaled to lines with arbitrary width and detects lines with sub-pixel
precision. It can also avoid the problem of multiple responses. There are some other
techniques which can be used for detection of lines, e.g. wavelet transforms (Griin and

Li, 1994).

As has been shown, morphological operators can easily handle different widths of line
by changing their structural elements. This is very advantageous to road extraction as a
road in low-resolution images may change. At the same time, morphological operators

can easily be implemented. Thus, a morphological operator will be used in this study,.
4.1.3 Point Detection

A point feature in an image has a distinct difference in intensity against its background.
It can be an isolated image point, corner point, or intersection of two edges/lines. Like
detection of edges and lines, a point feature in the image can be located using a local
image gradient. The simplest corner detector is the Moravec operator (Moravec, 1977)
which is based on the image gradients in a local area. The Moravec operator computes

the interest value (IV) for every pixel in the image by:

IV = min{vy, vo, v3, v4}

vi=2 (g(, j) - gi+1.))
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v2 =Y (g j) - gty (4.22)
vi =3 (g, j) - g(+1,j+1D))°
va= Y (g, j) - g(i+1,j-1))°

withi=m-k,...,m+k-1,j=n-k, ...,n+k-1L,k=w2-1.

vi, V2 are gradients in vertical and horizontal directions, and v; and v4 are gradients in
two diagonal directions. w is the width of the window. When a point has an IV larger
than the given threshold and IVs of its neighbours in the window, it is selected as the
corner point. By definition, it can be found that the IV value of an intersection would be
zero if one of two intersecting edges or lines lies on one of the four directions.
Therefore, intersections of edges or lines cannot be detected properly by the Moravec

operator.

The Forstner operator (Forstner and Giilch, 1987) is a well-known operator for point
detection in the photogrammetric community. The operator was developed based on five
criteria: distinctness, invariance, stability, seldomness and interpretability. It detects
interest points in a two-step procedure: selection of the optimal windows in which point
features are likely to appear and location of the point in the selected window. Optimal

windows are chosen using two parameters w and q:

trN
= 4.2
Y GetN (4.23)
2
_ (trN) (4.24)
4detN
2
3z b
N=| “8 gufv (4.25)

tgg, Zg,
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where g, and g, are the intensity gradients of points in two diagonal directions, and N is
the covariance matrix of gradients in a window with certain size such as 5x5, which is
similar to Equation 4.17. trN and detN are the trace and determinant of the matrix N
respectively. q is the roundness of the error ellipse of the estimated point and w is its

weight.

The optimal windows are determined using the following conditions:

q>Tq=0.5-0.75 and
w > Ty = fWimean, f=0.5 - 1.5.

Wmean is the average weight of all selected windows. When an optimal window is
selected, the position of the point feature is determined based on all edge points in the
window by a least squares method. One advantage of the Forstner operator is that it can
detect points where more than two edges intersect. However, the computation cost of the

Forstner operator is very high as it needs to compute weight matrix for every pixel.

Based on an investigation of the Moravec and Forstner operators, Lii (1988) presented a
new algorithm for point detection which introduces a two-step procedure. It first
computes the gradients of pixels in both the horizontal and vertical directions. Points
with gradient magnitude above the given threshold are selected as point candidates. As
the gradient is computed in only two directions, the computation time will be greatly
reduced compared with the Moravec and Forstner operators, but edge points may also be
detected in this step. To determine the interest points, the interest values, which can be
the summation of the absolute gradient magnitudes in their 8-neighbours or q and w in
Equations 4.23 and 4.24, are computed. Finally, points with interest values within the

defined ranges are selected.

Heitger et al (1992) presented a scheme for point detection based on the first and second
derivatives of the oriented energy filters. The first derivatives in the direction of the

modulus reflect the oriented structures such as corners and junctions, while the second
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derivatives correspond to blobs and large curvature. The operator generates a scalar
feature called a “key-point map” in which points with significant variations in intensity
in two directions are represented. In this study, this operator is used to detect
intersections of roads in low-resolution images. As road intersections are distinct points
in low-resolution images, a high threshold is employed for point selection. Henricsson
(1996) compared the results of point extraction by using the SE operator and Forstner
operator and found that they are quite similar. In this study, the SE operator will be used

for point extraction from low-resolution images.

4.2 Noise Estimation for Feature Extraction

After a feature extraction operator is applied to an image, an image comprising the
intensity gradients is generated, which is called a feature image or feature map. Due to
the effects of image noise and texture of object surfaces, the generated feature maps
include two components: true image features and non-feature points, i.e. noise. To
facilitate subsequent processing, noise must be removed from the generated feature
image. This is usually done by a thresholding operation in which a threshold is used to
separate the image noise from the true image features. The threshold may be determined
manually through the visual check of the feature maps. However, this method suffers
from serious problems. Firstly, the selection of the threshold is subjective. Secondly, it is
inefficient as the selection of an “optimal” threshold needs a large amount of testing and
comparison. Voorhees and Poggio (1987) and Busch (1996) have shown that the
threshold can automatically be derived by the analysis of the distribution of gradient
magnitudes of the image. In Voorhees and Poggio, the threshold for edge detection is
automatically determined based on the estimation of image noise. They assume that the
image contains white Gaussian noise, and the gradient magnitudes of noise are Rayleigh
distributed. Noise contributes to the low gradient magnitudes while the true edge points
only affect the tail of the distribution as their gradient magnitudes are usually much

larger than those of the noise. The threshold T is determined by:
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T V" 2ns (4.26)

where & is the peak value of Rayleigh distribution and s is the risk probability.

Busch (1996) developed an approach for automatic determination of the threshold for
edge and line detection. It is assumed that true features have a certain length and isolated
feature points correspond to image noise. Therefore, the method starts with the selection
of isolated points in the edge or line maps and generation of the distribution of their
gradient magnitudes. Given a significance level 7, the corresponding threshold T can be

calculated as:

T
T: [p(c)de, =7 (4.27)

=0

where p(cs) is the probability function of the distribution.

It should be pointed out that not only noisy edge information is removed in the
thresholding operation, but also weak edge elements will be deleted in this process.
Therefore, one should be very careful in selecting a threshold. For images with simple
object structures and high contrast, a high threshold may yield good results. For

remotely sensed imagery, information of objects derived is usually incomplete due to

occlusions,
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Figure 4.11 Noise Estimation in Edge Extraction (a) Original image (b) Derived

distribution of gradient magnitude (c) Edge image after noise removal
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complex structures, etc. If a high threshold is chosen, edges with poor contrast will be
lost. This will make the subsequent processing very difficult, sometimes producing
unreliable results. Therefore, for object recognition from remotely sensed images a
conservative threshold is usually selected. In this study, a method similar to Voorhees
and Poggio’s is used to determine the threshold for edge detection, and in order to
preserve weak parts of road boundaries, a risk probability of 1% is chosen, which yields
the threshold equal to 3.0-E.

Figure 4.11 shows an example of the thresholding operation in which Figure 4.11(a) is
an aerial image with 500x500 pixels. The edges are detected by the Canny operator and
the distribution of their gradient magnitudes is shown in Figure 4.11(b). The peak value
of gradient magnitude corresponding to the of edge points is 6.9 in this example, and the
corresponding threshold is 20.7. The result after thresholding is given in Figure 4.11(c).

It can be seen that most noise components are removed from the edge image.

It has been found that the threshold determined by Voorhees and Poggio’s method is too
low when a morphological operator is used to extract line features from aerial images.
To determine the threshold for line detection, the method described in Busch (1996) is
used. Figure 4.12 gives an example of noise removal for line detection. The threshold
with the significance level of 75 percent is 17 in this example. The result after noise

removal is shown in Figure 4.12(c).
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Figure 4.12 Noise Estimation for Line Extraction (a) Original image (b) Derived
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4.3 Edge/Line Tracking and Linking

4.3.1 Edge/Line Tracking

In a thresholded feature image, most noise components are removed, and hence most of
the remaining edge elements correspond to true edges. Edge elements are called edgels
in computer vision. The unstructured edgels have no meaning until they are aggregated
into edges which are often called confours in the computer vision community. There are
a number of methods for edge tracking which can be classified into two categories -
global and local. The global approaches include those formulating edge tracking as a
graph search and dynamic programming. In a graph search, the directions of image
gradients are taken as nodes and their magnitudes are treated as weights of the nodes.
Arcs between nodes are generated based on the connectivity and requirements of both
magnitudes and directions of the gradients of nodes to be connected. To find an optimal
path between two nodes in the graph, the technique of heuristic search can be used
(Nilsson, 1980). In heuristic search, a cost function describing the cost from the start
node to the goal node is expressed as the sum of the costs from the start node to the
current node and from the current node to the goal node. The optimal path is then traced
by finding nodes which can make these two costs a minimum. The cost can be the

function of the gradient magnitudes of edge points, curvature, etc.

Dynamic programming is a technique for finding an optimal solution to a problem which
consists of a number of interrelated stages. Instead of testing all possible solutions at the
same time, dynamic programming only considers the possible situations related to the
current stage and tries to find the optimal solutions of the current stage, based on an
evaluation function. The optimal solutions are found by minimising this evaluation
function. In edge tracking, it can be defined as a function of magnitude and direction of
gradients of edgels. Edgels which can optimize the evaluation function are taken as the

optimal successors.
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Edges in an edge image can also be tracked by using the Hough transform technique.
The original Hough transform was devised to detect straight lines and curves which can
be represented by an equation with a number of parameters, e.g. two parameters for a
straight line. In parameter space, a straight line or curve corresponds to a point with
certain coordinates. Therefore, edge tracking in the image becomes the task of detection
of points with corresponding parameters in parameter space. To detect curves with
arbitrary shapes, a generalized Hough transform (Ballard, 1981) and fuzzy Hough
transform (Philip, 1991) were developed. However, they still need some prior

information about shapes of regions or objects to be tracked.

Local approaches only consider the surrounding pixels of an edgel, usually its 8-
neighbours. The algorithm presented in Nevatia and Babu (1980) falls into this category.
They examined the 8-neighbours of each edgel to determine its predecessors and
successors. Two conditions are used in their algorithm. The first is that the change of
spatial direction of an edge should be less than 90°. This limits the search to three pixels
in front of the edgel. The second condition is that the difference of gradient direction
between the edgel and pixel to be tracked should be less than 30°. The problem with their

algorithm is that it cannot track edges correctly when an intersection occurs.

A simple tracking algorithm based on gradient magnitude is described in Rosenfeld and
Kak (1982). The algorithm uses two thresholds - a high threshold and a low threshold.
Edgels with gradient magnitudes above the high threshold are selected as the starting
points. The algorithm then checks the neighbouring edgels of these points at their next
rows. If the gradient magnitudes of the neighbouring edgels are above the low threshold,
they are labeled as successors. This process continues until no new points are found.
Obviously this algorithm only uses connectivity of edgels without considering the
gradient orientation information. The method presented in Nalwa and Pauchon (1987) is
based on connectivity information of edgels. To derive the connectivity information
among edgels, a finer grid and masks with different orientations are used. Edges are
thinned before the connectivity relationship is generated in order to limit the search to 8-
neighbours. In the thinned image, an edgel normally has two connected neighbours.
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Therefore, an edge can be tracked by extending an edgel in both directions. Orientation

information is only considered at junctions.

In contrast to using gradient magnitude, Burns et al (1986) utilises the gradient
orientation as the criterion for extracting straight lines. Their algorithm first groups
edgels with similar gradient orientations to form “line-support regions”. A planar surface
is then fitted to each line-support region and straight lines are extracted by intersecting
the fitted plane with a horizontal plane representing the average intensity of the region

weighted by local gradient magnitudes.

Most existing local approaches use information on magnitude and orientation of edgels
to track edges. Good connectivity between edgels is usually required by these methods.
One problem with local approaches is that they cannot track edges correctly when they
pass through a corner or an intersection. To solve this problem, Henricsson (1996)
presented a novel approach for generation of a contour graph. The method first selects
the starting points for tracking, based on the homogeneity of gradient magnitude,
orientation and types of points in a given neighbourhood. The tracking proceeds from
the selected starting points in both directions. To determine the successor of a tracked
point, 8 points in front of the tracked point in a 5x5 window are examined and a point
with highest priority is selected. The reason for using a 5x5 window instead of 3x3 is
that the tracked points will be more consistent and small gaps can be bridged. The
tracking will stop when an end point or a key-point is found, or it meets a tracked edge
or line.

A tracking algorithm based on the connectivity between points, gradient magnitude and
orientation, and spatial direction of edges is proposed in this study. The proposed
algorithm is a local operator which is similar to the algorithm presented in Nevatia and
Babu (1980). Corners and junctions are not considered in this operator as road
boundaries are smooth edges, and all edgels in the thresholded image are treated equally
in order to avoid missing weak edges. Therefore, any edgel in the image can be the

starting point for edge tracking. To find the successor of the starting point, its 8
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neighbours are examined and points with similar gradient orientation and magnitude are
selected. Tracking is then performed in two opposite directions (Figure 4.13 (a)). To
determine the successor of a tracked point, two conditions are used. They are that the
change of spatial direction of an edge should not be larger than 90’, and points belonging
to the same edge should have similar gradient orientations and magnitudes. The first
condition limits the search area within five points of which three are in front of the
tracked point and two are in the normal directions of the edge. The reason that the search
area is expanded to five points instead of three points used in Nevatia and Babu (1980) is
that in real situations an edge may have an abrupt change in its direction because of the
effects of image noise and disturbances from surrounding objects. Tracking may be lost
in this case if only three points are considered. However, higher priority will be given to
the three points in front of the tracked point during tracking to ensure that the tracked
edges are smooth. Two points in the normal directions of the edge are only considered if
no points are found in front. In the search area, the point with maximum gradient
magnitude and similar orientation to the tracked point is chosen. When a point is
tracked, it is flagged in order to avoid re-tracking of the point. When there is no point

found in the search area or it reaches a tracked edge, tracking stops.
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Figure 4.13 Edge Tracking

A tracked edge is represented by the image coordinates of its starting point, end point
and two point chains. Each point has two pointers, one pointing to its successor and the
other pointing to its predecessor. In this way, points on the edge are arranged
sequentially in forward and backward directions. The advantage of using two point

chains is that knowing any point on an edge, the positions of other points on the edge
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can be tracked from them. This is very useful in determining generalized antiparallel

pairs from the tracked edges (see Section 5.2).
4.3.2 Edge/Line Linking

Due to the effects of image noise, poor contrast, occlusions, limitation of operators, etc.,
extracted edges/lines are usually highly fragmented. The fragmented edge/line segments
need to be linked to form elongated segments before they are used to generate structures
of objects. It is generally assumed that two edge/line segments belong to the same edge/

line if they are close to each other and have similar spatial orientations. These two
criteria: proximity and collinearity, are used in most existing linking algorithms (Broder
and Rosenfeld, 1981; Zhu and Yeh, 1986; Vasudevan et al, 1988;). In most cases,
edges/lines can be linked correctly using these two criteria. However, in areas with rich
features, an edge/line segment may have more than one possible connection. In this case,
use of these criteria alone may lead to wrong connection. To connect edges correctly,
more information about edge segments to be linked should be used. In this study, an
algorithm has been developed based on the gradient magnitude, orientation of edge
segments together with the spatial constraints, i.e. proximity and collinearity. As the
disturbance of image effects is usually limited to a few pixels, only small gaps will be
considered. For example, only gaps less than two pixels are bridged in the Henricsson’s
linking algorithm. In this study, gaps less than four pixels will be bridged in order to
generate smooth edge/line segments. It is known that the change in spatial direction
within a distance of a few pixels along a smooth edge/line is usually small. Thus, it is
mainly determined by the accuracy of calculation of spatial orientation and is set as 30°
in this study, as the accuracy of spatial orientation is about 15". Therefore, two edges

will be linked if they meet the following conditions:

-- Distance between two edges is less than four pixels.

-- Difference between the spatial orientations of two edges and their connection is less

than 30°
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-- Two edges have similar gradient orientations and magnitudes.
The algorithm works as follows:

1. Select an edge as the first segment.

2. Determine a search area. For the first segment, a search area will be established
around its starting or end points to find other starting or end points. To determine the
search area a 5x5 window in the direction of the first segment at its starting or end
point is selected. Using the criterion of collinearity, the search area will be limited to
a small area of the window, e.g. 12 points for a 5x5 window (shaded area in Figure

4.14(b)).

3. Find candidates for connection. Edges with their starting or end points falling within
the search area are selected. If their gradient orientations and magnitudes meet the

requirements for connection, they are chosen as candidates for connection.

4. Determine connection for first segment. If there is only one candidate and the
difference between its spatial direction and its connection to the first segment is not
larger than 30, it is connected with the first segment. If there is more than one
candidate, the one with the smallest difference between its spatial direction and its

connection to the first segment, provided it is not larger than 30°, is connected.

5. Go to step 1. Choose another edge and repeat steps 2 to 4.

Lines are connected in the same way as that used in edge connection.

€1

@ ®)
Figure 4.14 Edge/Line Linking
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4.4 Edge/Line Splitting and Merging

After edge/line tracking and linking, numerous edge/line segments are generated. They
can be classified into two groups: one is the collection of boundaries of objects to be
recognised and related objects and the other correspond to boundaries of objects which
are not related to the objects to be recognised, e.g. leaves of trees. Obviously, the former
is the necessary information for the recognition process and should be kept while the
latter will increase the complexity of subsequent processing, sometimes even make the
results of recognition unreliable and therefore, should be removed as much as possible.
It is well known that roads generally have continuous and smooth boundaries and natural
objects usually have irregular shapes. Thus, a split-and-merge process can be designed to
split extracted edge/line segments into short segments and to merge split segments if
they have a smooth change in spatial direction. Most edge/line segments of natural
objects can be removed by a thresholding operation as they are split into short segments

after the split-and-merge operation.

There are various algorithms for operation of edge/line splitting (Ramer, 1972; Grimson,
1990; Medioni and Yasumoto, 1987) using different criteria. A simple algorithm for
splitting of edge/line segments is the one described in Grimson (1990) which is very
similar to the algorithm presented in Ramer (1972). It splits an edge/line into straight

segments in four steps:

1. Given a contour, build the connection between its two endpoints and measure the

maximum deviation of the contour from the connection.

2. If the deviation exceeds a given threshold, the curve is split into two segments at the
point with maximum deviation and the original connection line is replaced by two

straight lines which connect the endpoints and the new splitting point.
3. Repeat the above steps until the deviation is below a threshold.

4. Finally, check consecutive segments to see if they can be merged into a single

straight segment without exceeding the threshold.
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A modified version of the above algorithm is used in this study in order to generate
smooth segments instead of straight segments. The modified algorithm works in the
same way as the above method in the splitting stage, but the merging process includes
approximation of split segments and merging of consecutive segments into smooth
segments. The threshold used in this study is set as three pixels as a road is usually very
smooth. The reason that a constant is chosen instead of a function of the length of the
connection between two endpoints is that the point with the maximum deviation does
not always appear around the middle of the endpoints. This can ensure that the split

segments are smooth.

In the splitting process, not only are those segments with high curvatures separated, but
also smooth edge/line segments are divided into several smaller segments, as only
deviation of an edge/line from the connection of its two endpoints is used. Segments
belonging to smooth segments should be merged together to form longer segments.
Therefore, two consecutive segments will be merged if they have the same spatial

direction at their connection.

After the split-and-merge operation, short segments (<five pixels) are treated as noise
and removed. The purpose of noise removal is to remove most irrelevant information.
As not only road boundaries are extracted, but also the edges of other objects, such as
trees, tracks, etc., are detected. The existence of non-road edges will greatly increase the
computation time of the subsequent processing and even make the recognition process
very difficult if they are brought into the intermediate-level processing. However, some
true edge segments may be deleted in this process. This will be compensated in the
grouping process which will be discussed in the next chapter.

Figure 4.15 shows an example of the split-and-merge operation. Figure 4.15(a) is a
portion of an aerial image in rural area, which contains a curved road segment. The
Canny and SE operators are used to extract edge and point features which are shown as
red lines and blue dots respectively in Figure 4.15(b). As can be seen, most of the

splitting points lie on non-road object boundaries, such as trees, various tracks, etc., as
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they usually have irregular shapes. After merging, most split road boundaries are merged
together as shown in Figure 4.15(c) while most splitting points on edges of non-road
objects (green dots) still exist. Finally, edge segments with a length less than ten pixels
are removed in order to delete edges of non-road objects further and the results are

shown in Figure 4.15(d). Obviously, most irrelevant information has been removed

while road boundaries are well retained.

- T - ) - s 3

Figure 4.15 Split-and-Merge Operation (a) Portion of aerial image (b) Extracted edges

with splitting points (c) Edge image with splitting points after merging (d) Final results
after elimination of short edge segments
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4.5 Summary of Chapter

This chapter has discussed some commonly used methods and algorithms for feature
extraction in image understanding and some preprocessing techniques involved in low-
level processing. The various methods or algorithms for feature extraction have different
characteristics depending on the assumptions on which they are based. Previous study
has shown that no single method or algorithm can work well in all situations. Therefore,
the selection of a feature extraction operator is task-dependent. Preprocessing, such as
edge tracking and linking, edge splitting and merging, etc., is also important in low-level
processing. The results of low-level processing affect the result of image understanding
directly. An edge/line tracking and linking algorithm has been developed based on the
connectivity of edge points and their gradient magnitudes and orientations. To generate
smooth edge/line segments, a split-and-merge procedure based on the deviation of

edge/line points and their spatial orientations has also been proposed in this study.



Chapter Five

Generation of Structures of Road Segments

One important process in image understanding is the generation of object structures
from image features. In bottom-up systems, objects are recognized by applying
knowledge or models of objects to the generated object structures from the image data.
The use of object structures can reduce the complexity of processing as knowledge of
the objects can be introduced during the generation of object structures. One popular
technique for formation of object structures in computer vision is aggregating subsets of
features together which are likely to come from the same object. The process of

organising coherent features into object structures is called grouping in computer vision.

There are two practical reasons for aggregating coherent features into object structures.
Firstly, the number of features derived from the image is usually large, especially when
the image has a complex structure. This will cause the search space to be extremely
large when individual features are directly used in recognition. In grouping, image
features which are likely to belong to the same object are aggregated to form structures
which are used to generate hypotheses of objects, or to verify the generated object
hypotheses. At the same time, spurious and irrelevant features are rejected in this
process by introducing knowledge of objects. This will reduce the search space
dramatically in the recognition phase (Lowe, 1985; Grimson, 1990). Secondly, when
objects are recognized through establishing correspondence between image features and
model features of objects, unreliable results are unavoidable because of the limited
information delivered by individual features. In addition, due to the effects of image
noise, occlusions, etc., some parts of objects cannot be recognized correctly. In
grouping, not only are the properties of features but also their relations used (Lowe,
1985; Mohan and Nevatia, 1992; Fuchs and Forstner, 1995; Henricsson, 1996).
Therefore, missing features may be recovered in this process. This will lead to more

reliable object recognition.
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This chapter will propose a generalised antiparallel pair to describe road structures in
images and introduce the method for determining road structure in both 2-D and 3-D
space. A method for grouping generalised antiparallel pairs into road-like features will
then be described. Finally, road-like features will be represented in terms of a number of

attributes which serve as facts in the recognition of roads in high-level processing.

5.1 Definition of Road Structure

A road is a man-made object. One important characteristic of man-made objects is that
they usually have regular shapes and distinct contrast against their background. A road
has a homogeneous surface which is bounded by two parallel boundaries and has
distinct contrast against its background. Its appearance in the image depends on the
image scale. In high-resolution images, a road is an elongated areal object bounded by
two parallel boundaries while it appears as a line in low-resolution images. As the
properties of road surfaces are not measurable in low-resolution images, the structure of
a road segment will only be defined in high-resolution images. In Nevatia and Babu
(1980), a road is described as an elongated area bounded by two parallel straight lines
which have opposite gradient orientations (Figure 5.1(a)). This is only true when a road
is straight. Such a definition is insufficient as the boundaries of a road are usually
smooth curves rather than straight lines, which causes two problems. Firstly, only
straight lines will be considered in generating road structures, causing some road parts
with curved boundaries to be missed. Secondly, it cannot define the positions of curved
road boundaries accurately. Therefore, to precisely describe road structure, a
generalised antiparallel pair, briefly called antipair, is introduced instead of antiparallel

lines. A generalised antiparallel pair is defined as (Figure 5.1(b)):

Two smooth curves which are pointwise parallel to each other and have

opposite gradient orientations.
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Figure 5.1 Structure of Road Segment (a). Straight road segment (b). Curved road

segment

This definition reflects the situation in the real world and can give accurate location of

road boundaries.

5.2 Generation of Generalised Antiparallel Pairs

5.2.1 Generation of Generalised Antiparallel Pairs in 2-D image

From the definition of generalised antiparallel pairs, their generation is straightforward.

Two conditions embedded in the definition can be expressed as:

oa, O and g1, o2 are the spatial directions and gradient orientations of two edges a and
b respectively. T, defines the tolerance for difference between spatial directions of two
edges, which is determined by the accuracy of computing spatial directions of edges.
The first condition alone cannot guarantee the parallelism of edges due to errors in
determination of spatial directions. To ensure the parallelism of edges, the condition that
distance between two edges is a constant should be used. This condition can be
represented by the standard deviation of the distance between two edges which can be
described as:

ca<T4
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Ea Ep

The spatial direction of an edge at point i can be determined by the positions of its
neighbouring edge points. To reduce the effects of position «i-ors of edge points, the
edge points which are two pixels away from the point i in forward and backward

directions are used. The spatial direction is defined by:

o = tan” ((¥is2 - Yi2)/(Xis2 - Xi2)) (5.1

where Xi., yi2, Xi+2 and yi are the image coordinates of point i-2 and i+2.

The gradient orientation of an edge in this case is not the absolute direction of the
gradient, but the sign of the change in grey values across the edge relative to another
edge. It is determined by the intensity values on both sides of the edge and its relative
position to another edge. The grey values on both sides of an edge are computed by
taking the average of grey values within a region defined by two parameters - offset and
width (Henricsson, 1996). The offset defines how far away the region is from the edge
and is used to reduce the blurring effects of the edge. The width determines the range of
the region (Figure 5.2(a)). It should be chosen such that there are enough sample points
and no other edges in the region. Suppose the grey values on both sides of an edge E,
are gin and gex and there is a neighbouring edge E, as shown in Figure 5.2(a), then the

gradient orientation of edge E, is defined as:

1 (g = 8ext) > 0
go = (5.2)

1 if(gy ~ 8ox) < O

The RMS of the computed distance between two edges is determined by

Ga= {Z(d,~dy /n (5:3)
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Figure 5.2 Definition of Region for Computing Attributes of Edge and Width of Road
(a) Offset and width defining the region for computation of attributes of an edge
(b) Distance between two edges

with dy = ¥ di/n, n is the number of edge points being used in the computation. d; is the
distance between two edges at the point i (Figure 5.2(b)).

Based on the conditions defined above, the generation of generalised antiparallel pairs
starts with the search for edges with the same gradient orientation. For a given edge,
edges with the same gradient orientations on both its sides are selected. For each
selected edge, its spatial directions are checked against the given edge point by point.
Starting with the selected point of the given edge, the difference of spatial directions at
the corresponding points on two edges and their distance are computed (Figure 5.2(b)).
When the difference is within the defined threshold T,, the point is marked, and the
checking proceeds along the given edge. This process stops when the difference is
larger than T, for three consecutive points. Finally, the standard deviation of the
distance between the given edge and the selected edge is calculated. When their
standard deviation of distance is less than the given threshold Tg, they are taken as a
generalised antiparallel pair. To reduce computation time, the search is limited to a
range which is determined from the knowledge of road width in object space and the
scale of the image. The threshold T, is determined by the accuracy of determining

spatial direction which is about 150, and therefore it is set as 30  in this study. Tq is
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determined by the accuracy of computation of distance which is about 1 pixel in image

space. Therefore, it is set as one pixel in this study.

I & g

Figure 5.3 Generation of Generalised Antiparallel Pairs (a) Test image (b) Extracted

edges (c) Generated antipairs

Figure 5.3 shows one example of generation of antipairs in the image. The image in this
example is a portion of an aerial image with 500x500 pixels as shown in Figure 5.3(a).
The result of edge extraction after edge tracking, linking and noise removal are shown
in Figure 5.3(b). By applying the above method to the edge image, five antipairs are

generated, four of which correspond to the motorway (Figure 5.3(c)).

5.2.2 Generation of Generalised Antiparallel Pairs in Object Space

The generation of generalised antiparallel pairs in object space is based on active
contour models. In active contour models, a linear feature in an image is expressed by
the sum of photometric and geometric energy, and external energy (Kass et al, 1988;

Trinder and Li, 1995):
E = Egeo + Ephoto + Ec (5.4)

The geometric energy Eg, is determined by the geometric properties of the feature to be

extracted, usually the smoothness of the feature. The photometric energy Epnoto can be
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provided by an operator. In Trinder and Li (1995), a linear feature in 3-D space is
approximated by a cubic spline, and the geometric energy is defined by the first and
second derivatives of the spline function in object space. The photometric energy is
computed from the gradients of intensities along the feature on both left and right
images while the external energy E. is determined in the optimisation process using

boundaries conditions. The total energy has the following form:

E = aX' NS N, X + BX Ni' Ny X
+ @Y NN, Y + BY Ny Ny ¥
+ @Z' NS N, Z + BZ'Nys' Ny Z
+ (ftx, ) (%, ) +Eo

(5.5)

where X, Y and Z are coordinate vectors of the feature, N; and Ny, are the vectors of the
first and second derivatives of the spline function. o and B are constants which control
the influence of geometric energy against photometric energy. f{x, y) are the gradients of

the feature.

For a generalised antiparallel pair, its total energy should be the sum of the energies of

both its sides (Trinder and Wang, 1998a), i.e.
Ew = E; + E,; (5.6)
E; and E; are the energy of the left and right sides of a generalised antiparallel pair.

The two boundaries of a generalised antiparallel pair are parallel pointwise. This

condition can be expressed as:

A () _0X,(9) o ON) 0L o DL (Y

2) = mi 5.7
bs Bs os Bs Bs o )/ =min G

z((
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0X,(s) oY(s) 0Z)(s) daXr(S) 0Y.(s) OZ.(s)
6s’6s’6san os ' Os = Os

the corresponding points on the left and right side of the antiparallel pair with respect to

where are the directional derivatives of

the length s. It can be expressed in matrix form:
X'p'pXx+ Y'P'PY+ Z'P/P,Z =min (5.8)

where P; = (N; - My. N; and M, are the matrix of the first directional derivatives of
points on the left and right side of the generalised antiparallel pair. This should be
treated as an additional geometric energy of the generalised antiparallel pair. Therefore,

the total energy of a generalised antiparallel pair is (Trinder and Wang 1998a):

Eo = E + E, +X'P/PX+YP'PY+ Z'P'PZ (5.9)
Substituting equations (5.5) into the above equations, they become:

Eo = aXi NN, X; + BX" Ny Ny X,
+a¥/ NN Yy + BY N’ N 1)
+aZf N'N;Z) + BZ] Ny' N 2
+ (fix, )G (x. »)
+a X" M My X, + BX" Mys” Mis X, (5.10)
+a¥ M MY, + BY M M Y,
+aZ MM Z, +BZ" M, M Z,

+(fr e ) (fi(x.3) +E
+x'p’px + Y'PIPY + Z'PP.Z

where 1 and r stand for the left and right side of the antiparallel pair respectively. X, ¥,
Zyand X,, Y,, Z, are the coordinates of the left and right side of the antiparallel pair. N,
and M, are the matrix of the second directional derivatives of points on the left and

right side of the antiparallel pair.

Suppose
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() v- (e )o- (5 ol )
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oss=( M],andG = (@) G,

0

The Equations (5.10) can be rewritten in a simplified form:

EtOt = aXTOST OSX +ﬂXTOssT0_gSX +XTPSTPSX
+a¥ ol 0Y +pY O, O,V + V' PPY

(5.11)
+aZ'00,Z + pZ" O O Z +Z'P'PZ
+G'G + E,
To minimise the total energy, the following conditions should be satisfied:
aEtot - OL _ aEtot -0 (5.12)

1), ¢ oY oz

A further development of the above equations will lead to the equations for estimating

the coordinates X, Y and Z, which have the following forms:

(B+O"FYFyO+M)AX+O'FIF =0 (5.13)
B+O"F F,O+\)AY +O"FfF =0 (5.14)
(B+O"F]F,0+ ADAZ+O0"FJF =0 (5.15)

where Fy, Fy and F; are the summation of the first derivatives of all images to space

coordinates X, Y and Z respectively and B = a0 O, + fOLO,,. AX, AY and AZ are the

§8788 ¢

corrections to approximations Xj, Yy and Z.
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With the generated generalised antiparallel pairs on the left or right images as
approximations and an underlying DTM, their positions in 3-D space can be

determined. The generated antipairs in object space are called 3-D antipairs.

5.2.3 Merging of Generalised Antiparallel Pairs in Object Space

As described in the last section, 3-D antipairs can be determined based on the generated
antipairs on the left or right images and an underlying DTM of the region. Due to the
effects of image noise, occlusions, such as trees, shadows, vehicles on the road surface,
etc., the generated antipairs on the left and right images corresponding to a road may not
be same. Thus, 3-D antipairs generated from them may not coincide. Sometimes, they

overlap each other. In this case, they should be merged to form a complete 3-D antipair.

¢ On

Right image

Left

Sz ““ ,.‘ S 1

B F
Figure 5.4 Merging of 3-D Antipairs
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Figure 5.4 shows two overlapping 3-D antipairs generated from the left and right
images. Suppose the antipairs on the left and right images are s; with end points a, b, c,
d and s, with end points e, f, g, h. Based on s; and s;, 3-D antipairs S; with endpoints A,
B, C, D and S, with endpoints E, F, G, H are generated. They overlap in the section
ABEF. They are merged and replaced by a new 3-D antipair with end points C, D, H
and G. The process of merging 3-D antipairs can partially overcome the problem caused
by image noise and occlusions by bridging gaps between the antipairs on a single

image.

5.2.4 Attributes of 3-D Antipairs

After 3-D antipairs are generated, their attributes are determined in order to generate
their symbolic representations for the subsequent processes of grouping of antipairs,
recognition of road segments, etc. The attributes of a 3-D antipair include the properties
of its two edges and the area bounded by the edges. To describe the homogeneity of a
road surface, the average intensity value and standard deviation of intensity values
within the area between two edges are computed. As road surfaces are usually made of
concrete and asphalt, only monochrome values are computed rather than chromatic

values.

In addition to the properties of the region bounded by the edges of a 3-D antipair,
attributes of the two edges are also computed. These include the gradient orientation and
positions of the edges, width of the antipair and spatial directions of the antipair at both
ends. The gradient orientation has a value of —1 when the change in intensity across the
edge has an inward direction and 1 for outward direction. The positions of two
boundaries are given by two point chains which contain the positions of all points. The
end directions are taken as the normal to the connection of two end points at the same
end. With these computed attributes, a generalised antiparalle]l pair can be expressed by
a structure in Prolog which will be introduced in the next chapter. It has the following

form:
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antipair(antipair_no,
left_side(L1), right _side(L2),
attribute(end_directions, length, width,

gradient, average intensity)).

5.3 Grouping of 3-D Antipairs

Due to the effects of image noise, occlusions, such as trees and shadows, poor contrast
between road surface and its background, etc., the generated 3-D antipairs are often
separated. To derive road structures for high-level processing, they need to be grouped
to form road-like features. This section will introduce some approaches for grouping of

object features into structures and describe the method for grouping of 3-D antipairs.

5.3.1 Perceptual Organisation in Computer Vision

Perceptual organisation is defined as “a basic capability of the human visual system
to derive relevant groupings and structures from an image without prior knowledge of
its contents.” (Lowe, 1985). The study of perceptual organisation reached its heyday
during the 1920s and 30s with the foundation of the Gestalt School of Psychology. The
major contribution of the Gestalt psychology to computer vision was the demonstration
of the role of grouping phenomena in perception of object structure. These phenomena,
found by the Gestalt psychologists, are called the Gestalt laws and can be categorized
roughly into six groups (Lowe, 1985):

(1) Proximity — elements that are closer together tend to be grouped together,

(2) Similarity — elements that are similar in physical attributes, such as colours, size or

orientation, are grouped together,

(3) Continuation — elements that lie along a common line or smooth curve are grouped

together,

(4) Closure — there is a tendency for curves to be completed so that they form closed

regions,
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(5) Symmetry — any elements that are bilaterally symmetric about some axis are
grouped together, and

(6) Familiarity — elements that are usually seen together are grouped together.

Unfortunately, the Gestalt psychologists did not explain why and how perceptual
organizsation is computed. To answer the question why, several theories were
developed, one of which is the principle of non-accidentalness proposed by Witkin and
Tenenbaum (1983) and Lowe (1985). The non-accidentalness implies that perceived
structures are unlikely to have arisen by accident, instead they are formed by image

features related by causal relationships.

The use of perceptual organisation in computer vision was initially proposed by Marr
(1976) in his initial work on the primal sketch. Marr developed the idea that the primal
sketch should include not only edge information, but also groupings of edges into larger
structures. He suggested groupings on the basis of curvilinearity, and lines should be
grouped based on parallelism and collinearity. Unfortunately, this was never developed
in detail in his later work. Witkin and Tenenbaum (1983) analysed the role of structure
in vision and found that humans perform organisation in perception processes without
knowing what the structures to be organised are. They pointed out “ the naive observer
often sees essentially the same things an expert does, the difference between naive and
informed perception amounting to little more than labelling the perceptual primitives. It
is as if the visual system has same basis for grouping whar is important without
knowing why.” Witkin and Tenebaum discussed the implication of structure for
computational vision. However, they did not explain how perceptual organisation

should be computed.

Based on the principle of non-accidentalness, Lowe (1985) classifies image relations
into accidental and causal. Accidental relations may be caused by an accident of
viewpoint or other factors while causal ones result from the meaningful structures of
objects. He uses the prior expectation of a relation, i.e. probability to evaluate its

significance of non-accidentalness and to find instances of certain relations, such as
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collinearity, proximity of end points and parallelism. Following Lowe’s work, many
methods for computing perceptual organisation have been proposed (Fischler and
Bolles, 1986; Boldt et al, 1989; Dolan and Weiss, 1989; Mohan and Nevatia, 1989,
1992). In computing perceptual organisation, primitive structures are usually
determined first by using simple geometric relations such as collinearity, proximity,
parallelism, etc. Larger structures are then derived by grouping the generated primitive
structures. In Mohan and Nevatia (1989), to create structures of buildings with
rectangular shapes, the relation parallel is generated first. U structures and rectangles are
then derived based on the generated parallels. In their later work (Mohan and Nevatia,
1992), more relations such as continuity, symmetry, closure, etc. are used to compute

more complex structures.

Fuchs and Forstner (1995) presented a polymorphic grouping technique for generating
object structures based on extracted point, edge, line and region features and their
topological relationships. Relations between neighbouring features are generated by a
process of exoskeletonisation and represented by a Feature Adjacency Graph (FAG).
Spurious features, missing features and merged features can be detected through the

analysis of FAG. Relations between various features can also be derived from the FAG.

Most methods for computing organisation are based on one or more properties of the
Gestalt laws. They largely rely on the spatial arrangement of primitive features. They
can build object structures effectively when objects have simple geometric shapes, such
as rectangles, U shapes, etc. However, they may create unsatisfactory results when
objects have complex structures (Henricsson, 1996). Henricsson argues that features
belonging to the same object are likely to have similar region properties and presented a
grouping method based on similarity on position, orientation, photometric and
chromatic properties of features. This method can generate reliable results as not only
geometric properties of features, but also their photometric and chromatic properties are
used. A road is a areal feature in high-resolution images and the generated antipairs
possess both geometric and radiometric properties. Therefore, this method can be used

for grouping of antipairs.
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5.3.2 Grouping of 3-D Antipairs

The purpose of grouping in this study is to aggregate antipairs to form road-like
structures for high-level processing. Antipairs are primitive structures of roads which
not only have spatial positions and orientations, but also possess geometric and
photometric properties. They have similar properties if they belong to the same road. At
the same time, two antipairs should be close to each other and collinear if they are
neighbours in space. These conditions can be formulated into one rule in Prolog

(Trinder et al, 1997, 1998¢), i.e.

connect(X, Y) :- relation(X, Y,
attribute(distance,
difference in_direction, difference in_height, difference in gradient,
difference in_intensity, difference in width)),
distance < Ty,
difference in direction < T,,
difference in_height < Tj,
difference_in gradient is O,
difference_in_intensity < T,

difference in width < Ty,.

Sometimes, several possible connections may be found for a selected antipair when the
above rule is applied. In this case, a similarity value is calculated based on their
similarity in geometric and photometric properties, positions and orientations. The
antipair with the maximum similarity value is then selected as the true connection of the
selected antipair. Each similarity component is determined by one or more of properties
of antipairs and represented by a score between 0 and 1. A high score means that two
antipairs are very similar, while 0 stands for no similarity between two antipairs. To
assess photometric similarity of two contours, Henricsson (1996) used a Gaussian

function which has the following form:
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AL2
o7 5.16
Sy (AL)= e 2°L (5-16)

where AL is the Euclidean distance between the means of photometric attributes of

edges. o1, is the control parameter defined by the user.

For an antipair, its photometric attributes include average intensity value and standard
deviation of intensity values in the area defined by two edges of the antipairs. Thus, the

photometric similarity of two antipairs is defined in a similar way to Henricsson’s:

AG2+AG2
T2 2
e 26 2% if |AG|<T; and |Ao|< Ty,
Sp= 1 (5.17)
0 otherwise

where AG and Ac are the difference of intensity values and standard deviations of
intensity values of two antipairs respectively. Tg and T, are two control parameters
which define the tolerance of intensity value and standard deviation of intensity values.

They can be determined through a large number of measurements on the image.

Two antipairs should have same width if they correspond to the same road. Therefore,

geometric similarity can be defined as:

1 if [AW|< Ty,
So= | (5.18)
0 otherwise

where AW is the difference of widths of two antipairs and Tw is the corresponding
threshold which can be determined by the accuracy of computed width and is set as one

pixel in image space in this study.
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A road should not have a large change in height in a limited distance. This can be

expressed as:

1 if |Ah|< Ty,
S, = (5.19)
0 otherwise

where Ah is the difference of heights of two antipairs and Ty is the corresponding

threshold which can be obtained from the manuals of road construction.

The similarity in position of two antipairs is solely determined by the distance between
their ends. The closer they are in space, the more similar they look. The similarity in

position is given by:

D2

e 2B if D<Ty,
Sp= - (5.20)

0 otherwise

where d is the distance between two antipairs and Tp is the threshold. Tp defines the
maximum distance between two antipairs which could be linked by grouping. In an
image, occlusions could be a few hundred pixels long. Thus, to remove the effects of
occlusions, a large Tp should be chosen. However, a large Tp may correspond to a large
difference of spatial orientations of antipairs. This means that a large threshold for
spatial orientation should also be selected in grouping. This will decrease the reliability
of grouping. Therefore, to ensure the reliability of grouping, the threshold Tp should be
considered together with another threshold T,.

The similarity in orientation of antipairs is determined by the difference of their spatial

orientations. It is defined as:
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_Aaj+hal
e if|Aay|< T, and |Ac,|<T,
oyl< Ty and [Ao,|< T,
8o = - (5.21)
0 otherwise

Ao and Ao, are the differences between the spatial orientation of two antipairs and
their connection, and Ty, is their threshold. A road is a curved linear object with smooth
change in spatial orientation. To ensure the reliability of grouping, a small T, should be
chosen. However, this will limit the length of occlusions which could be recovered in
grouping. Therefore, a trade-off between the possible length of occlusions and the
threshold T, should be made. In this study, a moderate value, 30’, is chosen for T, since
antipairs belonging to different objects may be grouped if it is too large while antipairs
belonging to the same road will be rejected if it is too small. According to the manual of
road construction (Underwood, 1991), this value will yield a road length of about 58 m
for a road with a speed limit of 60 km/h. This correspond to about 80 pixels in the

image with a scale of 1:25,000 and a pixel size of 25 pm.

The similarity of two antipairs is the sum of their similarity in position, orientation,

geometric and photometric properties, i.e.

Stot = Sp+ Sg + Sp + Sp + So (5.22)

For each antipair, its similarities with all other antipairs will be calculated and the
antipair with maximum similarity is selected as its neighbour.

Two examples of grouping of antipairs are shown in Figure 5.5. Both images shown in
these examples are parts of an aerial photograph with a scale of 1:25,000 and have a
size of 500x500 pixels. Figure 5.5(a) contains a straight road segment and five antipairs
are generated using the method described in Section 5.2 while a curved road segment is
shown in Figure 5.5(c) and 35 antipairs in this image. In the first example, the generated

antipairs belonging to the same road are separated due to disturbance near the road
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boundary and an intersection. The gaps between antipairs are bridged during grouping
based on the above similarity grouping method (Figure 5.5(b)). In the second example,
the generated antipairs belonging to the road segment are separated at the upper left and
lower left, where the contrast between road surface and its background is very low and
there is a tree near the road boundary. Again they are successfully grouped to form a

longer antipair which correspond to the road segment (Figure 5.5(d)).

5.4 Summary of Chapter

In this chapter, a generalised antiparallel pair is presented to describe road structures in
high-resolution images. It not only describes the spatial structures of roads, but also
presents the geometric and photometric properties of road surfaces. Its generation in
image space is solely based on the geometric and radiometric properties of edges. To
generate 3-D antipairs, a modified Snakes method has been developed, in which the
geometric energy is determined by both the smoothness of road boundaries and the
parallelism of two boundaries. The generated antipairs are represented as a structure
antipair in Prolog, with a number of geometric and photometric attributes. To form
road-like objects, antipairs are grouped, based on their geometric and photometric
properties, spatial positions and orientations. A rule commect is formulated for the
grouping of antipairs. The formed road-like objects are described by the structure
feature which is similar to antipair and stored as facts in the knowledge base for high-

level recognition of roads.
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Figure 5.5 Grouping of Antipairs (a) Generated antipairs of straight road segment

(b) Formed road-like features after grouping (c) Generated antipairs of curved road

segment (d) Formed road-like features after grouping



Chapter Six

Knowledge-Based Road Recognition

Knowledge-based road recognition refers to automatic recognition of roads from images
using artificial intelligence techniques. As discussed in Chapter 3, a knowledge-based
object recognition system usually consists of three basic components, i.e. image analysis
for feature extraction and formation of object structures, a knowledge base which
contains domain knowledge of the objects to be recognised and intermediate results
derived from image analysis and reasoning, and a control mechanism which manages the
execution of the various processing involved in recognition. Since image analysis
techniques have been introduced in the previous chapters, this chapter will concentrate
on road recognition from aerial images using domain knowledge of roads. A semantic
road model for recognition, including definition of roads in different resolutions of
images and their relations, is defined in Section 6.1. Section 6.2 will discuss what
knowledge can be used for recognition of roads and how it is represented in the
knowledge base. A complete process for road recognition will be described in Section

6.3 while Section 6.4 gives the details of the recognition process.
6.1 Semantic Road Model

In order to extract and recognise roads from images automatically, it is necessary to
define a model of a road. A road in Webster’s dictionary is defined as “a place where one
can ride; an open way or public passage for vehicles, persons and animals; a track for
travel or for conveying goods, etc., forming a means of communication between one
place and another.” This definition is more or less a functional description of a road, and
hence it would be very difficult to recognise roads in the image by it. A road is a man-
made object which has some distinct properties which distinguish it from other objects.

At the same time, it is related to other roads and objects because of its functions. These
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specific properties and functions give a more complete definition of a road and, thus
should be included in the road model for its recognition from images. This section will
introduce some existing road models for road extraction from remotely sensed imagery

and describe the semantic road model in this study.

6.1.1 Existing Road Models

Over the last two decades, various road models have been proposed for road extraction
from remotely sensed imagery. A review of existing road models can be found in Trinder
and Wang (1998b). They can be categorized into two types: generic and semantic.
Generic road models define a road based on its generic properties in geometry and
photometry, e.g. constant width, smooth boundaries, homogeneous surface, etc. These
are directly used for recognition of roads from images (Bajcsy and Tavakoli, 1976;
Nagao and Matsuyama, 1980) or formulated into a mathematical model or a process
which can be executed by computer (Kestner and Kazmierczak 1978; McKeown and
Delinger, 1988; Griin and Li, 1994; Trinder and Li, 1995; Vosselman and Knecht, 1995).
In Bajcsy and Tavakoli (1976), the model for recognition of roads from satellite images
describes a road as a linear object with bounded width and curvature, distinct grey value
and a certain length. Nagao and Matsuyama (1980) define a road as an elongated linear
object with constant width and smooth curvature for road recognition in rural areas.
Obviously, these road models are simple and incomplete since they do not contain the
specific geometric and photometric properties of roads, their spatial and contextual
information. They may interpret non-road segments with similar geometric structures to
roads. Griin and Li (1994) define a road as a linear object with higher intensity than its
background, homogeneous intensity along its surface, smooth boundaries and consistent
width. They formulated these properties into an optimisation process which is
implemented by dynamic programming. Vosselman and Knecht (1995) classified road
characteristics into five types: geometric, photometric, topological, functional and
contextual, and used the first two in their road model for road tracing in aerial images.
These two road models were developed for locating roads in images with approximate

positions of roads defined by an operator, i.e. recognition is performed by an operator.
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Semantic road models not only include the specific properties of roads and road parts,
but also define relations between roads and with other objects (Hwang et al, 1986;
Cleynenbreugel et al, 1990; Gunst, 1996; Bordes et al, 1997; Baumgartner et al, 1997).
In Hwang et al (1986), a road model was developed for interpretation of roads in urban
areas based on the specific properties of a road segment and its relationships with
neighbouring houses. In urban areas, roads are usually straight and connect to houses
which are distributed regularly. They appear as elongated objects connected to houses
having rectangular shapes in large-scale images. Therefore, in their model a road segment
is defined as an elongated rectangle constrained by a number of geometric and
radiometric parameters, and the spatial relationships between roads and houses are also
included. The geometric and radiometric properties of road segments are used to
generate hypotheses of road segments, and spatial relationships are utilised to verify the

generated hypotheses.

Different types of terrain usually correspond to different structures of road networks. In
flat areas, roads are usually straight, but they tend to be serpentine in mountain areas.
Based on these characteristics of roads, Cleynenbreugel et al (1990) presented two road
models for road extraction from SPOT imagery for different types of land cover, in
which roads are mainly defined by their shapes and relations. No specific properties of
road surface are used because of the limitation of image scale. To obtain topographic
information of terrain, such as the type of land cover and relationships between roads, a
geographical information system (GIS) is used. As no specific properties of roads are

used, it is possible to generate ambiguous interpretations.

The appearance of a road in the image varies with the image scale. In large-scale images,
a road is an elongated homogeneous area bounded by two road boundaries, while it
appears as a line in small-scale images. Based on this observation, a multi-scale road
model for change detection of highways was developed by Gunst (1996). In this model,
roads are defined at three different levels of image scales, i.e. small, medium and large. In
small-scale images, a road is defined as a line feature while an intersection is represented

as a point. At medium-scale, both roads and junctions are defined as planar features with
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different shapes. Roads are classified into main carriage-ways, link roads and service
roads. In large-scale images, road segments and junctions are decomposed into different
road parts, such as traffic lanes, hard shoulders, edge lines, etc. They are defined by
specific geometric and radiometric properties which can be obtained from the
construction manuals of roads and their spectral properties. Roads in different scale
images are related by part-whole and specialisation-generalisation relationships, and road
parts in large-scale images are related by spatial relationships. Part-whole relationships
are used to generate hypotheses of roads in larger scale images based on roads in existing
small-scale maps, while spatial relationships between road parts are used for spatial
reasoning, i.e. predicting the existence of road parts. The final interpretation of road
parts is based on their specific properties. This model has been implemented in both
medium- and large-scale images (Gunst and Vosselman, 1997). As the relationships
between roads and road parts in the model are developed for a special type of road, it

may not be suitable to recognition for other types of roads.

Baumgartner et al (1997) proposed a road model for road extraction from aerial images
in which roads are defined in three different levels, i.e. the real world, geometry and
material, and image. In the real world, a road network consists of intersections and roads
which are in turn discomposed into pavement and road markings. In the geometry and
material level, road parts are described by their shapes and materials of road surface,
while in the image level, roads are defined in both small- and large-scale images. In
small-scale images, a road network is defined as a set of straight bright lines and bright
blobs. In large-scale images a road segment and an intersection are described as an
elongated bright area and a compact bright region respectively. Roads and road parts at
different levels are related by “concrete” relations. However, the relationships between
roads at two different scales of images are not defined explicitly. The model contains
contextual information, i.e. relationships between roads and other objects, such as

buildings and trees, which are used to guide the connection of road segments.

Bordes et al (1997) argue that most existing road models for automatic road extraction

are limited to certain types of roads, and hence are not suitable for the extraction of other
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types of roads or roads in different landscapes. To solve this problem, they built an
image-independent semantic road model in which geometric properties, semantic
attributes and contextual information are included. The model includes geometric
description, initial crossroads, final crossroads, number of lanes, type of road, position on
the ground, type of land cover and neighbouring linear objects. These geometric
properties, semantic attributes and contextual information of roads are derived from the
existing cartographic databases and differ according to the types of roads and their
positions. As the road model is defined based on an existing cartographic database, the
properties and attributes included in the model need to be transferred into image space.
One obvious limitation of this model is that it can only be used to determine the correct
positions of the existing roads in databases based on their available information in the

database, and thus it cannot automatically recognise new roads in images.

6.1.2 Semantic Road Model in This Study

It can be concluded that in order to recognise roads in images reliably, a semantic road
model should include not only their specific properties, but also relationships with other
objects, and the relationships between roads (contexts). The image scale should also be
taken into account as it affects the appearance of a road in the image. In low-resolution
images, a road appears as a line, and the geometric and radiometric properties of road
surfaces are not measurable in this case. What can be measured are the gradient and
curvature of the road in the image, which are insufficient to yield correct recognition of
roads. However, the overall structure of the road network is well defined in low-
resolution images. In high-resolution images, the structure of the road surface is well
defined. At the same time, the geometric and radiometric properties of road surfaces are
measurable and road markings such as lane lines may be visible, but the global structure
of the road network is not exhibited because of the limitation of image size. It is clear
that different resolutions of images reflect different aspects of characteristics of roads
(Mayer and Steger, 1998). Low- or high-resolution of images alone cannot yield reliable
results. But, the combination of low- and high-resolution images can provide more

complete information of roads than a single resolution image as they complement each
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other. Therefore, more reliable recognition results can be expected when both high- and

low-resolutions images are used.

In this study, a multi-resolution semantic road model is proposed, in which both roads
and intersections are defined in low- and high-resolution images. In low-resolution
images, roads and intersections are defined as smooth lines and points respectively. At
this level, the specific properties of road surfaces are not considered, but the topological
relationship between roads and intersections is defined. Each road is defined by two
neighbouring intersections and roads are related by spatial connectivity relationships.
According to the angle at which two roads intersect, an intersection can be classified as
T, Y or four-way intersection. In high-resolution images, a road segment is defined as an
elongated homogeneous area bounded by two parallel boundaries, with specific
properties of the road surface. These include the geometry of the road surface, such as
length and width which can be obtained from manuals of road construction, and
radiometric properties of road surface including gradient direction, average intensity and
standard deviation of intensity. These values can be obtained by training in which a large
number of roads are measured and the statistical values of their properties are calculated.
Road junctions are also homogeneous areas, but have different shapes (T, Y and four-
way junctions). A road can be classified into different categories by its width. In high-
resolution images an image usually contains part of a road due to the limitation of image
size in image processing, and hence it can be considered as part of a road in low-
resolution images and is related to the road in low-resolution images by a part-of
relationship. Road junctions are treated as specialisation of intersections in low-
resolution images, and hence they are related to intersections in low-resolution images by

specialisation-generalisation relationships.

In addition to the relationships between roads, relationships between roads and other
objects such as buildings, trees, etc., should also be included. In rural areas, roads are not
often connected to buildings, but often occluded by trees. Therefore, relationships

between roads and buildings are not considered in recognition of roads in rural areas. In
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this study, the spatial relationships between roads and trees and shadows are included

and used to detect road parts occluded by them.

6.2 Knowledge Representation

Knowledge plays a very important role in object recognition from images. As discussed
in Chapter 3, domain knowledge should be collected and represented in the knowledge
base in a certain form before recognition. This section will discuss what knowledge

should be used for recognition of roads from aerial images and how it is represented.

6.2.1 Knowledge for Road Recognition

Knowledge is the known and useful information for solving a specific problem.
According to the definition of a road model, the essential information for recognition of
roads is the structure of road surfaces and their geometric and photometric properties.
They determine what a road looks like in the image and the internal relations between
road parts. However, they are insufficient to generate reliable recognition of roads as
objects with similar appearances may also be incorrectly recognised as roads. To avoid
ambiguous recognition of roads, relationships between roads and between roads and
other objects such as trees should also be used. Therefore, the knowledge for recognition

of roads from images includes:

e Structure of road surface

e Geometric properties, including road width, curvature, etc.

e Photometric properties, such as average intensity, gradient orientation, etc.
e Spatial relations between roads

e Part-of relations between roads in different resolutions of images.

e Spatial relations between roads and other objects such as trees, shadows, etc.
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6.2.2 Knowledge Representation Mechanism

As introduced in Chapter 3, there are different techniques for knowledge representation,
such as production rules, semantic networks, frames, etc. Each method has its own
advantages and disadvantages. The selection of the knowledge representation approach
depends on the type of knowledge to be used for solving a specific problem. The
knowledge for recognition of roads includes their specific geometric and photometric
properties and relations between roads, which are used to define road segments, and
hence is declarative. Relations between roads include connectivity between roads, part-of
relationships between roads in different resolutions and specialisation-generalisation
relationships. Part-of relations can be used to guide the search for road segments in high-
resolution images or verify hypothesised road segments. They are procedural when they
are used to search for road segments in high-resolution images while they are declarative
if they are utilised for verification. In this study, they are mainly used for verification
purpose. Specialisation-generalisation relationships are the relations between the road
junctions in high-resolution images and road intersections in low-resolution images and
are used to guide the search for road junctions in high-resolution images. Connectivity
between roads in space are spatial relationships. They are used for the prediction of
missing road segments. Both of these relationships are procedural. In this study,
knowledge representation is based on rules as they can represent both declarative and
procedural knowledge, and they are easy to understand and to update. The rules will be

represented using Prolog.

Prolog is a commonly used programming language in artificial intelligence which is
rooted in the first-order logic. It uses structures, relations and rules to represent
knowledge (Bratko, 1990). In Prolog, an object is expressed by a variable or a structure.
A structure is composed of a structure name (functor) and a number of components. Its
components can be parts of the object or its properties. For example, a point in 3-D
space can be expressed as point (X, Y, Z). X, Y and Z are variables. A component of a
structure can be a structure, e.g. triangle (point (X1, Y1, Z1), point (X2, Y2, Z2), point
(X3, Y3, Z3)). In this way, a representation tree of objects can be established.
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One of the most common expressions in Prolog is a relation. A relation may be a
connection between two objects or one property of an object. It consists of a relation
name and one or more objects. If there is only one object in a relation, it is called unary
relation, e.g. red (apple). A relation is referred to as binary when it includes two objects,
e.g. the relation parallel (linel, line2). Unary relations are usually used to represent
properties of objects while binary relations are employed to describe the various

relations between objects.

A rule in Prolog is a logic expression. It contains two parts: a condition part and a
conclusion (action) part. The conclusion and condition parts are sometimes called goal
and predicates of the rule. The conclusion part of a rule is usually a relation while the
condition part includes one or more than one relations, which are connected by AND/

OR. The following is a rule for recognition of a bridge in low-resolution images.

bridge (X) :- line (X, L),
L>T,
above (X, Y),
river (Y).

The left-hand side of the above rule is the conclusion while the right-hand side is the
condition part. This rule states that an object is a bridge if it is a linear feature with a

length larger than a given value in low-resolution images and is above a river.

In addition to structures, relations and rules, another type of Prolog clause is query
which is used by users to ask questions . For example, bridges can be found by using the

following query:

?- bridge (X).

Once this question is asked, Prolog will find linear objects which satisfy the conditions

included in the rule bridge.



Chapter 6 Knowledge-Based Road Recognition 110

6.2.3 Knowledge Representation

As introduced in Section 6.2.1, the knowledge for recognition of roads includes specific
properties of roads, including their geometric and photometric properties and
relationships between roads and between roads and other objects. Results generated
from the intermediate-level processing, such as road structures derived from images

should also be represented.

6.2.3.1 Relationships between Roads

The relationships between roads include their connectivity relationships in low-resolution
images, neighbourhood relationships in high-resolution images and part-of relationships.
These relationships are represented as relations in Prolog. The connectivity relationships

between roads in low-resolution images are expressed by the relation adjacent:

adjacent (Roadl, Road2)
Roadl and Road?2 are two roads in low-resolution images.
A neighbourhood relationship between roads in high-resolution images is represented in
the same way that the connectivity relationships of roads in low-resolution images are
represented. It has the following form:

neighbour (Road_segmentl, Road_segment2, D)

Road_segment]l and Road_segment2 are road segments in high-resolution images. D is

the distance between them.

The part-whole relationships between roads in high-resolution images and roads in low-
resolution images are defined by the relation part-of.

Part-of (Road_segment, Road)
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There are some other relations which describe the relationships between a road and the

road network. They will be introduced in Section 6.4.

6.2.3.2 Road Structure and Properties

The structure of road surface generated in intermediate-level processing is described by
a generalised antiparallel pair with a number of geometric and photometric attributes.

This can be represented by the following structure:

Sfeature (feature_no, L1, L2, attribute(end_directions, length,

width, gradient, average intensity, standard_deviation)).

Feature no is the number of the feature being represented. L1 and L2 are two point
chains which record positions of points belonging to the two boundaries of the road.
attribute is also a structure which contains the geometric and photometric properties of
the road, including its width, gradient orientation, average intensity value and the

standard deviation of intensity values of the road surface.

A road has specific geometric and photometric properties in the image which distinguish
it from other objects. These properties can be formulated into a rule based on the derived
road structure feature. The rule has the following form (Trinder and Wang, 1997b,
1998c):

Rule one: road_segment (X) :-
feature (X, _, , attribute(length, width, gradient, average intensity,

standard_deviation),

length > T},
width > Wy - T4,
width < Wd + Td,

gradient is -1,
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average_intensity > Gy - T;,
average_intensity < Go + Ti,
standard_deviation > Rg - Tg,

standard deviation <Ry + Tk.

W, Gy and Ry are road width, average intensity value and RMS of intensity values of
the road surface respectively. Road width Wy has different values for different types of
roads and can be found in the manuals of road design. For example, it has a value of 6.8
m for a two-lane rural road. Gy and Ry are dependent on not only the material of road
surface, but also many factors, such as the time and season of photography, weather
conditions, condition of photographic processing, etc. It is impossible to define them for
all images. Instead, they are determined by a training process in which a large number of
samples of road surfaces are measured. The values obtained through a training process
can be applied to images taken in similar conditions under which the training images are
taken. T, T4, T; and Ty are the thresholds for length of road segment, its width, average
intensity value and RMS of intensity values. In the ideal case, T; should be equal to or
larger than the dimension of the image in image space when it is assumed that a road
passes through the image from its two opposite sides. However, the road segment may
be occluded in the image. In this case, a value less than the image dimension is more
reasonable. Assuming the occlusion occurs in the middle of the image, a value of (L -
80)/2 is chosen in image space when the image dimension is L and 80 is the maximum
distance within which two separated antipairs can be grouped. Ty is the tolerance of
variation of road width along the road. It is determined by the computation accuracy of
road width and is set as one pixel in image space. The thresholds T; and Ty are
determined together with Gy and Ry in the training process. The gradient orientation of a
road is defined as -1 since road surfaces usually have higher reflectance than their
background.

Some other rules which represent the characteristics of a road network and relations

between roads and the road network will be described in Section 6.4.
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6.3 Control Strategy

Control strategy determines the execution order of processing in object recognition. As
discussed in Section 3.3, pure bottom-up or top-down control cannot yield reliable
recognition of objects from remotely sensed imagery in most cases. This is because
remotely sensed images have complex structures and information derived from them is
always incomplete due to the existence of image noise, occlusions, limitation of image
processing algorithms, etc. In order to achieve more reliable object recognition, a hybrid

control strategy is usually selected. This is the case for this study.

The recognition of roads from aerial images includes: hypothesis generation of road
segments in high-resolution images; verification of hypothesised road segments, and
prediction and finding of missing road segments. From the semantic road model defined
in Section 6.1, a road segment in high-resolution images is described by an elongated
area with a number of specific geometric and photometric properties. Thus, road
segments can be hypothesised in a bottom-up process because of its simple structure. As
only structural information of the road surface and its geometric and photometric
properties are used in hypothesis generation, non-road objects with similar structure and
properties may also be hypothesised. Thus a verification process is required to remove
the spurious hypotheses of road segments. This is done based on the pari-of relationships
between roads in high-resolution images and roads in low-resolution images. The missing
road segments are predicted by using the spatial relationships between road segments.
Once a missing road segment is inferred, a top-down process is invoked to find its
instance in the image and to detect occlusions between road segments. This will be

discussed in the following section.
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6.4 Recognition of Roads from Aerial Images

6.4.1 Hypothesis Generation of Road Segments

Hypotheses of road segments are generated in high-resolution images in a bottom-up
process. It starts with edge detection, tracking and linking, and noise removal. Structure
of the road surface is generated at the intermediate-level processing based on the
extracted edge information and knowledge of the structure of the road surface, and is
represented by the structure feature. Road segments are finally hypothesised by applying

rule one to the generated features.

Two examples of hypothesis generation of road segments from high-resolution images
are shown in Figures 6.1 and 6.2. In Figure 6.1(a), the image contains a straight segment
of a two-way highway and part of a track which intersects the highway. Five antipairs are
generated based on the extracted edge image, three of which correspond to the highway
and one corresponding to the track (Figure 6.1(b)). The three antipairs belonging to the
highway are separated at the junction and the middle of the road segment. They are
aggregated based on the similarity of their geometric and photometric properties in
grouping, and three road-like features are formed with one corresponding the road
segment, one to part of the track and one to the small part of the road segment (Figure
6.1(c)). Finally, one corresponding to the road segment is recognised as a road by
applying the rule one (Figure 6.1(d)). The other two are not hypothesised as they are too
short. Figure 6.2 shows another example in which the road to be extracted is a curved
segment and is occluded by a tree at the lower right, and in the upper right part the
boundary line is blurred because of the poor contrast between the road surface and its
background. Thus, the generated antipairs are separated at these positions (Figure
6.2(b)). They are aggregated in the grouping process and 16 road-like features are
formed (Figure 6.2(c)). However, most of them correspond to non-road objects. Fimally,
the one corresponding to the highway with maximum length is hypothesised as a road

using the rule one (Figure 6.2(d)).
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Figure 6.1 Hypothesis Generation of Road Segments from High-resolution Images

(a) Original image (b) Generated antipairs (c) Road-like features after grouping

(d) Hypothesised road segment

6.4.2 Hypothesis Verification

Once road segments are hypothesised in high-resolution images, they are verified using
part-of relationships between roads in high-resolution images and roads in low-resolution
images. The verification of hypothesised road segments includes extraction of the road
network from low-resolution images, generation of part-of relationships and hypothesis

verification.
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Figure 6.2 Hypothesis Generation of Road Segments from High-resolution Images

(a) Original image (b) Generated antipairs (c) Road-like features after grouping
(d) Hypothesised road segment

6.4.2.1 Generation of Topology of Road Network

Existing maps and databases in geographical information systems (GIS) possess relevant
information of road networks which can be derived through digitisation or data query.
However, the topology of road networks generated from these data sources cannot
reflect the current status of road networks, due to the poor temporal accuracy of the

existing maps and data stored in GIS. Remotely sensed images can supply users with
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real-time or near real-time data of objects on the ground and therefore, they can be used
to derive the most recent information of road networks. In this study, low-resolution
images are used to generate the topology of road networks as they can show the global
structures of the networks. Another advantage of using low-resolution aerial images is
that the gaps caused by obstructions, such as trees, shadows, image noises, etc., are
usually limited to a few pixels. Therefore, they can be properly bridged during line
linking and grouping. The generation of topology of road networks includes detection of
line and point features, grouping of line segments and representation of topology of road

networks.

A road is a line feature in low-resolution aerial images. The width of the line depends on
the scale of the image. A road has a width of one to three pixels in the image with a
ground resolution of about 10 meters. It can be extracted using a line detector such as a
morphological operator (Dougherty, 1992) which has been used in this study. The
methods for preprocessing introduced in Chapter 4 are used for line tracking and linking,
generation of smooth line segments and removal of non-road lines. Similarity-grouping
method introduced in Chapter 5 is used to aggregate line segments to form elongated
line segments. Since lines in low-resolution images do not offer surface properties, only
their gradient magnitudes and orientations which can be computed in a similar way to

that introduced in Section 5.3 are used as a similarity measure.

A road intersection in low-resolution images appears as a point feature which can be
detected by a point operator such as the SE operator (Heitger, 1995). Because of image
noise and the limitation of the point operator, not all of the detected corner points
correspond to road intersections and some true intersections may not be extracted.
Therefore, additional processing is required to remove spurious intersections and to add
true intersections which are not extracted. An intersection is a point at which two or
more line segments intersect at certain angles. Thus points will be removed if there is
only one line segment around or passing through a given area. When two line segments
intersect at a point with an angle within the threshold and the intersection is not detected,

a new intersection is then inserted.
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Due to the limitations of line operators, parts of roads at an intersection may not be
extracted. In this case, the extracted line segments are extended to connect at the
intersections. Line segments which are not connected to any point or line segment, i.e.
isolated line segments, are removed as spurious roads. Finally, a network consisting of

line segments and intersections is formed.

6.4.2.2 Representation of Topology of Road Network

A road network in low-resolution images consists of lines and points. The topology of
the road network defines the connectivity relationships between these elements, which
can be represented by a graph composed of edges and vertices. A graph is usually

expressed as (Chachra et al, 1979):

G=G(V,E),
V =(v), withi=1,2, ... m, and 6.1)
E=(g), withj=1,2, ... n.

where G, E and V stand for the graph, vertices and edges respectively, and m and n are
the numbers of the vertices and edges in the graph. Each edge in the graph is defined by
two adjacent vertices, i.e. € = (Vp, Vg). Such a definition is sufficient for a straight line
segment. However, a road may be a curvilinear segment. It is insufficient to represent it
with only the positions of its end points. Therefore, to describe a road correctly a third
element is required, which represents the positions of points on the road. This can be

expressed by a structure in Prolog (Trinder and Wang, 1998c), i.e.

edge (Edge no, A, B, S, L)

where Edge no is the number of the edge, A, B are two end points of the edge, S is a
point chain which represents the positions of all points belonging to the edge, and L is
the length of the edge. Any two intersecting edges in the network share one common

point or vertex. This can be formulated as the following relations in Prolog:
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adjacent (edge(X, A, B1, , ), edge(Y, A, B2, _, )), or
adjacent (edge(X, A1, B, , ), edge(Y, A2,B, , ).

With the defined structure edge and relation adjacent, the topology of the road network

is represented by a number of edges and connectivity relationships.

6.4.2.3 Generation of Relationships between Roads

Having generated the topology of a road network, the relationships between the
hypothesized road segments in high-resolution images and the road network derived
from low-resolution images can be generated. Before the relationships are established,
hypothesised road segments need to be transformed to low-resolution images. When
low-resolution images are generated from high-resolution images by resampling, they can
be registered by a simple transformation. After transformation, a hypothesised road

segment becomes a line segment which is represented by the structure:

h (Hypothesis_no, P1, P2, T)

where Hypothesis no is the number of a hypothesised road segment, P1 and P2 are its

two end points, and T is the length of the road segment in low-resolution images.

The relationships between transformed hypothesised road segments and edges in the

road network include part-of; relate-to and isolated which are listed in the table 6.1.

Table 6.1 Relationships between Hypothesised Road Segments and Road Network

Relation No. | Relation Name Relation Description
1 part-of hypothesised road segment is part of an edge
2 relate-to hypothesised road segment is connected to an edge

hypothesised road segment is not connected to the

3 isolated road network
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A hypothesised road segment h is part of an edge if it lies within the buffer zone of the
edge which is formed by extending the edge in the normal directions of the edge on both
its sides. The area of the buffer zone is defined by the parameter offset (Figure 6.3). The
value of offset is determined by the accuracy of line extraction and transformation
between low- and high-resolution images. This relationship is described by the relation
(Wang and Trinder, 1998):

pat-of (h(Hypothesis_no, P1, P2, T), edge(Edge no, A, B, S, L))
A transformed hypothesised road segment may not belong to any edge in the road
network, but connects to an edge. Such a relationship is defined by connect-to which is
expressed as (Wang and Trinder, 1998):

relate-to (h(Hypothesis no, P1, P2, T), edge(Edge no, A, B, S, L), ALPHA)

ALPHA is the intersecting angle between the transformed hypothesised road segment
and the edge.

Figure 6.3 Definition of Buffer Zone of Edge
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A transformed hypothesised road segment may not belong to any edge in the network,
nor connect to any edge. It is called isolated road segment which is represented by the

structure isolated:

isolated (h(Hypothesis no, P1, P2, T))

6.4.2.4 Hypothesis Verification

With the defined relationships as above, a number of rules can be formed based on the
characteristics of road networks, which will be used for verification of hypotheses. One
important characteristic of road networks is that a road rarely exists individually, but
connects to other roads. Therefore, isolated roads can be immediately treated as false
hypotheses and rejected immediately. This can be formulated as the following rule

(Wang and Trinder, 1998):

Rule two: non-road (X) :- isolated (W(X, , , )).

When a hypothesised road segment is related to an edge in the road network derived
from low-resolution images by the part-of relationship, it cannot be confirmed that the
hypothesised road segment is a true road segment since the corresponding edge in the
road network may not be a road. To verify whether a hypothesised road segment is a
true road segment, it is necessary to check other parts of the edge. It is generally
believed that the most parts of a road should be hypothesised in high-resolution images
based on the fact that a road is usually partially occluded by trees, shadows, etc. For each
edge in road networks derived from low-resolution images, the hypothesised road

segments belonging to it can be determined by the following query:

?- par t—Of (h(Xa 5 _)9 edge(Edge__nO: 5 _5 _)) .

Once the hypothesised road segments belonging to an edge are determined, the ratio of

their total length to the length of the edge can be computed. To relate a hypothesised
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road segment with the computed ratio R, a new structure, element which has the form of
element (h(Hypothesis_no, P1, P2, T), edge(Edge no, A, B, S, L), R), is constructed.
Therefore, if the ratio is larger than a predefined value, the hypotheses of road segments

belong to the edge are accepted. This can be expressed as the rule:

Rule three:  road (X) :- element (WX, , , ),edge(, , , , ) R),
R>T.

T, is the threshold for the ratio R. It should be determined based on the analysis of
possible occlusions occurring on roads in different situations. However, it is generally
assumed that most parts of a road are not occluded in most cases, and they can be
detected in high-resolution images. Therefore, a value larger than or equal to 0.5 is

usually given.

A road segment may be hypothesised in high-resolution images, but not detected in low-
resolution images due to the effects of image noise, limitation of line operator, etc. Thus,
for hypothesised road segments related to the road network by the relate-to relationship,
they are accepted if their length is larger than a threshold and intersecting angle is within
a defined range. This can be described by the rule:

Rule four road (X) :- relate-to (WX, , ,T), edge(_, , , , ), ALPHA),
T>T,,
ALPHA > T,,
ALPHA <T,.

Where T, is the threshold for length which is determined based on the analysis of road
length in various situations while T, and T, define the range of intersecting angle which

can be found in the manual of road construction.

After hypothesised road segments are verified, they are arranged sequentially according

to their spatial positions. Every two hypothesised road segments are considered as
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neighbours when they belong to the same road in the network and there is no other road
segments between them. Each hypothesised road segment may have one or two

neighbours, and a neighbour relationship is described as:

neighbour (h(Hypothesis nol, , , ), h(Hypothesis no2, , , ), D)

Where D is the distance between two neighbouring hypothesised road segments.

Ideally, hypothesised road segments should join together to form a continuous road, but
they may be disconnected due to the effects of occlusions caused by trees and shadows,
poor contrast between the road surface and its background, etc. Short road segments
between two neighbouring road segments may not be hypothesised in this case. It is
assumed that a missing road segment between two hypothesised road segments may be

missed if their distance is larger than a given value. This can be formulated as a rule:

Rule five: missing_part (X, Y) :- neighbour (W(X, , , ), Y, , , ), D),
D > d,.

D is the distance between two road segments X and Y, and d, is a constant. When a road
segment is predicted between the road segments X and Y, a procedure will be started to
find antipairs between X and Y in the high-resolution images. Once an antipair is found,
a rule which is the modification of the rule one, i.e. road segment, will be applied to it to

generate the recognition of the missing road segment. The modified rule has the form:

Rule six: road_part (X) :-
Sfeature(X, , , attribute(_, width, gradient, average intensity,
standard_deviation),
width > W, - Ty,
width < Wy + T4,
gradient is -1,

average_intensity > G - T;,
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average _intensity < Go + T},
standard deviation > Ry - Tk,

standard_deviation <Ry + Tkg.

As this rule is used to find missing short road segments, the length is set as anonymous in

the rule.

Figure 6.4 gives an example of hypothesis verification. The image shown in Figure 6.4(a)
is a low-resolution aerial photograph with a ground resolution of about 12 m which is
generated from the original image by resampling. In the area covered by the image, there
are two highways which intersect with each other. After generation of topology of the
road network, three edges and one vertex are produced as shown in Figure 6.4(b). In the
high-resolution image, a total of 23 road segments are hypothesized. After they are
projected onto the low-resolution image, 22 out of 23 are related to the three edges by
the relation part-of, among which six belong to edgel, ten belong to edge2 and seven
correspond to edge3 (Figure 6.4(c)). These 22 road segments are accepted by applying
the rule road to them, and one is rejected as it neither belongs to any edge, nor connects
to any edge. Twenty two short road segments are found during the verification process,

which are shown in Figure 6.4(d).

6.4.3 Occlusion Detection

Occlusions are a common phenomenon in images. They not only break a road into
several segments, but also cover some road parts which cannot be recognised in the
recognition process and found in detection of missing road segments. To extract a
complete road network, road segments in the occluded areas should be detected. From
the knowledge of roads, occlusions on the road surface include trees, shadows, and poor
contrast, assuming that the effects of image noise, vehicles on the road, etc. are removed

during the process of grouping. Trees and shadows usually change the intensity values of
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the occluded area of a road and cause road boundaries to be highly fragmented or to
disappear while the intensity values of the surface do not change in case of poor contrast
between road surface and its background. Therefore, occlusions can be classified using
their spectral characteristics. There are a number of classification methods in remote
sensing. They use the spectral properties of objects and pixels in the image for
classification of pixels. Although they cannot provide accurate classification of pixels in
aerial images due to the effects of image noise and object texture, they could be utilized
to give a reliable classification of an area which has homogeneous properties (Abkar and
Mulder, 1998). In this study, a maximum likelihood classification method is used to
detect occlusions between two road segments based on the spectral values in three

visible bands, i.e. blue, green and red.

Maximum likelihood classification is a supervised classification method which is based on
the statistical data of the spectral properties of training data and the spectral data of
pixels to be classified. Suppose there are m classes to be distinguished which are

represented by:

¢c,1=1,2,...m

To determine the class to which a pixel at position x belongs, it is necessary to calculate

its conditional probabilities

p(Ci l X)a 1= 1, 2, ... M

The position vector x is a column vector of spectral values of the pixel. It defines the
position of a pixel in multi-spectral space. In this study, it consists of the spectral values
of a pixel in blue, green and red bands. The probability p(ci | x) describes the likelihood
that a pixel x belongs to the class ¢;. The maximum likelihood classification classifies a

pixel by (Richards, 1993):
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xec¢ if p(ci|x)>p(ci|x) forall j=i (6.2)

According to Bayes’ theorem, p(c; | X) can be calculated by:

p(ci [ X) = p(x | c) p(ci)/p(x) (6.3)

where p(c;) is the probability that the class ¢; occurs in the image, which can be estimated
from the training data. p(x | ¢;) is the probability of finding the pixel x in class ¢; which
can be calculated using the distribution function of the class estimated from the training
data (Richards, 1993). p(x) is the probability that a pixel appears in the image which is
the sum of probabilities that the pixel belongs to every class.

After classification of occlusions, the relationships between the detected occlusions and
the verified road segments can be used to infer the existence of a road segment between
the verified road segments. If the occlusion is classified as road surface, shadow or trees,
it can be inferred that a road segment probably is missed. The disjoined road segments
are then connected by spline interpolation. If it is classified as other objects, more
contextual information is needed to infer the type of the object in the occluded area,

which needs further study.

An example of occlusion detection is shown in Figure 6.5 in which the hypothesised road
segments are disconnected due to the poor contrast between the road surface and its
background. To determine what the missing part is, a procedure for finding short road
segments is first triggered. As the contrast between the road surface and its background
is very low, there is no edge information extracted in this area. Therefore, no antipair is
found. Then a procedure for detecting occlusions is started, in which the part between
two hypothesised road segments is classified as road which corresponds to the shaded
part in Figure 6.5(b) using the maximum likelihood classification. In the training stage,
four images are used and five classes, i.e. trees, grass, road surface, bare soil and tree
shadows are selected. The intensity values of these objects in blue, green and red bands

are measured manually in the selected images, and their distributions in the spectral space
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Figure 6.5 Occlusion Detection (a) Image with a road segment occluded (b) Detected

occlusion between two verified road segments

are determined. With their distributions in the spectral space, the probabilities of the
occluded part belonging to these objects are calculated and a classification is carried out

based on the maximum probability.

6.5 Summary of Chapter

This chapter has described a knowledge-based method for road recognition from aerial
images based on a multi-resolution semantic road model, in which a road network is
defined in both high- and low-resolution images and a number of relations are defined to
relate roads. Based on the developed road model, a bottom-up procedure has been
established to recognise roads, in which road structures are generated using features and
their attributes extracted from high-resolution images, and the knowledge of roads is
then applied to the generated road structures to produce hypotheses of road segments.
Hypothesised road segments in high-resolution images are verified using the part-of
relationships between roads in high-resolution images and roads in low-resolution
images. A number of rules have been defined based on the properties of a road and
relations between roads in a road network for the recognition and verification of roads.

As short road segments are not hhypothesised in the process of hypothesis generation, a
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procedure for predicting and finding missing road segments is included in the verification
process. Detection of occlusions is a difficult problem in road recognition. A method for
locating occlusions based on the maximum-likelihood classification method has been
developed. The relationships between the classified objects and the corresponding
recognised road segments are used to infer what the missing part between two verified
road segments could be. Some examples are included in this chapter, which show the
recognition results using the developed methods. To demonstrate the applicability of the

methods, more results will be given and discussed in the next chapter.



Chapter Seven

Experiments and Results

7.1 Image Data

Chapter 6 has described the process and methods of road recognition from aerial
images. To test these methods, a number of experiments were made on aerial images,
the results of which will be presented in this chapter. The tests in hypothesis generation,
verification of hypotheses, and detection of missing road segments and occlusions will
be analysed and evaluated. Also, the thresholds used in the rules for recognition of roads
will be discussed. Three aerial images in the Hunter Valley and near Dungog in rural
New South Wales have been used. This section will introduce some characteristics of
the image data, including the size and scale of image, terrain types, road types, road

structures, etc.
7.1.1 Hunter Valley Image Data

The Hunter Valley images are located in a rural area in the east of New South Wales,
which have moderate undulations in elevation between 170 m and 300 m. There are two
motorways passing through the area, which intersect as shown in Figure 7.1(a). The
motorway on the left is a two-way two-lane rural road. The road on the right has
different numbers of lanes in different parts. It is a two-lane road in the upper part of the
left image, but it changes into three lanes in the middle of the image while it becomes
four lanes wide in the bottom part. Roads in the images are paved with bitumen and
their edges are painted with white lines which serve as the boundaries of roads during
road recognition. The images also contain some other minor roads, one of which crosses
the right motor way. The images have a scale of 1:25,000 and are scanned in colour and
black and white with pixel sizes of 20 pm and 30 pm respectively, yielding ground
resolutions of 0.5 m and 0.75 m. The black and white images have a size of 7466x7456
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pixels. Low-resolution images have been generated by resampling the original images at

a reduction factor of 15, yielding a ground resolution of about 11 m. For simplicity of
processing, the original image is divided into 225 smaller sub-images, each having a
size of 500x500 pixels. As can be seen in Figure 7.1, only a small portion of the original
image contains linear objects. Thus, only a small part of these images is utilised in the

test.

In order to test the developed methods, images containing roads have been used. Figure
7.2 shows some examples of test images in which roads have different shapes, widths,
amounts of occlusion and disturbances. In Figure 7.2(a), the image contains a two-way
rural road which intersects a track to its left. The road has well-defined boundary lines
and distinguishable contrast against its background. Figure 7.2(b) shows a curved rural
road with two lanes. The image contains extensive trees which cover the road partly on
the lower left, and the boundary line on the upper right is blurred, due to the bare soil on
both sides of the road. Figure 7.2(c) gives an example of roads with blurred boundary
lines. Although there is a significant contrast between the road surface and its
background, the boundary lines are hardly recognizable. Figure 7.2(d) shows a road
with three lanes, which is partially occluded by trees and cars. In Figures 7.2(e) and @,

a three lane rural road with an overpass and a road with four-lanes partially occluded by
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Figure 7.2 Test Images at Different Situations
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Figure 7.3 Dungog Image Data (a) Original image (b) - (f) Test images with roads
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trees and cars are represented respectively. The boundary lines of roads in these two

images are well-defined.

7.1.2 Dungog Image Data

The Dungog image is also located in a rural area in the east of New South Wales, and
contains two rural roads and several minor roads. The rural roads are paved, but their
boundaries are not painted with white lines. Thus, the natural boundaries of the roads
will be used in the recognition process. The image has a scale of 1:25,000 and is
scanned with a pixel size of 20 pm, producing a ground resolution of 0.5 m. The
original image has a size of 10600x10600 pixels and is divided into 441 smaller sub-
images with a size of 500x500 pixels. The low-resolution image is generated by
resampling the original image at a reduction factor of 16, yielding a ground resolution
of 8 m, and is shown in Figure 7.3(a). Figures 7.3(b) to 7.3(f) show some examples of
test images used in this study. Figures 7.3(b) and 7.3(c) contain a smooth rural road
which has well-defined boundaries and few occlusions and disturbances. A road passing
through a forest is shown in Figure 7.3(d). In this image, most of the road is covered by
trees and the lower part of the road has poor contrast. Only a small part of the road on
the upper left has recognisable boundaries. Figure 7.3(¢) shows a road occluded by trees
on both its boundaries. Main rural roads usually have constant width, however, a simple

rural road may have changes in width as shown in Figure 7.3(f).

7.2 Parameters Used in Recognition

In the recognition process of roads, a number of parameters are used in the rules for
recognition, which include both geometric and photometric properties of roads. They
need to be determined before recognition can be performed. The geometric parameters
included in the recognition rules include length and width. The first parameter was
given in Chapter 6. The road width depends on the type of the road, design speed and
vehicle capacity and thus it is a function of the road type and design standards. Table
7.1 lists the widths of four different types of roads in NSW (Lay, 1990).
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Table 7.1 Road Width for Different Types of Roads

Road Type Minimum Road Width (m) Maximum Road Width (m)
narrow two-lane road 4.6 6.4
wide two-lane road 6.5 9.1
three-lane road 9.2 11.6
four-lane road 11.6 ' 14.8

The photometric properties of a road contain the average intensity value of the road
surfaice G, and a measure of the homogeneity of the road surface H, which are
represented by the mean and standard deviation of intensity values of the road surface.
As they may vary along the road, the extent of their variations also need to be
determined. Therefore, the standard deviation of intensity values along the road cg, and
the standard deviation of homogeneity oy are calculated. These parameters are
determined by measuring the grey values along the road surface interactively. For each
test image, one or more areas on the road surface are selected, and the grey values of
pixels in the defined areas are measured. G; and H; are calculated based on these
measured grey values, and the average of all selected test images is taken as the average
intensity of road surface G, and the homogeneity measure of the road surface H;. To
determine the range of their variations along the road, the standard deviations of these
values are computed, which are oG and op. The parameters for the Hunter Valley image

and Dungog image data are listed in the Table 7.2.

Table 7.2 Geometric and Photometric Parameters for Test Images

Gr Hr oG Cu

Hunter Valley Image 120.0 12.0 21.5 4.3

Dungog Image Data 192.0 7.7 11.0 3.0
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7.3 Results of Experiments

To test the developed methods for road recognition, images which contain linear objects
were selected from the Hunter Valley and Dungog images, including those shown in

Figures 7.2 and 7.3. The test results on these images will be presented in this section.

7.3.1 Hypothesis Generation

As explained in Chapter 6, hypotheses of road segments are generated from the high-
resolution images in a bottom-up process, which includes the processes of feature
extraction, generation of antipairs, grouping of antipairs and hypothesis generation of
road segments. In the test, 25 test images were selected from the Hunter Valley images.
A Digital Terrain Model (DTM) with a grid interval of 5 m was generated for the
overlapping area on a Helava digital photogrammetric station to provide approximate 3-
D information of terrain for generation of 3-D antipairs. In non-overlapping areas, only
2-D information was used. For the Dungog image, 25 images were tested, and the
grouping of antipairs and generation of hypotheses of roads were performed in 2-D
space as there was no ground control for this image pair. A summary of results of tests

of road recognition carried out on these images is listed in the Table 7.3.

Table 7.3 Results of Hypothesis Generation

No. of Hypotheses True Road Non-Road
Hunter Valley image 23 22 1
Dungog image 31 28 3

The recognition results of roads in images shown in Figures 7.2 and 7.3 are displayed in
Figures 7.4 and 7.5. For each test image, its results in generation of antipairs, grouping
of antipairs and hypothesis generation of road segments are demonstrated. The results of
feature extraction are not shown. Both the Canny and SE operators are used for edge

extraction and they generate similar results. In cases that the poor centrast occurs, the
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addition, the knowledge of road widths was utilised to define the search area for the
generation of generalised antiparallel pairs in order to reduce computation time. From
the images shown in Figures 7.4(a), (b), (g), (h), (m), (n) and Figures 7.5(a), (b), (g),
(h), (m), it can be seen that the structures of road surfaces were well established during
the generation of antipairs when road boundaries are well-defined and there are no
occlusions on the road surface. However, some generated antipairs do not correspond to
road segments, especially when the image has a complex structure as shown in Figures
7.4(b), (h), (m), (n) and Figures 7.5(b), (g), (h). As can be seen, the generated antipairs
in these images are usually separated due to the effects of occlusions, such as trees,
shadows cast by trees, cars on the road surface, poor contrast between the road surface
and its background, etc. They were grouped using the method described in Chapter 5.
The results displayed in Figures 7.4(c), (d), (i), (j), (o) and (p), and Figures 7.5(c), (d)
and (j) show that antipairs belonging to the same road were successfully grouped in
most cases. However, some antipairs belonging to the same road were not linked due to

their large difference in width as shown in Figures 7.5(i) and (j).

In hypothesis generation, road segments were hypothesised by applying the rule one
given in Section 6.4 to all the generated road-like objects. Figures 7.4(e), (), (k), (1),
(q), (r) and Figures 7.5(e), (f), (k), (1) show the results of hypothesis generation, in
which the hypothesised roads are displayed in black lines. In these examples, most
roads were hypothesised although there are disturbances due to various occlusions on
road surfaces. However, in some test images as shown in Figure 7.6(d) (red boxes),
there were no hypotheses generated due to the effects of occlusions and poor contrast
between the road surface and its background, and short road-like objects as shown in
Figures 7.5(i), (j) and (n) were not hypothesised in this process. At the same time, some
non-road objects which have similar shapes and geometric and radiometric properties to
roads were hypothesised. Road-like objects with a length less than the threshold defined
in the rule one were not hypothesised. They will be detected in the process of

hypothesis verification described below.
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Figure 7.4 Results of Hypothesis Generation from High-resolution images — Hunter
Valley Image Data (a), (b) Generated antipairs (c), (d) Formed road-like features after

grouping (e), (f) Recognised road segments
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Figure 7.4 Results of Hypothesis Generation from High-resolution Images — Hunter
Valley Image Data (continued) (g), (h) Generated antipairs (i), (j) Formed road-like

features after grouping (k), (1) Recognised road segments
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Figure 7.4 Results of Hypothesis Generation from High-resolution Images — Hunter
Valley Image Data (continued) (m), (n) Generated antipairs (o), (p) Formed road-like

features after grouping (q), (r) Recognised road segments
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Figure 7.5 Results of Hypothesis Generation from High-resolution Images — Dungog
Image Data (a), (b) Generated antipairs (c), (d) Formed road-like features after

grouping (e), (f) Recognised road segments
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Figure 7.5 Results of Hypothesis Generation from High-resolution Images — Dungog
Image Data (continued) (g), (h) Generated antipairs (i), (j) Formed road-like features
after grouping (k), (I) Recognised road segments
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Figure 7.5 Results of Hypothesis Generation from High-resolution Images — Dungog
Image Data (continued) (m) Generated antipairs (n) Formed road-like features after

grouping

7.3.2 Verification of Hypotheses

As described in Chapter 6, the hypothesised road segments from high-resolution images
are verified using their relationships with road networks generated from low-resolution
images. To generate the overall structures of road networks, low-resolution images were
derived by resampling the original images with a reduction factor of 15, which yielded
ground resolutions of 11 m and 8 m for the Hunter Valley and Dungog images
respectively. A morphological operator was used to extract line features from the
generated low-resolution images and results are shown in Figures 7.6(a) and 7.7(a). As
can be seen, not only were roads extracted, but also a large number of non-road objects.
The existence of non-road objects will greatly increase the computation time of the
subsequent processing and affect the reliability of the generated road networks. Thus,
the irrelevant information should be deleted after line extraction. A split-and-merge
process was applied in the test to split line segments corresponding to natural objects,
e.g. tracks, boundaries lines, etc. A thresholding operation followed to eliminate short
line segments. The results of these operations are shown in Figures 6(b) and 7(b). There

is no doubt that most irrelevant line segments were removed. The remaining line
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segments were then grouped based on their geometric and radiometric attributes, i.e.
their spatial positions and orientations, gradient magnitudes, etc. Finally, the isolated
line segments were removed to form complete networks as shown in Figures 6(c) and
7(c). Point features was extracted using the SE operator, and preprocessing was
performed to delete false road intersections and to add some true intersections. The
detected intersections were shown in Figures 6(c) and 7(c) (blue points). For the Hunter
Valley image, the generated road network consists of three edges which correspond to
two rural roads and one intersection while the road network derived from the Dungog
image is composed of seven intersections and 15 edges, six of which correspond to rural

roads.

Having generated the overall structures of road networks, a buffer zone was created for
each edge in road networks with an offset of 3 pixels in low-resolution images. To
establish the relationships between the hypothesised road segments and the road
network derived from low-resolution images, the hypothesised road segments were
projected onto the generated low-resolution images by a simple transformation, which
are shown in Figures 7.6(d) and 7.7(d) respectively. A hypothesised road segment is
related to an edge in the road network by relationship part-of when it lies within the
buffer zone of the edge. If a transformed hypothesised road segment does not lie within
any buffer zone of edges, but connect to an edge in the road network, a connect-to
relationship is created between the hypothesised road segment and the corresponding
edge. A hypothesised road segment is defined as isolated if it does not fall within any
buffer zone of edges and does not connects to any edge in the road network. The
generated relationships between the hypothesised road segments and the road networks

for the Hunter Valley and Dungog images are listed in Table 7.4..

Table 7.4 Relationships between Hypothesised Road Segments and Road Network

No. of Hypotheses part-of isolated connect-to

Hunter Valley image 23 22 1 0

Dungog image 31 27 2 2
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It can be seen that most hypothesised road segments correspond to roads (22 of 23 in the
Hunter Valley image and 27 of 31 in the Dungog image). With the derived relationships
between the hypothesised road segments and the road networks generated from the low-
resolution images, hypothesised road segments are verified using the rules described in
Chapter 6. In the Hunter Valley and Dungog images, there were one and two isolated
road segments removed respectively (Figures 7.6(¢) and 7.7(e)). For hypothesised road
segments related to road networks by relationship part-of, they are confirmed using rule
two with T, set as 0.5. The ratios of the length of an edge to the total lengths of all
transformed road segments related to it by relationship part-of are among 0.5 to 0.7 for
edges 1, 2 and 3 in the Hunter Valley image and edges 1, 3, 4, 9, 10 and 11 in the
Dungog image while they are between 0.0 and 0.1 for all other edges in the Dungog
image. Hypothesised road segments with ratios larger than 0.5 were accepted as shown
in Figures 7.6(e) and 7.7(e). Totally there were 22 hypothesised road segments in the
Hunter Valley image and 26 hypothesised road segments in the Dungog image
accepted. There are three road segments related to the road network with relationship
connect-to in the Dungog image. However, they were rejected as they are too short (<20

pixels in the image).

7.3.3 Detection of Missing Road Segments

As short road segments between the recognised road segments were not hypothesised in
the hypothesis generation, recognised road segments in both images are often disjoined
as shown in Figures 7.6(¢) and 7.7(¢). Therefore, these unrecognised road segments
should be detected after hypothesis generation, to form a complete network. The
detection of missing road segments in this study is based on the spatial relationships
between verified road segments. After hypothesised road segments are verified, they are
related by the relationship neighbour based on their spatial positions. When the distance
between two verified road segments is larger than a given threshold which was defined
as five pixels in low-resolution images in this study, a missing road segment is
predicted. Then a procedure for finding antipairs between the verified road segments is
invoked and rule six described in Chapter 6 is applied to the extracted antipairs to

recognise them.
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Figure 7.8 shows two examples of detection of missing road segments, in which road
segments were not hypothesised in the high-resolution images because the lengths of the
extracted road-like objects are less than the defined threshold for road length in rule one
due to the poor contrast between the road surface and degraded boundary lines. Based
on the positions of the recognised road segments in neighbouring test images, search
areas for detecting road-like objects were defined, as shown in Figure 7.8 (white lines).
In the search areas, all antipairs were generated and recognised by using rule six. In
Figures 7.8(a) and (b), there was one road segment found in each image. However, there
were still some parts of the road not detected in this process as there were no road-like
objects generated. They will be detected in the process of occlusion detection. In Hunter
Valley and Dungog images, there were 22 and 21 short road segments found, which are

shown in Figures 7.6(f) and 7.7(f) respectively.

Figure 7.8 Detection of Missing Road Segments
7.3.4 Detection of Occlusions

In most cases, images contain occlusions which cause a road to be broken into several
short segments that cannot be recognised in the recognition process and neither found in
detection of missing road segments. On the other hand, occlusions provide contextual
information between them and roads which can be used to infer the existence of roads

in
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the occluded areas. In this study, occlusions are detected using a supervised
classification method - maximum likelihood classification. Two examples of occlusion
detection are shown in Figure 7.9. In Figure 7.9(a), a road in the image is heavily
occluded by trees, and hence no road segments were hypothesised in the hypothesis
generation. In the detection of occlusions, a search area was defined based on the
positions of two recognised road segments related by relationship neighbour. The pixels

in the defined area were then classified using the maximum likelihood classification

method described in Chapter 6.

Figure 7.9 Detection of Occlusions (a) Road segment occluded by trees (b) Classified

trees (shaded area) (c) Road segment with poor contrast (d) Classified road surface

(shaded area)
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In classification, a training process for determining the spectral distributions of typical
classes of objects was performed on ten test images for five classes ie. roads, trees,
grasses, bare soil and shadows. In this example, most pixels were classified as trees
which are displayed as black in Figure 7.9(b). An example of poor contrast between the
road surface and its background is displayed in Figure 7.9(c) in which the black Iines
represent the detected road segments and the part between them was unrecognised due
to the poor contrast. Using the maximum likelihood classification method, this part was
classified as road surface as shown in Figure 7.9(d)(shaded area). Once an occlusion is
found, its relationship with the verified road segments is used to infer the existence of
road segment in the occluded area. As discussed in Chapter 6, the possible factors
causing a road segment unrecognised are trees, shadows, poor contrast. Thus, a road
segment was reasoned in occluded areas in these two examples. Finally, the
neighbouring verified road segments were connected by polynomial interpolation when

a road segment was inferred, to form a complete road network as shown in Figure 7.10.

7.4 Discussion

This chapter has presented the results of road recognition from aerial images using the
methods developed in the previous chapters. The results have shown that all major rural
roads in the tested images were correctly recognised. However, the minor rural roads in
the images were not recognised as they have different surface characteristics and
irregular shapes which are not included in the semantic road model developed in this
study. The widths of roads included in the recognition rules can be obtained from the
design manuals of roads. Another geometric property of a road, the length, is
determined by the dimensions of the test image and the maximum gap between two road
segments which can be bridged in the process of grouping. The use of this property can
remove most non-road objects which have similar structures to roads since they are
usually short. However, some short true road segments are rejected in the process of
hypothesis generation. Therefore, a further step is required to find the missing road

segments. The photometric properties of roads in the image used in the recognition rules
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cannot be determined a priori, since they depend on a number of factors, such as the
incidence angle of the Sun, weather conditions, slope of surface and processing
conditions of the images, etc. They were determined in a training process in this study,
in which a large number of test images were used for measuring the properties of road
surfaces. The photometric properties of road surfaces determined by a training process
can be applied to images obtained under similar conditions, but for images taken and

processed in different conditions, a further training process is needed.

As hypotheses of road segments are generated in a local area in high-resolution images,
it is likely that a non-road object is hypothesised if it has similar shape and properties to
a road. Therefore, a verification process is required to remove spurious hypotheses of
roads. Low-resolution images exhibit overall structures of road networks very well, thus
relationships between roads are well defined. Hypothesised road segments are related to
roads in road networks by the defined relationships part-of, connect-to and isolated.

Using these relationships, hypotheses of roads can be effectively verified.

As mentioned above, short road segments are not hypothesised in the hypothesis
generation. They are inferred using spatial relationships between verified roads after
verification of hypotheses and found in a top-down process. However, it should be
pointed out that only short road segments which are not covered by occlusions can be
found. Road segments covered by various occlusions, such as trees, shadows, etc.,

cannot be detected in this process.

Occlusions in the image are a difficult problem in automatic road extraction. They not
only break a road into segments, but also cover some parts of the road which cannot be
extracted in the processes of road recognition and detection of missing road segments.
In this study, a supervised classification method, maximum-likelihood classification, is
used to detect occlusions between the recognised road segments. It uses the statistical
spectral properties of the classes of objects and spectral values of the pixels in the
occluded area to determine the class of the pixels in the area. Once some type of
occlusion is found, the contextual relationship between the detected occlusion and the

verified roads can be established and used to infer the existence of a road segment in the
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occluded area. The results in this study show that occlusions have been detected
successfully in colour images. However, it must be pointed out that the work carried out
in this study is the initial work on detection of occlusions. To test the efficiency and
reliability of the method, more experiments should be done, and multi-spectral or
hyperspectral images should be used in the future study in order to achieve more
accurate classification. It should also be mentioned that a road segment can be inferred
based on the relationship between the detected occlusion and verified roads. This does
not mean that the found occlusions definitely correspond to road segments. For
example, when trees are located between two verified roads, it is naturally believed that
a road segment between them is covered by the trees. This is usually true, but when the
found occlusion is a large forest, it cannot be confirmed that a road segment definitely
exists there. To make sure of the existence of a road segment in the area of occlusion, a

human check may be required.



Chapter Eight

Conclusions

8.1 Conclusions of this Study

In this thesis, a knowledge-based method for automatic extraction and recognition of
roads from aerial images has been presented based on a semantic road model in which
roads are defined in both high- and low-resolution images. The semantic road model
was developed based on the observations that different resolutions of images reflect
different aspects of roads, and reliable results cannot be achieved by using a single
resolution image. In the developed road model, roads are recognised from aerial images
in a hybrid process. They are hypothesised from high-resolution images in a bottom-up
process, which includes low-level processing for feature extraction, intermediate-level
processing for generation of symbolic representation of roads and high-level processing
for recognition. Hypothesised roads are then verified using the relationships between
roads in high-resolution images and roads in low-resolution images. Spatial
relationships between verified roads are used to infer the missing road segments and

occlusions. The main contributions of this thesis include:
(i) Preprocessing in feature extraction

Feature extraction includes their detection and preprocessing, to generate symbolic
representations of the features for the subsequent processing. As there are numerous
feature detection algorithms and approaches, this thesis concentrates on the
development of efficient methods for preprocessing of detected features for road
recognition, which includes an edge/line tracking algorithm, a split-and-merge process
for generation of smooth edge/line segments and a linking algorithm. The tracking
algorithm uses information of the magnitudes and orientations of edge/line points and

their connectivity. The tracked edge/line is represented by its length and two point
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chains recording the positions of points on the edge/line in forward and backward
directions. As a least squares polynomial fitting is incorporated into the split-and-merge
process, the generated edges/ lines are smooth and accurate. The small gaps which
occur between the extracted edges/ lines due to the effects of image noise are bridged in
the linking process. To facilitate the subsequent processing, short edge/line segments

caused by image noise, object texture, etc. are eliminated.

(ii) Generation of road structure

Road boundaries are smooth linear features. In this study, generalised antiparallel pairs
were proposed to define road structures in high-resolution images and an algorithm for
computing them in 2-D space was developed based on the extracted edges and their
attributes. A generated antipair is represented symbolically in terms of a number of
geometric and photometric attributes which include position, orientation, width and the
photometric properties of the area covered by the antipair. As two smooth curves are
used in a generalised antiparallel pair instead of two straight lines, road boundaries are

represented more accurately.

To determine the positions of generalised antiparallel pairs in 3-D space, a modified
active contour model has been developed, in which the conditions of smoothness and
parallelism of road boundaries are incorporated into the geometric energy model. With
the developed model and an antipair computed from left and right image, the position of
the antipair in 3-D can be determined efficiently and accurately. The merging process of
3-D antipairs can partially overcome the problems caused by occlusions such as

vehicles on road surfaces.

Occlusions such as trees, shadows cast by trees, vehicles on road surface, poor contrast
between road surface and its background, etc. are a common phenomenon in the image.
They usually cover part of the road boundaries, and thus cause the generated antipairs to
be broken. To remove the effects of occlusions, a grouping procedure is introduced to
link the disconnected antipairs. In grouping, not only are spatial constraints used, i.e.

collinearity and proximity, but also the geometric and photometric properties of
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antipairs, which are formulated into a rule in Prolog. The use of the geometric and
photometric properties can improve the reliability of the grouping of antipairs since they

usually have similar properties if they belong to the same road.

(iii) Recognition of Roads

Roads are man-made objects with specific properties which distinguish them from other
objects. These specific properties of roads are formulated as a rule in Prolog in this
study, and hypotheses of roads are generated by applying the rule to the road-like
objects produced in the intermediate-level processing. The geometric properties
included in the rule can be obtained from the road design manuals, while the
photometric properties are determined through a large number of measurements on the

test images.

As only local information is used in the generation of hypotheses, non-road objects with
similar structures and properties may be incorrectly recognised as roads. To remove
spurious hypotheses, a novel approach for verification of hypotheses has been
developed. The method uses the global information of road networks, derived from low-
resolution images and relationships between hypothesised road segments in high-
resolution images and the generated road network, to verify the hypotheses. The
characteristics of a road network are formulated into rules and utilized to eliminate false

hypotheses.

Due to the effects of occlusions, a road may be divided into several short segments
which are not hypothesised in the hypothesis generation. To find the missing road
segments, a procedure based on the spatial relationships between verified road segments
has been established.

Occlusions in an image not only break a road into several segments, but also cover some
parts of the road which cannot be recognised in the recognition process or found in the
process of detection of missing road segments. To find the road segment covered by

occlusions, a process based on the supervised classification method has been developed.
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It uses the maximum likelihood classification technique to classify the occlusions bet-
ween the verified road segments. The relationship between the detected occlusions and
the verified roads are then used to infer the existence of a road segment in the occluded

arca.

As outlined in Chapter 1, the main objectives of this study were:

e To develop a general procedure for automatic road extraction from aerial images,
e To define a suitable semantic road model for recognition of roads,

e To explore the use of knowledge of roads in automatic road extraction and the

mechanism for knowledge representation, and

e To analyse the characteristics of occlusions on road surface in the image and to

develop a suitable approach for their detection.

From the previous chapters, it can be seen that all of these objectives have been
successfully achieved. First, a hybrid control strategy has been developed, which
includes a bottom-up procedure for generation of hypotheses of road segments, a
hypothesis verification based on the spatial relationships between road segments, and a
top-down process for detection of missing road segments and occlusions. It has been
shown that such a control strategy is suitable to automatic road extraction from aerial
images and successful results have been achieved using this control strategy. Since a
road in high-resolution images has a simple structure which can be described by
generalised antipairs, and specific geometric and photometric properties, it can be
recognised by a bottom-up process. Occlusions are a problem encountered in road
extraction, which often cause some road segments to be unrecognised in the recognition
process. Using the spatial relationships between verified roads, they can be found in a

top-down procedure.

Secondly, a semantic road model has been proposed, in which roads are defined in both

high- and low-resolution images and relationships between roads are defined as well. It
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is realised that different resolutions of images represent different aspects of
characteristics of roads and reliable recognition of roads cannot be achieved by using a
single resolution of images. More reliable recognition results can be achieved when
different resolutions of images are used. The results carried out in this study have
proved that a combination of high- and low-resolutions of images can give reliable

recognition results of roads.

The properties of roads have been studied, and it has been found that not only are the
appearances of roads important for recognition of roads, but also their geometric and
photometric properties. The relationships between roads are of crucial importance as
well. The specific properties of roads are used for their recognition, while their relation-

ships can be used to verify the recognised results, by rules in Prolog.

A procedure for finding missing road segments has been established based on the spatial
relationships between verified road segments, and a method for detection of occlusions
based on supervised classification method has been proposed. In the developed
methods, missing road segments are found in a top-down procedure, and occlusions are
classified using maximum likelihood classification method. The results show that both

missing road segments and occlusions can be successfully detected.

8.2 Further Investigations

This thesis has established a general paradigm for automatic road extraction from aerial
images and investigated the formulation of knowledge of roads for road recognition.
Successful results have been achieved when the developed methods are applied to aerial
images for rural roads. It should be pointed out that the situations in urban areas will be
more complicated, e.g. complex structures of road surfaces, more frequent occlusions,
and regularly distributed houses on both sides of a road. Thus, to recognise roads in
urban areas, more knowledge of roads, such as their structures and characteristics as

well as their contextual information, should be used in future research.
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In this thesis, the hypotheses of roads are generated in a bottom-up process. Thus, the
results of recognition rely on the quality of low- and intermediate-level processing. One
important issue in low- and intermediate-level processing is the selection of thresholds,
which are determined based on the knowledge of roads in this study. For different
images, these thresholds may need to be given different values in order to yield
satisfactory results. A problem which will arise is how to determine the values of these
thresholds for different images. Is there any automatic approach for determining the
values of these thresholds? One possibility is to use a machine learning technique in
artificial intelligence, which is a process of acquiring knowledge automatically using a
certain inference strategy, e.g. induction. Such procedures should be considered for

future research.

In the recognition process, only the knowledge of roads and the imaging system was
used. There are a number of additional sources of knowledge about roads, e.g. existing
maps and geographical information databases, which provide contextual information
that would be very useful for the recognition process. Therefore, the methods of
introducing this information into the recognition process is an important issue for future

research.
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