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FOREWORD

The determination of digital elevation models has been a continuing research topic in the
area of photogrammetry and remote sensing at UNSW for a number of years, including
image matching on satellite images and aerial photography. The results of these studies
and others undertaken elsewhere, have demonstrated that there are residual errors in the
elevations determined by these methods, that can only be eliminated by manual
intervention. A more automatic method of locating and filtering the errors in the data is
desirable. In addition, since many DEMs used for terrain modelling by geographers and
land specialists are derived from various sources, such as digitising maps and secondary
processing of photogrammetric data, these DEMs are often subject to systematic errors
that lead to so-called ‘sinks’ and ‘mounds’ in the data. Methods of overcoming these

errors are often only marginally unsuccessful.

To overcome these problems, Dr Ping Wang has developed unique methods of filtering
and smoothing DEM data based on a two-dimensional Kalman filtering algorithm for her
PhD thesis, jointly within the Schools of Geography and Surveying and Spatial
Information Systems. Since the theory of Kalman filtering is primarily based on a one-
dimensional algorithm, she had to develop new algorithms and procedures to implement a
Kalman filter for the two-dimensional DEM data. The procedures have led to efficient
methods of filtering and smoothing DEM data, as well as error detection and correction.
The results of tests using this algorithm have been very favourably compared with other

algorithms commonly used for the filtering of DEM data for terrain modelling.

This thesis is a contribution to the research on an intelligent procedure for DEM
determination from satellite and aerial images, funded by the Australian Research Council,
and being undertaken jointly by Professor Trinder (UNSW) and Professor Kurt Kubik

from the University of Queensland.

Em. Professor John Trinder
November 2001






ABSTRACT

Digital Elevation Models (DEMs) have been increasingly used to model topographic
characteristics of the terrain surface in geographical, hydrological, and biological
studies. Elevation information, together with the first and second order partial
derivatives of the elevation derived from a DEM, are the most important terrain
variables for terrain modelling. In this thesis, a new method of applying a two-
dimensional (2-D) Kalman filtering technique over a grid DEM for terrain surface
modelling is developed consisting of three major components: the 2-D Kalman filter,

the method for DEM outlier detection and removal, and a 2-D Kalman smoother.

The 2-D Kalman filter establishes dynamic and functional models for a grid DEM to
produce optimal estimates of terrain attributes of a DEM point using the relevant DEM
observations, and the predictions derived from its orthogonal neighbouring DEM points.
This 2-D recursive process is shown to be ideal for handling DEM random noise during
the terrain modelling process. The method for DEM outlier detection and removal 1s an
extra function that is added to the 2-D Kalman filter developed in this research. It uses
the dispersions between the predicted estimates of elevation and the relevant elevation
observations to detect outliers. These are removed by amplifying the relevant
observation variance of that point while deriving the updated estimates of elevation in
the 2-D Kalman filtering process. The reliability of outlier detection relates to the level
of confidence selected. It is suitable for applications in smooth terrain surfaces where
the accuracy of the predictions of elevations is high. The 2-D Kalman smoother is a
linear combination of four 2-D Kalman filtering results, derived on the basis of different

orientations, that further improves the accuracy of the 2-D Kalman filtering process.

The methods are applied experimentally on a simulated and a real world DEM. The
results show that the 2-D Kalman filtering algorithm developed in this research is
capable of detecting and removing DEM outliers with a high degree of accuracy and
reliability, and is more efficient in reducing the effect of DEM random noise, compared

to the commonly used terrain modelling methods.
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CHAPTER 1

INTRODUCTION

1.1 Digital Elevation Models (DEMs)

The morphology of the surface of the earth plays an important role in understanding the
physical, chemical, and biological processes that occur within the landscape. The shape
of the terrain influences many phenomena of the physical environment, such as the flow
of surface water, transport of sediment and pollutants, climate both at local and regional
scales, as well as nature and distribution of plants and animals, and the migration pattern
of many animal species (Blaszczynski 1997). Knowledge of terrain morphology is also
important for many engineering or land-management endeavors that affect or disturb the

surface of the land.

The morphology of a terrain surface is defined directly by the relief of the terrain. In the
digital domain, terrain relief is represented as Digital Elevation Models (DEMs), which
have been extensively studied for more than three decades in photogrammetry
(Ackermann 1994). Grid-structured DEMs are widely applied in different fields, which
are also chosen as the default DEM format of this thesis. Grid DEMs can be generated
from contour maps, photogrammetric stereo models, and other active remote sensing
systems, such as radar and laser scanners. Among the existing DEM generation
approaches, the conventional analytical photogrammetric method is a standard procedure
with high quality standards (Ackermann 1994). Advanced digital photgrammetric
methods, based on Digital Photogrammetric Workstation (DPW), can now produce

highly accurate elevations.

Researchers have become increasingly concerned with the use of grid DEMs for
automatically modelling terrain features, such as slope and aspect (Hodgson 1995,

Bolstad and Stowe 1994, Skidmore 1989), topographic features (Lee 1994), radiance and



hillshading (Giles and Franklin 1996, Lapen and Martz 1993, Zhou 1992), soil wetness
(O’Loughlin 1986), surface/volume approximation (Kalmar et al 1995), accuracy
assessment (Rieger 1996, Wolock and McCade 1995, Kraus 1994, Freeman 1991),
valley/ridge identification (Tribe 1991, Haralick 1983), drainage basin delineation
(Freeman 1991, Lammers and Band 1990, Martz and Jong 1988, Mark 1984), and
drainage network extraction (Meisels et al 1995, Holmgren 1994, Martz and Garbrecht
1992, Chorowicz et al 1992, Quinn et al 1991, Qian et al 1990, Smith et al 1990,
Seemuller 1990, Band 1986, O’Callaghan and Mark 1984).

The modelling of terrain surface by DEMs has gradually evolved into a major constituent
of Geographical Information Systems (GIS) technology (Brandli 1996). In conjunction
with the two dimensional functions of a GIS, the integration of digital terrain modelling
(DTM) and GIS provides a powerful and flexible basis for the display, analysis, and

modelling of phenomena related to the topography of terrain surfaces.

1.2  Terrain Surface Modelling

Automated extraction of new information from grid DEMs, i.e. terrain surface modelling
techniques, has achieved three levels of complexity in current GIS (Blaszczynski 1997).
The first and fundamental level of terrain surface modelling is to compute terrain
topographic attributes, such as slope and aspect, from DEM data. These attributes can be
used as geomorphological parameters for environmental studies. The second level is to
delineate watershed boundaries or steepest flow paths over the terrain surface of DEM
mapping area. The modelling at this level is generally based on the further analysis of
terrain topography and geometry, and usually does not need additional information other
than the DEM. A third level of terrain surface modelling undertaken in GIS is to integrate
the first and second level of terrain surface modelling with other parameters to further

model the relevant geomorphological processes, which occur over the landscape.

However, it is not a simple task to monitor terrain topographic attributes from DEMs,

since it uses discretely grid-structured data to model the continuity of real landscapes.



Although digital terrain modelling using grid DEMs has been studied more than two

decades, there are still significant limitations in the terrain modelling methods developed

to date. Some of these are:

e they use deterministic terrain models, and do not count the errors that the models may

generate;

e they use a fix-sized modelling window, such as 3 by 3 or 2 by 2 window, for digital

terrain modelling, and this cannot be changed for different types of landscapes.

e they use limited DEM measurements (up to 9 measurements) to derived the relevant
terrain topographic attributes of each DEM point, no matter how large the DEM data

set is, and this is inefficient in reducing the effect of DEM random errors, and

e none of the existing terrain modelling methods, to the author’s knowledge, have

developed procedures for DEM outlier detection and removal.

In summary, the limitations arise mainly from an insufficient understanding of terrain
topographic characteristics defined by discrete grid DEMs, and the lack of the theoretical

means to systematically process DEMs to generate accurate terrain topographic attributes.

1.3 The Kalman Filtering Technique

Kalman filtering is a linear estimator suitable for random process (Kalman 1960). A
Kalman filter for a particular application is developed based on a so-called dynamic
model, and functional model. Kalman filters use a stochastic model to model the
unknown parameters of a random process between adjacent neighbours. The dynamic
model established in a Kalman filter is able to generate the predictions of the unknown
parameters. These predictions are used as another source of information, other than the
observations, to produce the optimal estimates of the random process. Furthermore, the

Kalman filter is a recursive process. All the predictions and the observations of the



processed points of the random process are used for the processing of the next DEM point
to be processed. Or in another words, besides the adjacent processed points, the filter uses
all previously processed points to derive the optimal estimates of the point being
processed, with unequal importance, which is controlled by their variance-covariance
factors. The contributions from closer neighbouring points would be greater than those
from remote points, where the correlation is weak. Kalman filters can also be applied in
vector form with multiple unknown parameters. The scalar Kalman filtering is only a
special case of a Kalman filter. It is able to handle large data sets in an efficient way
through its recursive process. In addition, it is capable of providing the variance-
covariance information for the processing, which can be used for further error analysis.
That is why the Kalman filter has been widely and successfully adopted in different

disciplines for on-line (real-time) or off-line random processes since its introduction.

1.4 Aims and Objectives
Applying Kalman filtering techniques on grid DEMs for terrain surface modelling may

overcome the shortcomings of the current DTM techniques in the following respects:

e The terrain modelling method will be based on a stochastic rather than a deterministic
model. In this way, the terrain model will be less affected by errors in DEM

observations, as well as the differences in the terrain model itself;

e The terrain modelling methods will not be limited to a certain fix-sized modelling
window, such as 3 by 3 window, instead it will use the whole DEM as an observation

sequence of a random process;

e The derived terrain topographic attributes will be the optimal estimates of the relevant
random process by minimizing DEM observation errors and model errors in the sense

of minimum-mean-square-error.

e It would be possible to introduce other statistical tools for DEM outlier detection and

removal during the terrain modelling process. At each DEM point, the a priori



estimates of terrain attributes are generated by the Kalman filtering, as well as the
associated variance-covariance matrix of the estimates. It is possible to establish a test

statistic for DEM outlier detection and develop the relevant removal procedures;

e The use of Kalman filtering techniques in terrain surface modelling permits a
recursive computing process, which would be significant for handling DEMs for

terrain modelling applications.

e Using DEMs for terrain surface modelling is often an off-line process, so theoretically
there are no processing limitations as occur for Kalman real-time applications. If a
Kalman smoother was developed, it will be possible to use all DEM measurements to
derive the terrain attributes for each DEM point. Therefore, the efficiency of DEM

random error treatment would therefore be greatly improved.

The innovative use of Kalman filtering techniques on grid DEMs for terrain surface
modelling therefore will overcome the limitations of current terrain models, and create

more accurate and reliable terrain topographic attributes.

1.5 Methodology

However, the application of Kalman filtering techniques on DEMs for terrain modelling
is a challenge, since it has not been applied in terrain surface modelling. In addition, from
the aspect of the Kalman filtering techniques, it involves the development of a method of

Kalman filtering in two-dimensions.

The key problems in the development of 2-D Kalman filters for terrain modelling are the
establishment of a stochastic terrain model, and a truly recursive process over the 2-D
DEM:s. In this study, the elevation, and two first partial derivatives of elevation along the
two orthogonal axes of a DEM were chosen as the topographic attributes to be
determined from a DEM. The stochastic terrain model, which is also used as the dynamic
model of the Kalman filtering, is formed as a linear function of the three terrain attributes

between the adjacent DEM points. The observations at each point are assumed to be



linear in terms of terrain attributes to form the functional model. Based on the dynamic
and the functional models, particular 2-D Kalman recursive equations will be developed,
which consists of more than five equations to make it suitable for applications in terrain

modelling.

The method for DEM outlier detection and removal will be developed based on the
relevant results of the 2-D Kalman filter and the detection theory in statistics. The method
will detect outliers based on the differences between the a priori estimates of elevation of
a DEM and the relevant DEM observations. The binary hypothesis testing and the
Neyman-Pearson strategy will be used to investigate the reliability of outlier detection. If
an outlier is detected, the algorithm will remove the effect of the outlier by generating the

estimate of elevation of the DEM point using mainly the prediction.

The developed 2-D Kalman smoother is a linear combination of four Kalman filtering
results, which is applied over the same DEM at four different orientations. This algorithm
enables the use of the full DEM to estimate terrain attributes of a single DEM point, and

therefore further improve the accuracy of the derivation of terrain attributes.

1.6 Thesis Outline

This thesis consists of eight chapters.

Following the introduction, Chapter 2 reviews and compares current terrain surface
modelling techniques using grid DEMs. The DEM acquisition techniques and products
are summarized. The characteristics of DEM errors and their impact on DEM
applications, the effect of DEM resolution on DEM applications are reviewed. The
current terrain surface modelling techniques are compared, and their limitations are

investigated.

Chapter 3 introduces the Kalman filtering techniques, including the theory of one-

dimensional (1-D) Kalman filter for filtering and smoothing problems, a comparison of



Kalman filtering with the conventional least squares method, and the developed 2-D

Kalman filter and its limitations.

Chapter 4 presents the first part of the development of the new 2-D Kalman filtering
algorithm for terrain surface modelling. It covers the establishment of the dynamic and
functional model of the 2-D Kalman filter, and the derivation of 2-D Kalman recursive
equations. Computational considerations including the boundary conditions and the
determination of stochastic models are also addressed. Experiments over the simulated
terrain surfaces are described, and the relevant results are compared with those derived

using other terrain models.

Chapter 5 presents the second part of the 2-D Kalman filtering algorithm, i.e. a method
for DEM outlier detection and removal. A brief introduction of statistical hypothesis
testing is given at the beginning of the Chapter. The method for outlier detection and
removal is presented, and the reliability of outlier detection is further discussed in terms
of internal and external reliability. Experimental results for outlier detection and removal

are presented, followed by pertinent comparisons with other terrain models.

Chapter 6 presents the third part of the 2-D Kalman filtering algorithm, i.e. a Kalman
smoother, based on the developments of Chapters 4 and 5. The results of the testing of
the 2-D Kalman smoother are given, as well as a comparison of the smoothing results
with the Kalman filtering results. A summary of the 2-D Kalman filtering algorithm for

terrain surface modelling is presented.

Chapter 7 presents experimental results of the developed algorithm applied to real DEM
data. The efficiency of DEM random noise reduction and outlier detection and removal of
the 2-D Kalman filtering algorithm are investigated. The impacts of terrain characteristics

and DEM resolution on the filtering or smoothing results are analysed.

Chapter 8 summarizes findings, draws conclusions, and makes recommendation on topics

for further research. Some points related to the applications of the 2-D Kalman filtering



algorithm for terrain surface modelling using grid DEMs and further potential are also

addressed.

1.7 Contributions

This is the first time that a digital signal processing technique, i.e. Kalman filtering, has
been systematically applied to terrain surface modelling. This study develops a
completely new approach to modelling terrain topographic attributes from grid-structured
DEMs. The innovation of the 2-D Kalman filtering algorithm in terrain surface modelling

exist not only in terrain surface modelling but also in the 2-D Kalman filtering technique.

e A new 2-D Kalman filtering algorithm for terrain modelling is developed. It
establishes dynamic functional models over a grid DEM for terrain modelling, and

develops a recursive process in two dimensions.

e The technique includes a function for DEM outlier detection and removal , which has

not been addressed in the existing terrain modelling methods.

e A 2-D Kalman smoother is developed. The four-step filtering strategy developed in
the smoother enables an effective establishment of a 2-D Kalman smoothing
procedure that further improves the accuracy of the derivation of terrain topographic

attributes.



CHAPTER 2

ACQUSITION AND APPLICATION OF DEMS FOR

TERRAIN SURFACE MODELLING

2.1 DEM Acquisition and DEM Products

2.1.1 DEM acquisition

DEM data may be acquired from existing maps, from photogrammetric stereo models,
from ground surveys, or from other systems, such as radar or laser altimeters and

sensors carried in aircraft and spacecraft, and active remote sensing systems.

Generating DEM from ground surveys

Data derived by field survey involves the measurement of traverses with additional
radiations or measurement of offsets (equivalent to radiations at right angles to a
traverse). Either method results in vector data, which can be recorded by manual means
in tabular or graphical form, with modern electronic equipment, for example by a data

logger which can be plugged directly into a computer (Trinder 1996).

Generating DEM from existing maps

The two most commonly used techniques of acquiring DEM from existing maps are
manually digitizing contour lines (line following), and map scanning. Manual digitizing
involves the tracing of features on a map with a digitizing cursor. It has a high
probability of either duplicating or omitting information (Doyle 1978). Raster scanning,
a computer controlled operation, which creates a digital image of the source maps, is
now used extensively. The resultant image is composed of a number of raster lines each
composed of a number of image elements, i.e. pixels (Faust 1987, Sircar and Cebrian
1991). This image can be converted to vector by raster-vector conversion software.

Significant editing may be required subsequently to obtain correct vector data.



Generating DEMs from stereo models

DEMs may be acquired from photogrammetric observations of aerial photos or satellite
imagery on analytical or digital stereoplotters. The generation of DEMs using analytical
photogrammetry is a standard and well established task (Ackermann 1994), involving
data sampling and interpolation. In the sampling, a dense network of points is measured,
the location of which will be dependent on the roughness of terrain. Many sampling
methods have been developed to provide ‘good’ solutions to the selection of DEM point
location, including selective sampling, adaptive sampling, and progressive sampling.
Further details of DEM sampling are given in Makarovic (1973, 1976, 1977), Ayeni
(1982), Balce (1987), and Burrough and McDonnell (1998). Data interpolation is also
an important issue, since the measurements sampled from a stereo model are often
inadequate and irregularly distributed. The problem of determining ‘what is between the
sample points measured’ affects the quality of the final DEM. Many interpolation
algorithms are designed to minimise the RMS-error (standard derivation of elevation
discrepancies) of a DEM (Torlegérd et al 1986). On the other hand, some interpolation
algorithms are designed to preserve terrain texture, such as stream lines, ridge lines,
maxima and minima points, sometimes at the cost of altimetric accuracy (Polidori and
Chorowicz 1993). There is an extensive literature on interpolation including
contributions by Kraus and Mikhail (1972), Briggs (1973), Schut (1976), Kubik and
Botman (1976), Peucker (1980), Sibson (1980), Lam (1983), Yoeli (1984), Watson and
Philip (1985), Hutchinson (1984, 1989), Polidori and Chorowicz (1993), Nery et al
(1994), Todini and Ferraresi (1996) and Burréugh and McDonnell (1998).

DEMs can be extracted using digital photogrammetry by image matching techniques
from overlapping digital photographs. Extracting DEMs from a digital stereo model
comprises two major operations, image matching and calculation of the three
dimensional coordinates of each matched point of the DEM (Trinder et a/ 1994). Image
matching is a difficult task since variations exist in the radiometric and geometric
properties of a given object in the image pair. Matching algorithms have been developed
mainly based on the comparison of the similarity or differences of corresponding areas
(image patch) of two photographs, or features (significant points, lines, regions,
structures) (Baltsavias 1991). The image matching approach is developed for DEM
generation since it enables the operator to carry out a number of automatic operations,

such as automatic target location and elevation computation, with sub-pixel matching
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accuracy (Trinder et al 1994, Ackermann 1994). There are a number of digital
photogrammetric systems available, which have different levels of performance and
interactive operations (Madani 1993, Heipke 1993, Al-garnl 1995, Molnar et al 1996,
Shear and Allen 1996, Baltsavias and Késer 1998, Bacher 1998).

Generating DEMs from active sensors

DEM can also be acquired from active remote sensing systems, such as Radar (RAdio
Detection And Ranging) and laser scanners. The sensors emit their own energy which is
reflected by the terrain and recorded by the systems. Radar systems have a particular
advantage in those parts of the world where significant cloud or haze problems severely
limit the opportunities for visible/infrared image acquisition (Wise 1989), and
theoretically can be operated in any season and at any time (day and night). Elevation
can be determined by radargrammetry from two overlapping radar images, or by radar
interferometry, which uses the phase difference between the received radar radiation on
two antennas, typically separated on an aircraft or spacecraft (RSMAS 1995). The
Shuttle Radar Topographical Mission (SRTM) of NASA permitted the generation of
global high resolution digital topographic data, with 30 metre x 30 metre spatial
sampling with 16 metre absolute vertical height accuracy, 10 metre relative vertical
height accuracy, covering 80% of earth's land mass (between 60°N and 56°S).
However, currently there are technical difficulties with this approach, such as low
coherence over the surfaces of complex topography, atmospheric artefacts, and effects
of vegetation, which limit the application of interferometric Synthetic Aperture Radar

(SAR) DEMs (RSMAS 1995, Crosetto and Crippa 1998).

Laser scan techniques determine terrain elevations by measuring the distance from the
aircraft to the terrain surface in scan lines normal to the flight path. Position and tilts of
the aircraft must be accurately determined by Global Positioning Systems (GPS) and
Inertial Navigation Systems (INS). In a pilot study of using airborne laser data to
determine terrain elevation over difficult terrain surfaces, such as vegetation covered

areas, can be found in Kraus and Pfeifer (1998).
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2.1.2 DEM products

The choice of methods of collecting a DEM 1is a matter of accuracy and cost. For
example, the DEM derived by ground survey is the most accurate method, but
centimetre accuracy is achieved at relatively high cost. Compared to ground surveys, the
photogrammetric method would be cost effective for a large area. The accuracy of
digitizing existing maps will vary according to the scale of a map used and other
factors. The accuracy specifications for mapping in Australia set by the National
Mapping Council require that 90% of well defined points on the map must be within 0.8
mm for map scale greater than 1:20,000, and 0.5mm for map scales less than or equal to
1:20,000 for planimetry, and within 0.5 contour interval for heights. The currency of the
data will depend on the age of the map, but elevations will not be significantly affected,

because they do not normally change with time.

Another important issue is the lineage of a DEM data, that is, the processes used on the
data since its original derivation, which may affect the DEM accuracy. The DEM user
should be aware of where the DEM data has came from, and how it was produced. A
DEM with long lineage may be subject to significant errors introduced by each
subsequent process since its original derivation, while a DEM with short lineage, such
as one derived from ground survey, may be more accurate, since it is subject to fewer

subsequent processes.

DEM data are produced by authorized government agencies and private sectors. In
Australia, the Australian Surveying and Land Information Group (AUSLIG) and some
state mapping agencies produce and distribute national DEM products. The available
digital elevation data from AUSLIG includes DEM-9S (approximately 250m grid
spacing), 18" (approximately 500m) and 3" (approximately 100m) grid DEM, 50m and
20m spacing contours, and irregular points of spot height and Critical Aeronautical

Heights (http://www.auslig.gov.au). The accuracy of the DEM-9S makes it suitable for

the applications that require data from map scales of 1:250,000. Results of some

accuracy tests on the data can be found in

http://www.auslig.gov.auw/products/digidat/dem9s/00000017.htm (June 2000).
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The U.S. Geological Survey (USGS) is a major DEM producer in USA. It provides 7.5-
minute with 30m grid spacing, 15-minute, 30-minute and 1-degree DEM data, covering
the American national land surface, generated by digitizing the source of contour maps

or aerial photographs (Source: http://edewww.cr.usgs.gov/glis/hyper/guide/usgs_dem, July

1999). A 7.5-minute DEM data spans 7.5 minutes of latitude and longitude. The
accuracy of USGS’ DEMs are obtained by comparing a minimum of test points with
ground control values, and is documented with the data. For example, the vertical
accuracy of USGS 7.5-minute DEM is reported to be equal to or better than 15 metres,
and can support applications to a level of detail similar for manual interpretation of

information on printed maps at scales not larger than 1:24,000 scale.

2.2 DEM Accuracy

2.2.1 DEM errors and their characteristics

Spatial data is subject to errors, which generally result from four major causes (Maffini

et al 1989):

e the inherent properties of nature. These are not always distinct and clear, but
frequently gradual and fuzzy.

e the nature of measurement. That acquired by observers with instruments inevitably
introduces errors. The capability of the person using the measuring device can also
clearly influence the range of errors.

e the data model that is used to communicate the measurements. The very structure of
the data model, such as raster or vector, can be a source of error.

e the data processing and transformation. The more times a set of measurements are
transformed through one process or another, the more likely new errors or

uncertainties will be introduced into the derivative products.

The quality of a DEM depends firstly on the data acquisition: density, distribution and
quality of measured points, the representation of spatial morphological features (break
lines, etc.); and secondly relates to data processing: interpolation and special operational
processes (filtering, etc.) (Ackermann 1978). Theobald (1989) has indicated that DEM
errors may be caused by inadequacies in the source documents and instruments.

Torlegird et al (1986) show that the accuracy of a DEM depends on a series of
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parameters, such as terrain type, density of measured points, type of measurements
(selective, profiles, contours, grids, progressive), interpolation method, DEM sampling
interval, instrument and operator precision, number, location and accuracy of control
ponts, quality of photographs, and flying height. Carter (1988) has pointed out that the
representation of the terrain by a DEM in grid format may poorly define the land form
in areas of gentle slope or complex relief because the grid spatial resolution cannot be
varied. Therefore, the applications of DEM data should be governed by the resolution,
accuracy, and precision of the DEM. The experiments by Li (1994) further confirm that

DEMs derived from different source data achieve different levels of accuracy.

DEM errors can be classified as systematic errors, random noise and outliers.
Systematic DEM errors are the biases and artefacts resulting from deterministic systems
which, if known, may be represented by certain functional relationships (Thapa and
Bossler 1992). Torlegird et al (1986) examined systematic DEM errors derived by
analytical photogrammetric methods and summarised their causes as being due to the
reconstruction of the stereo model, the interpolation algorithms, and effects of
vegetation height. Brown and Bara (1994) attempted to recognise the systematic errors
in the USGS 7.5-Minute DEMs using the anisotropy of semivariograms and fractal
dimensions. Garbrecht and Starks (1995) noted the systematic errors in USGS 7.5-
Minute Level 1 DEM, and believed that they relate to the manual profiling technique

used during the data generation.

DEM random noise refers to randomly distributed errors with high frequency
characteristics in the spectral domain, normally with zero mean and a certain variance
(Tempfli 1980). Random noise reduces DEM precision but does not introduce
systematic bias. Precision is defined as the degree of variation about a mean, while
accuracy refers to the degree with which an estimated mean differs from the true mean.
Random noise in DEMs are likely to be introduced in all steps of DEM processing from
the original source data through to data processing. Schwarz (1982) had shown that
stereoscopic observations of topographic features result in height measurement
precision varying from 0.07-0.15%. of the flying height. Tests of stereoscopic
observations on black and white aerial photographs revealed that standard deviations of
height measurement could be improved to 0.03%o of flying height (Trinder 1984). The
tests by Torlegérd et al (1986) showed that the standard error in photogrammetrically
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measured DEMs is in the range of 0.2-0.4%o of flying height in flat or moderately
undulating terrain. In very hilly terrain the standard error increases (o approximately 1-
2%o of flying height. The accuracy of DEMs, derived from photogrammetrically
measured contours, is reported to be as much as 1/3 to 1/5 of the contour interval.
Depending on the characteristics of the terrain topography, it can be further improved to
1/6 to 1/14 of the contour interval if additional information about specific features is
available (Li 1994). The accuracy of DEMs produced by digital photogrammetric
means, using least squares matching, is typically of the order of 0.2 to 0.3 pixel (Trinder
et al 1992). Using feature based image matching, the accuracy is in the order of 0.3 to

0.4 pixel level (Ackermann 1994).

Outliers are another kind of error in DEMs. The definition of an outlier is ‘an
observation which deviates so much from other observations as to arouse suspicions
that it is generated by a different mechanism’ (Hawkins 1980). An inspection of a
sample containing outliers would reveal some large discrepancies between the
observations of outliers and the other data, as measured on some suitable standardized
scale. In photogrammetrically derived DEMs, errors may occur more frequently in a
difficult than smooth terrain, which can vary from 0% to 3% of the observations of a

DEM with 0.5% median value (Torlegard et al 1986).

2.2.2 Impact of DEM errors on terrain surface modelling

The impact of DEM random errors on the extraction of terrain features is significant.
Lee et al (1992) demonstrated that the magnitudes and the spatial patterns of the
random errors in a DEM significantly affect the results of terrain analysis. An
evaluation of SPOT derived DEMs showed that they were unreliable for computing the
derivative topographic variables (Giles and Franklin 1996). Bolstad and Stowe (1994)
evaluated the DEM accuracy of the USGS-7.5 Minute DEMs, as well as SPOT derived
DEMs, and found statistically significant errors in slopes and aspects in the SPOT
DEM. Huss and Pumar (1997) investigated the effects of errors on the estimates of
intervisibility, and indicated that heights at the nodes of an uniform grid spacing over a
specified geographical area may differ from the true height at the specified grid point on
the earth.
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Some researchers have attempted to use different means to monitor the effect of DEM
random noise in the modelling of terrain topography. Tempfli (1980) tried to use spectra
to describe DEM random noise and terrain relief in the study of the different
interpolation methods and the influence of sampling density. Kraus (1994) analysed the
effects of random noise on DEM surfaces and their derivatives, and used the accuracy
of elevation and the relevant maximum slope to model the accuracy of isolines, such as
contours and slope lines. Hunter and Goodchild (1997) declared that errors in slope and
aspect depend on the spatial structure of DEM errors, and developed an error
propagation model for slope and aspect, based on DEM standard deviations. Rieger
(1996) developed a DEM error propagation model for slope and aspect calculation,

based on different algorithms to derive the slope and aspect from a DEM.

Some researchers, for example Giles and Franklin (1996), have suggested that an
appropriate method of correction or filtering a raw DEM must be applied to reduce the
effect of the DEM noise before the derivatives of the DEM can be calculated. However,
few attempts could be found to develop a particular method to efficiently reduce the

effect of DEM random noise in terrain surface modelling.

The effect of DEM outliers on terrain surface modelling is also significant, especially in
the modelling of their neighbouring DEM points. Experiments conducted by Wang
(1998) and Wang et al (1998b) illustrated the significant influence of DEM outliers on
the derivation of terrain topographic attributes. However, few other studies have
documented a quantitative evaluation of the impact of outliers or methods of detecting

and removing them in digital terrain modelling.

The impact of DEM systematic errors on terrain surface modelling is dependent on the
characteristics of DEM systematic errors. If the systematic errors have a linear
relationship with the observations, they may mainly affect the absolute values of
elevation, and usually have little influence on the quality of DEM derivations, such as
gradients, slope, aspect, etc. which are obtained from local height differences. However,

if the systematic errors are nonlinear, the impact will be more complex.

One of the important objectives of this study, therefore, is to develop efficient methods

to reduce the effects of DEM random noise and detect and remove DEM outliers for
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terrain surface modelling. However, this research will not involve the study of DEM
systematic errors, which may need additional tools and more investigations on their

characteristics.

2.2.3 DEM resolution and its impact on its applications

An inherent property of geographic phenomena is their resolution dependency, which
means that the characteristics of geographic patterns under observation vary with the
sampling interval of the data describing them. Resolution in a DEM is the smallest
interval between adjacent DEM positions or posts. When an elevation grid is sub-
sampled to obtain another grid at a coarser resolution, not only are the fine resolution

features removed, but also the number of grid cells describing the surface is reduced.

The sampling interval utilized to create DEMs is critical to their capability to portray the
landscape, particularly in complex and rugged terrain. High sampling frequency of
information represented in DEMs better represents landscape terrain for the user (Pike
1988, Walsh 1989). In theory, the minimum DEM sampling rate needed to preserve all
the information content of a particular terrain surface should be twice the highest signal
frequency. However, this is hard to achieve in practice, since the interpretation of the
characteristics of terrain in the spectral domain is difficult. Empirical recommendations
may be applied in practice. Kubik (1985) recommended that using Sm DEM sampling
intervals for plateau and hilly terrain would be suitable from stereo models with
1:25,000 photo scale, while in the rolling downland terrain, the sampling interval should

be 8m over the stereo models with a 1:78,000 photo scale.

Some researchers have investigated the impact of DEM resolutions on terrain
modelling. Chang and Tsai (1991) show that the accuracy of slope and aspect decreases
with lower DEM resolution. Zhang and Montgomery (1994) stated that, in the context
of catchment simulation, DEM resolution significantly affects computed topographic
parameters and influences physically based models of runoff generation and surface
processes. Band er al (1995) indicated that DEM resolution appears to have more

impact on simulated hydrographs of a TOPMODEL-based watershed model.
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Fractals provide an important approach in describing and modelling the resolution
effects of spatial data (Cao and Lam 1997, Xia and Clarke 1997). Nakano (1984) found
a systematic increase of fractal dimension with elevation over short distances along the
Pacific coast in Japan. Both Klinkenberg (1988) and Xia (1993) confirmed that the
variation of fractal dimension of elevations depends on the landform characteristics of
different geographic areas. Unfortunately, the applications of fractals in DEM-related
terrain modelling is still limited. Nevertheless, many fundamental questions about
fractals remain to be answered before their full potential can be exploited. More
extensive empirical studies are needed to reveal the wide range of uses and practical

limitations of fractal geometry in terrain modelling (Xia and Clarke 1997).

2.3 Digital Terrain Surface Modelling Techniques

2.3.1 Terrain topographic attributes and their geomorphological significance

Terrain topographic attributes that can be derived directly from a DEM and which are

geomorphologically significant are summarised in Table 2-1 (Moore et al 1993).

Among these, slope is defined by a plane tangent to the surface as modelled by the
DEM at any point and comprises two components: gradient, the maximum rate of
change of elevation; and aspect, the compass direction of this maximum rate of change
(Burrough and McDonnell 1998). Gradient is usually measured in per cent, degrees or
radians, and aspect in degrees (converted to a compass bearing). Convexity is defined as
the rate of change of slope or aspect, measured in degrees per unit of distance, e. g.
degrees per 100 m. Profile convexity is the rate of change of slope, and plane convexity
is the rate of change of aspect. Concavity is negative convexity. A point on a straight
and planar slope has zero convexity. The importance of profile and plan convexities rest
in their control of acceleration/deceleration and convergence/divergence of near-surface
flows, and their effect on shelter or exposure to the wind, radar scanners and the human
eye. They also affect the distribution of stresses in the ground and snow or ice cover.

High values of plan convexity hinder overland movement (Evans 1972, 1980).
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“Attribute

Elevation

Table 2-1 Terrain attributes derived from DEM data (after Moore et a/ 1993)

Definition

Climate, vegetation, potential energy

Significance

Upslope height Mean height of upslope area Potential energy

Aspect Slope azimuth Solar insolation, evapotranspiration,
flora and fauna distribution, and
abundance

Slope Gradient Overland and subsurface flow
velocity and runoff rate,
precipitation, vegetation,
geomorphology, soil water content,
land capability class

Upslope slope Mean slope of upslope area Runoff velocity

Dispersal slope

Mean slope of dispersal area

Rate of soil drainage

Catchment slope

Average slope over the catchment

Time of concentration

Upslope area

Catchment area above a short length

of contour

Runoff volume, steady-state runoff

rate

Dispersal area

Area downslope from a short length

of contour

Soil drainage rate

Catchment area

Area draining to catchment outlet

Runoff volume

Specific catchment area

Upslope area per unit width of

contour

Runoff volume, steady-state runoff,
soil characteristics, soil water

content, geomorphology

Flow path length Maximum distance of water flow toa  Erosion rates, sediment yield, time of
point in the catchment concentration

Upslope length Mean length of flow paths to a point ~ Flow acceleration, erosion rates
in the catchment

Dispersal length Distance from a point in the Impedance of soil drainage
catchment to the outlet

Catchment length Distance from highest point to outlet ~ Overland flow attenuation

Profile curvature

Slope profile curvature

Flow acceleration, erosion/deposition

rate, geomorphology

Plan curvature

Contour curvature

Converging/diverging flow, soil

water content, soil characteristics
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Based on these attributes, terrain hydrological, geomorphological and biological
significance can be further modelled, by combining the indices that describe or
characterise the spatial variability of specific processes occurring in the landscape
(Moore et al 1991), for example, soil water content distribution and surface saturation
zones, calculation of precipitation and soil erosion, and monitoring of solar radiation

dependent processes.

2.3.2 Terrain surface modelling techniques

Elevation and its partial derivatives, i.e. gradient along the X and Y mapping axes, are
the most important terrain topographic attributes to be derived from a grid DEM, since
all other terrain attributes can be expressed as functions of these. From this point of
view, Evans (1972) has suggested using elevation at a point, and its two first partial
derivatives, as a unifying concept to rebuild general geomorphometry. Many of the
developed terrain surface modelling methods actually attempt to optimally model the

first partial derivatives of elevation, i.e. gradients, from a grid-structured DEM.

A variety of digital models of terrain attributes using grid DEMs have been developed.
Some commercial GIS, such as Arc/Info, and terrain modelling software, such as
SCOP, also include modules of terrain modelling. The reviews of terrain modelling
techniques can be found in Skidmore (1989), Chang and Tsai (1991), Srinivasan and
Engel (1991), Guth (1995) and Florinsky (1998). The current terrain modelling methods
can be classified into the maximum value, weighted elevation difference and the surface

fitting approaches.

The maximum value approach

This approach is the simplest but coarsest method. It uses the maximum values within a
DEM neighborhood to approximate the real values of the relevant terrain attributes of
the point of interest (Travis et al 1975, Beasley and Huggins 1982, Shanholtz et al
1990).
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dx

dy

Figure 2-1 The maximum value approach

Travis et al (1975) used a 3 by 3 window to model the gradient and aspect of each DEM
point shown in Figure 2-1. The gradient of a DEM point is defined as the maximum
chnage from the central point to the eight nearest points, and the relevant aspect of the

point is the direction of the maximum gradient:
G(i, j)=max((zs —z,)) while k=12,34,67389 2-1

where G(;, j) is the gradient of the central point of the window, i.e. DEM point (i j)

and z; to zy are the DEM measurements of the corresponding points in the window.

Shanholtz et al (1990) developed a method for slope using the maximum gradient
within a 3 by 3 neigbourhood. The slope of the central point of the window is calculated

with respect to its eight neighbours:

S(i,j)=max|zs —z;|/100L  while k=1,2,3,4,6,7,89 2-2
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where L is the distance from the centre point to its neighbours, evaluated for the DEM

sampling interval dx or dy for the four adjacent points, and \/ (dx )2 + (dy )2 for the

diagonal points.

Beasley and Huggins (1982) also presented a method to estimate the average slope from

the maximum value of the linear combinations of the four neighbours.

The weighted elevation difference approach

This approach is more accurate and more commonly used than the maximum value
approach. The terrain attributes are determined using the elevation differences along the
X and Y-axes and a weighting factor, which is normally based on the distance between
the neighbouring points and the point of interest within a neighbourhood. The approach
can be further classified into the second-order finite difference and third-order finite
difference method, depending on whether or not it only uses four immediately adjacent

DEM points or all eight surrounding DEM points.

Dozier and Strahler’s (1983) method simply chose the closest two adjacent DEM points

in the X or Y-axes to determine the gradients of point (i, j) of these two directions, as

shown in Figure 2-2:

G, (i j)=(zs —2,)/2dx 2-3

G, (i 7)=(zg —z5)/2dy 2-4
Where G, (i, j) and G, (i, j) are the gradient along the X and Y-axes.

The slope and aspect of the centre point are determine from:

S(i. )= arctan (G, (. /) + (G, (. /)Y 2-5

G, J)
G, (ij)

A(i, j) = arctan
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dx

Z, Z, Z3
dy Z4 Zg —»
X
Z7 Zg Zg
) 4

Figure 2-2 The second-order finite difference method

Ritter’s (1987) slope and aspect model is essentially the same as that developed by
Dozier and Strahler (1983), but they used different units in the slope calculation. Ritter
uses per cent as the unit for slope calculation, while Dozier and Strahler (1983) uses

radians:

g =2,) + (5 - 2,)° .
2d

S(, j)=100

where d is the DEM sampling interval. A slope of 100 percent, for example, represents

a 45 degree slope, when the rise and run are equal.

The terrain attribute models developed by Dozier and Strahler (1983) and Ritter (1987)
are a good compromise between accuracy and computational complexity. Precision is
lost, since the contributions from the diagonally adjacent points are ignored when
calculating the slope and aspect. However, they are more accurate than the algorithms
that produce slope and aspect from only two points, which is the case for the method of
the maximum value method. It is also a relatively simple and easily implemented

algorithm in practice.
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The algorithms presented in Sharpnack and Akin (1969) and Horn (1981) are able to
use not only the adjacent, but diagonal DEM points to predict the terrain variables of the
centre point of the 3 by 3 window (see Figure 2-3). Sharpnack and Akin (1969) even

use the six surrounding DEM points to compute each gradient of the centre point:

Gx(i,j)=[(29 + 24 +Z3)—(Z7 +2zy +Z,)]/6dx 2-8
Gy(i,j)=[(29 +zg +z7)—(z3 +z, +21)]/6dy 2-9
dx
Z; Z2 Z3

dy Z4 Z o —»

Figure 2-3 The third-order finite difference method

The derived gradients are used to compute the slope and aspect of the same point using

the same equations as Eq. 2-5 and 2-6.

Based on the method of Sharpnack and Akin (1969), Horn (1981) introduced different
weight factors for different surrounding points. It gives double weight to the two
immediate adjacent points in the derivation of gradients, for they are closer to the centre

point than those in the diagonal direction:
Gx(i,j):[(ZQ +2Z6 +Z3)'“(Z7 +224 +21)]/8dx 2-10
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Gy(i,j)=[(29 +22g +2,)—(z5 + 22, +z; )/8dy 2-11

One important thing to be noticed is that, in this approach, the elevation at the centre
(i, j) is never considered for estimating the terrain attributes: only its neighbours are
considered. This leads to inaccurate estimation of average slope values if the elevation
data have small pits or ridges. Hence, a function to smooth the elevation data sets is
normally used before calculating the slopes, thereby eliminating small pits or ridges

(Srinivasan and Engel 1991).

The surface fitting approach
The third terrain attribute modelling approach uses a surface fit to the 3 by 3 window.
The resolved parameters of the fitted surface are used to derive the terrain topographic

attributes of the central point of the window (see Figure 2-4).

Figure 2-4 The surface fitting approach

The polynomial used in Evans (1980) to fit to the 3 by 3 window is a six-parameter

quadratic equation:
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z=ax2+by2+cxy+dx+ey+f 2-12

Where a, b, ¢, d,e and f are the unknown parameters, (x, y,z) is the coordinate of a

DEM point.

The mathematical definitions of the terrain attributes gradient, slope, aspect, profile and
plan curvature, are expressed as the functions of the unknown parameters of Eq. 2-12

(Pennock et al 1987):

G (ij)=d 2-13
G,(i.j)=e 2-14
SGi, j)=Vd? + ¢’ 2-15
A(i, j)= arctan(sj 2-16
2 2
PlC(l, J)= - Z(bd + ae —2' Cdg) .17
i (ez + d2>

—2(ad2 +be’ +cde)

(e2 +d2)</(]+d2+e2)2

In order to obtain these coefficients, a least squares technique is applied by fitting Eq. 2-

2-18

PrC(i, j)=

12 to the nine DEM points of the window:

Z+V=AX 2-19
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z; x12 y12 x;yr xp oy 1
Z xﬁ )’5 X3y2 X3 y2 |1
Z3 X32 y32 x3¥3 x3 y3 |1
Zy xf J’j xX4yq X4 Yg 1
where Z =|z; |, V is the residual vector, A= x52 yf xsys x5 ys 1 and
Z6 xé ' yg xX6¥s X5 Y6 1
zy x72 yg x;y; x7 y7 |1
Zg x§ y§ xgyg Xg Yys |1
LZ9 ] Lxﬁ yﬁ Xgyg X9 Yo 1]

X= [a b cd e f] (v, y;,2;) are the coordinates of the nine points within the

window illustrated in Figure 2-4. Therefore, unknown parameters are solved as:

-1
X=(ATA) ATz 2-20
Rewriting the above equation in another form (Pennock ez al 1987):

[Z] +Z3 +Z4 +Z6 +Z7 +Zg ""2(22 +Z5 +Z8)]

a= 2-21
6w?
b:[21+22+z3+z7+28+Z9—2(Z4+z5+26)] 992
6w’
_ 25 +27 — 2/~ 2] 2-23
aw?
d=[Z3+Z6+29—ZI—Z4—Z7] 2.24
ow
e=[21+22+23'—27—28'—29] 2.25
ow
f:[521+2(22+z4 +2zg +28)'(ZI +2z3 +Z7+29)] 226

9

where w is the DEM sampling interval.

Moving the 3 by 3 window along the DEM, the gradients, slope, aspect, plan and profile

curvatures of all points of DEM can be calculated.
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The Evans method (1980) is the most accurate terrain modelling method among the
existing algorithms, for it is able to use redundant measurements and least squares to
estimate the unknown parameters of the assumed polynomial (Florinsk 1998). It is also
claimed that it produces more terrain attributes, such as plan and profile curvatures,

compared with the methods of the weighted elevation difference approach.

Shary’s (1995) method is actually the same as the Evans (1980) method, except one
more constraint is added to the polynomial fitting. It requires the polynomial to pass

exactly through the central point of the window, to make it easier for the solution of the

parameters:
2 2
b
z=g—xz—+y7+cxy+dx+ey+25 2-27

This method yields the same values for the unknown parameters as Evans (1980), with
small modifications for ¢ and b . If aims at providing a fast algorithm to derive DEM

attributes.

[21 +z3+2z;,+29 —2(24 +z6)+3(22 +28)—6z5]

a= 2-28
Sw?

b:[21+z3 +2z; +29—2(22-|;z8)+3(z4 +z6)—6z5] 929
Sw

Heerdegen and Beran’s method (1981) is the same as Shary’s, using the relevant

elevation values of the eight neighbouring points. It assumes that z; is zero, and all

other eight points in Figure 2-4 have height values relatative to it. The polynomial used
to fit the 3 by 3 window in Heerdegen and Beran’s method (1981) is represented in Eq,
2-30:

z:ax2+by2+cxy+dx+ey 2-30

Therefore, the methods of Heerdegen and Beran (1982) and Shary (1995) are the special

cases of the Evans method.
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Zevenbergen and Thorne (1987) usc a Lagrangian polynomial with nine unknown
parameters. The method assumes that the fitted surface passes exactly through all DEM
points of the search window. The appropriate surface is produced by the partial quartic

equation:
z:ax2y2+bx2y+cxy2+dx2+ey2+fxy+gx+hy+i 2-31
where a through f are the unknown parameters.

The relationship between the nine unknown parameters a through f of Eq. 2-31 are

derived by using the nine DEM observations of the 3 by 3 window shown in Figure 2-4:

a=[(21 +z3+2z, +29)4=(2, +24 +24 +zg)/2+25] 532
o
bz[(21 +25 =27 —29)/4 - (25 — 25)/2] ’.33
N
cz[(‘z1+Z3—Z7+Z93)/4+(Z4—26)/2] 234
w
d= [z, +Z6Z/2“Z5] 235
w
o= [z, +Z8)2/2_Z5] 236
w
[_ZI +Z3 —2Zy +29]
f= 5 2-37
4w
g:(—Z42+Z6) 2.38
w
h= (222_ 28) 2-39
w
i:Z5 2-40

The terrain topographic indices are found by differentiating Eq. 2-27 and solving for the
central point of the 3 by 3 window in Zevenbergen and Thorne (1987) as:
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SG j)=+g? +h? 2-37

A(i, j) = arctan[ij 2-38
-g
2 2
PIC(, j)=~ an bt S fzh) 2-39
g +h
2 2
PrC(i, j)=— 2lds ? e R ) 2-40
g +h

A comparison of the methods of surface fitting is listed in Table 2-2. Compared with the
method of Zevenbergen and Thorne (1987), the Evans (1980) method is more flexible
in the use of DEM measurements within the window. It uses nine DEM observations to
determine six unknown parameters of the polynomial, while the Zevenbergen and
Thorne (1987) method uses nine observations to solve nine unknown parameters.
Hence, the Evans method (1980) is able to use redundant observations and the least
squares method to improve the accuracy, although the actual improvement is limited.
Evans’ (1980) method is also more accurate than that of Heerdegen and Beran (1982)
and Shary (1995) methods in the sense that it is more general, and does not include

specific constraints as defined in the two latter methods.

2.4 The Limitations in Terrain Surface Modelling Methods

The review of the existing terrain surface methods indicates that there are limitations in
all three approaches. As mentioned in Section 2.2, DEMs are subject to systematic
errors, random noise and outliers, no matter what method is used to acquire it. DEM
errors may significantly affect the derivation of terrain surface methods. However, most
of the developed terrain surface methods ignore these facts in almost all steps of terrain

modelling, from terrain model design through to the DEM processing.
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Table 2-2 Comparison of different surface fitting methods

Model Fitted surface Unknown Redundant Central  Least

parameters DEM point used  squares
of the observations  in the

surface involved window

‘ e i a ves

Evans z=ax? +by? + ey
tdxteytf other 8 DEM
points
Shary ol b y2 5 yes Specially yes
z=—+ +cxy +dx
2
used
+tey+zg
Heerdegen 5= axz +by 2 +eoxy yes Specially yes
and Beran +dx+ey used
Zevenber- z=ax’y? +bx’y 9 no Same as no
2 2 2
gen and texy” +dxt tey other 8 DEM
+ fxy+gx+hy+i
Thomne points

Most terrain modelling methods determine terrain models in a deterministic manner,
ignoring DEM observation errors as well as model errors. For example, the gradient
model in Dozier and Strahler (1983), the slope model in Ritter (1987), the gradient,
slope, aspect and curviture models in Zevenbergen and Thorne (1987) are all
deterministic. Only Evans (1980) attempted to establish a stochastic observation model
over DEM measurements while estimating the unknown parameters (see Eq. 2-19).
However, its efficiency in terms of reducing DEM noise is affected by the use of limited

number of DEM points.

All the developed terrain surface methods use a 3 by 3 window to process DEMs. This
ignores other neighbouring DEM points during the derivations of the terrain attributes
of the point of interest. To reduce DEM random noise in a DEM, the more DEM points
that are involved, the more accurate will be the derived terrain attributes. Skidmore

(1989) declared that methods using eight or nine neighbouring points to predict terrain

31




attributes are more suitable than those that use four points. Florinsky (1998) confirms
that Evans’ (1980) method is the most accurate algorithm among those existing, since it
is able to adopt additional elevation measurements, and therefore leads to improvements
in the accuracy and tolerance of terrain modelling. Moreover, some of the terrain
modelling methods that do use the nine points of the window will be even worse. Some
only use eight surrounding points (Sharpnack and Akin 1969, Horn 1981, Shanholtz et
al 1990), and others even only four points in the window (Travis ez al 1975, Beasley
and Huggins 1982, Dozier and Strahler 1983, Ritter 1987). No modelling technique has

been developed yet to incorporate more points than that in the 3 by 3 window.

The weighting factors used in the weighted elevation difference approach and the least
squares technique introduced in the Evans method (1980) are inefficient in reducing
DEM random noise. The weighting factors used in the weighted elevation difference
approach act as low pass filters that may smooth DEM random noise, but the efficiency
of the smoothing is not ideal, and pre-processing of DEM data, such as a smoothing or
filtering, is normally still required before applying the terrain modelling algorithm on
the DEM (Papo and Gelbman 1984, Srinivasan and Engel 1991). Though the most
accurate, Evans’ (1980) introduces the least squares technique to estimate terrain
attributes, its efficiency is reduced by its inability to handle more than nine DEM data
points. Furthermore, none of the developed terrain modelling methods can detect and

remove DEM outliers.
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CHAPTER 3

A STUDY OF KALMAN FILTERING TEHCNIQUES

3.1 Introduction

From the digital signal processing point of view, a DEM can be considered as a 2-D
random (stochastic) process, which is interpreted in terms of a family of random signals,
since it is subject to random noise as discussed in Chapter 2. The Kalman filtering is an
application of statistical estimation theory, which is concerned with techniques for
optimally estimating the value of a set of unknown parameters x from a set of
observations y containing information about x (Minkler and Minkler 1993) (see Figure

3-1).

y —» Estimator —p» X

set of observations Estimates for x
containing information
aboutx

Figure 3-1 Estimating unknown parameters x from a set of observations y

An estimation filter is a system that collects the components that interact with each
other, and is an environment to perform some purposeful behaviour. The relationship
between a set of unknown parameters and a set of observed variables of a system, can
usually be presented as a mathematical formula. The Kalman filter is a linear estimator
initially introduced in 1960 (Kalman 1960), which is governed by differential
(continuous-time Kalman filtering) or difference (discrete-time Kalman filtering)
equations by using the ‘state’ concept. The state of a system is the minimum
information about the past and present, needed to determine all future responses of a
system, given the future input (Padulo and Arbib 1974). In a certain random case, it can

be considered as the minimum amount of information about past and present estimates,
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needed to determine an optimal casual estimate of future responses given future noisy

observations (Woods and Radewan 1977).

Due to the advantages of Kalman recursive solutions of the discrete-data linear filtering,
which can be implemented in real-time applications using computer technology, the
one-dimensional (1-D) Kalman filtering technique has achieved great success in a wide
range of applications. Developments in extending Kalman filtering into two dimensions,
especially for image processing, have also been reported. However, the two-
dimensional Kalman filtering algorithm for digital terrain modelling developed in this
thesis extends 1-D Kalman filtering theory in a new way, rather than adopting the
existing 2-D Kalman filters used in image processing (Woods and Radewan 1977). This
is due to the characteristics of the terrain surface model as well as the limitations of the
current 2-D Kalman techniques. To introduce the 2-D Kalman algorithm developed in
this research, a review of some important aspects of Kalman filtering techniques is

given in this Chapter.

3.2 One Dimensional Kalman Filtering Technique

3.2.1 Dynamic model and functional model

Kalman filtering is well established for the one-dimensional case. According to Brown

and Hwang (1992), the dynamic model is given as:

X =V X +W, 3-1

The observation of the process is assumed to occur at discrete points in time in

accordance with the linear relationship:

Zk = Hka + Vk 3-2
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X,  (nx1) process state vector at time k

¥,  (nxn) matrix relating X, to Xy, in the absence of a forcing function

W,  (nx1) vector, assumed to be a white noise sequence with known covariance
structure Q,

Z, (m x 1) measurement vector at time &

H, (mxn) matrix giving the ideal (noiseless) connection between the measurement

and the state vector at time k, and

Vv, (m x 1) measurement error, assumed to be a white noise sequence with known

covariance structure, and having zero crosscorrelation with the W, sequence.

The covariance matrices for the W, and V, vectors are given by:

.: ':k
E[W, W] ]={Qk o 33
0 ]
R, i=j=k
E[V,.VjT]={ LT 3-4
0 S
E[Wl-VjT]zO for all i and j 3-5

3.2.2 Derivation of Kalman equations

It is assumed at this point that an initial estimate of the process is known at some point

in time k, and that this estimate is based on all knowledge about the process prior to & .

This prior (or a priori) estimate will be denoted as X where the “super minus” is a

reminder that this is the best prediction prior to assimilating the measurement at k. The

error matrix associated with X is also assumed known, which is defined as:

e; =X, - X; 3-6
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and the associated error covariance matrix is:
- _ _T _ Y
Pk =E|:ekek :|:E|:<Xk_XkXkaXk) :| 3-7

With the assumption of a prior estimate X, the use of the measurement Z, will be

sought to improve the prior estimate. A linear blending of the noisy measurement and

the prior estimate is chosen in accordance with the equation:
X;=X,;+Kk(zk—Hkx;) 3-8

where
X}  updated estimate

K, Blending factor (yet to be determined)

The problem is now to find the particular blending factor K, that yields an updated

estimate that is optimal in some sense. Here “minimum mean-square error” is used as
the performance criterion. The expression for the error covariance matrix associated

with the updated (a posteriori) estimate is formed:

p; =E[ekekT}:E{(Xk X1 Xs -x;ﬂ 39

Now, Eq. 3-2 is substituted into Eq. 3-8 and then the resulting expression is substituted

for X} into Eq. 3-9. The result is:
P/ =E{[(Xk —X;)~Kk(Hka +V, —Hkx,;)

[(Xk—X;)—Kk(Hka+Vk—HkX;)]T} 3-10
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Performing the indicated expectation and noting that (X k —X;) is the a priori

estimation error that is uncorrelated with the measurement error V, :

Py =(1-K,H,)P; 1-K,H,)" +K,R; K} 3-11

Notice here that Eq. 3-11 is a perfectly general expression for the updated error

covariance matrix, and it applies for any gain K, suboptimal or otherwise.

In order to find the particular K, that minimizes the individual terms along the major

diagonal of P;, since these terms represent the estimation error variances for the

elements of the state vector being estimated, the differential calculus approach is used

here and to do so two matrix differential formulas are used:

d [tmce(AB)] _gT

3-12
dA
T
djracelaca™) ., 13
dA
where A and B matrix must be square, and C must be symmetric.
The derivative of a scalar with respect to a matrix is defined as:
ds ds A
da” da 12
ds. ds ds 314
dA da21 da22
M

Eq. 3-11 is expanded and rewritten in the following form, temporarily dropping the

subscripts in the P, expression:
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P* =P~ - KHP - P"H'K’ + K(HPHT + RK’ 3-15

The second and third terms are linear in K, and the fourth term is quadratic in K. The

two matrix differentiation formulas may now be applied to Eq. 3-15. It is desirable to

minimize the trace of P* because it is the sum of the mean-square errors in the
estimates of all the elements of the state vector. The argument can be used that the
individual mean-square errors are also minimized when the total is minimized, provided

that there are enough degrees of freedom in the variation of K, which is the case. The
trace of P* is differentiated with respect to K. Note that the trace of P H'KT is

equal to the trace of its transpose KHP™ . The result is:

d!z‘raceP+ L —2(HP_)T . 2K(HP_HT + R) 3-16

dK

Setting the derivative equal to zero and solving for the optimal gain, the result is:
-T -aT B

This particular K, , namely the one that minimises the mean-square estimation error, is

called the Kalman gain.

The variance matrix associated with the optimal estimate may now be computed.

Referring to Eq. 3-11, the variance matrix 1s:

P; = (- K, M, P, (1-K,H,)" + KR K} 118
T

- - T T -uT
:Pk —KkaPk —PkaKk +Kk(HkPka +Rk)l{k

Routine substitution of the optimal gain expression, Eq. 3-1, into Eq. 3-18 leads to:
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-1
P; =P —P,;H{(HkP;H,{ +Rk) H,P; 3-19

or
P, =P, —Kk(HkP,;H,{ +Rk)KkT 3-20
or
P, =(1-K,H,)P; 3-21

Of the three expressions for P, , the latter one given in Eq. 3-21 is the simplest, so it is

used more frequently than the others.

A means is now available for assimilating the measurement at ¢, using Eq. 3-8, with

K, set equal to the Kalman gain as given by Eq. 3-17. The updated estimated X} is
easily projected ahead via the transition matrix. The contribution of W, in Eq. 3-1 is

ignored because it has zero mean and is not correlated with any of the previous W's .
Thus:

Xie = Vi Xy 3-22

The error covariance matrix associated with Xj,; is obtained by first forming the

expression for the a priori error:

e =Xp — Xpn
Z\Ilkek + Wk
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W, and e, have zero crosscorrelation, because W, is the process noise for the step

ahead of ¢, . Thus the expression of P, can be written as:

_ . _ T
Prii zE[ek+1ek+l jle[(\Pkek + W, )(\Pkek +Wk)T] 304

=¥, PI¥ +Q,

Now the needed quantities at time ¢, ; are derived, and the measurement Z,,; can be

assimilated just as in the previous step.

Equations 3-8, 3-17, 3-21, 3-22, and 3-24 comprise the Kalman filter recursive
equations. It should be clear that once the loop is entered, it can be continued

indefinitely.

3.2.3 Recursive processing

Assume a sequence of noisy measurements Z,; taken at unit intervals, and it is required
to determine the optimal estimate of the process at the sample time k& =0,1,2,3, A, etc.
Given the initial predicted estimate X, at k=0, and its covariance matrix P,, the
Kalman loop is entered at k£ =0, and the sequence is processed as shown in Figure 3-2.
Firstly, the Kalman gain K, at time k =0 is computed using Eq. 3-17. Secondly, the
first measurement Z, is used to improve the initial predicted estimate X, through Eq.
3-8, resulting in the updated estimate of Xg at k =0 . Then, the associated covariance

matrix of Xj, ie. P, , is computed using Eq. 3-21. Finally, the ‘project ahead’ estimate,

ie. X; and its covariance matrix P; , are computed using Eq. 3-22 and Eq. 3-24, which
are the prediction for the process at the next sample time & = /. It will be used as input
to enter the Kalman loop again for processing at the sample time k& =/. From this
recursive procedure, it is clear that once the Kalman loop is entered at £ =0, the
process can be carried on indefinitely. As time goes on, the Kalman filter depends more

and more on the measurements and less on the initial assumptions.
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Enter prior estimate X,

and its error covariance Py

Compute Kalman gain

— o 1
ey e ’
Kk = Pka (I‘IkPka +Rk)

Project ahead Update estimate with
X =KgXp measurement

_ T - —
Prn = WP ¥ + Qi X5 =Xg +Kk(zk "‘Hkxk)

Compute error covariance for
updated estimate —

Py = (I-K Hy P

Figure 3-2 Kalman loop

3.2.4 Perspectives of Kalman filtering

Brown and Hwang (1992) summarise the perspective of Kalman filter as:

It is intended to be used for estimating random processes. Any application in a

nonrandom setting must be viewed with caution.

It is model dependent. That is to say, it is assumed that the a priori model
parameters are known. These, in turn, come from the second-order “statistics” of the
various processes involved in the application at hand. Therefore, in its most

primitive form, the Kalman filter is not adaptive or self-learning.

It is a linear estimator. When all the processes involved are Gaussian, the filter is
optimal in the minimum-mean-square-error sense within a class of all estimators,

linear and non linear.

It has various Kalman filter recursive algorithms. All of these yield identical results

(assuming perfect arithetic).
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e It yields the same result obtained from deterministic least-squares, under certain

special circumstances.

e It is especially useful as an analysis tool in offline error analysis studies. The filter
error covariance equation can be propagated recursively without actual (or

simulated) measurement data.

3.3 Comparison of Kalman Filtering with Deterministic Least
Squares

Kalman filtering is sometimes referred to simply as least squares filtering. This is,
however, somewhat an oversimpliﬁcation, because the criterion for optimization is
minimum mean-square error and not the squared error in a deterministic sense. There is,
however, a coincidental connection between Kalman filtering and deterministic least

squares (Brown and Hwang 1992), and this will now be demonstrated.

Consider a set of m linear equations in x specified in matrix form by:
Mx=b 3-25

In Eq. 3-25 M and b are considered as given, x is (nx1), b is (m x 1), and thus M is
(mxn). Assume that m >n, and x is overdetermined by the system of equations

represented by Eq. 3-25. Thus no solution for x will satisfy all equations. In such cases
it is logical to find the best solution to fit all the equations. The term ‘best’ must be
defined and it is frequently formulated as the particular x, say X, , that minimizes the
sum of the squared residuals. That is, move b to the left side of Eq. 3-25 and substitute
for x. This yields a residual vector v given by:

X opt

opt D=V 3-26
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and x,, is chosen such that vIv is minimized. A perfect fit, of course, would make

opi

viv=0.

To generalise the problem at this point, a weighted sum of squared residuals is

considered, which is specified by:
v Wy = (Mx,,, —b)f W(Mx,, —b) 327

The weighting matrix W is assumed symmetric and positive definite and so is its
inverse. If equal weighting of the residuals is required, W will simply be the identity

matrix. The problem now is to find the particular x (i.e., X,,) that minimises the

weighted sum of the residuals. Towards this end, the expression given by Eq. 3-27 may

be expanded and differentiated and then set equal to zero. This leads to:

d [ r T T T T T
“—‘“[Xopt<M WM)x,,p, -b" WMx,,, —x,,, M" Wb +b b]
Popt 3.28

= 2(MTWM)x,,p, - (bTWM)T ~-M"Wb=0

Eq. 3-28 may be solved for x,,, . The result is:
_ (MTW )‘1 T
Xopt = M/ M"Wp 3-29

and this is the solution of the deterministic least-squares problem.

Next, consider the Kalman filter solution for the same measurement situation. The

vector x is assumed to be a random constant, so the differential equation for x 1s:
®=0 3-30

The corresponding discrete model is then:
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Xk+1=ka +0 3-31
The measurement equation is:
Zk=Hka +Vk 3-32

where z, and H, play the same roles as b and M in the deterministic problem. Since
time is of no consequence, it is assumed that a prior knowledge of x is not available, so
the initial x; will be zero and its associated error covariance will be co. Therefore,

using the alternative form of Kalman filter (Brown and Hwang 1992, pp259-261), the

following equation is derived:

P! =(w)" + HGRG'Hy

. 3-33
The Kalman gain is then:
To-log VigTo-!
and the Kalman filter estimate of x at t=0 is
+ (HT -1 )‘1 T -l
XO = ORO HO HO RO ZO 3-35

This is the identical expression obtained from x,, in the deterministic least-squares

problem with Ral playing the role of the weighting matrix W, while H, for M.

The conditions under which the Kalman filter estimate coincides with the deterministic

least-squares estimates will be reviewed. First, the system state vector was assumed to
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be a random constant (dynamics are thus trivial). Second, the measurement sequence

was assumed to yield an overdetermined system of linear equations, othcrwise

-1
(Hg RalHO) will not exist. Finally, it is assumed that no prior knowledge about the

constant vector being estimated is avaliable. The latter assumption is unusual because in
many situations at least some a priori knowledge of the process being estimated 1s
available. One of the aspects that distinguishes Kalman filter from other estimators is
the conditions of the recursive process. Of course, if there is truly no prior knowledge to
use, the Kalman filter advantages are lost (in this aspect), and it degenerates to a least-

squares fit under the conditions just stated.

The coincidence of the deterministic least-squares and Kalman filtering estimates is
really rather remarkable. One solution was obtained by posing a deterministic
optimisation problem; the other by posing a similar stochastic problem. There is no
reason to think these two approaches would lead to identical solutions. They do under
certain circumstances, which may be generalised somewhat from those of this example,
but not to the complete extent of the general process model used in the Kalman filter.

Thus this happy coincidence in the two solutions will not always exist.

3.4 Applying Kalman Filtering to Smoothing Problems

3.4.1 About smoothing
The emphasis in the preceding sections on Kalman filtering has been on the filtering
problem, that is, the estimation of the system X, at a time ¢z, based on the input

measurements from #, to ¢, , for the cases where ¢,, is either strictly greater than or

less than ¢;. When t,, is greater than 7, the estimation filter is called a smoothing
filter (Minkler and Minkler 1993). The smoothing problem is more difficult and usually
leads to a more complicated expression for the Fourier transform and the recursive
algorithm than occurs in the corresponding filter or prediction problem (Brown and
Hwang 1992). Optimal smoothing by Kalman filtering solution is an extension of

Kalman filtering.
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3.4.2 Discrete Kalman smoothing — the forward-backward smoothing algorithm

An algorithm for problems of one-dimensional discrete fixed-interval smoothing, under
the assumptions and conditions in Section 3.2 for the discrete-time Kalman filter, is
introduced here to illustrate the smoothing process. This algorithm was initially
presented by Fraser and Potter (1969) for fixed interval smoothing problems. The
approach was to filter the measurement data from both ends to the interior point of
interest, and then the two filter estimates were combined to obtain the optimal smoothed
estimate (illustrated in Figure 3-3). The simplified derivation for the discrete case

presented here is developed by Brown and Hwang (1992, pp342-349).

Forward filter yielding X% Backward filter vielding X;k

Figure 3-3 Forward-backward smoothing

Consider a fixed-length interval containing N +1 measurements shown in Figure 3-3.
These will be indexed in ascending order Z, Z1, ..., Z . The assumptions relative to
the process and measurement models are the same as for the 1-D discrete Kalman filter
problem. The computational procedure for the smoothing algorithm consists of a
forward recursive sweep and a backward sweep. The algorithm is entered as usual at

time ¢ =0 with the initial conditions X, and Pj . Then the process is swept forward

using the conventional Kalman filter algorithm. With each step of the forward sweep, a
priori and a posteriori estimates associated with their associated P matrices must have
been computed. Then the process is repeated backward by starting from ¢ = /N towards
t=0, and a priori and a posteriori estimates and their associated P matrices are

computed. The forward filter is assumed to have been stopped ahead recursively at the

estimation point, say =4k, and the end result is a posteriori estimate X; and an

associated P, . The backward filter steps backward from the end point NV, and it stops
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at t =k + 1 where it assimilates the Z,,, measurement. It then projects this estimate

one more step to obtain a predicted estimate X;k and its associated P;k. It does not
assimilate the Z, measurement, because this has already been used in the forward

filter. Finally, the forward and backward estimates are blended together using the

equation:
-1 *« —1_ %
;((k|N)=P(k|N)[P,j X; + Py ka} 3-36
Where
R
P(k[N)z[P,f + Py } 3-37

The notation of k(k]N ) represents the “estimate of X at time =k given all the

measurement data up through time 1 =N ".

3.5 Kalman Filtering in Two Dimensions

The extension of Kaman filtering to two-dimensions resulted from the interest in the
problem of two-dimensional recursive filtering with particular application to images
(Woods 1981). In fact, a straightforward extension of the 1-D Kalman filter techniques
results in a number of state variables proportional to N for filtering an N x IV digital
image. Early attempts to achieve a truly recursive 2-D Kalman filter were of only
limited success due to both the difficulty in establishing a suitable 2-D model and also
the high dimensionality of the resulting state vector. In the following sections, a close
look is taken at the problems caused by the nature of two dimensions on the

establishment of the state, as well as available solutions of the problem.
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3.5.1 Problems of extending Kalman filtering into two dimensions

Consider a particular raster scanning of 2-D discrete data with N x N regularly spaced
points, i.e. left to right, top to bottom, illustrated in Figure 3-4. Thus, at any point in the
picture, some points will be the “past”, one point will be the “present”, and remaining

points will be the “future”.

Past

- present

Future

(& )

Figure 3-4 Scalar scanning rectangular region using raster scanning

Suppose the dynamic model and observation model, as those mentioned in Section 3.2,

are available for the 2-D data shown in Figure 3-4:

s(m)=Cs(m - 1)+ w(m) 3-38
r(m)=Hs(m)+ v(m) 3-39

where s is the signal state vector, r is the observation or received signal, v is the
observation noise, and w is the random process. The matrices C and H are,
respectively, the system and observation matrix. v and w are uncorrelated, with

Gaussian, zero-mean noise sources:

E[w(m)wT(k)]= Q.8 mk 3-40

EmvT (k)= Q.5 341
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E[w(m)vT (k)]: 0 3-42

where Q,, and Q,, are correlation matrices and 3, is the Kronecker delta function,

which equals 1 when m =k ; or equals to zero when m # k . The Kalman filtering

equations for this model are:

s™(m)=Cs*(m—1) 3-43
P~ (m)=CP*(m-1)C” +Q,, 3-44
K(m):P_(m)HT(HP'(m)HT +QJ1 3-45
s*(m)=s"(m) + K(m)lr(m) - Hs~ ()| 3-46
P*(m)=[1-K(m)H]P~ (m) 3-47

where “super minus“ denotes the predicted value of estimate or the covariance matrix,

and “super plus” is a reminder of the updated value for estimate or the covariance

matrix.
X

@] -

— —! M

]
(m,n)
Y N N)
¥

Figure 3-5 Defining a 2-D state vector
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Now try to extend the Kalman filter from one dimension into two dimensions. Woods
(1981) indicated a way of using gencralized 2-D Markov image models to establish
differential relationships over an image, and therefore establish recursive Kalman
models in two dimensions. In order to do so, the state vector should be defined as

follows (see Figure 3-5):

s(m,n)=[s(m,n),s(m ——],n), A, s(],n);A ;

s(Nn-M), A, stm—M+1Ln-M) 3-48

Since the scanning operation transforms the 2-D problem into an equivalent 1-D

problem, with this transformation the following equations will be obtained:

s(m,n):Cs(m -1,n)+ w(m,n) 3-49
r(m,n):Hs(m,n)+ v(m,n) 3-50

Thus, the Kalman equations, i.e. a 2-D Kalman scalar filter, could be immediately
written down, which would be Eq. 3-43 through to Eq. 3-47, with the above

interpretation of the s vector.

The difficulty of this 2-D Kalman filter is the amount of computation and memory
requirements associated with it. For example, consider an observation region consisting
of an N x N square with N >> M . The dimension of the matrix equations in Eq. 3-43

through to Eq. 3-47 is approximately M x N . This means that in general the order of
the computation is approximately M 3 x N3. However, taking advantage of spatial

invariant structure of the signal model this is reduced to M 2xN?. For M =4 and

N =100, the order of 160,000 multiplies and adds per output point are required. The
overall total computation for the 10,000 element image would be about 10°. In
addition, the data storage problems are immense. To store P~ and P at each stage

needs M? x N? storage locations. These numbers indicated that the exact 2-D Kalman

scalar filter is computational unmanageable (Woods 1981).
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Woods and Radewan (1977) attcmpted to minimise the width of the above 2-D state
vector, and developed the 2-D Kalman Strip Filter, which was further extended into the
Reduced Update Kalman Filter (RUKF) by further approximation of the update estimate
yielded by the strip model. These two Kalman processors overcome the computational
problems mentioned above. Both vector and scalar scanning methods were considered
in their work, but emphasis was placed on the scalar scan because it leads to processors
which are recursive in both dimensions, i.e. a 2-D recursive processor. The results have
applications to a range of problems involving estimation on both space and space-time
data fields, including image processing problems where most emphasis has been placed.
The Kalman algorithms allow the use of space-variant models which provide a better
match to local source statistics leading to a greater noise reduction. The two processors
developed in Woods and Radewan (1977) subsequently have been widely adopted and
improved by other researchers (Woods and Ingle 1981, Azimi-Sadjadi and Wong 1987,
Tekalp et al 1989, Wu and Kundu1992).

3.5.2 Limitations

Most existing 2-D Kalman processors, including the Reduced Update Kalman Filter,
have been developed for image processing, especially for image restoration. They do
not fully suit applications for terrain modelling using grid DEMs. Kalman filtering 1s a
model-based filter (Brown and Hwang 1992). This means that it is assumed that the a
priori model parameters are known, and the derived results are the second-order
statistics of the processes of an application at hand. The developed 2-D Kalman filters
were established based on the characteristics of the relevant image processing, such as
image restoration. They would not suit the applications of terrain surface modelling
using grid DEMs, which have different characteristics. For example, compared with a
image, DEMs are special 2-D data in which each DEM point represents terrain
elevation. Elevation is not the only terrain variable of interest for terrain modelling.
Estimates of other terrain variables, such as gradient, are also required to be derived

from a noisy DEM for terrain modelling purposes, etc.
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For these reasons the existing 2-D Kalman filtering techniques have not been adopted in
this thesis but an entirely new 2-D Kalman filtcring algorithm for terrain modelling

application has been developed.
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CHAPTER 4

THE 2-D KALMAN FILTER

4.1 Stochastic Digital Terrain Models for Grid DEMs

In defining the terrain characteristics as accurately as possible from a discrete DEM, it
is necessary to establish a suitable terrain model. According to Wang et al (1998a,
1999), a stochastic terrain model was developed based on the following assumptions.
First, terrain surfaces, which DEMs represent, are assumed as continuous surfaces, and
their terrain attributes, which can be directly derived from DEMSs, are generally
correlated within the mapping area. The topographic characteristics of urban areas are
not included in this study. Secondly, other research has shown that the correlation of the
terrain variables depends on the distance between the DEM neighbouring points (Evans
1980, Zevenbergen and Thome 1987). DEM points are a large distance away from a
target point contribute weakly to the modelling of the terrain topographic attributes at
that point, while DEM points close to the point will contribute more significantly to the
modelling of terrain attributes. Thirdly, according to the terrain geometry, the
mathematical relationships between the adjacent DEM points, in terms of elevation, and
the first partial derivatives of elevation along the X and Y-axes, could be approximated

as being linear with random model errors if the DEM sampling interval is small enough.

In order to develop the strict mathematical formulae based on the above assumptions,
the raster scanning described in Section 3.5, and Figure 3-4, is adopted for processing a
DEM with N x M grid points. From a Kalman filtering point of view, the DEM data
would be separated into “past”, “present”, and “future” groups. The words have their

conventional meaning with respect to the order in which the DEM points are processed.

According to the assumptions made about the terrain geometry, the terrain variables of
point (i, /) may be approximately modelled by its neighbouring point (i -/, j) along the
X direction (see Figure 4-1). The first order model, in terms of the first order partial

derivative of elevation, along the X direction can be easily assumed as:
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H(, j) = H(i-1,))+ H,G- 1, j)dx+vy, (.j) 4-1
H, ()= Hy (-1 )+ vy, () 42

Hy(.0)=H,y (-1 j)+vy, () -

Where H(,j), H,(ij), and H,(i ) are the elevation, the first partial derivatives of
elevation along the X and Y directions of point (i, j) respectively. H(i-1,j),

H,(i-1,j),and H,(i-1,j) are the elevation, the first partial derivatives of elevation

along the X and Y direction of point (i - /, j) respectively. dx is the sampling intervals

of the DEM in X direction. vy , vy , and vy = are assumed as white noise
b Vb

sequences, which are to be filtered.

(0.0) | X

Yvw (W-1,80-1)
Figure 4-1 Modelling terrain topographic attributes in a grid DEM

The terrain variables of point (i, j) may also be approximately modelled by its adjacent
point (i, j-1) in the Y direction (see Figure 4-1). The first order model, in terms of
order of partial derivative of elevation, along the Y direction can be similarly assumed

as:
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H(,j)=HG,j~D+H, G, j~Ddy+vy () 4-4
H, ()=H,Gj-D+vy _(J) 4-3

H, ()= H, G j=D+vy, () 6

Where H(,j-I), H,(,j-1), and H (G j-I) are the elevation, the first partial
derivatives of elevation along the X and Y directions of point (i, j - /) respectively. dy

is the sampling intervals of the DEM in Y direction. vy , vy ,and v H, @re assumed
(4 Xc c

as white noise sequences.

4.2 Developing a 2-D Kalman Filter for Terrain Surface Modelling

42.1 Derivation of 2-D Kalman equations for terrain surface modelling
Based on the established stochastic terrain models, a 2-D Kalman filter will be
developed. Three elements are chosen, i.e. elevation and its two first partial derivatives

of elevation, to form the state vector as:

H(i, )
SG) =] H()) 4-7
H, (@ J)

Rewriting the stochastic terrain model Eq. 4-1 to Eq. 4-3 into vector and matrix forms

leads to the following equation:

S.G.N)=®CNSE-1.)+Vs C.)) 4-8
I dx 0 VH,

where, ®©,(;,j)=[0 1 0| is the system matrix, and VS @N=\vu, is the
0 0 l VHyb

random process. The subscript x indicates that the state vector is derived by its adjacent
DEM point in the X direction. The relevant covariance matrix Q. (i, j) of Eq. 4-8 are:
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Q,Gj) i=i and j=j 4.9

EVs, Vs, ()T |- |
0 otherwise

Similarly, re-writing Eq. 4-4 to 4-6 into vector and matrix forms, the following

equations can also be obtained:

S,(i/) =®, ()8, ~D+Vs, i) 410
1 0 dy VH,

where, ©,(@,j)={0 1 0|, and Vsy @) =|vy,, |- The subscript y indicates that
0 0 1 VH

ye
the state vector is derived by its neighbouring point in the Y direction. The covariance

matrix associated Q,, (i, j) with Eq. 4-10 1s:

Q,G /) i=1i and j=] 411
0 otherwise

ElVs GV, ()] {
Now the terrain topographic relationships between the adjacent DEM points have been
established, and Eq. 4-8 and Eq. 4-10 are the dynamic models of the 2-D Kalman filter.
Using these relationships to process a DEM, according to the theory of Kalman
filtering, the relevant predicted estimate of state vector and the associated variance-

covariance matrix can be derived from either two orthogonal directions as:

$:G.) =@, )NST(E~1)) 4-12
P (i /) =@, ()P (-1, HPLG)+Q.G ) 4-13
or

S;GN=®,GNS"Gj—1) 4-14
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P, (i, /) =D, )P (- L)®,G)+Q,G ) 4-15

where S*(i, /) and P* (i, j) are the relevant updated estimates of the state vector and

the associated variance-covariance matrix of DEM point (7, j) .

The correlation between the predicted estimates of state vectors S, (i, j) and S, (i, /) is
considered weak, since they are derived from data along the orthogonal directions and
different terrain models. S;(ij) and S)(;j) are assumed to be independent.

Therefore, the optimal predictions of point (i,j) may be considered as a linear

combination of S (i, /) and S} (i, j):

S )=P G j)[(P; GV 'ssan+ @GNS (z'.j)} 416
P_(Lj)z[KP;(Lj)TI+(P;(Lj)yl}_l 4-17

On the other hand, the observation of elevation is assumed to have a linear relationship

with the state vector S(,j) at the relevant position. The functional model obtained is:
Z(,j)=DSU j)+vz (i j) 4-18

where D=[1 0 0] is the observation vector, and v, (i, j) is the observation noise,

assumed as a white noise sequence having zero cross-correlation with the Vg (i, j) and
X

Vsy (i, j) sequences. In other words:

RGj) i=i and j=j 4-19
0 otherwise

Evz(z:j)vz(i’,j')T]={
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ElVSX(i,j)vZ(il,j')T]=0 for any | i and 4-20

Eley(i,j)Vz(l";j')T]=0 for any i i, j andj 421

where R(;, j) is DEM observation variance.

Following the 1-D Kalman five recursive equations, i.e. Eq. 3-8, Eq.3-17, Eq. 3-21, Eq.

3-22, and Eq. 3-24, the covariance matrix P~ (j, j) may be substituted into Eq.3-17 to
obtain the Kalman gain K(i, j). The optimal prediction S™ (i j) and its covariance

matrix P7(i, /) are substituted into Eq. 3-8 and Eq. 3-21, to derive the optimal updated

estimate S+(i, J) and its covariance matrix P+(i, j), by using the observation Z(i, j),

to improve the prediction:

K@, j)=P G j)DT (DP~ G /)D” + R, /) 4-22
S*(i, /) =S"(J)+ K@ )26 j)-DS™( /) 4-23
P* (i, j) = (L- K@ ))D)P™ (i, ) 4-24

In this way, the 2-D Kalman recursive equations used for terrain surface modelling are
derived, consisting of nine equations Eq. 4-12, Eq. 4-13, Eq. 4-14, Eq. 4-15, Eq. 4-16,
Eq. 4-17, Eq. 4-22, Eq. 4-23 and Eq. 4-24.

Compared with 1-D Kalman recursive equations Eq. 3-8, Eq.3-17, Eq. 3-21, Eq. 3-22,
and Eq. 3-24, four more equations Eq. 4-12 through to Eq. 4-17 are included in the 2-D
Kalman filter to derive the predicted estimate and its covariance matrix. This is due to

the complexity of two-dimensional applications.

4.2.2 2-D Kalman recursive procedure

The recursive process of the 2-D Kalman filter over a DEM is similar to the process of
the 1-D Kalman filtering discussed in Section 3.2.3, but with more complexity to enable

it to handle the initial values and the predictions at each DEM point.
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When applying the 2-D Kalman filter to a DEM shown in Figurc 4-1, the filter starts
from the first row of the DEM data, and point (0,0) will be the first DEM point to be

processed. At this point, the a priori estimate S™(0,0) and its covariance matrix

P~(0,0) are given by the boundary conditions of the filtering. Kalman gain at DEM
point (0,0), ie.K(0,0), will be determined first using Eq.4-22. Then, the elevation

measurement Z(0,0) is used to update the initial value S7(0,0) through Eq.4-23,
resulting in the updated estimate of S*(0,0). Next, the associated variance-covariance

matrix of $¥(0,0), ie. P*(0,0), is computed using Eq. 4-24. In the following step, the

filter needs to generate the project ahead estimate for the next DEM point in the row, i.
e. $7(1,0) and its covariance matrix P~ (/,0), to complete the processing loop of point
(0,0) . At this time, along the X direction, S*(0,0) and P*(0,0) are now available, and
therefore the predicted estimate S, (/,0) and its covariance matrix P, (7,0) could be
determined using Eq. 4-12 and Eq. 4-13. However, along the Y direction, S,(/,0) and

its covariance matrix P, (1,0) will still be the a priori values, since no DEM point has
been processed along this direction and no more computation is needed. The predicted
estimate S”(/,0) and its covariance matrix P~ (J/,0) are obtained from the newly
computed S (7,0) and P, (1,0), and the initial value of S},(/,0) and P, (0,1) using

Eq. 4-16 and Eq. 4-17. Once the project ahead estimate S™(0,/) and its covariance

matrix P~ (/,0) are computed, they will be used as input to enter the Kalman loop again

for processing the DEM point (/,0) . Following this procedure, the filter processes each

point in succession by point until the end of the first row.

As soon as the first row of the DEM is processed, the filter starts to process the second

row of the DEM. In this case, the first DEM point (7,0) of the row is the boundary of
the filtering. When the filter needs to determine the predicted estimate S™(/,/) and its

covariance matrix P~ (/,/), the predicted estimate from the X direction, 1. €. S, (/,1)
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and P_(/,/) will still be the a priori values. The predicted estimate from the Y
direction, i. e. 8),(/,7) and its covariance matrix P, (/,1) should be derived by Eq. 4-

14 and Eq. 4-15 based on the updated S*(0,0) and P*(0,0), and so on.

Following this recursive procedure, the best estimates of terrain variables S*(@,j) of
any arbitrary DEM point (i, /) will be derived by using all DEM measurements of the

solid and dashed line shaded area illustrated in Figure 4-1.

4.3 A Discussion of Boundary Conditions of the 2-D Kalman filter

This section focuses on the 2-D boundary condition problem for the 2-D spatial Kalman
filter, beginning with a review of the role of boundary conditions in 1-D recursive

estimation.

The initial condition problem for 1-D Kalman filtering is to select an optimal initial
estimate of the state, along with its associated error covariance. According to Woods
(1981), often this estimate is simply the mean of the signal process as would be
appropriate, for example, when no a priori information is available. When the data set 1s
finite, a boundary value problem consisting of both initial and final conditions must in
general be considered. If one has a finite length section of a data set of infinite length,
the causal filtering problem ignores any final conditions, thus enabling one to reduce the
general boundary condition problem to an initial value problem. A causal filter is a
system for which the output at any time does not depend on future values of the input
(Minkler and Minkler 1993). Hence the two-point boundary nature of a finite length

data set can be ignored in the 1-D case by the expedient of causal filtering.

Unlike its one dimension counterpart, the boundary condition problem in two
dimensions does not degenerate to an initial value condition problem for causal
filtering. This is because the data scan processing causes the boundaries to be
encountered repetitively in the course of the filtering, at the beginning and end of each

scan line. Thus, in addition to initial conditions at the top and final conditions on the
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bottom, the majority of the boundary consists of points that cannot be so categorised

and therefore have no 1-D counterpart.

(a)1-D - (b)2-D (c) 2-D Kalman filter

Figure 4-2 Boundary value problems

In performing the developed 2-D Kalman recursive estimation, the boundary conditions
are the top and left (see Figure 4-2(c)) lines of a DEM, since they are the initial values
for the filtering along the x and y-axes of a DEM, respectively.

The boundary values of the 2-D Kalman filter are assumed to be deterministic. All three
elements of the state vector are taken to be zero, and correspondingly, the associated P

matrix comprises large variances:

0

S (G, j)=|0|for all i=0 or j=0 4-25
0
[0 0 O

P (i,j)=|0 o Offor all i=0 or j=0 4-26
10 0

This assumption simplifies the determination of the filtering initials, and experiments
(Wang 1998, Wang et al 1998a, 1998b) have shown that such an approximation does
not significantly affect the filtering results, compared with when using the true values of
the terrain variables at the relevant DEM positions. In this case, the boundary conditions

are simply inserted in the Kalman equations when needed, making it completely
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analogous to the 1-D Kalman filter with deterministic input, and in fact through the

raster scanning, is equivalent Lo it.

4.4 Considerations of the Determination of Stochastic

Models

4.4.1 Dynamic model error

The variance-covariance matrices Q, (i, j) and Q, (i, j) represented in the dynamic
model Eq. 4-9 and Eq. 4-11 are assumed to be known in the developed 2-D Kalman

filter for computing the variance-covariance matrix of the predicted estimate P”(i, j).
They are the model variance-covariance matrices used in the two orthogonal modelling
directions, respectively, representing the possible errors that the dynamic models of Eq.

4-8 and Eq. 4-10 may introduce into the estimates of the three terrain attributes.

The dynamic model error reflects the differences between the 'true' terrain topographic
attributes of a DEM point and the relevant predicted values derived from the DEM
adjacent points. For example, using the dynamic model of Eq. 4-8 to derive the
elevation of point k + / from its adjacent DEM point & is illustrated in Figure 4-3. The
vertical axis of Figure 4-3 represents the elevation, and the horizontal axis represents
points of the DEM. Based on the elevation and the first partial derivative along the X
direction of point k, the elevation of point k + I can be predicted using the dynamic

model Eq. 4-8, presented as DS(k +1). The difference between the true elevation
H(k +1) and DS(k + ]) is defined as the model error, and in this case, the model error

for elevation element presented as vy, (k +1 )
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VE, (k+})

True termrain
surface

: -
0 K k+7 DEM point

Figure 4-3 The physical meaning of dynamic model error

Determination of model errors

If the terrain surface is homogeneous and smooth, the associated model error would be
mainly affected by the level of the second order partial derivatives of elevation of the
terrain surface. Suppose that the terrain models of Eq. 4-1 to Eq. 4-3 are extended to
include the second order partial derivatives of elevation. According to the relevant

assumptions in Section 4.1, the following equations may be derived:

HG,j)=H(i-1,))+H, (-1, j)dx+éHxx(i- LiNdxf +vg, () 4-27
Ho G, j) = Hy(i-1, )+ He (-1, )Mx+vy () 4-28
H,G)=H,G-1,7)+H,i-1j)dx+ va,, ) 4-29

where H, (i, j) and H yx (i, j) are the second order partial derivatives of elevation along

the x and y axes, and vy, (i, j), Vi (i, j) and v,, (i, j) are the relevant model errors.

Then the relevant model errors for the elevation, X and Y derivatives using the terrain

model defined in Eq. 4-1 to Eq. 4-3 can be determined as:
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a1 . : ..
VH, (l;J)=‘§Hxx(l'1,J)(dx)2 +vy,, @./) 4-30

v G 7)=Hyli-1j)dx+vy, G 7) 4-31

v, Gj)=H . (i-1,j)dx+v Hopy (i j) 4-32

If the model error in the second order terrain models, defined by Eq. 4-26 to Eq. 4-28,
are ignored in Eq. 4-30 to Eq. 4-32, the model errors in Eq. 4-1 to Eq. 4-3 can be further

approximated as:

a1 . :
va(l'J)NEHxx(l'I’])(dx)z 4-33
VH, (7))~ Ho(i- 1, j)dx | 4-34
vab(i’j)zny(i'l'j)dx 4-35

Similar relationships between the second order partial derivatives of elevation and the

model errors used in Eq. 4-4 to Eq. 4-6 can be derived as:

oy -
vy, ()= SH,, () - Ndv) 4-36
2
vir, ()~ Hu G j- Dy 4-37
v, (7)~Hy - 1)dy 4-38

The estimation of suitable model errors over smoothing terrain surfaces is now
simplified to that of determining the level of the second partial derivatives of elevation
over the specific mapping area. It is obvious that if the terrain surface is smooth the
second order partial derivative of elevation would be set small, and the relevant model
error will be small. On the other hand, if the terrain surface is rough, the value should be
set larger. This is consistent with the analysis in terms of accuracy of the predictions. If
the terrain is smooth, the prediction accuracy would be high and therefore the model
errors should be small, whereas in modelling a rough terrain surface, the accuracy of

predictions is reduced and the relevant model errors should be large. In such
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circumstances, the 2-D Kalman filter requires high density of DEM sampling over a

rough terrain surface to obtain accurate modelling results.

Effect of DEM resolutions

The change rate of the first partial derivatives of elevation for a specific mapping area
determines the magnitude of the second order partial derivatives of elevation for that
area. The ‘true’ second order partial derivatives of elevation of a mapping area will not
change when the terrain is sampled with different resolutions. So it will be the same in
the estimation of the relevant model errors used to process the DEMs with different

resolutions, if the mapping area is the same.

Therefore, the impact of DEM resolution on estimating model errors is also modelled in
Eq. 4-33 to Eq. 4-38. For example, if the second order partial derivatives of elevation of
a terrain surface are assumed to be 0.08, using Eq. 4-33 to Eq. 4-35, or Eq. 4-36 to Eq.
4-38, the model errors suitable for processing of a Sm DEM will be 1m for elevation,
0.4 for X and Y derivatives. The model errors for a 10m DEM of the same terrain will

be 4m for elevation, 0.8 for the X and Y derivatives.

Effect of terrain roughness and breaklines

However, the real terrain surfaces are often rough and contain breaklines. If terrain
surfaces are rough, the accuracy of predictions of the 2-D Kalman filter can be
improved by increasing DEM resolution. However, if breaklines occur in a DEM data,
increasing the DEM sampling interval would not solve the problem. Suppose a cliff
exists in the DEM mapping area (see Figure 4-4) where terrain topographic
characteristics change abruptly, and this is not caused by outliers in the DEM, then,

DEM points (k) and (k + 1) belong to different kinds of landscapes, and the elevation

of point (k + /) is actually unpredictable from the point (k), or the model error should
be set large to handle this big discrepancy. However, this will conflict with the
remaining DEM points in smoothing terrain where there are no such discrepancies. In
order to apply the 2-D Kalman filter to this kind of terrain surface, an adaptive (self-
learning) Kalman filter needs to be developed that is capable of adapting itself to

different landscapes that occur in the data.
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Figure 4-4 Effect of breakline to the determination of model error

4.4.2 Observation error

The DEM observation error, the variance of which is represented by R(i, j),
significantly affects the derivation of terrain variables, and therefore is the target of the
filtering. The estimation of R(i, j) should be based on the analysis of DEM data. The
methods of estimating DEM random noise from DEM data that was introduced in
Section 2.2.1 could be used as the guide for the approximation of R(i, j) in the 2-D

Kalman filter.

4.5 Testing the 2-D Kalman filter for Terrain Surface Modelling

A mathematical surface was simulated to test the efficiency of the 2-D Kalman filter in
terms of reducing DEM random noise and its effect on the derivation of terrain
variables. Due to the difficulty of obtaining the ground truth elevations, and the relevant
first partial derivatives of a real terrain surface, an artificial terrain surface was

generated and used in the testing.
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4.5.1 Testing data

A 150 x 150 sized curved surface was simulated using Eq. 4-39, sampled with 1m
interval in both X and Y directions as shown in Figure 4-5. The range in elevation was

from —18.32 m to 18.56 m, with 0.03 m as the average height:
H(i,j)= (i xdx = 75)x (50 - j x dy)/400 4-39

where i and ;j are the coordinates of the DEM point, dx and dy are the sampling

intervals.

The two first partial derivative surfaces of the simulated data were also computed from
the differential equations of Eq. 4-39, as shown in Figure 4-5(b) and Figure 4-5(c).
Based on these two first partial derivatives of elevation, the slope and aspect surfaces of
the simulated DEM were also created using the slope and aspect formulae Eq. 2-5 and
Eq. 2-6, shown in Figure 4-8 and Figure 4-9. The slope value of the artificial surface
varies from 0° to 18°. The aspect values range from —90° to 90° with —100° assigned for
the flat DEM points, when the value of the first partial derivative along the X axis of the
point is zero. The data included 150 points assigned —100°. The aspect values were not
converted into compass degrees to make it simple for the relevant comparison. The
simulated DEM, associated with the first partial derivatives, slope and aspect surfaces,

are the ground truth data for algorithm testing and relevant comparison.
The random noise with standard deviation of 0.5m was added to the simulated DEM

creating a noisy DEM shown in Figure 4-6 for processing using the 2-D Kalman filter

and other terrain models.
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Figure 4-6 The simulated noisy DEM

4.5.2 Results of the 2-D Kalman filter
The 2-D Kalman filter was applied over the simulated noisy DEM, producing

simultaneously the estimate of surface elevation and two first partial derivatives shown
in Figure 4-7(a), (b) and (c). The slope and aspect surfaces of the noisy DEM were also
calculated, using the estimates of derivatives, slope and aspect equations, as shown in

Figure 4-7(d) and (e).

The boundary of the 2-D Kalman filter was the first row and first column of the noisy
DEM, for which the a priori estimates of the state vectors were set to zero and the
corresponding variance-covariance factors to about 100 times the relevant model errors.
The observation error of this data was known to be 0.5m, equals to the random noise
applied in the DEM. Because this is a mathematical surface, the true value of the second
order the partial derivatives of elevation is zero. In this experiment, a very small value

of the second partial derivative was used to estimate the relevant model errors.
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Examining the results of the Kalman filtering, the initial estimates of elevation and the
derivatives were poor at the boundaries. However, the estimates improved significantly
as the number of the processed points increased. Compared with the noisy DEM
illustrated in Figure 4-6, the elevation surface for the 2-D Kalman filter is much
smoother. The estimates of X and Y derivatives are also considerably smoother and
follow the trends of their ground truth. The derived estimates of slope are somewhat
irregular, especially for the top row and left column, but it still produced correct slopes
for the most of the data. The estimated aspect surface is poor at the boundary and the
points where the surface is actually flat, but they improved for the rest of the data, and

delineated the basic pattern of the aspect.

4.5.3 Results of the Evans method

The noisy DEM was also processed by the Evans method, which is currently quoted as
~ the most accurate terrain modelling algorithm (Florinsky 1998), resulting in derivatives

in terms of X and Y, slope and aspect surfaces as shown in Figure 4-8.

The derivatives of the X and Y surfaces of the Evans method are much noisier and more
irregular than the results of the 2-D Kalman filter, when compared with the ground
truth. The effects of DEM random noise are even greater in the derived slope and aspect

surfaces, which failed to produce correct surfaces.

Derivative X
Derivative ¥

~=b

Figure 4-8(a) X derivative Figure 4-8(b) Y derivative
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Figure 4-8 The results of the Evans method

4.5.4 Comparison of the test results

The terrain variables derived from the 2D Kalman filter and the Evans method were
further quantitatively compared with the ground truth values to evaluate the accuracy of

the terrain models and the efficiency of reducing the effects of DEM random noise.

Only the 2-D Kalman filter successfully produced estimates of elevation, as well as
other estimates of the terrain variables, from the noisy DEM data. Therefore, the errors
in the estimates of elevation derived by the 2-D Kalman filter were compared with the
initial random noise in the DEM data. Subtracting the noisy DEM from the ground truth
produced the errors in the noisy DEM, which are plotted in Figure 4-9(a) and
summarized in Table 4-1. Similarly, errors in the estimates of elevation from the 2-D
Kalman filter are also plotted in Figure 4-9(b) and given in Table 4-1. The efficiency of
the 2-D Kalman filter is significant in reducing the influence of DEM random noise.
The standard deviation of the estimates of elevation has been reduced by 72%, using the

developed 2-D Kalman filter.
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Figure 4-9 Comparison of elevation derived from the 2-D Kalman filter

Table 4-1 Comparing errors in the noisy DEM and the estimates of elevation using

the 2-D Kalman filter

 Minimum  Maximum  Mean  Standard  Improvement

deviation

The noisy DEM  -2.30 2.10 0.00  0.50 3
7D Kalman filter 0,61 0.67 001 014 2%

*The improvement is in terms of the standard deviation, and was derived by comparing the Kalman filter

result with that of the noisy DEM. The unit is in meters.

A statistical analysis of the estimates of the X and Y derivatives, slope and aspect from
the 2-D Kalman filter and the Evans method was also undertaken. Following the same
procedures used for comparing the elevations, the errors in the relevant Kalman filtering
results and the Evans method were obtained and plotted in Figure 4-10. In the Figures,
the horizontal axis represents the number of the DEM points, and the vertical axis
represents the errors in the derived terrain variables, using the 2-D Kalman filter and the
Evans method, at each DEM position. The details of the statistical comparisons are

summarised in Table 4-2.
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Figure 4-10 Comparison of the errors in the results of the 2-D Kalman filter and

the Evans method

Table 4-2 Comparing errors in the results of the 2-D Kalman filter and the Evans

method

~ deriva
Evans method -0.84 0.76 0.00 0.20 -
2-D Kalman filter  -0.26 0.33 0.00 0.02 90%
Y derivative

Evans method -0.96 0.74 0.00 0.20 -
2-D Kalman filter  -0.35 0.38 0.00 0.03 85%
Slope (degree)

Evans method -40.33° 15.33° -7.55°  7.85° -
2-D Kalman filter  -14.55° 10.73° 0.83° 1.07° 86%
Aspect (degree)

Evans method -177.27° 177.69° -0.42°  68.52° ---
2-D Kalman filter  -178.68° 178.60° 0.63° 30.18° 56%

The comparison indicates that the improvement using 2-D Kalman filter algorithm
compared to the Evans method is very significant. Using the 2-D Kalman filter over the
same noisy DEM, the standard deviation is reduced by 85-90% for the first partial
derivatives, 86% for the slope surface, and 56% for the aspect in comparison with the

results of the Evans method. More experimental results are presented in Chapter 7.
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4.6 Conclusions

In this Chapter, the development of the 2-D Kalman filter for terrain surface modelling
is presented. The Chapter commenced with the assumptions of terrain topography with
the emphasis on the establishment of a linear differential equation monitoring the terrain
attributes between the adjacent DEM points. The relevant terrain models were generated
in a stochastic rather than deterministic manner by introducing dynamic model errors in

the model, whose ‘physical’ meaning was further explained and analysed in Section 4.4.

The developed 2-D Kalman filter is a truly recursive two-dimensional filter suitable for
applications to terrain surface modelling using grid DEMs. The particular strategies
applied to enable it to successfully handle the 2-D DEM are the use of two dynamic

models over the orthogonal directions of the 2-D data, and more importantly, the
technique of combining two estimates from the orthogonal directions to produce S~

and the associated variance-covariance matrix P~ .

Some important computational considerations have been also addressed in this Chapter,
including the boundary problems of the filter, and the determination of the filtering
parameters, such as the model error and the observation error. The influence of terrain
roughness, DEM resolution and breaklines on the 2-D Kalman filter also have been

discussed.

The developed 2-D Kalman filter was tested over a simulated surface, and the results
were compared with those from what is generally agreed to be the currently most
accurate terrain modelling algorithm, i. e. the Evans method. The test results indicated
that the 2-D Kalman filter is efficient in reducing the effect of DEM random noise in the
derivation of terrain topographic variables, such as elevation, the first partial derivatives
of elevation, slope and aspect. The 2-D Kalman filter significantly improves the quality
of terrain surface modelling when tested with noisy data, compared with the Evans

method.
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CHAPER 5

DEM OUTLIER DETECTION AND REMOVAL

This Chapter will focus on detecting and removing DEM outliers for terrain surface
modelling using the 2-D Kalman filter. As mentioned in Chapter 2, outliers in a DEM
may significantly affect the quality of derived terrain attributes, but methods for
detecting and removing outliers have not been developed. This is largely due to the

inability of algorithms to separate outliers from valid elevation data.

The Kalman filtering technique provides a technical base to solve this problem. The
technique developed in this study for DEM outlier detection and removal is an
application of the theory of statistical hypothesis testing, or detection theory, which is
the term used in engineering. In the following sections, the theory of hypothesis testing

will be introduced.

5.1 Introduction of Statistical Hypothesis Testing

5.1.1 Binary hypothesis testing

The solution of statistical hypothesis testing deals with the following situation. Suppose
a data set is corrupted by different kinds of noise and the situation is not
deterministically predictable. In order to determine which of these affects the data at
hand, the possible situations are specified into m probabilistic models, i.e. hypotheses

H;, i=0, A, m-1. Among them, a decision D; may be made to determine

is

hypothesis H ; that best describes the state of affairs at the time.

If only two hypotheses are involved, usually numbered H, and Hy, it is a binary
hypothesis testing problem. Traditionally, hypothesis H|, is called the null hypothesis,

and H; is the alternative hypothesis. Then the data space is divided into two regions
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R,, called the acceptance region (Hj is accepted and H, is rejected) and R; the

critical region, or the rejection region ( H|, is rejected and H, is accepted).

The relevant decision is evaluated in terms of relevant errors associated with it. There

are two Types of errors. If hypothesis H|, is actually true in the data, but decision D is

made, i.e. H; was wrongly believed to be in effect, a so-called Type I error will be
made. The probability of Type I error o, also called the risk of the test, would be

expressed as:
o=P(D,|H,) 5-1

On the other hand, if H; is actually true in the data, but the decision D, is wrongly
made, i. e. H, is chosen, then a Type II error is committed. The probability of Type II

error B is represented as:
B=P(Dy | H,) 5-2
where 1—f is also called the power of the test.

The binary hypothesis testing is illustrated in Figure 5-1, in which p; (y) is the
probability density function, while po(y) and p,(y) are the probability density
functions for the null hypothesis H|, and the alternative hypothesis H; respectively.
The space of the data y is split into the acceptance region R and the critical region R,

by &. Associated with this &, the probability of the Type I error is the shaded area

marked with symbol @, while the probability of the relevant Type II error is marked
with symbol @.
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Figure 5-1 Binary hypothesis testing

5.1.2 Neyman-Pearson strategy

There are a number of strategies for making the “best” decision. Among them, the
Neyman-Pearson criterion is applied in the case where both hypotheses are simple, and
-the decision is made in such way that the probability of Type I error is chosen as large
as it can be tolerated, and the minimum probability of Type II error is sought under this
limitation. That is, the probability of Type I error is made larger than some specified

upper bound P and within that constraint, while the power of testing is maximised

(McDonough and Whalen 1995, pp151-155, p159):
min P(D, | H,), P(D,|H,)<P; 5-3

In another words, the approach maximises the power of the test while maintaining the

risk of the test not more than the specified level Py
max(1-B), o< Py 5-4

The Neyman-Pearson criterion described in Eq. 5-4 will be later used in the reliability

study of DEM outlier detection and removal in this Chapter.
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5.2 Outlier Detection

5.2.1 Innovation series
To detect the outliers from the valid observations of a DEM, an innovation series (7, j)

is formed to represent the bias between the predicted estimate of elevation DS™ (i, /)

and its observation Z(i, j) at any arbitrary DEM position (i, j) :

I, j) = Z(i, j) = DS (i, j) 5-5

According to the assumptions of the dynamic and functional models established in the

2-D Kalman filter in Chapter 4, Z(i,j) and DS (ij) are independent random
variables, since one is the DEM observation and the other one is a variable derived by

the dynamic models. The standard deviation of I(i, j) can be derived as:

5105 = VPP~ (/DT +R(i, ) 5-6

5.2.2 Hypotheses for outlier detection

In order to simplify the descriptions in the following description, the test statistic for

outlier detection is defined as:
L(l,_])= l(l’])/cl(l,j) 5-7

Assuming the distribution of L(i, j) is normal, represented as N(m,1), or:

plL)= on) o xgl 0= 5.

where p(L(i, ])) is the probability density of L(i, j), and m is the mean.
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Two hypotheses assumed for outlier detection are:

Hy: m=my=0 with p, (LGj))~N(©, 1) 5-9

Hy: m=m;#0 with p,, (LGj)~N(m;, 1) 5-10
where H|, is the null hypothesis, and H is the alternative hypothesis.

Assume that the predicted estimate of elevation is accurate. Then if H|, is in effect,
which means that there is no significant dispersion between the predicted estimate of
elevation DS™ (i, j) and the elevation measurement of DEM point (i, i ) In other words,

the predicted estimate of elevation agrees with the relevant observation. In this case, it is

unlikely that Z(i, j) would be an outlier. An example is illustrated in Figure 5-2, in

which the horizontal axis represents the DEM point and the vertical axis represents the
elevation value. DS™(k+1) is the predicted estimate of elevation of DEM point
(k+1), which is derived from the updated estimate of elevation DS*(k) of the

neighbouring point (k) through the 2-D Kalman dynamic model, and Z (k+]) is the

observation. The dispersion between DS (k+1) and Z(k+1) is represented as

Ik +1 ) , which is not significant, and therefore it is unlikely that Z (k+1 ) is an outlier.

A H
Z(k+1) 2{k+1)
DS_(k+ J) s 1(k+ 1‘)
True terrain
surface
DS (k+1)
0 K ket DEM point

Figure 5-2  Small dispersion represented as [ (k + 1 ) between the predicted
estimate of elevation and the DEM observation
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If H, is the case, there will be a large dispersion between the predicted estimate of

elevation DS™ (i, /) and the measurement (i, j) as shown in Figure 5-3. In this situation,
the bias is caused from the observation Z(k+ 1), and therefore Z (k+1) will be

considered as an outlier, since the predicted estimate of elevation had been assumed

correct.

Z(k+])

Z(k+1)

e+ 1)

True terrain
surface

O K k+1 DEM point

Figure 5-3  Large dispersion represented as l(k+]) between the predicted

estimate of elevation and the DEM observation
The Neyman-Pearson strategy is adopted for outlier detection and the relevant analysis.

Suppose the risk of test is set as not larger than the specified, that is, the limit set for the

risk of the outlier detection is o, then:
P(D, |Hy)< o 5-11

The probability a could be derived by (see Figure 5-1):

a=2[ p, (v)y 5-12

o
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where y is used to simplify the representation of L(i, j), Pm, (y) is the probability
density of defined L(i, j) in Eq. 5-12, and &, is the critical value associated with the

risk o . Using Eq. 5-12, if o is selected as 5%, 1% or 0.1%, then the subsequent critical

values will be £ o5 =1.96, £ =2.58, or &g g9 = 3.29, respectively.

The outlier is detected by:
| LG J) P> Ea 5-13

In other words, given a constraint &, the entire L(i, j) -space will be split into the
acceptable region R, and the remainder R; (the critical region, in which H is
rejected) (see Figure 5-1). If the test statistic L(i, j) falls in the region R,, the
corresponding observation Z(i, j) is considered as a good observation, since L(i, j)
stays within the specified limits. On the other hand, if L(i, j) falls into the region R;,
the relevant observation Z (i, j) deviates too much from the predicted estimate and is

considered as outlier.

It is necessary to mention that the condition of using Eq. 5-13 to detect an outlier in a

DEM is that the predicted estimate of elevation DS™ (i, j) is assumed correct. In other
words, the dynamic models are assumed correct. However, a bias in the test statistic

L(i, j) could be introduced either by the Kalman filtering model through the calculation

of DS™(i, j), i.e. the Kalman filter's dynamic model, or by an outlier in the DEM
measurements. To distinguish whether the detected bias is an outlier in the observation
or a model error of the 2-D Kalman filter, is complicated in some situations. This is
related to the terrain roughness, DEM resolution, and breaklines. Appropriate selection
of the dynamic noise level (or Q, (i, /) and Q y(i, j) matrix), discussed in Chapter 4,
could avoid outliers in the Kalman dynamic model (Wang 1998, Wang et al 1998b).
However, over a rough terrain surface where abrupt changes of terrain surface occur, or
the assigned dynamic noise level is inadequate, the situation becomes ambiguous, and

further investigations are required.
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5.3 Reliability of Outlier Detection

The reliability of estimated parameters can be described by the sensitivity of detected
errors in the mathematical model and by the influence of undetectable model errors on
the parameters (Forstner 1981). The reliability of detecting outliers from DEM

measurements is investigated in the sense of internal and external reliability.

5.3.1 Minimum detectable bias (internal reliability)

The concept of internal reliability is closely related to the probability of outlier
detection. The greater the probability of locating erroneous observations, the higher is

the degree of internal reliability of the model.

Now the two hypotheses of Eq. 5-13 and Eq. 5-14 are modified into more general form:

Hy: m=0 with py(L(j)~N(0, 1) 5-14
Hy: m=820 with ps(L(ij))~N(, 1) 5-15

where & is a variable.

Following the outlier detection criterion in Eq. 5-13, a decision Dy is on the critical
value &, of L(i, j) with a risk level o. The associated Type I error of decision Dy is

B, then the power of the outlier detection will be:
1-B=P(D; |H,) 5-16

Now examine how the “best” decision Dy is made, since many different decisions can
be made with different powers of the test for a given value of &, . An example is
illustrated in Figure 5-4, in which the critical value &, is given and two possible
alternative hypotheses H, and Hj are chosen. In the case of alternative hypothesis

H |, the corresponding power of the test is the solid-line shaded area, which is less than

50%, in terms of probability. Increasing the value of & to ' obtains another alternative
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hypothesis H. The relevant power of test of H| is the dotted-line shaded area, which

is greater than 50%. Therefore, the distribution of the composite alternative hypothesis

H can be varied, according to the different choice of & while keeping the same critical

value £, .

Figure 5-4 The power of testing increases choosing large & with a given &,

If the Neyman-Pearson strategy, Eq. 5-3 or Eq. 5-4, is used as the criterion to determine

the “best” decision Dy, the optimal decision Dy should be the decision of which the

power of test is maximised while the Type I error is at most at the specified level o in

the rejection region R;:

max(1 -B)= max[ I ps (y)dyj while  P(Dg | Ho)= [ py(y)dy < ot 5-17
R, R,

Under this criterion, if the minimum acceptable power of test is chosen as 50%, the

corresponding critical value &g should be:
£ =0 5-18

Substituting Eq. 5-17 into Eq. 5-12, the detectable bias is derived as:
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LG, j) =8 5-19
Then the minimum detectable bias is:
min|L(i, /) = & 5-20

5.3.2 Maximum effect of the undetectable bias (external reliability)

In spite of all the sophisticated testing procedures, there will never be certainty about
having detected all gross errors in the DEM. Furthermore, some small errors must be
expected in the data that are just below the established boundary values. Therefore, one
of the crucial points of model analysis is to gain an understanding of the effect of these

model errors on the parameter estimation.

A mathematical model is said to have external reliability if it responds insignificantly to
undetected errors (Caspary 1988, p91). Now, the maximum effect of the undetectable

bias to the DEM outlier detection will be investigated.

Recall that the updated estimate of state vector S* (i, j) is derived by the following

equation using the elevation observation Z(i, j) of the DEM point (i, j):

S$*(i,j) = £(2(. /) 521
=S7(G, /) +KG j))}Z(@i j)-DS™ (i 1))

Suppose that there is a bias 84 in Z ( ) which cannot be detected by using Eq. 5-13.

The effect of the undetected bias 8k on the derivation of the updated estimate S* (i, )

1s:

a8, =£(26.j)+ o)~ £(26:.)
[s( )+KZJ)((Z( i.j)+ )~ D8~ (0 )]~ 5 (6.) + K G )26 /) - DS (0.)
=Ki{(;,

5-22
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where vector AS; is the bias of the state vector S*(i, j) caused by the undetectable

error 64 in the observation Z (i, j) of any arbitrary DEM point.

5.4 Qutlier Removal

Once an outlier is detected using the method described in Section 5.2, it needs to be

removed to eliminate its effect on the modelling of the proceeding DEM point.

This can be achieved by reducing the weight of the current observation Z (i, j), which
has been detected as an outlier, while computing the Kalman gain. If a DEM

measurement Z(i, j) is identified as an outlier, the relevant K(, j) is computed by

keeping the same variance covariance P~ (i, j), but amplifying the observation error

R(i, j) into a large value, using Eq. 4-22:
R(i,j)—> 5-23

In this way, the derivation of the updated estimate of state vector S* (i, j) will entirely

depend on the predicted estimate S™(i, /), since its weight is increased, and the effect of

DEM outlier is eliminated.
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5.5 Experiments

5.5.1 Testing data

The tests were aimed at examining the efficiency of DEM outlier detection and removal
in the 2-D Kalman filtering algorithm. The tests used the same artificial surface as that
in Chapter 4, with five outliers and 0.5m random noise added to the elevation surface.
The outlier affected DEM is shown in Figure 5-5, and details of the five outliers are
listed in Table 5-1. The ground truth of the elevation, X and Y derivatives, slope and
aspect surfaces of the outlier affected DEM are the same as those simulated in Chapter

4.

40

Flevation n melre

Figure 5-5 The noisy DEM
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Figure 5-6(a) Elevation Figure 5-6(b) X derivative

88



40

Derivative ¥
Slope in deqree

=%
Figure 5-6(c) Y derivative Figure 5-6(d) Slope
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Figure 5-6(e) Aspect

Figure 5-6 2-D Kalman filtering results

Table 5-1 Outliers in the simulated DEM

(unit: metres)

Outlier 7.5 59 -10.6 -8.8 -6.5

5.5.2 Results of the 2-D Kalman filtering algorithm

The extended 2-D Kalman filtering algorithm with outlier detection and removal was

applied to the DEM illustrated in Figure 5-6. The critical value £, was chosen as 2.58,

that is, it was assumed that the Type I error in the test is not larger than 1%. All other
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filtering parameters used were the same as those used in the testing discussed in Chapter

4.

The estimated surface of elevation and the first partial derivatives of the test data were
generated simultaneously, and plotted in Figure 5-6(a), (b) and (c). The slope and aspect
surfaces of the data were also computed using the Kalman filtering results and the

relevant slope and aspect equations, and are also displayed in Figure 5-6(d) and (e).

The results of the tests indicate that all five outliers were detected and completely
removed from the elevation surface, and therefore a smoothing elevation surface has
been generated. The effect of the outliers on the X and Y derivatives, slope and aspect
were also fully removed. The algorithm produced accurate estimated surfaces of all

these four terrain attributes, compared with the ground truth.

5.5.3 Results of the Evans method

Applying the Evans method over the outlier-affected DEM also produced the terrain

variables for the same test data, including X and Y derivatives, slope and aspect, which

are shown in Figure 5-7.

Derivalive X
Derivative Y

\6& =&

Figure 5-7(a) Derivative X Figure 5-7(b) Derivative Y
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Figure 5-7 The Evans method results

The results of the Evans method indicate the considerable influence of DEM outliers on
the derivation of all terrain variables. Small peaks occurred in the surfaces of X and Y
derivatives, and slope in the places where the outliers exist. Further, it is inevitable that
a single outlier can affect more than one DEM point, since no process was included in
the Evans method for DEM outlier treatment. Since the Evans method could not
completely smooth the random noise, the resultant aspect surface is too noisy to directly

observe the impact of the outliers.

5.5.4 Comparison of the results of the 2-D Kalman filtering algorithm and the

Evans method

The results of the 2-D Kalman filtering and the Evans method were compared with the
ground truth in order to further examine the significance of the outlier detection and

removal by the 2-D Kalman filtering.

In the comparison of the estimates of elevation derived by 2-D Kalman filter with the
ground truth, outliers added to the test data are plotted in Figure 5-8(a), while the errors
remaining after the Kalman filtering are plotted in Figure 5-8(b). The differences
between the elevation estimates of the 2-D Kalman filtering, which is extended with the
function of outlier detection and removal, and the ground truth elevations were in the

range of -0.05m to 0.05m, as shown in Figure 5-8(b). This result indicates that the

91



outliers in the test data were completely detected and efficiently removed by the process

of outlier detection and removal of the 2-D Kalman filtering algorithm.
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Figure 5-8 Errors in the elevation of the noisy DEM and the 2-D Kalman filtering

The estimates of the X and Y derivatives, slope and aspect of the Kalman filtering were
compared with those derived by the Evans method. The errors in the estimates of the X
and Y derivatives, slope and aspect by the 2-D Kalman filtering and the Evans method
were derived by subtracting the ground truth from the relevant data. The comparison of
results are plotted in Figure 5-9, in which the horizontal axes represent of the number of
the DEM points and the vertical axes represent the magnitudes of the errors remained in
the estimates of terrain variables derived by the Evans method and the 2-D Kalman

filtering algorithm.
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Figure 5-9  Comparison of errors in the estimates of terrain variables by the

Evans method and the 2-D Kalman filtering algorithm
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The comparison clearly indicates that the effects of DEM outliers on the X and Y
derivatives were almost fully removed using the 2-D Kalman filtering algorithm. Errors
remaining in the estimates of X and Y derivatives derived by the 2-D Kalman filtering
algorithm are minor, between -0.34 to 0.38. However, the effect of the outliers on the
results of the Evans method is strong. Five outliers had affected thirty DEM points to
produce incorrect estimates of the X and Y derivatives respectively. The magnitudes of
the error ranges from -2 to 2, which is significantly larger than the 2-D Kalman filtering
algorithm.

Since the effects of outliers were completely removed in the estimates of the X and Y
derivatives, the slope and aspect surface by the 2-D Kalman filtering algorithm were
more accurate than those derived by the Evans method at the DEM points where the
outliers occurred. Compared with the ground truth, the errors in the results of the 2-D
Kalman filtering ranged from —14.54° to 10.73° for the slope surface. However, due to
the five added outliers, the error in the estimates of slope derived by the Evans method
is more than 67°. The errors remaining in the aspect surfaces derived by the Evans
method and the 2-D Kalman filtering algorithm follow similar patterns as shown in
Figure 4-9(g) and Figure 4-9(h). The influence of DEM random noise is strong in the
aspect of the Evans method, so the impact of outliers on the Evans method may only

worsen the situation.

It is concluded that the method of DEM outlier detection and removal developed in this
Chapter for the 2-D Kalman filtering algorithm is efficient in detecting and removing
DEM outliers, and therefore, it is able to produce more accurate results than the Evans

method.

5.6 Conclusions

In this Chapter, the method of DEM outlier detection and removal has been presented.
This method is based on the application of the 2-D Kalman filter, developed in Chapter
4, and the theory of statistical hypothesis testing.
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The test statistic developed for DEM outlier detection is based on an innovation series,
which represents the dispersions between the predicted estimate of elevation, derived by
the 2-D Kalman filter, and the elevation measurement at each DEM point. DEM outliers

are detected at the DEM locations where large discrepancies occurred.

The internal and external reliabilities of outlier detection were further investigated in
this Chapter. The internal reliability is examined in the sense of the minimum detectable
bias, in which two hypotheses for outlier detection were established and the Neyman-
Pearson strategy was applied as the relevant criterion. The external reliability of the
outlier detection was discussed in terms of the maximum effect of the undetectable bias

on the DEM outlier detection.

The method of outlier removal developed in this Chapter is also based on the
application of the 2-D Kalman filter. If a DEM observation is detected as an outlier, it
will be removed through the derivation of Kalman gain at the point by amplifying the
relevant observation error to a large value. In this way, an updated estimate of the point
is derived entirely depending on the predicted value, and the effect of the outlier 1s

removed.

The experiments indicate that the method developed in this Chapter is significant in
detecting and removing DEM outliers from a DEM data set. The extended 2-D Kalman
filter with outlier detection and removal may produce more accurate terrain variables

than the Evans method for the same outlier-affected test data.
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CHAPTER 6

THE 2-D KALMAN SMOOTHER

6.1 Introduction

The 2-D Kalman filter for terrain surface modelling developed in Chapter 4 is a causal
filter, in which DEM measurements and the predicted information of the random
process are used. Before introducing the 2-D Kalman smoother, it is necessary to
explain how such information is used in the 2-D Kalman filtering process. An example
illustrated in Figure 6-1 and Figure 6-2 indicates how the updated estimate of point

(1 ,1) is derived. Suppose the 2-D Kalman filter processes a grid DEM, starting from its

top left corner and moving towards the bottom right comer of the DEM. The

neighbouring points used for generating St (] v ) are shown in Figure 6-1. A flow chart

of how the associated information of the neighbouring points is applied in the relevant

recursive process is shown in Figure 6-2.

Y

v (N, M)

Figure 6-1 Using the 2-D Kalman filter to process a DEM
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Figure 6-2 Information used in the determination of S*(1,1)

Suppose the recursive Kalman process starts from the point (0,0). The predicted
estimates along the X and Y directions represented as $.(0,0) and S;(0,0) should use
the relevant initial values, since point (0,0) is located on the boundary. The predicted
estimate S7(0,0) is a linear combination of $;(0.0) and S;(0,0), which is used
together with the observation of the point Z (0,0), in producing the updated estimate
S+(0,0). The next processing point is point (1 ,0). The predicted estimate along the X
direction S,(/,0) is generated using the updated estimate $*(0,0) and the relevant
dynamic model. The predicted estimate along the Y direction S;(],O) still uses the
initial value, since there is no point has been processed along the Y direction. The
updated estimate $*(7,0) is derived using $.(7,0) and S;(J,O), through S™(1,0), and

the observation of the point Z(7,0).

Following this procedure to process the rest of the row, the following information has

been used to produce the predicted estimate S (1,0) or the updated estimate S* (i,0),
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including all the predicted estimates and the observations along the X direction up to the

processing point (i,O):

z(00), z(0), .., ZzZko), k=0 .. i-I

$:(0,0), S;(1,0), ... Si(k0), k=0, i +=87(,0) 6-1
$5(0.0) S;(k0). ... S;(k0) k=0, i

z(00), z(0), .. 2z((ko), k=0 .. i

$;(0.0), S:(1,0), S (k0), k=0 i+ =8%(;0) 6-2
$,(0.0) S,(ko0). ... S;(k0) k=0 i

The only difference between Eq. 6-1 and Eq. 6-2 is whether the observation Z (i,O) is

used or not. The derivation of the predicted estimate does not use the observation of the
processing point, while the updated estimate should involve the observation of the

processing point.

Coming back to the determination of the predicted estimate S;,(] v ), which is used for
the calculation of the updated estimate S$*(7,7), in this case the observation Z (0,0) and

Z(1,0), the predicted estimate $.(00), S;(0,0), S.(1,0) and S;,(],O), and the

updated estimate S*(Z,0) are used.

Now consider the determination of the predicted estimate Sy(Z,/). The information

used, shown in Figure 6-2, includes the observation Z (0,0) and Z(0,1), the predicted

estimate 8(0.0), $;(0,0), Sx(0.7) and 87(0,1), and the updated estimate $*(0,1).

The DEM point (0,0) is the overlapping area, and the information associated with this

point has been used twice in the derivation of S.(1,1) and S;(],]). However, the

information associated with the adjacent point (Z,0) and point (0,7), including the
observations and the predicted estimates, has only been used once to produce the

updated estimate S$*(/, ). The situation is similar for the calculation of the predicted or
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updated estimate of any arbitrary DEM point (i, j) illustrated in Figure 6-3. The grey

colour shaded area covers the DEM points for which information has been used twice,

while the dashed and solid line filled row and column indicate the DEM points which
are only used once in the generation of $7(;,j) or S*(;, /). The observation Z(i, j)
should be included if the updated estimate S+(i, j) is considered. Otherwise, for the

computation of the updated estimate S_(i, j), the observation Z(i, j) should be

excluded.
©00) X
’
Y v (N-1,41-1)

Figure 6-3 Information used in the derivation of S_(i, j) or S+(i, j)

In this case, the advantage of the 2-D Kalman filter is that it can be used for real-time
processing. However, the disadvantage is that a better result could not be derived at the
commencement of the process, since only part of the measurements are used.
Furthermore some measurements are used only once and other are used twice.
Modelling the terrain surface using DEMs is mostly an off-line data process. It is of
practical interest to incorporate all elevation measurements of a DEM to yield the best
estimate of the state vector of each DEM grid point. This issue refers to the Kalman

smoothing problem.
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To achieve this aim, a 2-D Kalman smoother was developed based on the extended 2-D
Kalman filter, which includes the outlier detection and removal process. The smoother
is intended to use the whole DEM data equally to produce the best optimal estimates of
three terrain variables for each single DEM point, therefore, further improving the

accuracy.

6.2 An Alternative Way of Computing the Mean Value — A Case
Study

Firstly, an example is used to derive a relevant fact, which will be used in the

development of the 2-D Kalman smoother.

Suppose to measure the length of a road, three independent length measurements were

obtained as /;, /, and [5, and the associated variance is represented as 012, c% and

c%. Now it is required to derive the mean value for the length of the road.

In order to simplify the following expression, the weight of the observation /;, /, and

I; represented as w;, w, and wy will be used in the following discussion:

1
Wy =— 6-3
G
1
WZ = —2 6—4
G2
1
w3y =—5 6-5
C3

The mean could be derived as the sum of the three observations weighted by their

weight factors:

Ljy; = 6-6
W; + W, + W3
2 1
Sl = 6-7

W1+W2+W3

100



where czz is the associated variance with the derived mean.

123

£12 Wlf}i WIIZ }12 Wlff”l WIIZ

P ith
{3 Wit i,

Step 1

312 with wsz [12 with me 1[3 with Wfﬁ’

1[23 Wlt}l W‘szg

Step 2

Figure 6-4 Derivation of the mean value by double using the observations

The mean could also be derived in the way illustrated in Figure 6-4, which uses two

steps of calculation and applies the observation twice to compute the mean value. In

Step 1, the mean values of any two observations are calculated as:

- wil, + wsl ) 1
112:“—"—11 2°2 Wlth G[Z =

W1+W2 12 W1+W2
- Wl + wsl . 1
I, =222 "33 ih 62 =—
23 [

Wy + Wws 2wy, +ws
- wil, + wal . 1
113= A 3°3 lth Gl' =

W1+W3 W1+W3

6-8

6-10
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The variance - covariances of the three intermediate variables are:

i 1 w, w, |
Wy W, (v, +w, Yo, ) o+ w, Jow, + )
o= e o u 6-10a
Bz | (o, w Mo, +w3) W+ Wy (w, +w, )w, +ws)
w, w, 1
(o, owy +w) vy 4w )y w3 worw,

If /,,, I,, and I,, are used with the consideration of their covariance, the optimal

12 3

estimation of the expectation can be derived from the following Least Squares model:

v, 1 l_l2
v, |=|1|l,,, —|1,, | with weight matrix Dil‘23 6-10b
Vv, 1 l,
_1 _
17 1) 17 I,
1123 - i;3 1 523 {?3
1 1 1 [, 6-10c
~wl +wl, + wil,
W, +w, +w,
T -1
1 1
ol =|[1| D} |1 S 6-10d
!
123 l123 W, +w, +w,

I (111 Lo o1 1Y
(wl+w2) —_—t—t— (w1+w2)(w2+w3 -t (w1+w2)(wl+wJ —————
wl w2 WJ Wl W2 w] Wl W2 WJ
- 1 1 1
D' =-— (w2+w3)2 -L+—+- (w2+w3)(w1+w3 ~~1——L+—]—w
f223 4 WZ WZ W] ‘Vl w2 MJ} )
symmetric (w1 +w, )Z + + L + an
L W, w, w,
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However, if for some reason that the co-variances are not available, and are further
assumed to be zero, the results of the mean value can be derived as Eq: 6-11 and Eq. 6-

12, in which the variance of the mean is underestimated.

W]l[ +W212 +W212 +W3l3 +W111 +W313

1_123:
W1+W2+W2+W3+W1+W3 6-11
_W111+W212+W313
W1+W2+W3
1
0'2 do =
pseudo
W1+W2+W2+W3+W1+W3
1
_ 6-12
2(W1+W2+W2)
_ 1 2
2 Ly
2 2
O7 =20 yseudo 6-13

{23

Comparing these two methods, the observations have been used once in the first
method, and twice in the second method. The mean value derived by the method

illustrated in Figure 6-4 is equal to the result using Eq. 6-6. Due to the assumption of

independence among [,,, I3, and [;;, the derived variance in the second method is

over-optimal, and therefor should be scaled by a factor of 2, represented by Eq. 6-13, in
order to give the realistic variance estimate. This is applied in the development of the 2-

D Kalman smoother.

6.3 2-D Kalman smoother

The developed 2-D Kalman smoother (Wang er al 2000) processes a DEM at four
different orientations as shown in Figure 6-5. Orientation 1 is defined as the filtering
direction, starting from top left and moving towards the bottom right shown as Figure 6-
5(a), and orientation 2 is defined as the filtering direction, starting from top right and
proceeding towards bottom left as shown in Figure 6-5(b). Similarly the orientations 3

and 4 are those shown in Figure 6-5(c) and Figure 6-5(d) respectively.

The smoothing algorithm uses the developed 2-D Kalman filter to process the DEM

four times at orientation 1, 2, 3 and 4, respectively, and linearly combines the four
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filtering results to derive the final estimation. Suppose that 2-D Kalman filter processes

the DEM following orientation 1 and derives the updated estimate S7(,j) and P/ (i, j)

using the observations of elevation of the shaded area in Figure 6-5(a). Similarly,

applying the 2-D Kalman filter at the other three orientations shown in Figure 6-5(b),

Figure 6-5(c) and Figure 6-5(d), the predicted estimate S3(i, j) together with P, (i, /),

the updated estimate S}(;,j) with Pj (i j), and the updated estimate S,(ij) with

P, (i, j) will be derived respectively. The estimates ST(i,7), S3@G7), S3(j), and

S, (i, j) are assumed to be independent. The final estimate S (7, J) of S(i,j) can be

formed as a linear combination of ST, ), S7(, /), S3(, j), and S;(Z, /) :

T i DA TR ot U 7]
S finat (0 7) =P oo (i J) (P’ (”])) _Sll("J“(Pz (’»J)) _Slz(w)
+ (P3+ G j)) S3(i,j)+ (P; G j)) S7G.J)

-1 —1 -1

P oo () = [(Pf G Ry +Pran) +r6n)

Pﬁnal (i’ ]) = Ppseudo (ir ])

©,0) 0,0)

(a) (N-1,M-1) ®) W-1,M-1)

0,0) 0,0

MN-1,M-1)

©

Figure 6-5 The 2-D Kalman smoother

6-14
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The results of S ﬁ,,a,(i, j) and Ppseudo(i, j) are independent of the choice of two

predicted estimates and two updated estimates from the four filtering processes. Eq. 6-
14 and Eq. 6-15 are only one example of how to choose the estimates and the relevant

variance-covariance matrix. The smoother produces the same result using any two

predicted S7(;,j) and P7(jj) of four processing orientations, and two updated

S* (i, j) and P* (i, j) of the other two orientations.

As discussed in the beginning of this Chapter, the 2-D Kalman filter is a casual filter,
which unevenly uses the DEM measurements to derive the estimate of terrain variables.
The developed 2-D Kalman smoother successfully solves this problem. The

observations of the overlapping area of each filtering process are used twice to derive
the predicted estimate S™(i, j) or the updated estimate S*(i, j). The points of the ith
row and j th column have been partly used once in each filtering process while deriving
S7(,j) or 8*(i,j) as shown in Figure 6-5. So, after four filtering processes, the

observations, which have been used twice in the derivation of the relevant estimates of
the point (i, j), would cover all DEM points except the point (i, ;) itself. The two

predicted estimates and two updated estimates in Eq. 6-14 and Eq. 6-15 use the

observation Z(i, j) itself, being also applied twice in the generation of the final estimate
S finat (i, j) of the modelling point. Therefore, the whole DEM data are evenly used

twice to generate the estimates of terrain variables of every DEM point using the 2-D

Kalman smoother. For the same reason as described in Section 6.2, Pg, 4 (i, j) should

be scaled by a factor of 2, as shown in Eq. 6-16.

6.4 Experiments

The 2-D Kalman smoother was tested on the noisy DEM as used in Chapter 5 (Figure 5-
5), and the results of the 2-D Kalman smoother were compared with the results of the 2-
D Kalman filter to investigate the significance of the smoothing process. The ground
truth of the elevation, the partial derivatives of elevation, slope and aspect, for algorithm

comparison, are the same as shown in Figure 4-5.
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6.4.1 Results of the 2-D Kalman smoother

The same filtering parameters were used in the Kalman smoothing process as those used
in Chapter 5. The estimates of elevation, X and Y derivatives, slope and aspect derived
by the 2-D Kalman smoother are shown in Figure 6-6, which indicates smoother and
better surfaces of the elevation, X and Y derivatives, slope and aspect, compared with
the filtering result as shown in Figure 4-7. The significant improvements in the result of
the Kalman smoothing appeared at the four boundaries, and this is due to the linear

combination of the four filtering results.

Tlevation n melre
Derivative ¥

Figure 6-6(a) Elevation Figure 6-6(b) X Derivative

Derivative Y
Slope in degree

=%

Figure 6-6(c) Y Derivative Figure 6-6(d) Slope
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Aspect in deqree

Figure 6-6(¢e) Aspect
Figure 6-6 Results of the 2-D Kalman smoother

6.4.2 Comparison of the results of the 2-D Kalman smoother with the 2-D

Kalman filter

Errors in the estimates of terrain variables derived by the 2-D Kalman filter and
smoother were obtained by subtracting the relevant estimates from the corresponding
ground truth, which are shown in Figure 6-7. In the Figure, the horizontal axes represent
the number of points of the test data, and the vertical axes represents the errors observed

in the filtering/smoothing results of elevation, X and Y derivatives, slope or aspect.
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Figure 6-7 Comparing errors remaining in the estimates of terrain variables

from the 2-D Kalman filter and smoother

Both the Kalman filtering and smoothing algorithms produced accurate estimates of
elevation of the test data, and the remaining errors in the results were small. Outliers
were all completely detected and removed in both filtering and smoothing results. The
statistical analysis of the estimates of elevation in Table 6-1 indicates that the smoothing
result is more accurate than the filtering result. The standard deviation of the elevation
estimates derived by the 2-D Kalman smoother has been further improved by 21% over

the results of the 2-D Kalman filter.

The differences between the estimates of X and Y derivatives derived using the Kalman
smoother and Kalman filter mainly appeared at the boundary of the DEM, where the
Kalman smoother produced better results than the Kalman filter. The 2-D Kalman
smoother had reduced the standard deviation of the X and Y derivatives by 50%

compared with those derived using the 2-D Kalman filter.

Since the 2-D Kalman smoother is more accurate in generating estimates of X and Y
derivatives than the 2-D Kalman filter, the quality of the slope computation using the 2-
D Kalman smoother is better than the filter. The 2-D Kalman smoother further reduced
by 41%, in terms of standard deviation, in slope computation, compared with the 2-D

Kalman filter.
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The estimates of aspect on the test data is also more accurate using the 2-D Kalman
smoother than the 2-D Kalman filter. The improvement of aspect calculation using the
2-D Kalman smoother is 15%, in terms of standard deviation, compared with the result

of the 2-D Kalman filter.

Table 6-1 Comparing errors in the results of the 2-D Kalman smoother and the

2-D Kalman filter

‘ Van (m)

Kalman filtering -0.62 0.67 -0.01 0.14 -
Kalman smoothing -0.44 0.45 0.00 0.11 21%
X derivatives

Kalman filtering -0.26 0.33 -0.01 0.02 -—
Kalman smoothing -0.09 0.06 -0.01 0.01 50%
Y derivatives

Kalman filtering -0.35 0.38 0.00 0.02 -—-
Kalman smoothing -0.06 0.06 0.00 0.01 50%
Slope (degrees)

Kalman filtering -14.55 10.73 0.83 1.07 -—-
Kalman smoothing -1.83 4.26 0.90 0.63 41%
Aspect (degrees)

Kalman filtering -178.68 178.62 0.63 30.18 -
Kalman smoothing -178.70 178.62 0.40 25.74 15%

6.5 Conclusions

The 2-D Kalman filter for terrain surface modelling developed in Chapter 4 is a causal
filter. In the beginning of this Chapter, the method of using observations of a DEM and
the relevant estimates to determine the updated estimates of terrain attributes of a DEM
point in the 2-D Kalman filtering process was reviewed. A problem existed in the 2-D
Kalman filter, mainly associated with the use of information in the filtering, motivating

the development of the 2-D Kalman smoother.

109




The 2-D Kalman smoother presented in this Chapter is a linear combination of four
filtering results, which is derived from four different filtering orientations over a DEM.
The particular advantage of the Kalman smoothing algorithm over the Kalman filtering
algorithm is that it enables the use of all the DEM observations to derive the terrain
attributes of each DEM point, and therefore, produces more accurate estimates of the

terrain variables.

At this point, the introduction of the developed 2-D Kalman filtering algorithm for
terrain surface modelling is complete. It consists of three major parts, including a 2-D
Kalman filter, the method of outlier detection and removal, and 2-D Kalman smoother.
It could also be considered as a 2-D Kalman smoother with extension of the processes

for outlier detection and removal.
The results of the experiments presented in this Chapter indicate that the 2-D Kalman

smoother is more accurate in deriving the estimates of X and Y derivatives, slope and

aspect, compared with the 2-D Kalman filter, using the simulated data.
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CHAPTER 7

EXPERIMENTS RESULTS

7.1 DEM Data

The mapping test site is located in the Katoomba area, New South Wales, and covers
1320m by 1060m. The landscape is considerably rugged with significant breaklines and
vegetation coverage, and is a typically undulating terrain suitable for the test purposes.
The terrain height varies approximately from 480m to 650m. A Katoomba DEM was
produced by digital photogrammetric means from a pair of digitized aerial photos. The
scale of original aerial photos is 1:25,000. Following the recommendations of Kubik
(1985), the suitable DEM sampling spacing, which may accurately represent such a
landscape, is 5m. So the DEM was derived with a sampling interval of 5m by 5m (see
Figure 7-1). This 5m DEM was then re-sampled into a 10m DEM (Figure 7-2), which is
used in the following Sections to investigate the effect of DEM resolution, and the
efficiency of Kalman filter and smoother. According to Section 2.2.1, the accuracy of
elevation of the Katoomba DEM is estimated at 0.6m level using the 1:25,000 photos

and image matching method.

On viewing the photographs, a number of isolating trees are randomly distributed over
the mapping area. By photogrammetric observation, the size of the trees was found to be
generally over 3.5m high, with the canopies varying from 20m by 20m to 5m by 5m.
The effect of these trees on the produced DEMs could be clearly observed as abrupt
small peaks on the elevation surface. If the terrain surface is the main interest of this
study, these small peaks could be considered as invalid observations, i.e. outliers, which
do not represent the terrain surface and should be removed. A total of 523 outliers was
observed in the Katoomba 5m DEM, the magnitudes of which vary from 3.50m to
14.29m, with a mean value of 6.16m. As a result of the change in resolution, only 110
outliers were observed in the 10m Katoomba DEM, which range from 3.50m to 13.26m
with a mean of 6.10m. The outliers in the 5m and 10m DEM are plotted in Figure 7-3(a)
and (b), in which the vertical axis represents the magnitude of the outliers and the
horizontal X and Y axes represent the positions of each outlier in the DEM data.
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Figure 7-3  Outliers in the 5Sm and 10m Katoomba DEMs
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7.2 Experiments Applying 2-D Kalman Filtering Algorithm on Sm
and 10m Katoomba DEMs

The 2-D Kalman filtering algorithm for terrain surface modelling was applied to the
two sets of Katoomba DEMs with the four filtering orientations illustrated in Figure 7-

4.

Y (264,212) or (132, 106)

©0)

Figure 7-4  The processing orientations applied in the 2-D Kalman filtering
algorithm on the Sm and 10m Katoomba DEM

The parameters used for the Kalman filter on the Sm DEM are given in Eq. 7-1 to Eq. 7-
3. The same dynamic model errors were used in the four filtering processes, in which
the second order partial derivatives of elevations were assumed to be 0.08. The
observation variance was used as 0.36m’. The critical value &, selected for outlier
detection and removal in the 5Sm Katoomba DEM is 2, which is equivalent to a level of

approximation by 95% confidence. It is expected that only 5% of good DEM

observations will be rejected in the outlier detection:

1 0 0

Q,(7)=Q,G )=/0 016 0 7-1
0 0 016

R(, j)=0.36 7-2

o =2 7-3
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The critical value and the observation variance used on the 10m Katoomba DEM were
the same as those used on the Sm Katoomba DEM. The model error used on the 10m
Katoomba DEM for the Kalman filter given in Eq. 7-4, was derived from the same
value of the relevant second order of derivatives of elevation that was used in the Sm
Katoomba DEM. The larger model errors in the 10m DEM, compared with the 5m
DEM, are expected since the DEM resolution is enlarged from 5m to 10m and therefore

terrain roughness between the adjacent DEM points is increased.

6 0 0
Q,(./)=Q,(G/)=| 0 064 0 7.4
0 0 0.64

The results of the 2-D Kalman smoothing on the Sm and 10m Katoomba DEM are

displayed in Figure 7-5 and Figure 7-6.
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Figure 7-5(a) Estimates of elevation
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Figure 7-5  The results of the 2-D Kalman filtering algorithm on the 5m
Katoomba DEM
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Figure 7-6  The results of the 2-D Kalman filtering algorithm on the 10m
Katoomba DEM

Comparing these two Figures, the results of smoothing of the 5m and 10m Katoomba
DEM are all generally effective. The results of the Sm DEM are more accurate than the
10m DEM results in terms of the representation of terrain topographic features, which is

due to the use of denser DEM resolutions.

7.3 Results of the 2-D Kalman filter

In this Section, the results of the 2-D Kalman filter of the 5m and 10m Katoomba DEMs
will be further examined, and the relevant results will be compared with the Evans
method to investigate the efficiency of DEM random noise reduction by the developed
2-D Kalman filter. It is necessary to mention that the results of the 2-D Kalman filter
used in this Section over the Katoomba DEMs refer to the results derived by applying

the 2-D Kalman filter, not the Kalman smoother.
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The derivation of estimates of five terrain variables by the 2-D Kalman filter for the 5Sm

and 10m Katoomba DEMs arc plotted in Figures 7-7 and 7-8. The processing followed
the orientation of S{ shown in Figure 7-4. The filtering parameters are the same as

shown in Eq. 7-1 to Eq. 7-4.

The accuracies of the estimates of the 2-D Kalman filter for the 5m and 10m Katoomba
EM are poor at the two boundary areas, but they improve as the filter proceeds from the

bottom left direction to the top right.
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Figure 7-7(a) Estimates of elevation
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Figure 7-7(e) Estimates of aspect

Figure 7-7  The results of the 2-D Kalman filter using the Sm Katoomba DEM
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Figure 7-8  The results of the 2-D Kalman filter using the 10m Katoomba DEM

7.3.1 Effect of DEM resolution on the results of the 2-D Kalman filter

The effect of DEM resolution on the 2-D Kalman filter can be investigated by
comparing the results of the 2-D Kalman filtering process using the 5m and 10m
Katoomba DEMs. Since the 10m DEM was sampled from the Sm DEM, the differences
between the five terrain attributes for the 10m and 5m Katoomba DEM derived by the
2-D Kalman filter are mainly due to changing the resolution from 5m to 10m as

summarized in Table 7-1.

So, if the DEM resolution is increased from 5m to 10m over such a terrain surface as the
Katoomba mapping area, the effect of DEM resolution on the 2-D Kalman filter are in
the range of -6.30m to 8.09m with a mean of —0.01m for the estimates of elevation. In
the case of the estimates of the X and Y derivatives, the effect of DEM resolution is
about 0.01 on average, which causes about 0.02 radians difference in the slope

calculation, and 0.12 radians difference in aspect computation.
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Table 7-1 Differences in the results of the 2-D Kalman filter using Sm and 10m
Katoomba DEMs

Minimum  Maximum Mean value Standard

value value deviation :

X derivatives -0.21 0.29 0.01 0.03
Y derivatives -0.27 0.26 0.01 0.03
Slope (radians) -0.22 0.28 0.02 0.03
Aspect (radians) -3.29 3.28 0.12 0.85

7.3.2 Comparing the results of the 2-D Kalman filter with the Evans method

The efficiency of DEM random noise reduction of the 2-D Kalman filter was compared
with the Evans method. The results of the Evans method for the 10m Katoomba DEM
are plotted in Figure 7-9. Compared with the results of the 2-D Kalman filter (see Figure
7-8), the results of the Evans method are more noisy in the X and Y derivative surfaces,

and therefore, less accurate in the estimates of slope and aspect (see Figure 7-9).

It is difficult to obtain the ground truth of elevation, X and Y derivatives, slope and
aspect of the Katoomba mapping area. So the 2-D Kalman smoothing results of the Sm
Katoomba DEM were used as the bases in this Section to evaluate the accuracy of the 2-
D Kalman filter and the Evans method using the 10m Katoomba DEM. Compared with
the Kalman smoothing results of the Sm DEM, the errors remaining in the results of the
2-D Kalman filter and the Evans method using the 10m Katoomba DEM were analysed
(see Table 7-2). The improvement shown in Table 7-2 represents the improvement of

the 2-D Kalman filter, compared with the Evans method, in terms of standard deviation.
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Figure 7-9  The results of the Evans method using the 10m Katoomba DEM
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Table 7-2 Comparison of errors remaining in the results of the 2-D Kalman

filter and the Evans method using the 10m Katoomba DEM

Minimum Maximum Mean Standard Improv

value value value deviation ement:

| X derivativs |
Errors in the Evans  -0.83 0.56 0.07 0.12 ——-
method

Errors in Kalman -0.21 0.29 0.01 0.03 75%
filter

Y derivative

Errors in the Evans  -0.60 0.55 0.03 0.14 -—
method

Errors in Kalman -0.27 0.26 0.01 0.03 79%
filter

Slope (radians)

Errors in the Evans  -0.23 0.50 0.15 0.07 -
method

Errors in Kalman -0.22 0.28 0.02 0.03 57%
filter

Aspect (radians)

Errors in the Evans  -3.09 3.29 0.10 1.12 -
method

Errors in Kalman -3.29 3.28 0.12 0.85 24%
filter

Compared with the ground truth, the standard deviations of the estimates of the X and Y
derivatives derived by the Evans method are 0.12 and 0.14, which is about three to four
times higher than those in the results of the 2-D Kalman filter. While generating the
estimates of slope and aspect of the 10m Katoomba DEM, the standard deviation of the
error remaining in the slope derived by the Evans method is 0.07 radians, which is twice
that of the results of the 2-D Kalman filter. The aspect computation using the Evans
method is also worse than the 2-D Kalman filter. The standard deviation of the aspect
calculation usng the Evans method is 1.12 radians, compared to 0.85 radians in the 2-D
Kalman filter result. The improvement of the 2-D Kalman filter over the Evans method,

in terms of standard deviation, is about 75% in estimating X derivatives, 79% in
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estimating Y derivatives, 57% and 24% in deriving slope and aspect, on the 10m

Katoomba DEM.

7.4 Outlier Detection and Removal

7.4.1 Reliability of outlier detection and removal of the 2-D Kalman filter
As has been described in Section 5.3, the internal and external reliability of outlier
detection in the 2-D Kalman filtering algorithm relates to the level of critical value &,

used in the relevant filtering process. Rewriting Eq. 5-20 into a full expression, the
minimum detectable bias, in which the minimum acceptable power of test was set as

50%, the relevant effect on estimates of the terrain variables can be derived as:

min‘Z(i, j)-Ds(, j)[ =&, DP™(;, /)DT +R(;, ) 7-5

AS; == K(i,j)-min‘Z(i,j)— DS_(’UX 76

For instance, the critical value £, was chosen as 2 in the outlier detection and removal

of the 2-D Kalman filtering process over the 5Sm Katoomba DEM. Then, the minimum
detectable biases and their possible impact on the derivation of the three terrain
variables, can derived using Eq. 7-5 and Eq. 7-6 (shown in Figure 7-10 and Figure 7-
11). In this case, the minimum detectable biases in the elevation estimates derived by
the 2-D Kalman filtering process are in the range of 2.78m to 4.88m (see Table 7-3).
Larger values mainly occur around isolated trees. This is due to the effect of the
outliers, which reduce the accuracy of the estimates of their surrounding points. Once an

outlier is detected, the relevant observation variance R(;, /) would be amplified into a

large value in order to remove it, and therefore, the variance of the estimates of the

elevation of the surrounding DEM points will be enlarged.

The possible effect of the minimum detectable biases on the derivation of terrain
variables of the 5m Katoomba DEM were also investigated (see Figure 7-11 and Table
7-4). The maximum effect of the minimum detectable biases is only 3.48m for estimates

of elevation, and 0.16 for the estimates of X and Y derivatives.
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Figure 7-11 Effect of the minimum detectable biases on the estimation of terrain
variables using the 2-D Kalmna filtering process and the 5Sm

Katoomba DEM
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Table 7-3 The Minimum detectable biases of outlier detection in the 2-D
Kalman filter using the Sm Katoomba DEM (&, =2)

(unit in metres)

Minimum Maximum " Mean value Standard

value value deviation

detectable bias

Table 7-4 Effect of the minimum detectable biases on the derivation of terrain

variables using the 2-D Kalman filtering algorithm and Sm

Katoomba DEM (&, =2)

value value

elevation
Effect on X 0.00 0.16 0.13 0.01
derivative
Effect on Y 0.00 0.16 0.13 0.01
derivative

Further analysis of the innovation series and the minimum detectable biases of the S5m
Katoomba DEM indicates that only one outlier in the 5m DEM was not detected and
removed. The innovation series is 3.81m, which is less than the corresponding
minimum detectable value, i.e. 3.94m. This point is located at the 5" column and 122™
row of the data, or X =5 and Y =122 of the S{ orientation in Figure 7-4, which is
close to the left boundary. Its effect on the estimates of elevation is 2.26m, and 0.13 for

the X and Y derivatives.
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It can be concluded that the method of outlier detection and removal applied in the 2-D
Kalman filtering algorithm is capable of dctccting erroneous observations from a

complex terrain surface, like the Katoomba data, with a high degree of reliability.

7.4.2 Outlier detection and removal in the 2-D Kalman smoothing process

If the 2-D Kalman smoother is applied to a DEM data, the outliers would be detected
and removed four times. The results of the 2-D Kalman smoothing process would be the
mean values of the four filtering results, weighted by the relevant variance covariance

factors.

This can be examined in the results of the 5Sm Katoomba DEM. The original outliers of
the 5m Katoomba DEM are plotted in Figure 7-12(a), in which the vertical axis
represents the magnitude of outliers and the horizontal axis represents the number of
outliers. The results of outlier detection and removal of the 2-D Kalman smoothing are
plotted in Figure 7-12(b), in which the vertical axis represents the errors remained in the
estimates of the outliers compared with the relevant ground truth, and the horizontal
axis is the same as Figure 7-12(b). Similarly, the errors remained in the results of each

of the four Kalman filtering processes are plotted in Figure 7-12(c), (d), (e) and (f).
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Figure 7-12(a) Original outliers Figure 7-12(b) Smoothing result
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Figure 7-12 Outlier detection and removal using the 2-D Kalman smoother and

the Sm Katoomba DEM

The significant statistics of outlier detection and removal of the 2-D Kalman smoothing
of the 5m Katoomba DEM are shown in Table 7-5. The improvement of the outlier
detection and removal shown in the Table is evaluated in the mean value of the errors
remained in the filtering/smoothing results compared with those of the original
magnitude of the outliers in the 5m Katoomba DEM. The efficiency of outlier detection

and removal is validated in the four filtering processes, and the best result was produced

in the computation S3 . This is probably because that the filter started with good
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boundary conditions, compared with other three orientations, and therefore, produced

more accurate predicted estimates of elevation at the positions where the outliers occur.

The overall efficiency of outlier detection and removal of the 2-D Kalman smoother is
significant. The mean magnitude of the outliers had been reduced to nearly half of its
original value, i.e. from 6.16m to 3.35m, and the improvement is about 46%, after

applying the 2-D Kalman smoothing process (see Table 7-5).

Table 7-5 Efficiency of outlier detection and removal using the 2-D Kalman

smoother on the Sm Katoomba DEM

(unit in metres)

"Mini Maxi  Mean Standard I

value value value deviation

Errors remained in -4.20 12.04 2.56 2.85 58%
process #1

Errors remained in -8.70 14.26 3.84 3.07 38%
process #2 |

Errors remained in -7.07 15.00 1.94 3.23 69%
process #3

Errors remained in -3.40 10.70 3.00 2.51 51%
process #4

Errors remained in -1.60 9.56 3.35 1.79 46%

smoothing results

7.4.3 Efficiency of detecting and removing outliers of different magnitudes using

the 2-D Kalman smoothing process

The power of the test is different for outliers with different magnitudes with a given
critical value. It is expected that the taller the trees, the more powerful will be the test
for detection and removal in the 2-D Kalman smoothing process. The isolated trees
were separated into two groups based on their heights, i.e. 3.5 to 7m (see Figure 7-
13(a)) and greater than 7m (see Figure 7-13(c)). After applying the 2-D Kalman

smoother, the differences between the estimates of the elevation and the relevant ground
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truth of outliers in each group were measured and displayed in Figure 7-13(b) and (d),
where the vertical axis of Fig 7-13(b) and (d) represent these differences, whilc the
vertical axis of Fig 7-13(a) and (c) represent the original magnitudes of the outliers. The
magnitude of Figure 7-13(d) is significantly shifted closer to zero, compared to that of
Figure 7-13 (b). This indicates a greater capability for outlier detection and removal by
the 2-D Kalman filtering algorithm. The 2-D Kalman filtering algorithm reduced the
mean value of the outliers greater than 7m from 9.00m to 4.13m, and from 4.98m to
3.02m for the outliers less than 7m. The improvement, evaluated in terms of mean

value, is about 54% for the 7m over outlier group, and 39% for the 7m less outlier

group.
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(a) 3.5m <= outlier <= 7.0m (b) 2-D Kalman smoothing result
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(c) outlier > 7m (d) 2-D Kalman smoothing result

Figure 7-13 Efficiency of outlier detection and removal of the 2-D Kalman
filtering algorithm with different magnitudes of outliers using Sm

Katoomba DEM (£, =2)
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Table 7-6 Comparing efficiency of outlier detection and removal with different
outlier magnitudes of the Sm Katoomba DEM (&, =2)

(unit in metres)

Number Mini Maxi Mean  Standard Improve-

of value value value deviation ment

outliers

Outlier <=

7m

Errors in 368 -1.60 7.80 3.02 1.59 39%
detection and

removal

Outlier >7m 155 7.01 14.29 9.00 1.65 -
Errors in 155 -0.03 9.56 4.13 2.03 54%

detection and

removal

7.4.4 Effect of DEM resolution on outlier detection and removal

The size of the canopy of the isolated trees found in the Katoomba mapping area varies
from 5m by 5m to 20m by 20m. Due to the use of two DEM resolutions, the number of
the outliers in the 5m and 10 Katoomba DEM are different, and the efficiency for outlier

detection and removal is affected.

Comparing the results of the 5m and 10m Katoomba DEM derived by the 2-D Kalman
smoothing process, the outliers in the 5m DEM were more efficiently detected and
removed (see Figure 7-13 and Table 7-7) than those in the 10m DEM. The mean value
of the errors remaining in the Kalman smoothing result for the Sm DEM is 3.35m,
which is a reduction of about 46% in the mean value of the original outliers in the DEM.
However, the errors remaining in the Kalman smoothing result for the 10m DEM have a
mean value of 5.01m, which shows that the mean value of the outliers in the 10m DEM

was reduced by only about 18% by the 2-D Kalman smoothing algorithm.
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Table 7-7 Comparison of the results of outlier detection and removal using Sm
and 10m Katoomba DEMs and the 2-D Kalman smoother

(unit in metres)

Minimum - Maximum Standard

value value deviation

Errors in Sm Kalman  -1.60 9.56 3.35 1.79
smoothing results
Outliers in 10m DEM  3.51 3.26 6.10 2.11
Errors in 10m Kalman -2.58 10.28 5.01 2.03
smoothing result
20 r T T N 20 ™ T T T ]
< 10 i : — T 10 E —z
3 f 1l A { § 0 ]
\i’ ? [ “‘\"‘(i}‘ 1“\‘:“ ill \i/ ]
;; 0 — . g of *
—10 i ! | ] —-10 i I ! ]
0 2i%gmber of poir‘o‘tgo 600 0 2ggmber of poirfftgo 60v
(a) Outliers in Sm Katoomba DEM (b) Smoothing result of Sm DEM
201 T T — T ] 201 T T ]
o 10 [ — o 10 : —f
;;g 0 ; — Z; o] ' -
-10 [ L 1 ] —-10 : [ ! N ]
© 5r\?umber of poin]tgo 1%0 © ?\?umber of poirJt(sJO 150
(c) Outliers in 10m Katoomba DEM (d) Smoothing result of 10m DEM

Figure 7-13 Comparison of the results of the outlier detection and removal
derived by the 2-D Kalman smoother on the Sm and 10m DEMs
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It is necessary to mention that the ground truth used in this Section to evaluate the
accuracy of outlier detection and removal of the 2-D Kalman filtering algorithm was
derived by digital photogrammetrical method using the Helava software (Version 4.0.8).
Initially, the isolated trees in the mapping areca were manually checked on the stereo
model to determine their size and height. Since there were too many outliers in Sm
resolution DEM, the function of ‘Eliminate trees/buildings’ of the Helava software was
used on the 5m Katoomba DEM to remove the effects of the isolated trees, which were
defined as being taller than 3.5m and covering an area of 20m by 20m. Comparing the
elevation differences between the Helava software smoothed 5m DEM and the original
5m DEM, those points with elevation differences greater than 3.5m were the isolated
trees. The ground truth of each outlier is assumed to be the smoothed results obtained by
the function ‘Eliminate trees/buildings’ of the Helava software. This was the only
practical way of identifying all outliers in a DEM when the size and the height of the
outliers are known. Therefore, the accuracy of ground truth data is dependent on the
quality of the function of ‘Eliminate trees/buildings’ of the Helava software. The
comparisons in this Section indicate that the mean value of the errors remaining after
the outlier detection and removal of the 2-D Kalman filtering and smoothing are not as
good as the results shown in Chapter 5 based on the artificial data, where they are so
close to zero. In this respect, it is suggested that further study of the accuracy of
“‘Eliminate trees/buildings’ function in the software be undertaken in the future, or use

of another method to obtain the ground truth of the outliers.

7.5 Results of the 2-D Kalman Filter and 2-D Kalman Smoother

In Section 7.4.2 the results of outlier detection and removal derived by the 2-D Kalman
filter and smoother were compared and analysed. In this Section, the estimates of terrain
variables derived by the 2-D Kalman filter and smoother will be further examined to
investigate the improvement in DEM random noise reduction by using the 2-D Kalman

smoother.

The results of the 2-D Kalman filter and smoother on the 10m Katoomba DEM were
compared. The Kalman smoothing results of the 5m Katoomba DEM were used as

ground truth in the comparison. Comparing with the ground truth data, the errors in the
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estimates of terrain variables derived by the 2-D Kalman filter and smoother on the 10m
Katoomba DEM were measured and arc summarized in Table 7-8. The errors in the
estimates derived by the 2-D Kalman filter are the same as those listed in Table 7-1. The
comparison shows that the results of the 2-D Kalman smoother reduces by 11% of the
standard deviation for the estimates of elevation, and 33% for the estimates of the X and
Y derivatives, compared with the results of the 2-D Kalman filter. The 2-D Kalman
smoother also further reduces the effect DEM random noise on the calculation of slope
surface, and improves by 33% in terms of standard deviation. Though the accuracy of
the X and Y derivatives of the DEM had been considerably increased by the 2-D
Kalman smoother, the improvement of DEM random noise reduction in the aspect
computation is only about 4%. This is probably due to the complex pattern of the aspect

surface in the mapping area.
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Table 7-8 Comparison of errors remaining in the estimates of terrain variables
derived by the 2-D Kalman filter and smoother on the 10m
Katoomba DEM

Mini Maxi value Mean value Standard  Improve-

value ment

levn e

Kalman filtering  -6.30 8.09 -0.01 0.37 -—
Kalman -4.78 6.40 0.00 0.33m 11%
smoothing

X derivative

Kalman filtering -0.21 0.29 0.01 0.03 -—
Kalman -0.22 0.25 0.00 0.02 33%
smoothing

Y derivative

Kalman filtering  -0.27 0.26 0.01 0.03 -—-
Kalman -0.27 0.24 0.00 0.02 33%
smoothing

Slope (radians)

Kalman filtering  -0.22 0.28 0.02 0.03 -—
Kalman -0.24 0.20 0.00 0.02 33%
smoothing

Aspect (radians)

Kalman filtering  -3.29 3.28 0.12 0.85 -
Kalman -3.30 3.30 -0.01 0.82 4%
smoothing

7.6 Conclusions

In this Chapter, some experimental results of applying 2-D Kalman filtering algorithm
to DEMs derived from a real terrain surface are introduced. The DEM data used in this
testing, generated by digital photogrammetric methods, covers approximately 1.3km by
1.1km of rugged terrain in the Katoomba area, New South Wales.
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The results of the 2-D Kalman filtering algorithm on the Katoomba DEMs were
examined from two respects: DEM outlicr detection and removal, and DEM random

noise reduction.

Outliers in the test data refer to the effects on elevation caused by isolated trees in the
mapping area. Using photogrammetric methods, the elevation of isolated trees can be
observed, and the relevant ground truth established. The method of outlier detection and
removal developed in the 2-D Kalman filtering algorithm was investigated in terms of
the reliability of outlier detection and removal, the effect of DEM resolution and outlier
magnitude, and efficiency of the 2-D Kalman filter and Kalman smoother. The relevant
results indicate that the method has a high level of reliability over rough and complex
terrain surfaces. Only one outlier, which is located close to the boundary area, had not
been detected by the method. The impact of this undetected outlier is 2.26m for the
estimate of elevation, 0.13 for the estimates of X and Y derivatives. The experiments
also indicate that the efficiency of outlier detection and removal is different for outliers
with different magnitude. The results also demenstrated the impact of the DEM
resolution on outlier detection and removal. Outliers can be more efficiently detected
and removed in a denser resolution DEM, such as 5m Katoomba DEM, than those in a

coarser DEM, such as the 10m Katoomba DEM, derived for the same mapping area.

The efficiency in DEM random noise reduction of the 2-D Kalman filtering algorithm
was examined in two ways. One was to investigate the improvement of the 2-D Kalman
filter, compared with the Evans method, in terms of DEM random noise reduction. The
other was to further compare the accuracy of the 2-D Kalman smoothing process with
the 2-D Kalman filter to investigate the improvement of the 2-D Kalman smoother over
the 2-D Kalman filter. The Kalman smoothing results of the 5m Katoomba DEM were
used as the bases for these comparisons. Compared with the Evans method, the 2-D
Kalman filter is more efficient in reducing DEM random noise, and therefore produces
better estimates of terrain variables over the same DEM data. The accuracy of the Evans
method can be improved more than 70% for X and Y derivative, 50% for slope and
20% for aspect using the 2-D Kalman filter on the 10m Katoomba DEM. The
comparison between the 2-D Kalman filtering and smoothing process indicates that,

using the 2-D Kalman smoother, the accuracy of the terrain attributes can be further
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improved moye than 10% for elevation, 30% for X and Y derivatives, 30% for slope and

about 4% for aspect over the 10m Katoomba DEM.
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CHAPTER 8

CONCLUSIONS

8.1 Summary

In this thesis, the development of 2-D Kalman filtering algorithm for terrain surface
modelling using grid DEMs is presented. The aim of the study was to improve the
accuracy of the derivation of terrain topographic attributes from DEMs by reducing the
effect of DEM random noise, and detecting and removing the effect of DEM outliers.
This method can be used for GIS applications, which require accurate terrain
topographic attributes that can be directly derived from a grid DEM. It can be used for

analysis of:

e Vegetation type and distribution

e Potential energy

e Solar radiation

e Overland and subsurface flow velocity and runoff rate
o Soil erosion rates

e Soil properties

e Flow acceleration

e Drainage network

e Soil water content and surface saturation zones

e Precipitation

o (Climate, etc.

The aims and objectives of this research have been achieved in the following respects:

e The stochastic terrain models were developed in this study based on terrain
geometry and the relevant terrain modelling assumptions. The characteristics and
the performances of the stochastic terrain models, over simulated and real DEM

data, were investigated.
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e All observations of a DEM data can be used to derive estimations of terrain
variables in the 2-D Kalman smoother. Therefore, the efficiency of reducing the
effect of DEM random noise has been greatly improved, compared with the current

terrain modelling methods.

e The method for DEM outlier detection and removal was developed, based on the
application of the 2-D Kalman filter, and detection theory. The reliability of outlier
detection was also fully investigated. Some important aspects, such as the effect of
terrain roughness and DEM resolution on the outlier detection and removal were

further addressed.

e The developed 2-D Kalman filter is a recursive modelling process with significant
computational efficiency, especially for the application of terrain surface modelling

using grid DEMs.

e The developed 2-D Kalman smoother was also developed in the research.

Therefore, the efficiency of reducing DEM random noise is further improved.

8.2 Conclusions

The following conclusions can be derived from this study:

e Using linear differential relationships of the terrain attributes between the
adjacent DEM points
The stochastic models used in this study, which are two linear differential equations
monitoring the terrain attributes between the adjacent DEM points, are the bases for
establishing the dynamic models of the 2-D Kalman filter. They define the relevant
assumptions about the characteristics of terrain topography. The linear differential
relationships used in the current form only include the three most important terrain
variables, i.e. elevation and two first partial derivatives of elevation. However, it is
straightforward to include the estimates of more terrain variables, such as the two
second order partial derivatives of elevation, and based on them, to calculate profile and

plan curvatures of a DEM.
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The experiments on the DEMs derived from Katoomba area, New South Wales show
that the efficiency of DEM random noise reduction is significant when using the
stochastic terrain models in the 2-D Kalman filter, compared with the results for other
terrain methods, i.e. the Evans method, which use deterministic terrain models. The 2-D
Kalman filter leads to an improvement in the accuracy of the first derivatives of terrain,
slope and aspect, compared with the Evans method of more than 70% for X and Y

derivatives, 50% for slope and 20% for aspect on the same 10m Katoomba DEM.

o Integrating the predictions derived from the two orthogonal directions of the
DEM to make it a Kalman filter in two dimensions

The prediction of elevations from two orthogonal directions is the particular strategy

applied in the Kalman recursive process that makes it successful for processing the 2-D

DEM data. The strategy combines two predicted estimates derived from the orthogonal
directions of the DEM, weighted by their variance-covariance matrices to produce S~

and the associated variance-covariance matrix P~ . Therefore, the 2-D Kalman recursive

process consists of nine equations rather than the conventional five equations.

e Using differences between the predicted estimates of elevation and the relevant
observations to detect DEM outliers
In this thesis, the innovation series, which are the dispersions between the predicted
estimates of elevation and the relevant observations of a DEM, were applied as a test
statistic for outlier detection and removal. The internal reliability of outlier detection, in
terms of minimum detectable bias, relates to the level of confidence of the detection, i.e.
the critical value used in the detection, according to the binary hypothesis testing and
the Neyman-Pearson strategy. The external reliability of outlier detection, in terms of

the maximum effect of undetectable bias, is sensitive to the bias and the Kalman gain.

The experiments on the Katoomba DEMs indicate that the outliers in the Katoomba
DEMs were successfully detected and removed with high reliability. A total of 523
outliers in the 5m Katoomba DEM were efficiently detected and removed by the
developed method. Only one outlier in the DEM, which is close to the boundary area,

was not detected by the method. The effect of the undetectable bias in the estimates of
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terrain attributes is only about 2.26m for the elevation, and 0.13 for the X and Y
derivatives. The mean value of the outliers in the 5m grid DEM were reduced from
6.16m to 3.35m using the 2-D Kalman smoothing process, which is about 56% of its
original value. Due to the use of the coarser DEM resolution, outliers in the 10m
Katoomba DEM were less efficiently detected and removed compared with those in the
5m Katoomba DEM. The mean magnitude of the outliers was reduced from 6.10m to
5.01m in the 10m Katoomba DEM by the 2-D Kalman smoothing process, which is

only about 21% of its original value.

e Smoothing a DEM by applying four times Kalman filtering processes with
different orientations
The developed 2-D Kalman smoothing algorithm applies the 2-D Kalman filter four
times on a DEM with different orientations. The resulting four filtering results are
assumed independent, for they are derived from the different filtering processes using
different filtering information. The estimates of the terrain variables derived from the 2-
D Kalman smoothing algorithm are a linear integration of the relevant four filtering
estimates, weighted by their variance covariance matrices. The experiments over the
Katoomba DEM show that, comparing with the results of the 2-D Kalman filter, the 2-D
Kalman smoother can further improve the accuracy of the derivation of terrain
attributes, by more than 10% for elevation, 30% for X and Y derivatives, 30% for slope

and about 4% for aspect calculation over the 10m Katoomba DEM.

e Terrain characteristics (roughness, breaklines, etc.) and DEM resolution may
affect the determination of filtering parameters
The model errors represent the accuracy of the predictions of the relevant estimates of
terrain variables of a DEM point from its adjacent neighbours, which are affected by
terrain roughness, breaklines and DEM resolution. Generally, over dense DEM data,
which are derived from smooth terrain surfaces, the model errors are mainly a function
of the DEM resolution and the second order of partial derivatives of elevation of the
terrain surface. If the DEM is derived from a rough and complex terrain surface with
many breaklines, the choice of the suitable model errors may be less effective, and

therefore adaptive Kalman filtering techniques should be further developed.
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8.3 Limitations and Recommendations for Future Studies

While significant achievements have been made with the 2-D Kalman filtering

algorithm, further future studies are also recommended.

e Integration of knowledge to more accurately model terrain topographic
characteristics
The limitations of the terrain surface modelling technique arise from insufficient
understanding of terrain topographic characteristics in discretely grid DEMs. The
stochastic terrain models in the 2-D Kalman filtering algorithm are based on a limited
set of geometric characteristics of terrain. The application of additional terrain
characteristics, such as hydrographic, biological and geomorphological characteristics
of the landscape, may also influence the modelling of terrain topographical attributes,

and therefore, should be considered in the establishment of the terrain models.

e Developing adaptive 2-D Kalman filter

Terrain roughness and irregularity may affect the implementation of the 2-D Kalman
filtering algorithm, and the quality of the results. The current algorithm for 2-D Kalman
filtering uses pre-fixed parameters to process a DEM, and is not able to adapt to the
change of terrain characteristics in the DEM. An adaptive 2-D Kalman filter is
suggested in future developments of the algorithm to make it adaptive to different

terrain and landscape contents.

e Modelling more terrain variables

The current 2-D Kalman filtering algorithm only estimates the three most important
terrain attributes, i.e. elevation, and the two first order of partial derivatives of elevation.
It is straightforward to extend the dynamic model to include more terrain attributes,
such as second order of the partial derivatives of elevation and the associated profile

and plan curvatures.

¢ Exploring the 2-D Kalman filtering algorithm on more DEM data
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Finally, more experiments are suggested to test the 2-D Kalman filtering algorithm on
different landscape with different DEM resolutions. The results would be helpful for
improving the flexibility of the 2-D Kalman filtering algorithm for modelling different

types of terrain surfaces.
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ADDENDUM

The following comments and additional work have been submitted to satisfy the

request by one of the examiners. The examiner’s comments are given in italics.

1. Alternative methods

There are alternative methods for smoothing errors from a DEM, including wavelets,
Fourier Analysis (mentioned on p 45), and commercial software (ANUDEM that
utilizes splines complemented by a drainage forcing algorithm), as well as the Helava
software that was used in this study. Why were these alternative approached not used
and compared?

The 2-D Kalman filtering algorithm has been compared with alternative
algorithms such as Horn (1981), Evans (1980), and Heerdegen and Beran’s method
(1981). However, there are many other methods (see Chapter 2 for a discussion), and
it is not relevant to compare the approach developed in this Thesis with each of these.
Indeed, this was not considered necessary given that Evans’ method is believed to be
the ‘best” method currently available because it produces more smoothing of terrain
attributes than any other of the existing methods (Florinsky 1998). That is why the
performance of the new approach developed in this research to implement the 2-D
Kalman filtering algorithm was only compared with the Evans method. Moreover,
the research presented in this Thesis focused on developing a new terrain-modelling

algorithm, not on an evaluation of all terrain modelling/DEM smoothing methods.

2. Derivation of method and formulae
The derivation of methods, and in particular equations, was difficult to follow in the
thesis. It is definitely written for mathematically enabled readers (e.g. p 63).

The candidate has attempted to make it as easy as possible to introduce the
development of the 2-D Kalman filtering algorithm, such as introducing the theory of
one-dimensional (1-D) Kalman filtering in Chapter 3, giving full derivations of the
formulae in Chapter 3, 4, 5, and 6, and providing simple examples to illustrate the
derivation in Chapter 6. However, the Kalman filter is not easily understood, and the
mathematics is even more difficult to follow in the two-dimensional case without a
good grounding in mathematics. It is assumed that this research is of primary interest

to those working in the field and they are “mathematically enabled”. On p 63,
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equations 4-27 to 4.29 are the straightforward extension of Eqgs. 4-1 to 4-3 to include
the second order partial derivatives of elevation by applying basic knowledge of

Advanced Algebra as shown below:

HG,j)=H(- 1))+ Hi-1, j)dx+vy i, J) 4-1
H,(i.))=HG-1j)+vy, (]) 4-2
H,Gj)=H,@-1L)+vy, (i) 4-3
H(,j)=H(i-1)+H, (-1, j)a’x+éHxx(i—1, N +vy () 4-27
H, (G j)=H(i- L)+ Hyi-1 j)dx+vy  (i)) 4-28
H,())=H,G-1L)+H, -1\ +vy () 4-29

Is there a circular argument in Section 6.3, Eqs 6-3 to 6.7?

No, the argument is not circular. Explained in another way, the Theorem is
that if all measurements have been used twice in least squares estimation, the
estimated values will be the same, and their variance-covariance matrix will be scaled
by a factor of %%.

Proof:

If the observation is used once:

v=Adx-1 1
sx =(ATPAJ'ATPL 2
D, =(aTPA)’

where v is the residual, A is the design matrix, 5x' is the estimate and D, is the

associated variance- covariance matrix, P is the variance of observation, and 1 is the
observation.

R . 4
o8 NI N A8 5

-(aTPA]'ATHI
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where 8x" is the estimate and D, is the associated variance- covariance matrix.

Based on Egs. 1-6, the following equations can be derived:

8x = 6x 7
D, =%DX' 8

The application of the above Theorem forms the basis of the work presented in

Section 6.3.

3. Hypothesis

Why are no research hypotheses proposed in the Introduction?
The 2-D Kalman filtering algorithm developed in this research consists of

three parts which are based on different assumptions. If the assumptions for the three
parts were given in the Introduction, it may cause confusion and might also be
difficult to follow. Therefore, in the Thesis the assumptions of the 2-D Kalman
filtering algorithm were introduced where they are most relevant, that is at each step
of the algorithm development (the beginning of Chapters 4, 5, and 6) in order to make

these more easily understood.

Some hypotheses are described but are not properly formulated (e.g. p §4).
Only two (not some) hypotheses have been used in this research for outlier which

were formulated as the following equations on p 84, according to the theory of binary

hypothesis testing:
Hy: m=0 with py(L(i 7))~ N, 1) 5-14
Hy: m=8#0 with ps(L(ij)~N(, 1) 5-15

where & is a variable.
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The synthesis (Introduction and Conclusion) list the main results, but do not
summarize the work in the thesis in a coherent whole, nor show how the work
contributes to the development of DEM derivation.

In section 1.5 (Chapter 1), a summary of 2-D Kalman filtering algorithm is
presented. The three parts of the Kalman filtering algorithm to be developed, i.e. 2-D
Kalman filter, outlier detection and removal, and Kalman smoother, were generally
introduced together. In section 8.2 (Chapter 8), the contributions of the Kalman
filtering algorithm to digital terrain modelling technique are given. Since the method
proposed in the Thesis is a new modelling approach, compared with existing terrain
modelling methods, the discussion focused on its unique way of establishing the
terrain models, its capability to detect outliers, as well as its functionality for

smoothing.

4. Dealing with outliers

During data acquisition, errors in the DEM caused by the presence of trees cannot be
differentiated from rock outcrops. Are rock outcrops treated as outliers in the thesis?
Are rock outcrops actually errors?

Outliers in this study refer to the outliers in the DEM observations, and may also
refer to some specific DEM points, which may significantly effect the accuracy of
DEM applications. For example, in the Katoomba DEM, where an isolated tree exists,
the corresponding DEM points represent the height of the isolated tree, but not real
terrain elevation. If these DEM points are used to compute gradients, slope and aspect
of the terrain surface, the results obviously will be erroneous. In order to compute
correct terrain variables, these isolated trees should be detected and removed. Hence
they are treated as outliers. Whether a specific DEM point is an outlier should be
based on DEM application. If the Katoomba DEM is not used to compute terrain
attributes in this thesis, for example, identifying the height of isolated trees. The
isolated trees would be the most important information in a DEM, and should not be

removed. They do not constitute outliers.

The Blue Mountain DEM used in the thesis covers a 1320m by 1060m mapping
area. Using photogrammetric means, the rock outcrops were not observed. They were
not significant compared with isolated trees in this particular mapping area.

Therefore, no special consideration was given in processing rock outcrops using the
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Katoomba DEMs. If rock outcrops were significantly observed in the Katoomba
DEMs, then further analysis of the characteristics of the outcrops and their impact on
the derivation of terrain variables would need to be undertaken prior to determining

whether or not they constitute outliers.

As the Blue Mountains area is forested, and the ground surface cannot be seen
through the trees, why were there not more outliers?

The results of the 2-D Kalman filter depend on the quality of the input DEM
data. Over forest or vegetation covered terrain, where the ground surface cannot be
seen through the vegetation, the accuracy of the 2-D Kalman filter algorithm would
not be high, for it cannot provide additional information than the input DEM does not
contain. Under such circumstances, it is suggested that active sensors such as laser or
radar (as mentioned in Section 2.1.1) be applied for DEM generation. The suitability
of the 2-D Kalman filter over DEMs, generated using active sensors, needs to be

further investigated but this lies beyond the scope of this research.

Why was a theoretical surface used to test the algorithm in all Chapters, except for
Chapter 7 (a weak justification is given on p 66)? It would be appropriate to check
the proposed Kalman Filtering methods using a real DEM.

In this Thesis, both real and simulated DEMs were used to test the algorithm.
Real DEM data for the Katoomba area was used in Chapter 7, and the simulated
DEMs were used in Chapters 4, 5 and 6. Using simulated data, rather than real data, to
investigate the characteristics of a new algorithm is a usual way of proceeding in this
kind of research. It is much easier to obtain the ground truth of terrain variables, not
only elevation but also gradient, slope and aspect of each DEM point, from a
simulated surface than a real terrain surface. They are very helpful in evaluating the
accuracy of the 2-D Kalman filtering and other terrain modelling methods. This is

described clearly on p 66.

Only one case study was used — this is surprising given the wide range of topographic
landscapes, and the potential for the results to be an artifact of the data set used. In
other words, there is concern that the results are emﬁirical.

The primary objective of the research, and hence the most important

contribution of this Thesis is the development of a new terrain modelling algorithm
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using 2-D Kalman filtering technique. The results of experiments using simulated and
real DEM data presented in the Thesis clearly show that the algorithm is better than
the ‘best’ existing terrain modelling methods. The flexibility and reliability of the
algorithm when applied to different landscapes is a very important issue, but is
beyond the scope of this research and is left for further study. Some suggestions for
further research are given in Chapters 4 and 8. An example is developing adaptive

Kalman filters.

5. Error and testing of the Kalman Filter against the Evans method

There were no field checks of actual errors in the DEM. Field checked data points
should be used to calculate error in the DEM. The improvement, if any, using the
proposed Kalman filter should be reported. The candidate should answer the question
whether the outliers are really outliers (see previous comments).

Field survey is not the only way of evaluating an algorithm. In this research, it
would be very expensive and impractical, considering the testing area is 1320m by
1060m with appropriate sampling interval of 5m by 5m. In practice, there are
alternative ways of evaluating algorithms, such as using data of higher accuracy as a
basis for comparison, i.e. ground truthing to investigate the ‘relative’ improvements of
algorithms. In this Thesis, the evaluation of the 2-D Kalman filtering algorithm with
the Evans method was conducted using such an alternative approach. This indicated
the ‘relative’ not ‘absolute’ improvement of Kalman filtering over the Evans method.
It used DEMs for the same mapping area but at different resolutions, such as 5Sm
(more accurate) and 10m (less accurate). The most accurate data (e.g. Sm DEM) were
used as the basis for comparing the results of the two methods derived from the same
data (e.g. 10m DEM). In this way, the comparison indicates ‘relative’ not the absolute
improvement of one method against the other method. Whether a DEM point is an
outlier or not is not only based on the accuracy of the observation of the point, but

also based on DEM applications.

Variance is a measure of precision, not of accuracy. Normally scientists and
engineers are more interested in differences in accuracy, not precision.

Accuracy is more interesting than precision in this research. Investigating the
accuracy of an algorithm needs ‘true’ values as a basis for comparison. How are true

values of terrain variables obtained? Field survey is on¢ way of obtaining the ‘true’
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values of terrain variables but, as discussed above, that was impracticable in this
research. Following the recommendations of Kubik (1985), the suitable DEM
sampling spacing, which may accurately represent the landscape of the Katoomba
area, is Sm. So it is appropriate to use Sm Katoomba DEM as the basis for testing to
evaluate the accuracy of the terrain modelling results of the 10m Katoomba DEM in
this research. Besides testing accuracy using real DEMs, artificial DEMs were also
simulated for the algorithm testing, for which the real surfaces of terrain variables are

known.

Even though the candidate consistently states the Kalman filter is more accurate,
accuracy is not calculated. There is no statistical test of accuracy in the Thesis. Thus
it is not possible to conclude that the Kalman filter is statistically different (see pp 66,
71,72, etc.). The efficiency of the Kalman filter technique is claimed to be higher than
the other method, though this is never tested, and no data or results are presented to
Justify this conclusion (pp 137,148)

The accuracy of the Kalman filtering algorithm has been tested adequately in the
following parts of Chapters 4, 5, 6 and 7:

1. The accuracy of Kalman filtering algorithm and the Evans method for random
noise reduction over the simulated noisy DEM, against the true smoothing
DEM in Section 4.5;

2. The accuracy of Kalman filtering algorithm for outlier detection and removal
over the simulated noisy DEM, against the true smoothing DEM in Section
5.5;

3. The accuracy of Kalman smoother and filter over the simulated noisy DEM,
against the true smoothing DEM in Section 6.4,

4. The accuracy of Kalman filtering algorithm for random noise reduction over
the 10m Katoomba DEM, against the 5m Katoomba DEM for random noise
reduction in Section 7.3;

5. The accuracy of Kalman filtering algorithm for outlier detection and removal
over the 10m and 5m Katoomba DEM, against the photogrammetry means in
Section 7.4;

6. The accuracy of Kalman smoother and filter over the 10m Katoomba DEM,
against the 5Sm Katoomba DEM in Section 7.5.

The conclusions were derived based on the above accuracy analysis.
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The candidate should repeat the statistical testing (confirmatory tests) using
acceptable methods, and rewrite the discussion and conclusions so that they reflect
the actual results obtained.

The statistical testing used in the thesis is appropriate.

6. Assumptions of the Kalman Filter

The assumptions of the Kalman filter are not discussed in details. For example, one
assumption that the input should be independent — is not met because DEM data
exhibit spatial autocorrelation (pp35, 36). The assumption should be critically
evaluated against the experimental set-up results.

The Kalman filtering algorithm is developed based on the comprehensive analysis
of DEM characteristics, and the investigation of the limitations of current terrain
modelling methods (see Chapter 2), which quite clearly are not experimental set-up
results. The topographic relationship between DEM neighbouring points is related,
and can be estimated and modelled. That is why terrain models can be established in
Section 4.1. However, the noise of every DEM measurement can be assumed to be
independent for it may be caused by various sources. The Kalman filter requires
measurement noise to be independent (see pp 35 and 36), and the DEM application
satisfies the requirement of the Kalman filter. In the view of t candidate, there is no

conflict.

A discussion of the theoretical and practical advantages and disadvantages of the
Kalman filter should be added, and the synthesis appropriately updated.

The theoretical and practical advantages and disadvantages of the Kalman
filtering technique have been fully investigated in this research, and the details were
presented throughout the Thesis, for example in Sections 3.3, 3.4, 3.5, 4.1, 4.3, 4.4,
5.1,5.4,6.1,and 6.3.

7. Statistical tests

Chapter 5 does not appear to be a contribution to the statistical literature, as claimed
in the Introduction. The Chapter uses t-test and central limit theory to define the
significance of the data range for the DEM data. If there is originality to the
approach, then the originality should be described.
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This is the first time, to the candidate’s author’s knowledge, that the method of
DEM outlier detection and removal is developed, and it is also the first time that the
reliability of detection has been investigated. The strength of the Thesis lies in the
originality of the approach adopted in the research. Chapter 5 is one of the three new

contributions developed in this thesis to the technology of digital terrain modelling.
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