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ABSTRACT

Snce its introduction in the early 1980's, the Globa Positioning System (GPS) has

become an important tool for high-precision surveying and geodetic applications.

Carrier phase measurements are the key to achieving high accuracy positioning results.

This research addresses one of the most chalengng aspects in the GPS data processing

adgorithm, especidly for precise GPS static positioning, hamely the definition of a

redlistic stochastic modd. M gor contributions of this research are:

@

(b)

(©

(d)

(€)

A comparison of the two dataqudity indicators, which are widely used to assist in
the definition of the stochastic model for GPS observations, has been carried out.
Based on the results obtained from a series of tests, both the satellite eevation
ange and the signa-to-noiseratio information do not away s reflect the redlity.

A simplified MINQUE procedure for the estimation of the variance-covariance
components of GPS observations has been proposed. The proposed procedure has
been shown to produce similar results to those from the standard MINQUE
procedure. However, the computationa load and time are significantly reduced, and
in addition the effect of a changng number of satdlites on the computations is
effectively dedlt with.

An iteraive stochastic moddling procedure has been developed in which al error
features in the GPS observations are taken into account. Experimentd results show
that by applyingthe proposed procedure, both the certainty and the accuracy of the
positioning results are improved. In addition, the quality of ambiguity resolution
can be moreredisticaly evauated.

A segmented stochastic modeling procedure has been developed to effectively ded
with long observation period data sets, and to reduce the computationd load. This
procedure will aso take into account the tempord corrdations in the GPS
measurements. Test results obtained from both simulated and real data sets indicate
that the proposed procedure can improve the accuracy of the positioningresults to
the millimetre levd.

A nove approach to GPS andysis based on a combination of the wavelet
decomposition technique and the simplified MINQUE procedure has been
proposed. With this new approach, the certainty of ambiguity resolution and the
accuracy of the positioning results are improved.
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Chapter 1
INTRODUCTION

1.1 Global Positioning System (GPS) Background

The NAVSTAR GPS (NAVigation System with Time and Rangng Globa Positioning
System) is asatelite-based radio-positioning and time-transfer sy stem. The GPS sy stem
has been developed by the U.S Department of Defense since 1973. The motivation was
to develop an dl-wesather, 24-hour, goba positioning sy stem to support the positioning
requirements for the U.S. military and its dlies (see Parkinson, 1994, for a background
to the devdopment of the GPS system). Thus, there are limited opportunities for
managng the system for civilian users. The system can provide precise three-
dimensiond position, velocity and time in a common reference sy stem, anywhere on or
near the surface of the earth, on a continuous basis (e.g Lamons, 1990; Parkinson,
1979; Wooden, 1985).

Due to the recently developed technology and procedures to overcome some of the
constraints to GPS performance, thereis agrowing community that utilises the GPSfor
a vaiety of civilian agpplications. A huge and rapid-growing quantity of literature
reating to GPS, and the geodetic use of GPS, can be found in monographs and text
books (e.g Clarke, 1994; Hofmann-Welenhof et d., 1997; Kaplan, 1996; King et 4.,
1987; Leick, 1995; Parkinson & Spilker 1996; Rizos, 1997; Seeber, 1993; Teunissen &
Kleusberg, 1998; Wdls et d., 1987).

The GPS system consists of three segments, namdy the Space Segment, the Control
Segment and the User Segment. A brief description of these components is gven.

The Space Segment comprises the constellation of spacecraft and the transmitted

signas. The system nomindly consists of 21 satellites and three active spares, deploy ed
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in six orbita planes of about 20,200 km dtitude above the earth’s surface with an
orbitd inclination of 55 degrees, and with four satellites in each orbitd plane. The
satellite orbits are dmost circular and the orbital period is approximately 11 hours and
58 minutes (or haf a sidered day). The arangement of satdlites within the full
constdlation is such that at least four satellites are simultaneously visible above the

horizon anywhere on the earth, or near the earth’s surface, 24 hours aday .

Each GPS satdlite continuously transmits a unique navigetiona signd centred on two
L-band frequencies of the eectromagnetic spectrum, L1 a 1575.42 MHz and L2 a
1227.60 M Hz, which are generated by an onboard aomic oscillators (Spilker, 1978).
The satellite signas basicaly consist of three main components, thetwo L-band carrier

waves, the navigation message and the ranging codes (Figure 1.1).

Fundamental
frequency
10.23MHz x 0.1
v
L1 carrier P-code C/A-code
e 1575.42 10.23 1.023
x 154 MHz MHz MHz
L2 carrier P-code
) 1227.60 10.23
x 120 MHz MHz
Navigation message

Figure 1.1 GPS satdlite signd components (Rizos, 1997)

The navigation message contains information such as satellite orbits (ephemerides),
satellite clock corrections, and satdlite status. The rangng codes and the navigation
message are modulated on the carrier waves. The Coarse/Acquisition code (C/A-code)
is modulated only on the L1 carrier, while the Precise code (P-code) is modulated on
both the L1 and L2 cariers. The P-code has higher measurement resolution and is
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therefore more precise than the C/A-code. In generd, there are two levels of service in
Sndge Point Positioning (SPP) mode. The first one is cdled "Standard Positioning
Service' (SPS) and the second one is cdled "Precise Positioning Service' (PPS)
(Seeber, 1993). The SPSis intended for civilian use and uses only the C/A-code. Unlike
the SPS, the PPS accesses both codes (C/A-code and P-code), but is generally reserved
for U.S military use. Due to the surprisingy good Standard Positioning Service
accuracy for SPP, the policy of Sdective Availability (SA) was endorsed on 25 M arch
1990 in order to artificidly widen the gap between the SPS and PPS (Georgadou &
Doucet, 1990). As aresult of SA, the accuracy of SPS had been degraded to about 100
metres in the horizonta components and 156 metres in the vertica component (at the
95% confidence level). Fortunately, the former U.S. President Bill Clinton made a
decision to turn off SA on 1 May 2000. According to Rizos & Satirgpod (2001) the
accuracy of SPS without SA is significantly improved to aout 6.8 metres in the
horizontal components and gpproximately 12.3 metres in the vertica component (at the

95% confidence leve).

The Control Segment consists of the ground facilities carrying out the task of satellite
tracking, orbit computations, telemetry and supervision necessary for the daily control
of the Space Segment. There are five ground facility stations located around the world.
The U.S Department of Defense owns and operates dl stations. The M aster Control
Sation is located in Colorado Springs, and the processing of the tracking data in order
to generate the satellite orbits and satellite clock corrections is performed at this station.
The other three stations, located a Ascension Island, Diego Garcia and Kwgdein, are
upload stations, and hence the uplink of datato the GPSsatdlitesis carried out at these
stations.

In short, the most important task of the Control Segment is to compute the satellite
orbits (or ephemerides) and to determine the satdlite clock biases. The ephemerides are
expressed in the ECEF (earth-centred, earth-fixed) World Geodetic System 1984,
known as WGS34. The WGS84 is mantained by the U.S. Nationd Imagery and
Mapping Agency (NIMA, 1997). The characteristic of each GPS satdllite clock is
monitored against GPS Time, as maintained by a set of atomic clocks a the M aster
Control Station.
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The User Segment is the entire spectrum of gpplications equipment and computationa
techniques that are available to the users. GPS user equipment and computationa
techniques have undergone a huge program of development both in the military and
civilian spheres. The military research and development programs have concentrated on
accomplishing a high degree of miniaturisation, modularisation and reliability, whilethe
civilian user equipment manufacturers have, in addition, sought to bring down costs and
to develop features that enhance the capabilities of the positioning system. Initidly,
GPS was designed for navigation applications. However, with the appropriate receiver
technology and data reduction procedures it is possible to achieve a high rdative
accuracy, a the centimetre levd, in the so-cdled precise GPS positioning mode.

1.2 Fundamental GPS Measurements

There are two types of fundamenta measurements used in position determination,

namely pseudorange measurements and carrier phase measur ements.

1.2.1 Pseudorange Measurement

A pseudorange is the measurement of the time shift between the code generated by a
receiver and the code transmitted from a GPS satdlite. If the recaeiver and satdlite
clocks are synchronised with the GPS time, the travel time of the satdlite signd will be
equd to the difference between the transmission time and the reception time. The range
between the satdlite and the receiver can be caculated by multiplying the trave time
with the speed of light. In practice, the satelite and receiver clocks are not
synchronised with the GPS Time. M oreover, there are some errors or biases when the
satelite signal propagaies from the satdlite to the recever. The pseudorange
measurement can be expressed as (Erickson, 1992; Landey, 1993):

R=p + Al +dion + Gyop + Co (A5 - AS') + dme + & (L)
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where
R is the measured pseudorange
p IS true range or geometric range

Ar is the orbit bias

don  istheionospheric bias
dyop  isthetropospheric bias
AS istherecaver clock error

AS'  isthesatdllite clock error
dmg isthemultipath error on the pseudorange

&R IS the pseudorange measurement noise
c is the speed of light

Thetrue range or geometric range can be represented by :

p =X =x)2+ (Y = y)? +(Z' -2)? (1.2)

where
X! Y and ! are the satdlite coordinates

X, Y, and z; arethereceiver coordinates

The pseudorange measurement is generaly used in applications where the accuracy is

not high (few metrelevd), asistypica for singe-epoch navigation applications.

1.2.2 Carrier Phase Measurement

Carier phase is the measurement of the phase difference between the carrier signa
generated by a receiver’s internd oscillator and the carrier signa transmitted from a
satellite. In order to convert the carrier phase to a range between the satdlite and the
receiver, the number of full cycles and thefractiond cycle must be known. However, a
the first time that the satellite signd is locked on to by thereceiver, only thefractiona

phase can be measured. If the satellite signd is assumed to be continuously locked, the
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recaeiver will keep track of changes to the phase. Therefore, theinitiad phasecycleis still
ambiguous by a number of full cycles. To use the carrier phase as a measurement for
positioning, this initidly unknown number of cycles (or the phase ambiguity) must be
resolved or accounted for in some way (Counsdman & Shapiro, 1979; Wells et 4.,

1987). The basic equation for the carrier phase measurement is:

0= p+ AT - Oion + Oyop + G (AS - ASY) + dmy + g+ A« N (1.3)
where
) is the carrier phase measurement in unit of metres

dm, isthemultipath error on the carrier phase
& is the carrier phase measurement noise

A is thewavdength of the carrier phase
N istheinteger carrier phase ambiguity

The definition of the remaining terms (p, Ar, dign, Giop, C, A% and Aéij) isthesameasin
Equation (1.1). It can be seen that there are similarities between Equations (1.1) and
(1.3). However, the mgor differences are the presence of the integer carrier phase
ambigquity term (A . N), and the reversa of sign for the ionospheric bias term (dig,). In
addition, the level of the carrier phase measurement noise (at the mm leve) is much
smadler than the level of the pseudorange measurement noise (typicdly a the metre
level). Therefore, the carrier phase is extensively used as the primary measurement in
precise (cm level) GPS positioning applications.

With regard to Equations (1.1) and (1.3), both the pseudorange and carrier phase
measurements are contaminated by many errors or biases that affect the positioning
accuracy. A brief discussion of the error sources in GPSpositioningis gven in the next
section.
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1.3 Error Sourcesin GPS Positioning

In generd, the errors or biases associated with GPS positioning can be conveniently
classified into three classes, sadlite-dependent biases, receiver-dependent biases and

signa propagation biases.

1.3.1 Satellite-Dependent Biases

The satdlite-dependent biases include satdlite orbit bias and satellite clock bias. The
satdlite orbit information is generated from the tracking data collected by the monitor
stations. The M aster Control Station processes the tracking data, and the other three
monitor stations (Section 1.1) upload the navigation message to every satelite so that
the user can navigate. In redlity, it is impossible to perfectly modd the satdlite orbit.
Hence, the satdlite orbit information caculated by the master control station would be
different from the true position of a satdllite, and this discrepancy is the satellite orbit

bias.

Snce 1 January 1994 the Internationd GPS Service (IGS) has carried out routine
operations necessary to generate precise GPSorbits. An internationa network of nearly
200 continuously operating GPSstations is used to track the satellites. The satdlite orbit
bias can therefore be mitigated by using the precise orbits obtained from the IGS in
place of the broadcast orbits. Table 1.1 is an example of the estimated quality of the IGS
products (IGS, 2001).

Table 1.1 Estimated quality of the IGS products (GPS broadcast vaues included for

comparison)

Orbit Type Accuracy Laency
Broadcast Orbits ~260 cm Red time
Predicted Orbits ~25 cm Red time
Rapid Orbits ~5cm After 17 hours
Find Orbits <5cm After 13 days
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The satellite clock bias is the difference between the satdlite clock time and the true
GPStime. Despite thefact that high quaity cesium, or rubidium, atomic clocks are used
in the GPS satdlites, the satelite clock bias is still unavoidable. In the case of SPP, a
typica way to account for the satdlite clock bias is to use the broadcast clock error
model defined by the polynomia coefficients. This broadcast clock error modd is
generated by the Control Segment and transmitted as part of the navigation message.
Even with the best efforts in monitoring the behaviour of each satdlite clock, ther
behaviour can not be precisdy moddled (JPS, 1998). As a result, there is a residua
error after gpplying the broadcast clock error modd. In the case of relative positioning,
the satdlite clock bias can be diminated by differencing the measurements obtained
from two recavers (Section 1.4.2), since the satdllite clock bias is the same for two

recelvers observing the same satdlite, a the sametime.

1.3.2 Receiver-Dependent Biases

The recaver-dependent biases include the receiver clock bias, inter-channd bias,
antenna phase centre variation and receiver noise. Smilar to the satellite clock bias, the
recaiver clock bias is an offset between the recaver clock time and the true GPS time.
Due to the fact that GPS recelvers are usudly equipped with relatively inexpensive
clocks, the recaiver clock bias is very large compared to the satelite clock bias. In the
case of SPP, atypica way to account for the receiver clock biasisto treat thereceiver
clock bias as an additional unknown parameter in the estimation procedure. In the case
of relative positioning, the receiver clock bias can be diminated by differencing the
measurements made at the same receiver (Section 1.4.2), since the receiver clock bias

would bethe same for al measurements made at the samereceiver, a the sametime.

The inter-channd bias arises because a multi-channel recelver takes the measurements
to different satdlites, using different hardware tracking channds. However,
multiplexing and sequential singe-channd recelvers were generdly free of the inter-
channel bias (Seeber, 1993). With modern GPS receiver technology, the inter-channe
bias can be cdibrated a the sub-millimetre leve or better (Hofmann-Wedlenhof et d.,
1997).
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In GPS positioning, the measurements taken by the GPSrecelver are usudly referred to
the distance between the dectrical centre of the satdlite's transmitter and the eectrica
centre of the receiving antenna. The discrepancy between the eectrica centre and the
physical centreis caled phase centre variation. The eectrical centretends to vary with
the direction and strength of theincomingsigna. In addition, the phase centre variations
for the L1 and L2 carriers may have different properties (Leick, 1995; Rothacher et d.,
1990). For most antenna ty pes, the antenna phase variation is usualy caibrated by the
manufacturers. In addition, the antenna phase centre models for various antennas can be
obtaned from the Nationd Geodetic Survey (NGS 2001). These modds can
subsequently be applied to mitigate the antenna phase variations. It is however
recommended that for high-precision gpplications care has to be taken not to mix
antennatypes, or to swap antennas between sites and receivers during asurvey (Rizos,
1997).

The magnitude of the receiver noise is dependent on parameters such as signa-to-noise
ratio and tracking bandwidth. According to a rule of thumb for classica receivers the
measurement noise is approximately 1% of the signd waveength. Therefore, the leve
of noise in pseudorange measurements is about 3 metres (~300 m wavelength) for C/A-
code and 0.3 metres (=30 m wavelength) for P-code, while the level of noise in carrier
phase is afew millimetres for L1 (~ 19 cm wavdength) and L2 (~ 24 cm waveength).
M odern receiver technology tends to bring the internd phase noise beow 1 millimetre,
and to reduce the C/A-code noise to the decimetre level (JPS, 1998; Qiu, 1993; Seeber,
1993).

1.3.3 Signal Propagation Biases

When the satdlite signas trave from the satelite to the recaeiver, the signds may be
contaminated by the amospheric ddlay and multipath error. The atmosphere causingthe
delay in GPSsignds consists of two main lay ers, ionospher e and troposphere. Thus, the
atmospheric signa propagation biases include the ionospheric and tropospheric delay s.
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The ionosphere is the band of the amosphere from around 50km to 1000km above the
eath’'s surface (Hofmann-Wellenhof et d., 1997; Seeber, 1993). Because of free
electrons in this layer, the GPS signads do not travel at the speed of light as they transit
this regon (Parkinson, 1996). As a result, the measured pseudoranges becometoo long
(Equation (1.1)), and on the other hand the measured phase ranges become too short
(Equation (1.3)). The ionospheric delay is a function of the Tota Electron Content
(TEC) dong the signd path, and the frequency of the propagated signd (Lin, 1997).
The TEC depends on time, season and geographic location, with mgor influencing
factors being the solar activity and the geomagnetic fied (Klobuchar, 1991; Leick,
1995; Seeber 1993). In extreme cases, the ionospheric dday can range from about 50m
for signas at the zenith to as much as 150m for measurements made at the recaver’s

horizon.

The simple broadcast ionosphere model transmitted within the navigation message is
generdly used to reduce this effect for singe-frequency users (see Klobuchar, 1987, for
details of the modd). With regard to the dua-frequency user, the ionospheric delay is
frequency -dependent and the ionosphere-free combination (L3) can be formed in order
to diminate this dday (Hofmann-Wedlenhof et d., 1997; Leick, 1995; Rizos, 1997).
However, the disadvantage of using the ionosphere-free combination isthat it increases
the noise to approximately threetimes that of theorigna L1 signd. Dueto thefact that
the ionospheric delays are highly corrdated over distances of gpproximatdy 10km to
20km, the impact of ionospheric delays can be largely reduced by forming a difference

between the measurements made by two receivers on short basdlines.

The troposphere is the band of the atmosphere from the earth’ s surface to about 50km
(Spilker, 1996a). The tropospheric delay is afunction of eevation and dtitude of the
receiver, and is dependent on many factors such as the amospheric pressure,
temperature and water vapour content. The tropospheric delay ranges from
agpproximately 2m for signals at the zenith to about 20m for signas at an elevation ange
of 10 degrees (Brunner & Welsch, 1993). Unlike the ionospheric delay, the tropospheric
delay is not frequency-dependent. It cannot therefore be diminated through linear

combinations of L1 and L2 observations.
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Severd ‘standard’ troposphere models can be used to estimate the tropospheric delay
(e.g Ssastamoinen model, Hopfieddd model, Black modd, etc.). The signd refraction
dueto thetroposphereis separated into two components, the dry component and thewet
component. Due to the high variation in the wet component, it is difficult to predict or
model this component. As aresult, the standard models can account for about 90% of
the total delay. Smilar to the ionospheric delay, the tropospheric delay can be largely
eiminated by forming a difference between the measurements made by two receivers
on short basdines. For high-precision static gpplications, the residud tropospheric
ddlays in the measurements may be treated as additiona unknown parameters in the
basdline estimation procedure (eg Dodson e d. 1996; Roberts & Rizos, 2001;
Rothacher et d., 1990; Trdli & Lichten, 1990).

M ultipath is the error caused by nearby reflecting surfaces. GPS signds can arrive a the
receiver via multiple paths due to reflections from nearby objects such as trees,
buildings, the ground, water surfaces, vehicles, etc. Theoreticaly, the maximum
pseudorange multipath error is gpproximately one chip length of the code (that is, about
300m for the C/A-code, and approximately 30m for the P-code), while the maximum
carrier phase multipath error is about aquarter of the waveength (that is, aout 5cm for
the L1 carrier, and 6 cm for the L2 carrier) (Georgadou & Kleusberg, 1989; Lachapelle,
1990; Wdls e d., 1987). Snce the multipath error depends on the recever's
environment, it cannot be reduced by using the data differencing technique. In the case
of static positioning, averagng the computed results over a period of time will reduce
the contribution of multipath errors. However, some options for reducing the effect of
multipath have been suggested by Rizos (1997):

e Makeacareful selection of antennasitein order to avoid reflective environments.

e Useagood qudity antennathat is multipath-resistant.

¢ Usean antennagroundplane or choke-ring assembly .

e Use arecaver that can interndly digtdly filter out the effect of multipath signal
disturbance.

e Do not observelow devation satellites (signals are more susceptible to multipath).

11
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1.4 GPS Positioning Methods

Based on the available measurements made on the GPS signals, the determination of the
receiver’s position can be conveniently classified into two techniques, Absolute

Positioning and Relative Positioning.

1.4.1 Absolute Positioning

The absolute positioning technique, dso known as the single point positioning (SPP)
technique, permits one receiver to determine the ‘absolute coordinates (X, Y, Z) of a
point with respect to acoordinate sy stem such as WGS34. This technique can be further
divided into two classes depending on the measurements used, namely pseudorange-

based point positioning and carrier phase-based point positioning.

1.4.1.1 Pseudorange-based point positioning

For navigation applications, pseudoranges are widey used as the fundamentd
measurements. The basic principle of the absolute positioning techniqueis to use simple
resection by distances to determine the receiver’ s coordinates. If the satelite coordinates
are assumed to be known (as they can be computed from the navigation message), the
receiver’s coordinates can be computed from the resection using the measured
pseudoranges. If it is assumed that thereis no error in the pseudoranges, the absolute
coordinates are considered as the only unknown parameters. Therefore, at least three
pseudoranges need to be measured in order to solve for three coordinate components.
As a matter of fact, there are many errors in measuring pseudoranges, especidly in
measuring the travel time. This is due to the use of an inexpensive clock in the receiver.
Hence, the receiver clock bias is considered as an additiona parameter, and aminimum
of four pseudoranges are then needed to solve for four unknown parameters, three
coordinates and the receiver clock offset. As mentioned in Section 1.1, the accuracy of
SPP is currently about 7 metres in the horizontal component and 12 metres in the

vertica component (at the 95% confidence leve) for civilian users.

12
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1.4.1.2 Carrier phase-based point positioning

With the availability of precise GPS orbits and satellite clock corrections, the precise
point positioning technique has recently been proposed by the Jet Propulsion Laboraory
(JPL) (Zumberge et d., 1997; Zumberge, 1999). Since this technique mainly uses the
carrier phase measurements from both frequencies (L1 and L2), with the post-mission
information in the estimation procedure, it can produce high-precision positioning
results. Neverthdess, this technique requires a reasonably large amount of data,
implying that instantaneous solutions are not possible, and this technique can only be
used when the receiver is stationary. As stated in Zumberge et d. (1997), the users
could expect daly repeatabilities of afew mm in the horizonta components, and about
acm in the verticad component, for datafrom astatic site occupied by a geodetic-quality

recaver.

1.4.2 Relative Positioning

The relative positioning technique, sometimes dso cdled the differential positioning
technique, requires the use of two receivers, one as ar efer ence station and the other one
as a user station, in order to determine the coordinates of the user with respect to the
reference station. This technique is very effective if the measurements are
simultaneously made a both receivers. Many biases (e.g. sadlite orbit bias, sadlite
clock bias, ionospheric and tropospheric delays) can be largely reduced by formingthe
difference between the measurements made at both stations. For this reason, thereative
positioning technique is extensively used for gpplications that require high accuracy (cm
level). However, the effectiveness of the reative positioning technique is largely
dependent on the distance between the two receivers. If the distance between the
receivers becomes large, the residud errors will become larger. Consequently, the
positioning results become degraded. This is a limitation of the reative positioning
technique. Smilar to the case of absolute positioning technique, the relative positioning
technique can be divided into two classes depending on the measurements used,
pseudor ange-based differential GPSand carrier phase-based differential GPS.

13



Chapter 1 Introduction

1.4.2.1 Pseudorange-based differential GPS

As previously discussed, both the accuracy and integrity of GPS solutions can be
improved by the Differentid GPS (DGPS) technique. The estimation of the range error
for each satellite is carried out at the reference station and the estimated range errors (or
corrections) are broadcast to the users by an appropriate communication link. With
differentia corrections, the SPS navigation accuracy can be improved down to the 1m
level, provided the correction data age is less than 10 seconds, and the user is within
50km of the reference station (Parkinson & Enge, 1996). Note that the accuracy of
DGPS will be degraded if the distance from the reference station or the age of the
correction data incresses. If only one reference station is employed, this DGPS
technique is generdly referred to as Local Area Differential GPS (LADGPS). LADGPS
is suitablefor operations over asmal area.

If anetwork of reference stations is employed to generate acorrection for each satdlite,
the correction data is valid over a much larger areg, for example, regona or continental
extent. This concept is referred to as Wide Area Differential GPS (WADGPS). The
accuracy of WADGPS is independent of the geographicd location of the user rdativeto
the nearest reference station, though the vaidity of the correction still decreases with an
increase in the age of the correction data (K eg, 1996).

The Wide Area Augmentation System (WAAYS) is a space-based augmentation sy stem,
which employs geostationary satellites to transmit to users the DGPS corrections for
each satdlite, together with additiond GPSlike rangng signds and an integity
message, hence improving availability and reiability (Enge & Van Dierendonck, 1996).
The processing of WAAS data begins a the master stations. Subsequently, al dataare
packed into WAAS messages and sent to Navigation Earth Sations (NES). The NES
uplinks the WAAS messages to the geostationary satellites, which broadcast the
messages, together with the GPS like rangng signals, to WA A S-capable recelvers.

In summary, the pseudorange-based DGPS techniques can achieve accuracies in the
range 0.5m and 5m. However, for some gpplications with very stringent accuracy
requirements, carrier phase-based GPS techniques have to be used.

14
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1.4.2.2 Carrier phase-based differential GPS

The basis of high precision relative positioning is the use of carrier phase measurements
(Section 1.3.2). Data differencing techniques are one of the keys to achieving high
precision positioning results as they can significantly reduce avariety of errors or biases
in the measurements and models. For example, by differencing the measurements made
to the same satelite by two receivers, a the same time, the spatialy correaed
amospheric ddays and satelite-dependent biases are largely eiminated. This is
referred to as single-differencing between receivers. Smilarly, by differencing the
measurements to two satdlites made by the samereceiver, a the sametime, the receiver
clock bias cancds. This is referred to as single-differencing between satdlites. If the
difference between the above singe-differenced observations is formed, this procedure
is cdled double-differencing, and the resultant double-differenced observable is the
standard input for carrier phase-based processing Another key to achieving high
precision positioning results is to ‘fix the initid carrier phase ambiguities (Section
1.2.2) to their (theoreticaly) integer vaues. This procedure is commonly referred to as
Ambiguity Resolution.

Carrier phase-based DGPS techniques can be further categorised as static positioning
and kinematic positioning.

Satic positioning implies that both recelvers are stationary during the entire period of
data collection. Thelength of the observation period is dependent on parameters such as
the number of observed satdlites, the satelite geometry, the distance between two
receivers (i.e. baseline length), the recaiver type and the accuracy requirement. Sncethe
late 1980's, rgpid static positioning modes have been introduced, by which the
observation period can be significantly reduced, to only a few minutes or less, yet
ensuring centimetre positioning accuracy over basdine lengths below 20km or so
(Blewitt et d., 1989; Euler et d., 1990; Frel & Beulter, 1990). It should be noted that
the basdine lengths may be varied from 10km to 20km depending on the similarity of
biases between two stations. However, the 20km basdine length is typicaly used as the

standard practicein rlative positioning.
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Kinematic positioning implies that ether (or both) the reference and user recavers are
in motion. The concept of kinematic positioning was first introduced by Remondi
(1985). With recent receiver technology and data processing procedures, it is possibleto
obtain the positioning results in ‘red time'. This technique is referred to as real-time
kinematic (RTK) positioning. In the standard RTK positioning, the reference receiver
transmits the data via a radio link to the user receiver, where the data obtained from
both recelvers are processed in the fidd to obtain immediate positioning results
(Langey, 1998; Tdbot 1993).

In short, the carrier phase-based DGPS can ddiver accuracies in the range sub-cm to
sub-dm, depending on the baseline length and other factors (Hatch, 1986; Goad, 1987).

1.5 Previous Research on Stochastic Modelling for GPS Positioning

Snce its introduction to civilian users in the early 1980's, GPS has been playing an
incressingy important role in high-precision surveying and geodetic gpplications. As
with traditional geodetic network adjustment, data processing for precise GPS static
positioning is invariably performed using the least-squares method. To employ the
least-squares method, both the functiona and stochastic models of the GPS
measurements need to be defined. The functional model, aso caled the mathematica
model, describes the mathematical relationships between the GPS measurements and
the unknown parameters, such as the ambiguity terms and the basdine components.
The stochastic modd describes the statistical properties of the measurements, which are
mainly defined by an appropriate covariance matrix. In order to ensure high accuracy,
both the functionad mode and the stochastic model must be correctly defined. If the
function mode is adequate, the residuas obtained from the least-squares solution
should be randomly distributed (eg Tiberius & Kensdaar, 2000; Satirgpod et d.,
2001a). Over the last two decades the functiona modes for GPS carrier phases have
been investigated in considerable detail, and are wel documented in the literature (e.g.
in such texts as Hofmann-Wellenhof et d., 1997; Leick, 1995; Rizos, 1997; Seeber,
1993; Teunissen & Kleusberg, 1998). Snce GPS measurements are contaminated by

many errors such as the atmospheric biases, the receiver clock bias, the satdlite clock
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bias, and so on, it is impossible to modd dl systematic errors in the functionad mode
without some understanding, or prior knowledge, of the physica phenomena which
underpin these errors. Although the data differencing techniques are extensively used
for constructing the functional modedl, some unmoddled (or 'residud’) biases still
remain in the GPS observables following such differencing. As a result, the residuds
obtained from a least-squares static solution would normaly represent both unmodelled
systematic errors and noise. In principle it is possible to further improve the accuracy
and certainty of GPS results through an enhancement of the stochastic mode. M any
researchers have emphasised the importance of the stochastic modd, especidly for
high-accuracy applications (e.g Barnes et d., 1998; Han, 1997; Satirgpod, 1999; Wang,
1999). Furthermore, an accurate stochastic mode is the key to obtaning a better
covariance matrix of the parameters (e.g. El-Rabbany, 1994; Han & Rizos, 1995). The
chalenge is to find a way to redlisticaly incorporate information on such unmodelled
biases into the stochastic model. Therefore, accurate stochastic modelling for the GPS
messurements is still both a controversial topic and a difficult task to implement in
practice (Cross et d., 1994; Wang et a., 2001).

In practice, the stochastic models of GPS measurements are mainly based on
considerable simplifications. In current stochastic models it is usudly assumed that al
carrier phase or pseudorange measurements have the same variance, and that they are
statisticaly independent. The time-invariant covariance matrix of the double-
differenced (DD) measurements is then constructed usingthe error propagation law. In
this covariance matrix the correlation coefficient between any two DD measurements is
+0.5. This so-caled ‘mathematical corrdation’ is introduced by the double-differencing
process. To set up a simple stochastic model for DD measurements, it is further
assumed that tempord correlations are absent. However, these assumptions are not
redistic. As commented in, for example, Goad (1987), Gourevitch (1996), and Landey
(1997), the GPS measurement errors are dominated by the systematic errors caused by

the orbit, amospheric and multipath effects, which are quite different for each satellite.
Therefore the measurements obtained from different satelites cannot have the same

accuracy. On the other hand, the raw measurements are spatialy corrdated due to
similar observing conditions for these measurements (it is this fact that makes the
double-differencing procedure effective in mitigating meassurement biases). M oreover,
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the time corrdations may exist in the measurements because the residud systematic

errors change slowly over time.

To modd the heteroscedasticity, many researchers have recently used two types of
externd information, the signal-to-noise ratio (SNR) and the satdlite elevation ange, to
caculate the accuracy of the one-way GPS measurements (Satirgpod & Wang, 2000).
This is done by employing an approximate formula using the satdlite elevation ange
(eg Euler & Goad, 1991; Gerdan, 1995; Han, 1997; Jin, 1996; Rizos € 4d., 1997), or
NRs (eg Banes et d., 1998; Brunner e d., 1999; Gianniou & Groten, 1996;
Hartinger & Brunner, 1998; Landey, 1997; Tdbot, 1988) asinput. Given the variances
of the one-way measurements, the covariance matrix for the DD measurements is
constructed using the error propagetion law. Furthermore, arigorous statistica method,
known as M INQUE (Minimum Norm Quadratic Unbiased Estimation, Rao, 1971), can
be employed to estimate the stochastic mode for the GPSDD measurements (Wang et
a., 1998q).

The impact of temporal corrdations on GPS basdine determination has been
investigated in, for example, Vanicek et d. (1985), El-Rabbany (1994), Han & Rizos
(1995) and Howind et d. (1999). In these studies all one-way measurements are
considered to be independent and having the same variance and same tempord
correation. It has been noted that the GPS measurement may have a heteroscedastic,
space- and time-correlated error structure (Satirgpod et a., 2000; Wang, 1998). Any
mis-specifications in the stochastic model may lead to inaccurate results (e.g. Cannon &
Lachapdle, 1995; Chen, 1994; Hatch & Euler, 1994; Kim & Landey, 2001; Sauer et
d., 1992; Teunissen, 1998; Wang, 1998). Hence, stochastic moddling is still a

chalengng research topic for precise GPS positioning.

1.6 Outlineof Thesis

This thesis consists of eight chapters and one gppendix.
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Chapter 1 — Introduction. This chapter gves some background on GPS fundamental
GPS measurements, error sources in GPS positioning, GPS positioning methods, an
outline of previous studies on stochastic modeling procedures, the outline of the thesis

and the contributions of this research work.

Chapter 2 — Quality Indicators for GPS Carrier Phase Observations. This chapter
reviews and compares two qudity indicators commonly used in constructing the
stochastic modd for GPS carier phase observations, namely satellite elevation angle
and signal-to-noise ratio. Snge-differenced residuas are used to analy sethe vdidity of
the qudlity indicators, on a satdlite-by-satelite basis. The results from aseries of tests
are presented and discussed.

Chapter 3 — A Smplified MINQUE Procedure for Estimation of Variance-Covariance
Components of GPS Observables. Here, the standard M INQUE method used for
estimation of variance-covariance components of GPS observations is first reviewed. A
simplified M INQUE procedure is then proposed in which the computationa load and
time are significantly reduced. Experimental results are presented and discussed.

Chapter 4 — An lterative Stochastic Modelling Procedure. This chapter first briefly
describes the mathematica equations used in static GPS basdline data processing, and
then discusses the estimation of variance-covariance components and the trestment of
tempord corrdations. Then, an iterative stochastic modelling procedure is proposed in
which the heteroscedastic, space- and time-correlated error structure of GPS
messurements are taken into account. Details of the iterative stochastic modeling
method are presented. Applications of the proposed method are dso demonstrated using
avariety of GPSdata sets.

Chapter 5 — A Segmented Stochastic Modelling Procedure. This chapter presents anew
stochastic modelling procedure, known as a segmented stochastic modelling procedure.
The new procedure is proposed to ded with long observation period data sets, and in
order to reduce the computationa load. T he effectiveness of the new procedureis tested
using both red dataand simulated data sets for short to medium length basdlines.
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Chapter 6 — GPS Analysis with the Aid of Wavdets. This chapter presents the theory of
wavelet decomposition and its gpplication to GPS data processing. A new method based
on a wavelet decomposition technique and a robust estimation of the variance-
covariance matrix is proposed to improve the certainty of ambiguity resolution and the
accuracy of estimated baseline components. A discussion of the experimentd results

and andysis is presented.

Chapter 7 — An Implementation of Segmented Stochastic Modelling Procedure and
Some Considerations. This chapter describes detailed procedures for implementing the
segmented stochastic modelling procedure in software. A discussion on some

considerations in utilising this procedure is adso gven.

Chapter 8 — Conclusions and Recommendations. This chapter summarises findings,

draws conclusions, and makes recommendations for future investigations.

Appendix A gves some detalls of the accompany ing matrices described in Chapter 3.

1.7 Contributions of this Research

In this study, the chalengng stochastic modelling issues outlined in Section 1.5,
suitable for use in the GPS relative static positioning mode, have been investigated. The

contributions of this research can be summarised as follows:

e The two commonly used qudity indicators for constructing a stochastic modd of
GPS carier phase observations have been compared and validated using the singe-
differenced residuds. It is recommended that a more rigorous method for
constructing aredistic stochastic modd needs to be developed.

e A simplified MINQUE procedure has been developed, in which the computational
time and the memory requirements of the simplified procedure are much less than
those in the case of the rigorous M IQNUE procedure. In addition, the effect of a
change in the number of satellites on the computation is effectively dedt with.
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An iterative stochastic modelling procedure has been proposed, in which dl of the
error features of GPS measurements are taken into account. With the new stochastic
procedure developed here, the certainty of the estimated positioning results is
improved and the quality of ambiguity resolution can be more redisticaly
evaluated.

A segmented stochastic modelling procedure has been proposed to ded with long
observation period data sets, and in order to reduce computationa load. The
proposed procedure can be implemented with any long observation period data sets

with no significant increase in processing time.
A new method based on awavelet decomposition technique, and arobust estimation

of the variance-covariance matrix, has been proposed to improve the certainty of

ambiguity resolution and the accuracy of estimated baseline components.
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Chapter 2
QUALITY INDICATORS FOR GPS CARRIER PHASE OBSERVATIONS

2.1 Introduction

To achieve accurate GPS positioning results, aredistic stochastic mode for GPS carrier
phase observations has to be specified. However, the correct stochastic modd for the
GPS messurements is a difficult task to define. In order to develop such a stochastic
model, the quality characteristics of GPS carrier phase measurements made by a
receiver must bewell understood. Recently there has been interest in usingtwo ty pes of
information, signd-to-noise ratio (SNR) and satdlite eevation ange, as quality
indicators for GPS observations. It is important that a better understanding of these

qudity indicatorsis gained in order that they may be used appropriatdy.

In this chapter the quality indicators for GPS carrier phase observations are described,
as well as the methodology used to assess them. A series of tests are described and some
conclusions are drawn based on the andy sis of the GPS data.

2.2 Quality Indicators

2.2.1 Signal-to-Noise-Ratio (SNR)

The SNR is the ratio of aGPSsignd power and the noise levd that contaminates a GPS
observation. The SNR value can be affected by severd factors (i.e. antennagain pattern,
receiver type, space loss, multipath etc.). M ost SNR models were designed to mitigate
the multipath effect, as multipath is a mgor concern in GPS positioning, especidly in

urban aress. For instance, the reationship between multipath and SNR, or Carrier-to-
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Noise density ratio (C/No), has been investigated by many authors (e.g. Brunner et d.,
1999; Comp & Axdrad, 1996; Lau & Mok, 1999; Seewaegen, 1997; Tabot, 1988).
M ore recently SNR has been introduced as aqudity indicator for GPS observations and
used to construct the stochastic modd. In Spilker (1996b), the relationship between the

RM S phase noise (c;) and the SNR,_is gven as:

Cff SE-——Ti:' (2.1)

Landey (1997) cams tha C/No is the key parameter in andysing GPS recelver
performance and that it directly impacts the precision of GPS observations. Hartinger &
Brunner (1998) dso state that the SNR information indicates the qudity of the

individua GPS phase vdues, and the performance of their SGM A-e mode is based on
the following assumption:

—C/No

62=5.10 1 (2.2)

where the subscript indicates the L1 signd and S, consists of the carrier loop noise
bandwidth and a conversion term from cycle2 to mm?. From an anaysis of many data
sets the value of S; was estimated to be about 1.6x10". Lau & M ok (1999) described the
performance of the Sgna-to-noise ratio Weighted Ambiguity function Technique
(SWAT), where they emphasised the close reationship between the SNR cofactor
matrix and the elevation ange (as SNR is amost directly proportiona to the elevation

angein 'not-too-noisy environments').

2.2.2 Satellite Elevation Angle

Sdlite devation ange information is often used to construct a simplified stochastic
model. Jin (1996) stated that the precision of GPS code observations a comparatively
low satellite elevation anges decreases with decreasing eevation, and that the

relationship can be moddled quite well by an exponentia function:

23



Chapter 2 Qudity Indicators for GPS Carrier Phase Observations

y =&+ ae exp{ -x/Xo} (2.3

wherey is the RM S error, &, a and X, are coefficients dependent on the receiver brand
and the observation type, and x is the satdlite eevation ange in degrees. This
relationship has been used by many researchers in various GPS data processing schemes
(e.g Euler & Goad, 1991, Gerdan, 1995; Han, 1997; Jin, 1996; Rizos &t d., 1997).

2.2.3 Single-Differenced Model

The singe-differenced mode (between receivers) is chosen as the method of analysis
for this study since the validity of the two above-mentioned qudity indicators can then
be assessed on a satdlite-by-satdlite basis. For short basdines, the singe-differenced
model can be expressed as (Hofmann-Wellenhof et d., 1998; Leick, 1995; Rizos, 1997;
Teunissen & Kleusberg, 1998):

) 1 . .
q){AB (t) = EZ)\B (t) +N /JAB - AB (t) + e/l\B (t) (2-4)

where the superscript j denotes the satellite, the subscripts A and B indicate the two
receivers, the index t denotes the epoch a which the data were collected, @ is the
measured carrier phase, A is the wavelength of carrier phase, Z is the distance to the
satellite, N is the singe-differenced integer ambiguity, f denotes the frequency of the
satellite signd and & is the reative recaeiver clock bias. The term e represents al

remaining errors, including random noises of recevers and systematic errors, such as
unmodelled multipath effects, atmospheric delay, etc.

In order to compute the singe-differenced residuas, the double-differenced ambiguities
have to be resolved to ther integer vaues. This procedureis performed by the standard
GPS ambiguity resolution dgorithm. Then these double-differenced ambiguity vaues
are introduced as known parameters into the singe-differenced model by subtracting
them from Equation (2.4). Therefore, the unknown parameters remaining in the GPS
observation modd are the relative receiver clock bias, the integer ambiguity of the base
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satdlite and the errors. From Equation (2.4), the singe-differenced modd can be
written as (assuming that there are four satdlites (j, k, I, m) available a& epoch t and
satellitek is chosen as the base satellite):

. 1_ .
Dhp(t) = IZAB (t)+ NI/IQB - 15 5 (1) +e5s (1)

1
q)ifﬁ\B (t) = IZKB (t) +N ,l'(-\B -1 AB (t) + e,l;B (t)
. (2.5)
chAB (t) = IZ,IAB (t) +N ,I:B - 1o AB (t) + e!AB (t)

m 1 m m
(DAB (t) = IZAB (t) +N I/:B -1 AB (t) + €58 (t)

A 'reverse engneering process is gpplied to this mode in order to produce areliable
estimate of true erors for each sadlite. Banes et d. (1998) and Satirgpod (1999)
demonstrated the use of this process with the double-differenced modd. If the epoch-
by-epoch solution is computed, the relaive recever clock bias and the singe-
differenced integer ambiguity of the base satdlite can be diminated from Equation (2.5)
by subtracting the mean vadue from the residuals. Hence, the singe-differenced error (€)
for each sadlite can be derived and used for a comparison with the two quality
indicators.

2.3 Test Resultsand Analysis

The following series of tests were carried out using data collected on the M ather Pillar a
top the Geogaphy and Surveying building, a The University of New South Wales
campus, Sydney, Austrdia The photograph in Figure 2.1 shows the GPSrecelver set up
on the Mather Pillar station. This station is a GPS permanent station, and has a good
observing environment. There are no tdl buildings in the vicinity of thesite, and phase
diffraction effects are largdy diminated. Test 1 was carried out to investigate the
characteristics of SNR. The reationship between SNR and satdlite eevation ange
information is discussed in the context of Test 2, while a comparative anadysis of the

two quality indicators is presented in the discussion of Test 3.

25



Chapter 2 Qudity Indicators for GPS Carrier Phase Observations

—

Figure2.1 TheM ather Pillar station at GAS, UNSW.

231 Test 1-SNR Characteristics

A zero basdine test was used for this investigation since it was necessary to eiminate
any uncertainty dueto the use of different antennatypes. Threetypes of receivers were
used in the experiment: the Canadian M arconi Corporation Allstar (CM C), the Leica
CRSI1000 and the NovAtd Millennium. In order to investigate the SNR characteristics
for the same receiver type, data were collected by connecting each pair of receivers (of
the same type) to the same antenna. Data were collected in static mode for three hours,
for each par of recevers, a a 5-second data rate. C/No vaues obtained for each
receiver type were recorded and converted into the RINEX file using their propriety
software. C/No vaues are presented for the case of two satellites only as the results for
the other satellites displayed similar trends. These results are presented in Figures 2.2 to
2.4, which show the time series of the differenced C/No values obtained for the CM C,
CRS1000 and NovAte receivers, respectively.
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Figure2.2 AC/No vdues between two CM C receivers for PRN 1 (top), AC/No vaues

AC/No (dB-Hz)

AC/No (dB-Hz)

between two CM C receivers for PRN 14 (bottom).

T T
PRN 1

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time (sec)

T T
PRN 14

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time (sec)

Figure2.3 AC/No vaues between two CRS1000 receivers for PRN1 (top), AC/No
values between two CRS1000 receivers for PRN 14 (bottom).
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Figure2.4 AC/No vaues between two NovAte receivers for PRN 1 (top), AC/No

values between two NovAtd receivers for PRN 16 (bottom).

With reference to Figures 2.2 to 2.4, it is evident that, athough the samereceiver type

was used, there is a non-zero difference in C/No vaues, indicating that recaeivers of the

same type nevertheless have different outputs of C/No. It can aso be seen from Figures

2.2 to 2.4 that the different recelver types output the different resolution in the C/No

values.

Next, an investigation of the SNR characteristics of the different receiver types was

carried out by connecting three types of receivers to the same antenna. The same cable

type was dso used in this session. Data were collected in static mode for 3 hours at a

1Hz rate. However, the data were sampled every 5 seconds and the results obtained

from three satellites are presented for comparison. The C/No vaues obtained from the

threereceivers for three satdlites are plotted in Figure 2.5.
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Figure2.5 C/No vaues obtained from threereceivers (CM C, CRSL000 and NovAtd)

for PRN 1 (top), PRN 2 (middle), and PRN 3 (bottom).

Figure 2.5 shows the time series of the C/No values obtained from the three different
recevers (CM C, CRSL000 and NovAtd). Top, middle and bottom lines represent the
C/No vaues obtained from CM C, NovAtd and CRSL000 recevers respectively. The

results indicate that there is a difference in C/No vaues when different receiver types

were used. However, the C/No vaues show a similar trend for dl recaeivers. This trend

may be caused by an antenna gain pattern effect. Sudden drops in the C/No vaues are
clearly noticeable for satellites PRN1 and PRN2 at different times for the case of the

CRSI1000 receiver. Smilar phenomena were aso noted by Hartinger & Brunner (1998).

In order to further investigate this phenomenon it was decided to collect some zero
basdine data with the CRSL000 receivers a a 1Hz ratefor 2 hours. Selected results for
PRNs 3, 29 and 31 are presented in Figure 2.6.
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Figure2.6 C/No vaues obtained from the CRSL000 receivers for PRN 1 (top),
PRN 29 (middle), and PRN 31 (bottom) (Two subplots for each of thethree plots
indicate the C/No vaues for each of thetwo CRS1000 receivers).

From Figure 2.6 it gppears that these sudden drops are caused by afirmware problemin
an individua receiver, as they occur at different times, even in the case of the same
receiver types. Figures 2.7(a) and 2.7(b) show the C/No vaues against the true errors
obtained for the singe-differenced data for the case of PRN 3. It can be seen that this
sudden drop does not reflect any change in the true errors (note different C/No vaues
for thetwo recaiversin Figure 2.7(a)).
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Figure2.7 Timeseries of the C/No vaues and true errors obtained from the CRS1000
receivers, (a) C/No vaues for PRN 3, (b) trueerrors for PRN 3.

2.3.2 Test 2—SNR & Satellite Elevation

The relationship between SNR and satellite devation ange data has been mentioned by
severd authors (eg. Hartinger & Brunner, 1998; Lau & Mok, 1999), and it is often
assumed that SNR is directly proportional to satellite devation. However, it is necessary
to examine this relaionship more closely before advocating the use of these quality
indicators. An experiment was therefore carried out in which severa zero basdine data
sets were collected in static mode for over 16 hours. The data set obtained from the
CM C receiver was sdected for the andysis. From this data set, four satdlites were
selected to study this relaionship. The TEQC software was then used to check for the
presence of any multipath disturbance, and it was found that there was no significant
multipath effect on the satdlite signals (Estey & M eertens, 1999). Thetime series of the
C/No vdues and the satellite devation ange values are plotted in Figures 2.8 and 2.9.
Figure 2.8 shows that the rdationship between SNR and satdlite elevation is indeed as
established by previous studies. However, Figure 2.9 shows that this reationship may
not betruefor high satellite devation anges.
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Figure2.8 Time series of the C/No values and satdllite eevation data obtained from
the CM C receiver, () C/No vaues and satellite devation datafor PRN 17,
(b) C/No vaues and satdlite elevation datafor PRN 23.

It is dso evident that the C/No vauefor low satellite eevation anges in some instances
is higher than the C/No vaue for high sadlite elevation anges (see the two peaks in
Figure 2.9(a) and 2.9(b)). It can be seen that the C/No vaueis not directly proportiona
to the satelite evation ange. The C/No vaue can be affected by many factors, not just
an devation ange. Thus, the two standard qudlity indicators do not aways follow the
same trend. Further comparative andysis of these two qudity indicators therefore was

necessary, and theresults are presented in the following section.
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Figure2.9 Time series of the C/No vaues and satdlite evation data obtained from
the CM C recaiver, (a) C/No vaues and satellite devation datafor PRN 2,

(b) C/No vaues and satdlite elevation datafor PRN 9.

2.3.3 Test 3—The Comparative Analysis

Theam of this experiment was to compare the two measurement quality indicators with
the estimated true erors through the use of singe-differenced observables. Snge-
differenced observables were chosen as both the SNR and satdllite elevation ange data
are 'one-way observations. Therefore, the validity of these quality indicators should be
assessed on a satdlite-by-satdlite basis. A previous investigation on the relaionship
between phase noise and satdlite devation anges based on double-differenced residuas
was reported in Cannon (1998). For this experiment, zero basdine data were collected
for avariety of receiver types. Each of the data sets was divided into 0.5-hour sessions,
and then processed using the singe-differenced mode described in section 2.2.3. The
standard deviation of the estimated true errors and the mean values of C/No and satellite
elevation are the quantities of interest in this anaysis. The results from the different
receivers show similar trends, and selected results from the experiments are plotted in
Figures 2.10 and 2.11.

33



Chapter 2 Qudity Indicators for GPS Carrier Phase Observations

Figures 2.10 and 2.11 show the reationship between the two measurement quality
indicators and the standard deviation of the estimated true errors for the CRS1000 and
NovAtd receiver observations, respectively. For each of the Figures thetop chart shows
the reationship between the mean C/No values and the standard deviation of the
estimated true errors, while the bottom chart shows the reationship between the mean

satdlite devation vaues and the standard deviation of the estimated true errors.

From these Figures it can be seen that the C/No vaues reflect amore redistic trend than
those based on satdlite eevation data, which show alarger discrepancy. However, it
can aso be seen that in some cases both of theseindicators fail to reflect redity, asthey
do not match the standard deviation of the estimated true errors. M oreover, SNR and
satdlite devation data are dependent upon the recever type, therefore in order to use
these data appropriately further investigations will be necessary .
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Figure2.10 Comparison of thetwo quality indicators for CRS1000 receivers (zero
basdine), mean C/No vaues and standard deviation of the estimated true errors (top),
mean satellite devation values and standard deviation of the estimated true errors
(bottom).
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Figure2.11 Comparison of thetwo qudity indicators for NovAte receivers (zero
basdine), mean C/No vaues and standard deviation of the estimated true errors (top),
mean satellite devation values and standard deviation of the estimated true errors
(bottom).

24 Concduding Remarks

It is necessary that one develops a better understanding of qudlity indicators for GPS
measurements. In this chapter, the standard quality indicators for GPS measurements,
NR and satdlite devation ange information, have been reviewed and investigated. A
comparative anaysis was carried out in an attempt to verify the previously established
relations between these indicators. Based on the results obtained, the following

comments can be made:

e There is a variation in the C/No vaues for the same receiver types, as well as for
different recaiver types.

e It was found that sudden drops do occur in the C/No vaues for a specific recaver
type, even in the case of high devation satellites. These sudden drops may result in
amisrepresentation of the qudity of the measurements if the C/No vaues are used

as aquality indicator.
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e The two standard measurement qudity indicators do not aways follow the same
trend.

o C/Novaues reflect amore redistic trend than satdlite devation ange data.

e In generd, both C/No vaues and satellite devation ange information can be used as
quality indicators, but they do not aways reflect redity. M ore rigorous quality
indicators therefore need to be developed.

In rapid static and kinematic GPS positioning, the issue of the appropriateness of the
stochastic model becomes critica. A redistic stochastic modd will leed to an
improvement in the accuracy and certainty of GPS results. In such 'high productivity’
GPS techniques many researchers have extensively used the two standard quality
indicators to refine the stochastic model, hoping to obtain a more accurate solution.
However, from these admittedly limited investigations, both quality indicators did not
adways reflect redity as far as dataquality is concerned. This can be partidly attributed
to the fact that dthough the relationships defined by Equations (2.2) and (2.3) are
empiricdly derived from extensive data sets, they arestill largely dependent on the data
orignaly used for ther derivation. In Wang et a. (1998a), arigorous statistica method
known as M INQUE (M inimum Norm Quadratic Unbiased Estimation -- Rao, 1971) is
used to construct a more redlistic stochastic modd. However, this method has the
drawback of being computationdly intensive. In order to reduce the computationa load
and computer memory requirements of the M INQUE procedure asimplification of the
M INQUE procedure will be proposed in the next chapter.
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Chapter 3
A SIMPLIFIED MINQUE PROCEDURE FOR THE ESTIMATION OF
VARIANCE-COVARIANCE COMPONENTS OF GPS OBSERVABLES

3.1 Introduction

As pointed out in Chapter 2, two commonly used GPS measurement quality indicators,
namey the Sgna-to-Noise Ratio (SNR) and the satellite elevation angde, fail to reliably
reflect the redity of data quadity. In addition, the reationship between these qudity
indicators and the standard deviations of the GPS observations are largely dependent on
the data used in for ther derivation, and hence the statisticad properties of the
estimations are still ambiguous. It is therefore gppropriate to investigate a rigorous

method for constructing variance-covariance matrices of GPS observations.

Fortunately, in the case of static and rapid static GPS relative positioning, redundant
observations are available, from which redlistic variance-covariance matrices can be
estimated using modern statisticd methods. A comprehensive review of some methods
for estimating the variance components can be found in Crocetto et d. (2000). The
M INQUE procedure is one of those most commonly used, and was successfully applied
by Wang e d. (19983 to estimate the variance-covariance components of GPS
observations. M oreover, the certainty of the resolved ambiguities and the relative
efficiency of basdine estimation were shown to have been significantly improved
through the use of the M INQUE approach. However, the computationa burden of this
technique was still a significant limitation, as was the requirement to have an equa
number of variance-covariance components in the estimation step. In this Chapter, a
simplified MINQUE procedure is proposed in which the computationa load and time
aresignificantly reduced.

37



Chapter 3 A Smplified M INQUE Procedure for the Estimation of
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In the following sections, the standard MINQUE method is first reviewed, the
simplified procedure is then derived and discussed. Findly, experimentd results are
presented and discussed, followed by some concluding remarks.

3.2 MINQUE Procedure

Assume the following Gauss-M arkov modd with n measurements and t unknowns:

| = Ax+v (3.1
k

C=pP'= Zei'ri (3.2
i=1

where

| is the nx1 vector of the measurements

% is the nx1 vector of theresiduas
A IS the nxt design matrix
X isthetx1 vector of unknown parameters

01,05,... .0 ae the variance-covariance components of the measurements to be
estimated

k is the number of variance-covariance components

T1,T,..., Ty aetheso-cdled accompanying matrices (see Appendix for more details)

P is theweight matrix of the observations

C is the variance-covariance matrix of the observations

According to Rao (1970, 1971), a minimum norm quadratic unbiased estimation of the
linear function of 6, (i = 1, 2,..., k) , i.e, 9101 + g.0, +...+ g , is the quadratic
function I'MI, if the matrix M is determined by solving the following matrix trace
minimum problem:

Tr{MCMC} = min (3.3
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ubject to:
MA =0, (3.4)
Tr{MT} =g (3.5)

where Tr{} is the trace operator of a matrix. Based on Equations (3.3), (3.4) and (3.5),

the variance-covariance components can be estimated as (Rao, 1979):

A

6=0,0,,.0)" =STq (3.6)
wherethe matrix S= {s;} with
Sij = Tr{ RTiRTj} (37)

and thevector g = { g} with

g =I"RTR (3.8)
and
R=PQ,P (3.9)

with Q, = [P - A(A'PA)'A] being the adjusted residuals cofactor matrix.

R can dso be expressed by apartitioned matrix:

Ry R R
Re | T @1
Re Re R

where mis the number of the observation epoch in asession.
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Sncetherdationships betweenv and | are:

v=-Qp (3.12)
PQ,Pv= -PQ,Pl = Pv (312
then according to Equations (3.11) and (3.12), Equation (3.8) can be further written as:
g =I'RTR = VIRTRv = V'PT,Pv (3.13)
It is noted from Equations (3.6), (3.7), (3.8) and (3.9) that the estimated variance-

covariance components depend on matrix C, which includes the variance-covariance
components themselves. Therefore, an iterative process must be performed. Initidly, an

a priori value of 0 is given by 6,°. With Equation (3.6), the initia estimate 6 is then
obtained. In the (j+1)th iteration, using the previous estimate 0/ asthea priori vaue,

the new estimateis:

0=s%0)q0’) (=01,2...) (3.14)

which is caled the iterated MINQUE. If 6 converges, the limiting value of 6 will
satisfy thefollowing equation:

SO =q(@) (3.15)
which can be further expressed as (Rao, 1979):

TH{RE)T} =I"RE)TRE)!, (i=12,...Kk) (3.16)
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3.3 Simplified MINQUE Procedure

It is noted from the above procedure that when the M INQUE method is used in GPS
data processing, the storage of the matrix R may require a huge computer memory. In

addition, the computationa procedure relatingto this matrix is extensive.

A simplification of the MINQUE procedure can be obtained by assuming tempord
correlations between epochs are absent. In this case the matrix R in Equation (3.10) is
replaced by adiagond matrix R. The matrix R has a block-diagona structure and can
be defined as:

R, 0 - 0
R=|0 R 0 (3.17)
0O 0 - R,

Assuming that thetempora correlaions between epochs are absent, the weight matrix P

and the accompanying matrices T, have the following structures:

P —diag(R,), (k=12,..,m) (3.18)
T, =diag(Tik), (k=12,...m) (3.19)

where B, =R, and T, =T, with u,v=12....,m. Then, Equations (3.7) and (3.13)

can be simplified as:

s;=Tr{RTRT}= ZTr( ReTiRaT i) (3.20)

k=1

G =V'PTPv=> Tr(V; RT,Rv,) (3.21)

k=1
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Table 3.1 illustrates the advantage of using the matrix R in the computation in terms of
computer memory usage. It is assumed that 6 satellites are tracked during the

observation period, and a 15-second samplingintervd is used.

Table 3.1 Comparison of memory usage

Session length M emory usage (kilobytes)
(minutes) M INQUE procedure | Smplified procedure
5 78.1 3.9
10 312.5 7.8
15 703.1 11.7
20 1250.0 15.6
25 1953.1 19.5
30 2812.5 23.4
35 3828.1 27.3
40 5000.0 313
45 6328.1 35.2
50 7812.5 39.1
55 9453.1 43.0
60 11250.0 46.9

Clearly, from Table 3.1, the memory usage is substantidly reduced with the
implementation of the simplified procedure. In addition, it is possible to easily handle
the change in the number of satelites during an observation session since the
computation of Equation (3.20) can be performed on an epoch-by-epoch basis. The
reduction in the computation time will be discussed in a subsequent section.

M atlab-based GPS basdine processing software developed for the purpose, was used to
process the data. The origna M atlab code was downloaded from the Website given of
Srang & Borre (1997). The M atlab code for the implementation of the M INQUE and
simplified M INQUE procedures can befound in SNAP (2001).
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3.4 Experimental Data

To demonstrate the efficiency of the simplified MINQUE procedure, four GPS static
basdine data sets have been analysed. The details of the four datasets are presented in
Table3.2.

Table 3.2 Detals of the four experimenta data sets

Receivers Ashtech Z-XII NovAtd Lecasystem 300 T rimble 4000SSE
Millennium

Basdine length (m) | 215 15 870 13,300
Survey dae June 7, 1999 July 10, 2000 Nov 18, 1996 Dec 18, 1996
Satdlites 02,07,10,13,19,27| 02,08,11,13,27 04,14,18,19,24,27,29 | 07,14,15,16,18,29
Elevation angle (°) | 83,15,52,71,19,53| 63,68,16,54,49 41,25,61,71,26,36,30 | 19,53,82,24,18,78
Daaintervd (sec) 15 15 15 15

_Daa span (min) 30 30 30 30

All data sets were first processed using the whole data span to estimate the true
ambiquity vaues, which were then used to verify the correctness of the resolved
ambiguities from subsequent data processing Each data set was divided into three sets
of ten minutes. Three solutions for each data set were computed by applying the
standard stochastic modeling procedure (assuming that al observations have the same
weight and only mathematica correlation is taken into account in this stochastic model),
therigorous M INQUE procedure and the simplified M INQUE procedure.

3.5 Analysisof Results

In the process of ambiguity resolution, the difference between the best and second best
ambigquity candidate set is crucid for the ambiguity discrimination step. The F-ratio is
commonly used as the ambiguity discrimination statistic, and hence the larger the F-
ratio value, the more reliable the ambiguity resolution. The critica vaue of the F-ratio
is normaly chosen to be 2.0 (e.g. Euler & Landau, 1992). The ambiguity validation test
can aso be based on the dternative statistic W-ratio (Wang et d., 1998b). Smilarly,
the larger the W-ratio vaue, the more reliable the ambiguity resolution. T he statistics,
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F-ratio and W-ratio, obtained from the data processing are shown in Figures 3.1 and 3.2.
In both Figures, each subplot represents a recaeiver type, and each group of columns (I,
I1, 1) represents the solution obtained from an individua session. M ore details of the
results obtained from the M INQUE procedure can be found in Wang et a. (1998a).
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Figure3.1 F-ratio vaueinthe ambiguity validation tests.
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Figure 3.2 W-ratio vauein the ambiguity vaidation tests.

From Figures 3.1 and 3.2, the F-ratio and W-ratio values obtained from the rigorous
M INQUE and the simplified M INQUE procedures are larger compared to those from
the standard procedure. Clearly, the certainty of the resolved ambiguity set isimproved.
It can adso be seen that both the rigorous and the simplified procedures yield very
similar numerica results. In the case of the simplified procedure, a larger number of
iterations is required but the computationa time is significantly reduced. Thisis dueto
there not being a need to compute the non-diagonad dements of the matrix R in
Equations (3.7) and (3.8). Table 3.3 summarises the performance of these procedures in
terms of computationa time. It is dso important to note that when the number of
observations is increased, the computational timeis dramaticaly increassed. Thisis more
so in the case of the rigorous M INQUE procedure.
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Table 3.3 Comparison of computationad time

Receiver and batch solution Computational time (seconds)
M INQUE procedure | Smplified procedure
Ashtech (1) — 6 sats 511.37 28.00
Ashtech (2) — 6 sats 932.35 39.00
Ashtech (3) — 6 sats 887.59 36.46
NovAte (1) -5 sats 152.30 5.13
NovAtd (2) -5 sas 194.27 6.34
NovAtd (3) -5 sats 114.65 391
Leica(l) —7sas 664.73 27.30
Leica(2) —7sas 1338.04 73.31
Leica(3) —7sas 514.18 18.75
Trimble (1) — 6 sats 871.47 39.28
Trimble (2) — 6 sats 518.16 21.03
Trimble (3) — 6 sats 346.08 10.08

All solutions are computed using Matlab GPS baseline processing softwar e running on
a Pentiuml |- 366MHz processor .

It should be noted that in the case of the estimated baseline components and the
positional standard deviations, the results obtained from both the standard and

simplified M INQUE procedures are exactly the same.

3.6 Concduding Remarks

In this Chapter, the standard M INQUE procedure has been reviewed, and the simplified
procedure has been derived and discussed. The simplified procedure is shown to
produce results that are close in qudity to those of the rigorous M INQUE procedure.
However, the computational time and the memory requirements of the simplified
procedure are much less than those in the case of the rigorous MINQUE procedure.
Furthermore, the effect of a change in the number of tracked satelites on the
computation is effectively dedt with.

The simplified procedure assumes that there are no large systematic errors in the

observations. If large systematic errors exist in the measurements (i.e. E(v) = 0),
tempord corrdation will need to be taken into account before the simplified procedure
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is gpplied. In addition, gven a smal number of observations, the variance-covariance
components may not be reliably estimated and it may consequently lead to biased
solutions. Hence, it is recommended that this procedure should be implemented only
with a large-redundancy data set (at least 10 minutes of datafor short baseline case) and
if there is an absence of large systematic errors in the observations. In order to utilise
this procedure efficiently the tempord corrdation should be taken into account.
Therefore, an gppropriate method to cope with the tempora corrélation is required. A
new method for deding with this problem is discussed in the next Chapter.
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Chapter 4
AN ITERATIVE STOCHASTIC MODELLING PROCEDURE

4.1 Introduction

The rigorous MINQUE procedure has been reviewed, and a simplification of the
M INQUE procedure has been proposed in Chapter 3. In these procedures tempora
correations are assumed to be absent in the GPS measurements. However, tempora
correlations may exist in the GPS measurements because the residua systematic errors
change slowly over time. Previous studies have shown that GPS measurements have a
heteroscedastic, space- and time-correlated error structure (Wang, 1998; Wang et 4.,
19984), and hence any misspecification in the stochastic modes will result in inaccurate
positioning results. Recently, some effort has been made to include the temporad
corrdations in the stochastic model (e.g El-Rabbany, 1994; Han & Rizos, 1995;
Howind et d., 1999). In these studies dl one-way measurements are considered to be
independent, and having the same variance and same tempora correlation. Snce it has
been shown that different satelites have different tempord corrdation coefficients
(Satirgpod et d., 2000; Wang, 1998), it is not appropriate to make such assumptions.
Therefore, a stochastic modelling procedure which redisticaly takes into account al
error features needs to be developed.

In this Chapter, an iterative stochastic assessment procedureis proposed, in which dl of
the aforementioned error features of GPS measurements are taken into account. Inthe
following sections first the mathematical equations used in static GPS basdline data
processing are briefly reviewed, and then the procedure for the estimation of variance-
covariance components and the treatment of tempora corredationsis presented. Findly,
details of the iteraive stochastic modeling method will be presented. Applications of
the proposed procedure will be demonstrated using avariety of GPS data sets.
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4.2 Basic Equationsfor Processing GPS Carrier Phase Measurements

In precise GPS positioning, double-differenced (DD) carrier phase observables are
usudly formed because many systematic errors existing in the GPS measurements
cancd, and the resultant DD observables have a simplified functional mode. For short
basdines, the DD carrier phase observables (in cycles) can be expressed as (Hofmann-
Widlenhof et d., 1997; Leick, 1995; Rizos, 1997):

0I0 = TZEO+ N+ (@)

where the superscripts p and q denote satdlites, and the subscripts u and v specify the
receivers, and the indices t denote the epoch a which the measurement data were
collected. Z is the topocentric distance to the satdlites, A is the wavelength of the
carier wave, and N isthe DD integer ambiguity. The term e represents dl possible
errors, including random noises of recavers, and residua systematic errors such as

unmodelled multipath effects, ionospheric and tropospheric delay s, etc.

Assuming that the vector x contains al the unknown parameters necessary for baseline
parameter estimation, a set of linearized DD measurement equations for the ith satdlite

pair can be formed:

| =Ax+e, i=12,...,n (4.2)
with

Iiz[li(l), L2, . . . Ii(s)]T;

A=[A® AQ@ . . . A®;ad

e=[e® €@, . . . eI
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In Equation (4.2), |, is an sx1 vector of the observed-minus-computed DD carrier
phase vaues, A is the design matrix corresponding to the messurements |,; & is an
sx1 vector of the error terms for the measurement |,; n is the number of satellite pairs

formingthe DD observables; and s is the number of observation epochs.

By collecting dl the linear(ized) DD carrier phase observable equations from the entire
observation session, the functiona (mathematical) mode is then constructed:

| = Ax+e (4.3)
with

=[] 1117

A=[AA ... AT and

e=[el ,el,..e']".

n

In practice, GPS measurements are usudly assumed to have the same precision, and to
be statisticaly independent in time and space, that is, satisfy the conditions:

Ele (D=0 (4.4)

Ele(t)-e;(V)]=0 (t=vV) (4.5

462 (i = )

26 2(i = j) (46)

Emayqan=c§={

where i =1, 2,...,n; t,v=12,...,s; and o is the standard deviaion of the one-way

measurements. Then, a covariance matrix for al the DD observables | is constructed
(for the case that dl epochs have measurements to the same satdlites):
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C:Z®|S:('52-Q®|S 4.7
with

62 oL . . . o] 467 267 . . . 257]

6y o2 . . . oi| |2? 4 . . . 2°
Z: = :GzQ'

_Gr?l Gﬁz L Grfn_ _202 22 . . . 462_

where |, is the sxs ldentity matrix, and Q is a co-factor matrix. With the

mathematicad and stochastic models expressed by Equations (4.3) and (4.7), the least-
squares estimator of the unknowns, and the residuads of the measurements, can be
obtained:

X=[AT(Z"® HATATEZT R ) =[AT(Q'®I)AITAT(Q'® I I (4.8)
e=1-AX (4.9
The optima estimate of this variance factor is gven by:

,_FQ®1,)8
f

G (4.10)

where f isthe degree of freedom (Leick, 1995). Clearly, the estimate % is independent

of the variance factor. The estimated variance factor ¢ 2 is an indicator of the interna
precision of the measurements in generd. By substituting the unknown variance factor

o ? by the estimated one ¢ ?, the covariance matrix . of the measurements is replaced

by asimilar matrix 3. The covariance matrix for the estimate X is then written as:
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C, =6 AT (Q* ®I,)A " =[AT (' ®I A" (4.12)

It can be seen that the estimator X and its covariance matrix C, are dependent on the

stochastic mode adopted for the measurements. Any misspecification of the stochastic
model will lead to inaccurate results, contrary to the optimdity property of the least-
squares solution. By using a misspecified stochastic modd, the least-squares
computations will produce unredistic statistics, subsequently used in ambiguity
resolution and in the final basdine determination. Therefore, a redistic stochastic
model for GPS baseline processing is criticad and is discussed in detal in the next
section.

4.3 Stochastic Assessment of Carrier Phase Measurements

From the data processing point of view, the stochastic modd is essentidly a fully
distributed covariance matrix for al the measurements used in the least-squares
estimation procedure. Generdly, the magnitude of the dements of such a covariance
matrix are unknown. Consequently, similar to the situation with the functional modd,
there are dso unknown parameters in the stochastic modd. A rigorous estimation
procedure should therefore include the estimation of al the unknown parameters in both
the functiona and stochastic models. A generd procedure for the parameterization and
estimation of the dements of acomplex stochastic model is described below.

4.3.1 Estimating Variance-Covariance Components

An estimation of variance-covariance matrices of GPS measurements can be performed

using the rigorous M INQUE procedure discussed in Chapter 3.

It should be noted, however, that because of the lack of enough geometric information
contained within the measurements, not al the unknown parameters in the stochastic
modd can be feasibly estimated. In practice it is very common to use a simplified
stochastic modd, which is assumed to be completely known, or may just include afew
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unknown parameters. For instance, the stochastic modd described by Equation (4.7)
actualy contains one unknown parameter, hence the whole structure of the mode is
assumed to be based on asimpleform. This makes for efficient data processing. Under
such circumstances, the estimation of the unknown parameter in the stochastic modd is
straightforward, and doesn’t even need any iteration (see Equation (4.10)). With the
assumption that the tempora correaions between epochs are absent, dl the eements of

the matrix >, could be estimated. However, a simultaneous estimation of both the

matrix >, and thetempora correations is still achallenge.

4.3.2 Treatment of Temporal Correlations

In order to obtain a more redistic stochastic model, the covariance matrix for the
measurements should be designed in such a way as to adequately reflect the error
structure, and should include a reasonable number of unknown parameters (that can be

feasibly estimated).

It has been long recognised that the GPS measurements are temporaly correlaed (e.g.
Vanicek et a. 1985; El-Rabbany, 1994; Wang, 1998; Howind et a., 1999; Borre &
Tiberius, 2000). To take such tempord correlations into account, the error specification

represented by Equation (4.5) is replaced by:

_el(t)_ Pz P2 - - - P _el(t_l)_ _ul(t)_
&,(t) Par P22 - - - P ||&E-D) u, (t)
S D . . ' +| (4.129)
_en(t)_ _pnl P2 ' ' . pnn_ _en (t _1)_ _un (t)_
or
gt) =R-e(t-1)+uf(t) (4.12b)
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where u(t) are random variables; p,; describes the so-caled tempora correlation within
the DD observables of the ith satelite pair; and p; presents the inter-tempora

corrdlation between the measurements of the ith and jth satelite pars. Equation
(4.12) is cdled a first-order vector auto-regressive modd, as discussed by Sargan
(1961). If dl the inter-tempord correlations are assumed to be absent, i.e, p; =0,

Equation (4.12) is reduced to afirst-order scalar auto-regressive modd. In most of the
previous investigations concerning tempora correlations of GPS measurements, it has
been assumed that dl inter-tempord correations (between the measurements from
different satdlite pars and a different epochs) are absent, and that the temporad
correations for al the satellite pairs arethe same. Therefore, Equation (4.12) represents

amore generd error specification.

In Equation (4.12), the error terms u(t) are temporadly independent, that is, satisfy the

conditions:
Elu(t)-u(v)"]=0, (4.13)
E[u(t)-ut)"1=Q (4.14)

where t,v=2,...,s. Therefore, the whole covariance matrix for the error term vector u

is:

Eu-u)=Q® I, (4.15)

However, due to the tempora and inter-tempord corrdations, the derivation of the
covariance matrix C = E(e-e") in Equation (4.7) is complicated. Even though such a
covariance matrix is available, it is difficult, if not impossible, to estimate the variance
and covariance components and the (inter-) tempora corrdaion coefficients
simultaneously. So, a two-stage estimation procedure is necessary, in which the

estimation of the matrices Q and R is essentialy separated. To achieve this amatrix
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G is so determined that the error term vector e can betransformed, as Equation (4.3) is

transformed into the error term vector u, that is;
Ge=u (4.16)

and therefore, Equation (4.3) is transformed to:

| = AX+u (4.17)

where | =Gl , A=GA. The structure of the matrix G has been derived (Guilkey &
Schmidt, 1973):

Gll GlZ . ' : Gln
GZl GZZ . ' : GZn
G=| ' " |,(nsxns) (4.18)
_Gnl Gn2 C:"nn_
with
B, 0 O 0 0
il O 1 0 0 0
0O -p, 1. .. 0 O
G, =| . : : . . |, (sxs) (4.19)
0 o o0 . . . —-p; 1]
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(B; 0 O 0 0]
py 0 0 0 0
0 -p; 0. . . 0 O
G, =| - . | Gi2) (sx9) (4.20)
O 0 0 py O
and
By O 0 ]
le Bzz 0
B=| ° ' [, (nxn) (4.21)
_Bnl Bn2 . ) ) Bnn_

The dements of B can be found viatriangular or Cholesky decomposition of Q and ..

The matrix B satisfies BY B" =Q. For instance, B can bechosenas H,H,", where
H, and H, are lower triangular matrices satisfying the conditions Q=H,H,; and
> =H HJ. By usingtherdationship >=RX> R" +Q (Guilkey & Schmidt, 1973), the

matrix >. can be determined:
Vector(Y) = (I - R®R) 'Vector (Q) (4.22)
wherethe Vector(e) is constructed by stackingthe rows of amatrix.

It is noted that the transformed measurements | aretemporaly independent and have a
simple stochastic model defined by Equation (4.15). A MINQUE procedure, as
discussed in Section 3.2, could be used to estimate the unknown elements of the matrix
Q. However, the determination of the transformation matrix G relies on the dements

(p;;) of R, which are unknown and need to be estimated separately.
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Snce the true vaues of the measurement errors are unknown, the estimation of (inter-)

tempora correlation coefficients, or the eements (p;;) of R, has to be based on the

residuals (&) of the origind DD observables | . Based on Equation (4.12), one obtains:
&) [ & | [u@]
& &)’ u, (3

= 4] i=12..n (4.233)

A

&) [&s-D"] [uw(®)]

or

E, =ErI +u, (4.23b)

where E,, isan (s—1) x1 vector; E, isan (s—1) xn matrix; and r, is an nx1 vector
representing the ith row of matrix R. The unknown vector r, can therefore be

estimated by applying the least-squares principleto Equation (4.23), or al the elements
of R areestimated together as:

Vector(R) = [EJ(Q*®1_,)E,1*'E] (Q* ®1_,)E, (4.24)
with

_Ei_ _E21_

Ei E22
E.=| | ad E,=

_Ei_ _E2n_

Because the estimation of the residuas depends on the covariance matrix, an iterative

estimation procedureis required.
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4.3.3 An lterative Stochastic Modelling Procedure

Based on the above theoreticd andysis, an iterative procedure for the estimation of the

(inter-) tempora corredaion matrix R and the covariance matrix Q is summarised
below.

Prepar atory steps:

(1)
(2)

(3)

use the standard stochastic mode represented by Equation (4.7)
to obtain estimates of the unknown parameters and residuas using Equations (4.8)
and (4.9);

then estimate the covariance matrix ( i = f2) using Equation (4.10).

I ter ative steps:

(4)
()

(6)

(")

(8)

(9)
(10)

estimate the tempora correlation matrix R using Equation (4.24);

then construct the transform matrix G using Equations (4.18), (4.19), (4.20) and
(4.21) with the matrices Rad Q;

then estimate the covariance matrix (fz) for the transformed measurements I
using the M INQUE procedure;

to obtain estimates of the unknown parameters from

X=[ATQTRI)AI AT QT 1) ;

then obtain the residuds e from Equation (4.9) using the estimated unknown
parameters X;

then check the variations of the estimated elements of the matrices R and Q; and

stop iteraion if sufficient accuracy (say, 0.001mm in the baseline components) is
achieved, otherwise go back to Sep (4).

This iterative stochastic modelling procedure can aso be represented by the flow

diaggiamin Figure4.1.
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[ GPS datareduction ]

I

Establish the functiond and the
default stochastic modds

!

Compute the residuds of

the origind messurements
Estimate tempord corredion
Transform the measurements
Estimate the unknown parameters for
both functiona and stochastic model s

coeffi cients

using the transformed measurements

Is the accuracy

sufficient?

Figure4.1 The proposed iterative stochastic modelling procedure.
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4.4 Experimental Resultsand Analysis

4.4.1 Description of the Data Sets

To demonstrate the impact of various stochastic modelling procedures on GPSréative
positioning, three static GPS baseline data sets were analysed (Table 4.1). For dl the
data sets, the datainterva is 15 second and the session length is 30 minutes. Inthedata
processing, only L1 frequency datawere used.

Table4.1 Detalls of the experimentd data sets.

Basdline names Recaivers Basdine length (m) urvey dates
B15M NovAtd Millennium 15 July 10, 2000
B215M Ashtech Z-XII 215 June 7, 1999
B13KM Trimble 4000SSE 13,300 Dec 18, 1996

It should be noted that in the case of the Ashtech data set, two receivers were mounted
on pillars that are part of afirst-order terrestrid survey network. Theknown basdine
length between the two pillars is 215.929 + 0.001 m, which will be used as a ground
truth to check the results obtained using the various stochastic modelling procedures.
Both the B15M and B13KM basdine data sets were collected under a good
environment (no reflection surface nearby). Therefore, the main error source of the
B15M basdline data would be only the receiver noise while the main error source of the
B13KM baseline was expected to be the atmospheric delays. In the case of the B215M
basdine, the data were collected under the multipath environment, and hence multipath

was the dominant error sourcein this data set.

4.4.2 DataProcessing Methods

All the data sets were processed using the following stochastic modelling options:

A. The standard procedure with the stochastic modd expressed by Equation (4.7),

assumingthat tempord corrdations are absent (R=0).
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B. A modified standard procedure with R; =0 and R; = R;; (i # ]), that is, assuming
that R, is the same for every satdlite pair and follows an exponentid function

defined by El-Rabbany (1994).
C. A two-stage procedure with R; =0 and R; = R;; (i # ]) (afirst-order scalar auto-

regressive model), and applying the MINQUE procedure to estimate a variance-
covariance matrix for the transformed measurements.

D. A two-stage procedure with R; =0 (i = j) (a first-order vector auto-regressive

model), applying the M INQUE procedure to estimate a variance-covariance matrix
for the transformed measurements.

Due to the more unknown parameters to be estimated by methods C and D, the 30-min
data span was processed in this Chapter.

4.4.3 Analysisof Results

The resulting DD residuas for each data set are in Figures 4.2 to 4.4. These show the
time series of the DD residuals obtained from the baselines B15M , B215M and B13KM
respectively. Because the residuas obtained by methods B, C and D showed similar
trends, for clarity only the residuas obtained by method D are compared with those
obtained from method A. The ‘heavy’ lines represent the residuas obtained from
method A, while the ‘light’ lines are the residuals obtained from method D. Among

these stochastic models, the preferred one will produce the most randomized residuals.

It can be seen from these Figures that, for most of the satellite pairs, the standard
processing results in residuas that exhibit significant systematic errors. Thisis further
confirmed by the tempora correlation coefficients listed in Table 4.2, computed by
applyingthe Durbin-Watson statistic (Durbin & Watson, 1950 — see Equations (5.2) ad
(5.3)) to the DD residuas. The time series of DD residuds in Figure 4.3 show some
significant multipath errors for satelite pairs PRN 2-7 and 2-19 (PRNs 7 and 19 have
elevation anges of 15 and 19 degrees, respectively). With reference to Figures 4.2 to

4.4, it is evident that the systematic errors of the transformed measurements are much
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smdler than those of the orignal measurements. Hence the residuds for the

transformed measurements are more random than those of the origina measurements.
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It should be noted that the tempord corrdation coefficients from method B are large
and negetive. Table 4.2 indicates that fixing the tempora correation coefficientsto the
same vaue for dl the satdlite pairs might be ingppropriate in redity. As expected,
from Table 4.2, the estimated tempora coefficients obtained by methods C and D are
closer to zero than those obtained from methods A and B. The residuas obtained by
methods C and D are therefore essentialy random, which indicates that the tempord
correlations have been taken into account in the measurement transformation step.

Table4.2 Comparison of tempora coefficients.

Basdines [Sat pairs Tempord coefficients
Method A | Method B | Method C | M ethod D
B15M 8-02 0.38 -0.41 0.10 0.06
8-07 0.49 -0.47 -0.17 -0.14
8-11 0.43 -0.28 -0.02 0.02
8-13 0.30 -0.39 -0.03 0.02
8-27 0.48 -0.56 -0.21 -0.19
B215M 2-27 0.88 -0.48 -0.01 -0.10
2-19 0.93 -0.24 -0.10 -0.07
2-7 0.83 -0.32 -0.21 -0.19
2-10 0.61 -0.43 -0.01 -0.07
2-13 0.53 -0.45 -0.12 -0.06
B13KM 15-07 0.87 -0.10 0.00 -0.07
15-14 0.92 -0.01 0.05 0.02
15-16 0.89 -0.02 0.04 0.05
15-18 0.87 -0.15 -0.04 0.02
15-29 0.82 0.01 0.09 0.09

It has been shown in, for example, Teunissen (1997) and Wang et d. (19984), that the
stochastic models have a significant influence on ambiguity resolution. The
discrimination test is one of the critica steps. Both the classicd F-ratio statistic and an
dternative statistic proposed by Wanget d. (1998b) are considered here. Thelarger the
values of these statistics, the more reliable the ambiguity resolution. For method B, al
three baselines have smdl F-ratio values (Table 4.3). In the case of basdine B15M,
both methods C and D produce larger F- and W-ratio than methods A and B. However,
in the case of basdines B215M and B13KM, contrary results were obtained. These
phenomena might be linked to the systematic errors existing in the measurements. But,
in view of the fact that methods C and D generate random residuds for al the basdlines,
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the F-ratio and W-ratio statistics obtained by methods C and D could be considered to
be more redistic than those obtained by methods A and B.

Table4.3 F-ratio and W-ratio vaues for the ambiguity validation test.

Basdine F-ratio statistics W-ratio statistics
A B C D A B C D

B15M 25.933| 1.151| 47.740| 51.850| 61.517| 4.592( 82.649( 86.345
B215M 6.935 1.155( 4.232( 5695 30.580| 4.717| 20.871| 25.122
B13KM | 38.080| 1.765( 7.287| 9.211| 76.642| 9.968( 29.981| 34.189

The estimated basdine components and their a-posteriori standard deviations are
presented in Table 4.4. These results indicate that there is generdly no significant
difference in the horizontad components. However, it is important to note that in the
case of baselines B215M and B13KM, the differences in estimated height components
between methods A and C (or D) can be as large as 10 mm. This is a significant
difference for high-precision applications, and thus, a redistic stochastic modd is
critical for such gpplications. For the basdline B215M, the estimated basdline lengths
using methods C and D areslightly closer (4mm closer for theworst case) to the known
basdine length than using methods A and B. In term of standard deviation, method B
generdly produces larger standard deviations than the other methods, and methods C
and D produce slightly larger standard deviations than method A (except the B215M
basdine). Although method B seemed to produce larger standard deviations, these
standard deviations may not be redistic. This can be seen in the case of the B13KM
basdine, method B produces the larger standard deviations in the horizontd
components than the height component (it is well known that GPS gves the worst
solution in the height component.). Hence, methods C and D tend to produce the most
redlistic standard deviations.
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Table4.4 Estimated basdine components and standard deviations.

Basdines | Methods Estimated basdine components (m) Basdine Standard Deviations (mm)
North East Height length (m) North East Height
B15M A 3.8509 14.4315 0.0305 14.9365 0.2 0.2 0.4
B 3.8502 14.4315 0.0303 14.9363 3.1 31 6.7
C 3.8510 14.4316 0.0301 14.9366 0.2 0.2 0.6
D 3.8511 14.4316 0.0300 14.9366 0.2 0.2 0.5
B215M A -188.5110 105.2942 0.5034 215.9248 0.7 0.6 11
B -188.5097 105.2938 0.4996 215.9235 5.3 4.9 8.2
C -188.5139 105.2944 0.5120 215.9275 0.4 0.6 0.8
D -188.5122 105.2957 0.5143 215.9266 0.5 0.6 11
B13KM A 7209.3677 | -11173.7096 | -30.0798 | 13297.6567 1.2 0.4 1.6
B 7209.3659 | -11173.7062 | -30.0747 | 13297.6528 7.7 2.6 0.9
C 7209.3698 | -11173.7108 | -30.0839 | 13297.6588 17 0.9 2.5
D 7209.3689 | -11173.7102 | -30.0873 | 13297.6578 1.6 0.9 2.3

45 Conduding Remarks

A redlistic stochastic modd for GPS measurements is criticd for reliable ambiguity
resolution and precise basdine component estimation. With the aid of three static
basdine data sets, some aspects of the misspecification in the stochastic modd were
anay sed.

After reviewing the existing methods, an iterative stochastic modelling procedure has
been proposed to directly estimate the time correation coefficients, and the time-
independent variance and covariance components of the GPS measurements. In the
proposed procedure, the commonly used stochastic modd is first used to estimate
gpproximate vaues of thetempora corrdation coefficients. Based on the estimated time
correlation coefficients, the orignal DD observables are then transformed into anew set
of measurements. These transformed measurements are free of time correations, and
thus have a block diagona covariance matrix. The covariance matrix for the new
measurements can be estimated using the MINQUE method (or the simplified
M INQUE procedure). An advantage of the transformed DD carrier phase observables is
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that the effects of systematic errors are largely diminated, and thus the resulting
residuals may be considered random. By removing the systematic errors from the
measurements, as expected, the certainty of the estimated positioning results is
improved. In addition, the qudity of ambiguity resolution can be more redisticaly
indicated.

Based on the development work in this Chapter, a practica stochastic modelling
procedure will be proposed in the next Chapter. This will effectively ded with long
observation period data sets, as wel as reducing the computationa load and memory

usage of theiterative stochastic modelling procedure.
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Chapter 5
A SEGMENTED STOCHASTIC MODELLING PROCEDURE

5.1 Introduction

An iterative stochastic modeling procedure, which takes into account dl of the error
features, has been proposed in Chapter 4. This procedure is suitable for short
observation periods as it assumes that the tempord corrdation coefficients and the
variance of GPS measurements are constant for the whole observation period. Initia
experiments based on this procedure have demonstrated encouraging results in the case

of short observation periods and for short basdines (see Chapter 4).

However, when this procedure is applied to long observation period data sets, severd
shortcomings of the procedure needed to be addressed. For example, the assumption
that the tempord corrdation coefficients and the variance of GPS measurements are
constant for the whole observation period is not redlistic. Furthermore, in practice, an
observation period of severd hours may be expected for some geodetic applications.
Thus the memory usage and computationa load can become unbearable when the
standard M INQUE technique (or even the simplified MINQUE procedure) is agpplied.
Hence, it is necessary to develop a new stochastic modeling procedure that addresses

these shortcomings.

In this Chapter, a new procedure is proposed, that deds with long observation period
data sets, with the am of reducing the computationa load. T his procedure will also take
into account the tempora correaions in the GPS measurements. The effectiveness of
the new procedure is tested using both red data and simulated data sets for short to
medium length basdlines.
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5.2 Segmented Stochastic Modelling Procedure

To process long observation session data sets, athree-step procedure has been proposed
to estimate redlistic stochastic models for the GPS measurements. The first step is to
divide the whole session into short segments. Secondly, the inter-tempora correlation
coefficients (for different satellite pairs) should be set to zero. In the third step, the
M INQUE procedure for the estimation of variance-covariance components is replaced

by an dternative method.

521 Step1: Data Segmentation

Given tha GPS measurements are contaminated by errors (eg. amospheric delays,
multipath) whose characteristics change slowly with time, it is gppropriateto dividethe
whole measurement session into short segments, in which each segment has the same
number of satellites and al the measurements for the same satelite pars have an
invariant stochastic model. This is illustrated in Figure 5.1. During along observation
period the satdlite geometry changes considerably, hence the use of fixed ‘window'

widths in order to segment the measurements is not advisable.

A method to circumvent this problem is proposed, in which adefault window width is
first selected. Then indices of when the satdllite geometry has changed during the entire
session are determined, and the number of observations between consecutive indices
checked. If the number of observations between any par of consecutive indices is
larger than the default window width, the measurements are divided into short segments
until the number of observations in the last segment is smadler than or equa to the
default window width. In this case, the observations from the last segment will be
combined with the ones from the previous segment. However, if the number of
observations between the consecutive indices is not sufficient to form a new segment,
the stochastic model estimated from the previous segment is applied to these
observations.
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Figure 5.1 Flowchart of the segmented stochastic modelling procedure.
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5.2.2 Step 2: Estimation of Temporal Correlation Coefficients

Assumingthat the inter-tempord correlations are zero, the error specification is:

e®] [pn 0 . . 0 ][at-D| [w®]
e,(t) 0O pp . . O et-1 u,(t)
.= . . . . +| . (5.19
e®] L0 0 . . pflat-D] [u,(t)]
or
gt)=R-e(t-1) +u(t) (5.1b)
where
Pii is thetempora corrdlation within thei” satdlite pair,
n is the number of satellite pairs formingthe DD measurements, and
e isthe vector of orignd residuals.

According to the Durbin-Watson statistic (Durbin & Watson, 1950), the tempora

correlation coefficient is:
p=1-d/2 (5.2)

with

z (e —€.)
&

1

where mis the number of observation epochs in a segment.
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The estimated tempora corrdation coefficient is then used to transform the origna

messurements. Details of this transformation step can be found in Section 4.3.2.

5.2.3 Step 3: Estimation of Variance-Covariance Components

As previously stated, an observation period of severa hours may be expected for some
geodetic gpplications, and hence the memory usage and computationa load can become
unbearable when the standard (or even simplified) M INQUE procedure is gpplied. In
this step, an dternative method of estimating variance-covariance components for the
GPS measurements is proposed. Its performance has been tested using various

experimenta data sets.

5.2.3.1 The proposed method

The estimation of variance-covariance components can be performed usingthe classica

definition of the variance-covariance matrix:
C=E[(v-p) (v-p)1  =E[w-py’ (5.4)

where p is the mean vaue. The residuas obtained from the transformed measurements

are random and have zero mean (u=0). Hence, the variance-covariance matrix can be
obtained by averagng the residuas within the same segment:

L
C=—)>wvy
me; o (5.5)

An iterative estimation procedure is required, as the estimation of the residuas is
dependent on the variance-covariance matrix.  Based on Equation (5.5), the
implementation of the proposed method is relatively straightforward. Its performance
has been evauated using three data sets. Details of thethree datasets are gvenin Table
5.1.
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Table5.1 Detals of thethree experimenta data sets

Recevers NovAtd Leicasystem 300 CRS1000

M illennium
Basdinelengh (m) | 15 870(~1km) 2660(~2km)
Survey date July 10, 2000 | Nov 18, 1996 Oct 12, 1999
Sdlites 02,08,11,13,27 | 04,14,18,19,24,27,29 | 04,05,07,08,09,24
Elevation ange (°) 63,68,16,54,49 | 41,25,61,71,26,36,30 | 64,29,35,32,55,40
Datainterva (sec) 15 15 15
Dataspan (min) 30 30 30

For ambiguity discrimination, the difference between the best and second best
ambiguity combination is crucid. The F-ratio (e.g Euler & Landau, 1992) and the W-
ratio (Wang et d., 1998b) are chosen for comparison (Table5.2).

Table5.2 Comparison of F-ratio and W-ratio statistics.

Baseline M ethod F-ratio [ W-ratio
15m Sandard M INQUE 12.76 26.65
Smplified MINQUE | 12.77 26.67
Proposed method 12.80 26.72
1km Sandard M INQUE 9.20 29.92
Smplified MINQUE | 9.16 29.87
Proposed method 9.17 29.86
2km Sandard M INQUE 4.54 16.12
Smplified MINQUE | 4.59 16.25
Proposed method 4.57 16.19
Re mark: The observation period is 15 minutes,

and the sampling rate is 15 seconds.

From Table 5.2, there is no significant difference in the F-ratio and W-ratio statistics
obtained from the three methods. In terms of the estimated baseline components and
the positiona standard deviations, the results obtained from the three methods are also
essentidly identica (less than 0.1 mm). A comparison of the computationa load is
presented in Table 5.3.
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Table 5.3 Comparison of computationd time and memory usage.

Basdine M ethod Computationa time (s) | Memory usage (Kbytes)
15m Sandard M INQUE 263.4 450.0
(5sas) | Smplified M INQUE 7.6 75
Proposed method 1.2 None
1km Sandard M INQUE 1519.0 10125
(7 sas) | Smplified M INQUE 33.2 16.9
Proposed method 1.9 None
2km Sandard M INQUE 700.6 703.1
(6sas) | Smplified M INQUE 18.6 11.7
Proposed method 15 None

Remark: All solutions computed using Matlab GPS basdline software on

a Pentiuml 1-366MHz processor .

Interestingy, if the matrix R in the simplified M INQUE method (see Equation (3.17))
is assumed to be constant, the variance-covariance components obtained from the
proposed method are identicd to those obtained from the simplified method. The
assumption that the matrix R is constant is reasonable for short observation periods.
Thisis supported by the study described in Han & Rizos (1995), which established that

the maximum differencein the matrix A is about 8% for a 15 minute observation span.
In summary, the proposed method can not only substantialy reduce the computationa
load but aso ease the memory usage. The proposed method is therefore appropriate for

estimating variance-covariance components in the segmented stochastic moddling

procedure.

5.3 Test Data

Both simulated and real datahave been used in this study .

5.3.1 Simulations

There are two main advantages to using simulated data: () to evauate the performance
of the proposed agorithm (sinceit is very difficult to derive highly accurate GPS station

75



Chapter 5 A Segmented Stochastic M odelling Procedure

coordinates in practice), and (b) to study the impact of incorporating different

systematic errors. The datasimulation involves two parts.

53.1.1 Simulatingthe raw GPS observations

A simulation of the raw GPS observations was performed using the Bernese GPS
software version 4.0. Different observation noises were assigned to different satellites
varying from 1mm to 3mm. Two data sets, for a 9km and a 79km basdline, were
simulated. Detalls of these datasets aregven in Table 5.4.

Table5.4 Detalls of the simulated data sets.

Basdinelengh (km) [ 9 79

Survey date March 1, 2000 March 1, 2000

Sadlites observed 15,21,17,3,31, 23,9,29 | 1,5,9,11,14,15, 16,18,21,22,23,
25,29,30

Datainterva (sec) 15 15

Dataspan (hr) 5 5

5.3.1.2 The systematic error components

A waveet-based technique (e.g Chui, 1992; Wickerhauser, 1994) was gpplied to the
GPS DD residuds in order to extract the systematic error component. The GPS DD
ambiguity-fixed residuas obtained from two red data sets were decomposed into the
low-frequency bias and the high-frequency noise components. Both data sets were
processed using the standard GPS data processing. The baseline lengths of thefirst and
second data sets are 215m and 11km respectively. The dominant error of thefirst data
set is multipath (the details of the first data set are dso gven in Chapter 6) while the
dominant errors of the second data set are the atmospheric ddays. The extracted
systematic error component was then added to the simulated GPS observations. Two
different systematic error patterns, denoted E1 (from thefirst data set) and E2 (from the
second data set), were extracted and are plotted in Figures 5.2 and 5.3. These sy stematic

error patterns have been used in subsequent anay ses.
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Figure 5.2 Sgna extraction usingwaveets. Top: Orignal DD residuds. Bottom: E1
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Figure 5.3 Sgnd extraction usingwaveets. Top: Origna DD residuds. Bottom: E2

5.3.2 Real Data Sets

error pattern,

Two data sets were downloaded from http://sopac.ucsd.edu/, collected by receivers of
the Southern Cdifornialntegrated GPS Network (SCIGN). For demonstration purposes,
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3-hr and 5-hr observation periods were considered for the 23km and 75km basdline data
sets respectively (Table5.5).

Table5.5 Details of the red data sets.

Basdline length (km) 23 75

Survey date Nov 23, 2000 Nov 23, 2000
Sdlites observed 45,7,8,9,24,26 2,4,5,6,7,9,10, 17,30
Datainterva (sec) 30 30

Dataspan (hr) 3 5

5.4 Resultsfrom Simulated Data Sets

In this Section the effectiveness of the proposed dgorithm is demonstrated using both
the short and medium length basdine data sets. For both data sets the impact of
systematic errors on the GPS positioning results was analysed for two different cases.
The first case involved varying the number of satdlites but adding the same error
pattern to the same satdlite pair. In the second case, the two error patterns were added
to the satellite pairs in an dternating fashion (see Tables 5.7 and 5.9). In this case, the
approach consisted of the following steps: i) adding the error pattern E1 to different
satellite pars and obtaining a solution, ii) adding the error pattern E2 to different
satdlite pars and obtaining asolution.

541 The Short Baseline

M atlab-coded GPS baseline processing software developed a The University of New
South Wales was used to process the data sets. Only the L1 frequency datawere used.
To obtain more accurate baseline results for comparison purposes, the data set with
observation noise was first processed using the MINQUE procedure and the results
were used as reference vaues. Then, in both cases, the data set with intentionaly added

sy stematic errors was processed using the following two procedures:
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A. The standard procedure with the simplified stochastic modd (which includes only
mathematica correlation), and assuming that tempora correlations are absent.
B. The segmented stochastic modelling procedure with a 20-epoch window width.

54.1.1 Casel —Varyingthe number of satellites

The number of satdlites varied from 8 to 5 satellites, and the E1 error pattern was added
to satdlite par PRN23-15 for every satellite geometry. The DD residuas for satdlite
par PRN 23-15 are shown in Figure 5.4. The thick gey line denotes the post-fit
residuas obtained using method A, while the thin line shows the residuas obtained
from method B. It can be seen tha the systematic erors of the transformed
measurements are much smaler than those of the orignal measurements. Smilar results
from red datasets, for the short basdline case, were reported in Chapter 4.

fe=e disalnirm

0 40 1] G 100 122
[en~h kmees

Figure 5.4 DD residuds obtained from the 9km basdline for satdlite pair PRN 23-15.

The estimated baseline components obtained from both methods were compared with
the reference values. The differences for each coordinate component and standard
deviations are shown in Table 5.6. It can be seen that in al cases the proposed dgorithm

(B) produced more accurate results than the standard procedure (A).
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Table 5.6 The differences between estimated baseline components and the reference

vaues and standard deviations (Casel).

Sat used M ethod Differencein each Sandard deviation
component (mm) (mm)

AN AE AH N E H
8 sas A 0.4 0.2 2.1 1.3 0.1 35
B 0.0 0.0 0.0 1.7 0.1 5.6
7 sats A 0.0 0.1 1.7 0.9 0.5 0.6
B 0.0 0.0 0.0 0.9 0.4 2.3
6 sas A 1.2 0.8 34 0.3 0.8 0.2
B 0.0 0.0 0.0 15 0.0 3.2
5 sas A 3.2 4.0 10.7 25 49 9.6
B 0.0 0.0 0.0 0.7 0.9 1.1

Remark: E1 error pattern added to PRN23-15.

In addition, the impact of systematic errors on the positioning results tends to increase
with a decrease in the number of satellites used in procedure A. In the case of 5

satdlites, the difference in the height component is as large as 10.7mm.

54.1.2 Casell —Varyingthe error patterns and satellite pairs

The E1 and E2 error patterns were added to different satdlite pairs for the geometry
consisting of 5 satdlites only. The DD residuals showed similar trends to those obtained
for Case |. The differences in each coordinate component are shown in Table 5.7. It is
evident that different error patterns and different satellites have adifferent influence on
the positioning results using procedure A, but not for procedure B.
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Table 5.7 The differences between estimated baseline components and the reference

vaues and standard deviations (Casell).

Error pattern | M ethod Differencein each Sandard deviation
[sat pair component (mm) (mm)
AN AE AH N E H
EL/23-15 A 3.2 4.7 10.7 25 4.9 9.6
B 0.0 0.0 0.0 0.7 0.9 11
E1/23-03 A 3.4 4.0 109 4.1 31 12.0
B 0.0 0.0 0.0 0.7 0.9 11
E1/23-31 A 0.3 0.1 0.3 1.0 1.0 14
B 0.0 0.0 0.0 0.7 0.9 1.1
E2/23-15 A 0.4 2.0 5.4 0.9 29 4.3
B 0.0 0.0 0.0 0.7 0.9 1.1
E2/23-03 A 1.7 2.2 5.7 24 1.3 6.8
B 0.0 0.0 0.0 0.7 0.9 1.1
E2/23-31 A 0.2 0.0 0.2 0.9 0.9 1.3
B 0.0 0.0 0.0 0.7 0.9 1.1

5.4.2 TheMedium Length Baseline

It is a common practice to process dud-frequency data in cases of medium length
baselines. The data processing consisted of three steps. Thefirst and second steps were
carried out using the Bernese GPS software. The DD ambiguities were solved in the
first program run. These ambiguities were then introduced as fixed values in the next
program run. In this step, some information was output for further use with the M atlab-
coded GPS processing software. In the first and second program runs standard
parameters such as the Saastamoinen troposphere modd and the IGS precise orbit were
used. In thethird program run, the output information was processed using the proposed
procedure. Snce the dua-frequency data were used, the initial coordinates applied to
simulate the GPS observations were used as true vaues for comparison purposes.
Smilar to the short basdine case, in both cases the data set which contains sy stematic

errors was processed using procedures A and B.
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54.2.1 Casel —Varyingthe number of satellites

The number of satellites varied from 14 to 11 satellites, and the E1 error pattern was
added to the satellite pair PRN25-1 for every satellite geometry. The DD residuas for
the satdlite pair PRN25-1 are plotted in Figure 5.5. Thethick grey line denotes the post-
fit residuds obtained from procedure A, while the thin line shows the residuals obtained
from procedure B. It is clear that the post-fit residuas obtained from procedure B are

more random than those obtained using procedure A.

Fezhaalzorn

Figure 5.5 DD residuds obtained from the 79km basdine for satdlite par PRN25-1.

The estimated baseline components obtained from both methods were subsequently
compared with the true vaues, and the differences in each coordinate component are

shown in Table 5.8. The results are similar to the short basdine case. Therefore, it can
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be concluded that procedure B is asignificant improvement over procedure A.

Table 5.8 The differences between estimated baseline components and the true vaues

and standard deviations (Casel).

Sat used M ethod Differencein each Sandard deviation
component (mm) (mm)

AN AE AH N E H
14 sats A 0.1 0.2 1.9 0.1 0.2 19
B 0.0 0.0 0.0 0.0 0.0 0.0
13 sats A 0.1 0.3 2.4 0.1 0.3 24
B 0.1 0.0 0.1 0.1 0.0 0.1
12 sats A 0.2 0.2 25 0.2 0.2 25
B 0.1 0.0 0.1 0.1 0.0 0.1
11 sas A 0.1 0.1 2.6 0.1 0.1 2.6
B 0.1 0.0 0.2 0.1 0.0 0.2

Remark: E1 error pattern added to PRN25-1.
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54.2.2 Casell —Varyingthe error patterns and satellite pairs

Once again the E1 and E2 error patterns were added to different satdlite pairs for the
geometry consisting of 11 satellites only. The DD residuas showed similar trends (for
the sake of brevity, the residuas are not shown here). Table 5.9 shows the differences
between the estimated basdine components and the true values. The results confirm that
different error patens and different satellites have a different influence on the

positioning results for procedure A, but not for procedure B.

Table 5.9 The differences between estimated baseline components and the true vaues

and standard deviations (Casel1).

Error pattern | M ethod Differencein each Sandard deviation
/sat pair component (mm) (mm)
AN AE AH N E H
E1/25-01 A 0.1 0.1 2.6 0.1 0.1 2.6
B 0.1 0.0 0.2 0.1 0.0 0.2
EL/25-14 A 2.9 0.1 0.7 29 0.1 0.7
B 0.0 0.0 0.0 0.2 0.0 0.1
E1/25-21 A 0.7 0.1 2.7 0.7 0.1 2.7
B 0.1 0.0 0.3 0.1 0.0 0.3
E2/25-01 A 0.1 0.0 11 01 0.0 11
B 0.1 0.1 0.2 0.1 0.1 0.2
E2/25-14 A 1.3 0.1 1.2 1.3 0.1 1.2
B 0.1 0.0 0.1 0.1 0.0 0.1
E2/25-21 A 0.5 0.0 1.5 0.5 0.0 15
B 0.1 0.0 0.2 0.1 0.0 0.2

5.5 Resultsfrom Real Data Sets

The data processing strateges used here are the same as in the medium length basdline
case, except that systematic errors have not been added to the observations. The DD
residuals obtained from al satelite pars show similar trends. Sdected residuds
obtained from the 23km and 75km baselines are plotted in Figures 5.6 and 5.7
respectively. Again, the thick grey line denotes the post-fit residuas obtained from
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procedure A, while the thin line shows the residuas obtained using procedure B.

Clearly procedure B generates random residuals for both data sets.
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Figure 5.6 Sdected DD residuals obtained from the 23km baseline for severd satdlite

pairs.
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Figure 5.7 Sdected DD residuds obtained from the 75km baseline for severa satellite
pairs.
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The differences in estimated baseline components between procedures A and B are
presented in Table 5.10. It can be seen that the differences are 1.2 mm and 1.9 mm for
the 23-km and 75-km basdines consecutively. These discrepancies are certainly

significant for high-accuracy applications.

Table 5.10 The differences in estimated baseline components between procedures A and B.

Basdine Difference in each component (mm)
AN AE AH

23-km 0.8 0.2 12

75-km 1.9 1.9 0.1

5.6 Concluding Remarks

Based on a new framework of error andysis of GPS measurements, an improved
stochastic modeling procedure, which takes into account the tempora correlaions in
the GPS measurements, has been introduced to effectively ded with long observation
periods for high precision static positioning applications. It has been shown that any
misspecification in the stochastic modd may have a significant influence on the
positioning results. The impact of tempora correlaions was analy sed using simulated
and red data sets. The results indicate that there are significant biases in the positioning
results when the tempord corrdations are not taken into account in the stochastic

model. By applying the proposed segmented stochastic modelling procedure, the
residuas are more random and the accuracy of the estimated baseline components is

improved to the millimetre level.

In summary, a segmented stochastic modelling procedure has been developed and its
performance has been demonstrated in this Chapter. Furthermore, it was shown that the
segmented stochastic modelling procedure could be applied not only to singe-frequency
data, but dso to dua-frequency data (Sections 5.4 and 5.5). Hence, it is recommended
that this method should be employed in the GPS data processing step for al precise
static relative positioning applications.
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Chapter 5 A Segmented Stochastic M odelling Procedure

As demonstrated in Section 5.3.1.2, wavelet decomposition has shown great potentid in
extracting a sy stematic error component from the GPS measurements. Therefore, it is
interesting to further investigate the use of wavdet-based methods in GPS data
processing. An approach to GPS anaysis incorporating wavelet decomposition is

presented in the next Chapter.
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Chapter 6
GPS ANALYSIS WITH THE AID OF WAVELETS

6.1 Introduction

The least-squares estimation method is usudly employed for the processing of GPS
measurements. T he least-squares method is based on the formulation of amathematica
modd consisting of the functiond moded and the stochastic modd. If the functiona
model is adequate, the residuals obtained from the least-squares solution should be
randomly distributed. However, the GPS measurements are contaminated by severd
kinds of errors or biases, such as orbital error, aamospheric biases, multipath disturbance
and receiver noise. Dedling with such biases would bereatively straightforward if there
were some gpriori knowledge of the phenomenardated to these errors. Asthisis not the
case, the least-squares method generates residuas which contain the signature of both
unmodelled systematic biases and random measurement noise. It is desirable to extract
(or minimise) the systematic biases contained within the GPS measurements. Recently,
some wavedet-based techniques have been introduced to the fidd of GPS data
processing (e.g Collin & Warnant, 1995; Fu & Rizos, 1997; Ogga e d., 2001;
Stirgpod, 2001). The methods introduced have, for example, addressed some of the
potentid applications such as signad denoising, outlier detection, bias separation and

data compression.

This Chapter proposes anew method based on awavelet decomposition technique and a
robust estimation of the VCV matrix. The wavelet technique is first applied to
decompose the GPS double-differenced residuds into the low-frequency bias and high-
frequency noiseterms. The extracted bias component is then gpplied directly to the GPS
measurements to correct for the trend introduced by this error component. The
remaning terms, largely characterised by the GPS range measurements and high-

frequency measurement noise, are expected to gve the best linear unbiased solutions
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Chapter 6 GPS Andysis with the Aid of Wavedets

from a least-squares process. The simplified MINQUE procedure (Satirgpod et d,
2001b) is applied to formulate the stochastic modd!.

The content of this Chapter is organised as follows. First, the theory of wavelet
decomposition and its application to GPS data processing is outlined. A discussion of
the experimentd results and andysis are then presented, followed by concluding

remarks.

6.2 Wavelets

6.2.1 Theory

Wavdet theory provides a unified framework for a number of techniques which have
been developed independently for various signd processing applications. It has
potentid applications in filtering, subband coding, data compression and multi-
resolution signa processing In particular, the Wavelet Transform (WT) is of interest for
the andysis of non-stationary signas such as GPS measurements, because it provides
an dternative to the classicd Fourier Transform (FT), which assumes stationarity in
signds. It can be viewed as an extension to Fourier anaysis, which is well-suited for
characterising signas whose spectrd character change with time. Such signals are not
well represented in time and frequency by the Fourier Transform methods. The method
of wavelet andysis is closely related to time-frequency anaysis based on the Wigner-
Villedistribution (Olivier & Vetterli, 1991).

The WT involves representing general functions in terms of simple, fixed building
'blocks' at different scales and positions (Wickerhauser, 1994; Daubechies, 1990). These
'blocks’ are actudly a family of waveet functions (or wavelet basis) generated from a
prototy pe function, caled a "mother” waveet, by translation and scaing operations.
That is, the signd is mapped to a time-scae plane that is anadogous to the time-
frequency plane used in the Fourier Transform.
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M ulti-resolution anaysis provides a forma approach to constructing the wavelet basis.
The idea of multi-resolution anaysis is to write a function as a limit of successive
gpproximations, each of which is a smoother version of the function. The sub-spaces
contained within each other are meant to convey the notion of fine-to-coarse resolution,
with the smoothness achieved through remova of some level of detall. For example, if

the sub-space V.1gVogVig... and W, is the orthogona compliment of Vy4V.4, then
W, ®V; =V,

The W, contains the detailed information as the resolution goes from afiner (larger j) to
a coarser (lower j) one. The sub-spaces, V, each contain the best gpproximation a a

particular resolution, that is:

limV, = UV,
. j—> -0
]

and there will be information loss as the resolution gets coarser (j = ..., -3, -2, -1, 0).

That is, in thelimit of the lowest resolution, the signd is approximated by O:

There are severd types of Wavdet Transforms. For continuous signds, the time and
scae parameters are continuous, leading to a Continuous Wavelet Transform (CWT). If
the time and scade parameters are chosen to be discrete, this will gve rise to a wavelet
series expansion and hence a Discrete Wavelet Transform (DWT) for a discrete signd.
As the scde parameter gows, the signd dilates more and, like a map, the image or
Wavelet Transform gves a more 'gobd' or low-frequency view. The translation
parameter serves to shift the function aongthetimeaxis. A specia caseis developed by
discretization of the time-scde parameters. That is, if a = 27 and b = k27, the
corresponding wavelets become a function of two integer parameters, j and k. For this

case, the wavelets form adyadic series.
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Almost any function can be a prototype function, as long as it satisfies certan
admissibility conditions. Daubechies (1990), for example, introduced a set of
orthonorma waveets and, more recently, a new family of non-orthogona waveets
have been introduced by other authors. In generd, the selection of the wavelet that best

decomposes the dataremains aresearch topic of its own.

6.2.2 Application of Waveletsto GPS Data Processing

A previous study by Fu & Rizos (1997) has outlined some of the agpplications of
waveets to GPS data processing. According to this study, the GPS bias terms such as
multipath and ionospheric delay behave like low-frequency noise (between 0.00005 and
0.05 Hz) and the measurement noise as high-frequency noise (anything from DC to 10
Hz). Hence, the GPS bias terms are concentrated in the narrow low-frequency band and
a high frequency resolution is needed to identify them. The Wavelet Transform can be
used to achieve enough frequency resolution to discriminate these terms in the originad

GPS measurement. Figure 6.1 illustrates that process.

The key isto find or design the best mother wavelet to usein the transform. The mother
waveet is scaed in time (dilated or compressed) and aso shifted in timeto effectively
scan across the time-domain signal. Compressing the mother wavelet’s time duration
(width) effectively crestes a high-pass filter (HPF) for extracting the high-frequency
components of the anay sed signd, whereas dilating it creates alow-pass filter (LPF) for
extracting the low-frequency components of the analy sed signal.
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Figure 6.1 Applying a narrow daughter wavelet to the origna signd is equivaent to
aoplying a high-pass filter, which completes path 1. Extracting the leading low
frequency requires applying a number of daughter wavelets that are wider than the
signd you need to match, then applying a finad daughter wavelet that becomes a high-
pass filter, completing path 2.

A mother wavelet that gpproximates a bias term such as multipath is selected and
dilated before performing the transform. To get the wavelet coefficients of sufficient
magnitude to extract the bias term, the Wavelet Transform software has to process the
wavelet a number of times, eg ntimes. For thefirst n-1 times the transform effectively
passes the signa through alow-passfilter. On the n" time the transform would produce
coefficients substantid enough to extract the remaning low-frequency signa through
the high-pass filter. At that point the width of the wavelet becomes long enough for its
frequency to be below that of the bias term, and thus the find stageis ahigh-pass filter.
The combination of the n-1 low-pass filters and the fina high-pass filter creates a

bandpass filter.

Figure 6.2 is an example of results obtained after gpplying the process in Figure 6.1 to
DD float ambiguity carrier phase residuds for agven pair of satellites. Path-1 indicates
tha the Wavelet Transform required just one high-pass filter to extract the high-
frequency component of the residuas. Path-01, however, corresponds to two filter
banks used to extract the corresponding high-frequency term at a different resolution
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level. The zero indicates that the signa passed through one low-pass filter before the
transform could apply a high-pass filter. Smilarly, Path-00 corresponds to two filter
banks of low-pass filters only for extracting the low-frequency component.

floatcrslsec.out : Channel 4
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Figure 6.2 First row: DD float ambiguity carrier phase residuas (orignd signa);
second row: low-frequency component; third row: high-frequency component; fourth

row: high-frequency component (at higher resolution).

Once the waveet application for extracting the low-frequency term corresponding to
say multipath has been developed, it can be progranmed to continuously process the
GPSdataaffected by such biases.

6.3 Experimental Results

In this Section, results processed from red GPS data are presented, in order to
demonstrate the usefulness of the proposed method of wavelet decomposition for
extracting the low-frequency bias term. Static GPS data was anaysed and the results

from the processing are discussed.
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6.3.1 DataAcquisition

The data set used here was collected on 7 June 1999 using two Ashtech Z-XI1 recaeivers
a asampling interva of 1 second. The receivers were mounted on pillars that are part
of afirst-order terrestrid survey network. The known baseline length between the two
pillars is 215.929 + 0.001m. This will be used as the ground truth to verify the accuracy
of the results. A 30-minute span of data was extracted from the origna data set and
resampled every 15 seconds. Sx satellites (PRNs 2, 7, 10, 13, 19, and 27) were selected,
as they were visible during the entire selected observation period. All data were first
processed using the standard GPS data processing method to check the data qudity. In
the data processing step, satellite PRN2 was sdected as the reference satdlite to form
the double-differenced observables since it had the highest devation ange. Double-
differenced (DD) residuds for various satdlite pairs are shown in Figure 6.3. The DD
residuals indicate the presence of some significant multipath errors for satellite pairs
PRN 2-7 and 2-19.
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Figure 6.3 DD residuds obtained for the Ashtech receivers.

6.3.2 DataProcessing Step

In data processing step, the data set was divided into three batches, each of ten minutes
length. Each batch was first processed using the standard GPS data processing

procedure and trested as an individua session. The wavelet technique was then used to

decompose GPS double-differenced (ambiguity-free) residuds into the low-frequency

bias and the high-frequency noise terms for each batch (see Figure 6.4, for example).

The extracted bias component was applied directly to the GPS measurements to correct
for this term, and the simplified M INQUE procedure was then employed to estimate the

94



Chapter 6 GPS Andysis with the Aid of Wavedets

variance-covariance matrix of the measurements. Theresults obtained from the standard
procedure and the proposed procedure are discussed in the next Section.
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Figure 6.4 Sgnd extraction usingwavelets for PRN 2-19. Top: Origna DD residuals.
M iddle: Extracted noise component. Bottom: Extracted sy stematic component.

6.3.3 Analysisof Results

Results obtained from the processing described in the previous section have been
analysed from two points of view: ambiguity resolution and the estimation of baseline
components. For reiable ambiguity resolution, the difference between the best and
second-best ambiguity combination is crucia for the ambiguity discrimination step. The
F-ratio is commonly used as the ambiguity discrimination statistic, and the larger the F-
ratio value the more rdiable is assumed to be the ambiguity resolution. The critical
vaue of the F-ratio is generdly (arbitrarily) chosen to be 2.0 (eg Euler & Landau,
1992). The ambiguity validation test can also be based on an dternative statistic, the so-
cdled W-raio (Wang & d., 1998b). In a similar fashion, the larger the W-ratio vaue,
the more reliable the ambiguity resolution is assumed. The values of these statistics

obtained from the data processing step are shown in Figure 6.5. Thetop plot indicates
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the F-ratio statistic, while the bottom plot represents the W-ratio statistic, where each
group of columns represents the solution obtained from the three individua sessions. As
can be seen, the F-ratio and W-ratio vaues obtained from the proposed procedure are
larger compared to those from the standard procedure. This indicates that the certainty

of the resolved ambiguities has been significantly improved.
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Figure6.5 F-ratio (top) and W-ratio (bottom) statistics in ambiguity validation tests.
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In the case of the estimated basdline components, the results are presented in Table 6.1.
The results show tha the proposed procedure generates more accurate estimated
basdline components. This is confirmed by comparing the estimated baseline lengths
obtained from both procedures to the known basdine length. The vaues of the
estimated basdine length obtained from the proposed procedure are closer to the ground
truth values than those obtained from the standard procedure. The maximum difference
in the basdine length between sessions is 4.8 mm when the standard GPS data
processing procedure is used. This is reduced to 0.2 mm when agpplying the proposed
procedure. In addition, the maximum difference in the height component between
sessions is up to 19.3 mm when the standard GPS data processing procedure is used.
Thisis reduced to 9.3 mm when the proposed procedure is used.
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Table 6.1 Estimated basdline components

Sesson | Procedure| Egtimated baseline components(m) | Sandard deviation (mm) Baseline
North East Height North [ East | Height | length

(m)

I Sandard | -188.5131| 105.2933 0.5107 0.9 0.8 1.4 215.9262
Proposed | -188.5147 105.2933 0.5121 0.3 0.4 0.4 | 215.9276

I Sandard | -188.5135| 105.2932 0.5075 0.9 0.8 1.3 | 215.9265
Proposed | -188.5154 [ 105.2925 0.5099 0.2 0.2 0.5 | 215.9278

i Sandard | -188.5068 | 105.2954 0.4914 14 13 2.2 | 215.9217
Proposed | -188.5132 | 105.2961 0.5028 0.5 0.6 0.8 | 215.9276

In a further investigation, the DD (ambiguity-fixed) residuas were decomposed into
their high and low-frequency components. The extracted systematic component was
goplied to the GPS measurements in the same way as in the above method. The results
showed an improvement in statistics in ambiguity validation tests. However, the
estimated baseline components obtained from this procedure exactly matched those
obtained from the standard procedure.

6.4 Concduding Remarks

In this Chapter a procedure based on wavelet decomposition has been reviewed, and a
new method of GPS data processing based on wavelet decomposition and the robust
estimation of VCV matrix has been developed. Initia results from the proposed
procedure indicate that both the ambiguity resolution and the accuracy of estimated
baseline components are improved. In the worst data set, the statistics in the ambiguity
vaidation test are improved by a least 2.83 times. The estimated basdine lengths
obtained are much closer to the ground truth value than those obtained by the standard
procedure. Furthermore, the variation in the height component between sessions is
reduced by approximately ahaf when the proposed procedure is used.

In conclusion, the proposed procedure has been shown to produce encouragng results.
However, due to thetimelimitation in conducting this research, the proposed procedure
has not been fully tested using various data sets, over different basdine lengths. Before
a solid conclusion can be drawn further tests will need to be conducted to validate the

effectiveness of the proposed procedure.

97



Chapter 7
AN IMPLEMENTATION OF THE SEGMENTED STOCHASTIC MODELLING

PROCEDURE AND SOME CONSIDERATIONS

The investigations concerning the new stochastic modelling procedure were discussed
in Chapters 3 to 5. The theoreticd work basis of the procedure and the experimentd
results were presented in those chapters. In this Chapter the details of the segmented

stochastic modelling procedure necessary to implement the proposed procedure are
presented.

7.1 AnImplementation of the Segmented Stochastic Modelling Procedure

The segmented stochastic modelling procedure can be conveniently divided into four

steps, namdy, preparation, data segmentation, iteration, and final estimation.

7.1.1 Preparatory Step

The Preparatory Step is the basic preparation procedure of standard GPS data
processing, which can be summarised in Figure 7.1.
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START

1.1) Load observation files into the software

v
1.2) GPS daareduction

v
1.3) Cydedlip detection and repar

h 4
1.4) Form doubl e-differenced observations

v
1.5) Construct the standard stochastic mode

v
1.6) Estimate the unknown parameters and residuds

l

1.7) Estimae the VCV marix

i

(_ END OF PREPARATORY STEP )

Figure 7.1 Flow chart for the Preparatory Step.

Sep 1.1-- The observation files from both the reference and user receivers are loaded

into the GPS data processing software.
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Sep 1.2 — Typicdly, the GPS observations are inserted into a database and receiver
clock biases are caculated by using Snge Point Positioning agorithms.

Step 1.3 -- Thecycleslip detection and repair process is carried out in this step.
Sep 1.4 -- The double-differenced observables are formed in this step.

Sep 1.5 -- This step constructs the standard stochastic mode represented by Equation
(4.7). This standard stochastic model assumes that al observations have the same
precision, and the mathematica correlation is taken into account in this stochastic
model.

Sep 1.6 -- This step estimates the unknown parameters (baseline components &
ambiquity parameters) and residuads using Equations (4.8) and (4.9). The estimated

parameters obtained from this step are theresult of so-called ambiguity-float solutions.
Sep 1.7 -- This step estimates the covariance matrix(i = fz) using Equation (4.10).

It can be seen that the Preparatory Step does not involve any iteration unless no good
coordinates are known. In addition, if an ambiguity resolution step and an estimation of
the basdline components (by introducing ambiguity parameters as known parameters)
have been added before Step 1.7, this is essentidly a standard GPS data processing
procedure.

7.1.2 Data Segmentation Step

The basic process is to divide the whole measurement session into short segments, in
which each segment there are the same number of satdlites and al the measurements
for the same satdlite pars have the same stochastic model. The Data Segmentation Step

can be summarised in Figure 7.2.
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2.1) Défine a default window width and
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into short segments

A 4
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Figure 7.2 Flow chart for the Data Segmentation Sep.

Sep 2.1 -- A default window width is first selected. In this study a 20-epoch window
width is used. Then, indices of when the satdlite geometry has changed during the
entire session are determined, and the number of observations between consecutive
indices is stored.

Sep 2.2 -- This step divides the datainto short segments using the following criteria

e |f the number of observations between any pair of consecutive indices is larger than
the default window width, the measurements are divided into short segments until
the number of observations in thelast segment is smaller than or equal to the default
window width.

e |f the number of observations from the last segment is smaler than the default
window width, the observations from the last segment will be combined with the
ones from the previous segment.

e However, if the number of observations between the consecutive indices is not
sufficient to form a new segment, the stochastic modd estimated from the previous

segment is gpplied to these observations.
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7.1.3 lterative Step

The Iterative Sep involves severd phases, which may need iteration. Theiterative step
isillustrated in Figure 7.3.

Step 3.1 -- This step estimates the tempora correlaion matrix R defined by Equation
(5.1b) for each segment using Equations (5.2) and (5.3).

Sep 3.2 -- This step constructs the transform matrix G using Equations (4.18), (4.19),
(4.20) and (4.21) with the matrices R and Q.

Sep 3.3 -- The observation and design matrices are transformed using the following
relaionships I =Gl and A=GA. It is dso important to notethat the integer nature of
the double-differenced ambiguities still remains in the mathematicd model as the
transformation procedure only affects the design matrix A.

Sep 3.4 -- This step estimates the variance-covariance matrix Q for the transformed

messurements | using the proposed procedure defined by Equation (5.5).

Sep 3.5 -- This step estimates the unknown parameters (baseline components and
ambigquity parameters) using the transformed measurements and VCV matrix obtained
from the previous step. The reationship between the unknown parameters and other

matrices can be expressed as.
X=[ATQ'®1)AI AT (Q @ I )T

Sep 3.6 -- This step estimates the residuds of the origna measurements € from
Equation (4.9) using the estimated unknown parameters X obtained from the previous
step.
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3.6) Estimate the residud's of the origind measurements

A 4
3.7) Estimate the tempord corrdaion coefficients for each segment

No 3.8) Is the accuracy

sufficient?

GND OF ITERATIVE STEF )

Figure 7.3 Flow chart for the Iterative Sep.
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Sep 3.7 -- This step estimates the tempora correation matrix R for exch segment
using Equations (5.2) and (5.3) with the estimated residuals obtained from the previous

step.

Sep 3.8 -- This step checks the variations of the estimated eements of matrices R and
Q. In this study, the critical vaue for the variaion of the estimated eements of matrix
R is set as 0.01 while the critical vaue for the variation of the estimated elements of
marix Q is set as 0.0000005 cydle’. If the variations of the estimated elements of

maricess R and Q are less than the critical values, the iterative process will be
terminated.

7.1.4 Final Estimation Step

The Estimation Sep involves two simple steps, asillustrated in Figure 7.4.

( START }

A

3.1) Ambiguity resolution procedure

l

3.2) Estimate the basdine components

( END OF FINAL ESTIMATION STEP )

Figure 7.4 Flow chart for the Estimation Step.

Sep 3.1 -- This step tries to resolve integer numbers of ambiguity parameters. In this
study, the LAMBDA method (Tiberius and De Jonge, 1995) is used as an ambiguity

resolution procedure.
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Sep 3.2 -- The ambiguity parameters obtained from the previous step are first
introduced as the known parameters. Then, the baseline components are estimated using

the following relationship:

X=[ATQ 1 )AI AT Q@ I )

7.2 Some Considerations

Based on experience ganed in the processing of GPS data with the segmented

stochastic modelling procedure, the following comments can be made:

e Theproposed procedure tends to show an improvement over the standard procedure
when the observations are highly correlated.

e In the case of longobservation period data sets, ambiguity resolution is not acritical
issue. It is therefore recommended that the ambiguity resolution procedure be

carried out beforethe iterative process begns.

e |t isimportant to emphasisethat the proposed procedureis restricted to thereative
static GPS positioning mode. However, this procedure can be applied to any
basdine length. In addition, it can be applied to singe-frequency data as wel as
dud-frequency data
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Chapter 8
CONCLUSIONS AND RECOMMENDATIONS

8.1 Condusions

In the case of GPS, two types of measurements, the pseudorange and the carrier phase,
can be made with the aid of the incomingsignas. Carrier phase measurements are much
more precise than pseudorange measurements, and thus they are extensively used in
precise static reative positioning gpplications. The GPS carrier phase measurements are
generdly processed using the least-squares method, for which both the functiona and
stochastic models need to be carefully defined. Whilst the functional modd for precise
GPS positioning is sufficiently well known, redlistic stochastic moddling for the GPS
carier phase measurements is still both a controversid topic and a difficult task to
accomplish in practice. Therefore, substantia investigations concerning the stochastic

modelling issue have been conducted in this study .

8.1.1 Quality Indicatorsfor GPS Carrier Phase Observations

Recently investigators have used two types of externa information, namely Sgnal-to-
Noise Ratio (SNR) and satellite devation ange, as qudity indicators for GPS carrier
phase observations. Thesetwo dataqudlity indicators are widdly used for generating the
stochastic modd of the GPS observations. In this study, these indicators have been
compared. Sndge-differenced residuas were used to andyse the vaidity of the qudity
indicators, on a satdlite-by-satellite basis. Based on the results obtained from a series of
tests, it can be concluded that these two qudity indicators do not aways indicate the
same qudity trend. In generd, both SNR vaues and satdlite devation ange
information can be used as quality indicators, but they do not aways reflect redity.
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Therefore, the chdlenge was to develop more rigorous quality indicators for high-
accuracy positioning applications.

8.1.2 A Simplified MINQUE Procedure for the Estimation of Variance-

Covariance Components for GPS Observabl es

M inimum Norm Quadratic Unbiased Estimation (M INQUE) is one of the commonly
used methods for the estimation of variance-covariance components and in this study
has been successfully used to estimate the variance-covariance components of the GPS
observables. However, the MINQUE procedure imposes a big computationa burden,
and the requirement of having an equa number of variance-covariance components in
the estimation step is a mgor limitation. It is therefore difficult to implement this
procedure when the number of observed satelites has changed during an observation
period. In this study, a simplified MINQUE procedure is proposed, for which the
computationd load and time are significantly reduced. The quality of the results
obtained is very similar to those from the rigorous procedure. Furthermore, the effect of
achangng number of satdlites on the computations is effectively dedt with.

8.1.3 An lterative Stochastic Modelling Procedure

As previously stated, the GPS measurements have a heteroscedastic, space- and time-
correlated error structure. In this study, an iterative stochastic modeling procedure has
been proposed to directly estimate the time corrdation coefficients, and the time-
independent variance and covariance components of the GPS observables. The basic
idea behind the iterative stochastic modeling procedure is that the double-differenced
(DD) carier phase observables are transformed into a set of new observables using
estimated tempora correlaion coefficients. The transformed observables are free of
tempora correlations and thus have a block diagonal variance-covariance matrix.
Conseguently, the immense memory usage and computational load for the inversion of
a fully populated variance-covariance matrix can be avoided, and the variance-
covariance matrix for the transformed observables can be estimated using a rigorous
statisticd method such as the MINQUE. An iterative process is performed until
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sufficient accuracy is achieved. Test results indicate that by applying the stochastic
assessment procedure developed here, the certainty of the estimated positioning results
is improved. In addition, the quality of ambiguity resolution can be more redisticaly
evauated.

8.1.4 A Segmented Stochastic Modelling Procedure

As demonstrated in Chapter 4, the iterative stochastic modelling procedure is suitable
for short observation periods as it assumes that the tempord correation coefficients and
the variance of GPS measurements are constant for the whole observation period. In
practice, an observation period of severd hours may be expected for some geodetic
gpplications. The assumption that thetempora correlation coefficients and the variance
of GPS measurements are constant for the whole observation period is therefore not
redistic. In addition, the memory usage and computational load can become unbearable
when the standard M INQUE technique (or even the simplified M INQUE procedure) is
applied to long observation period data sets. Thus, it was necessary to develop a new
stochastic modelling procedure that addressed these shortcomings.

Based on the iterative stochastic modeling procedure developed in Chapter 4, a
segmented stochastic moddling procedure has been proposed that deds with long
observation period data sets, and a the same time reduces the computationa load. This
procedure aso takes into account the tempord correlaions in the GPS measurements.
The effectiveness of the new procedure is tested using both red and simulated data sets
for short to medium length baselines. By applying the proposed segmented stochastic
modelling procedure it has been found that the residuas are more random and the
accuracy of the estimated baseline components is improved to the millimetre leve.
M ore importantly, the segmented stochastic modelling procedure can be used not only
with singe-frequency data, but dso dud-frequency data
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8.1.5 GPS Analysiswith the Aid of Wavel ets

Classica least-squares processing of GPS measurements generates residuas which
contain the signature of both unmoddled systematic biases and random measurement
noise. It is desirable to extract (or minimise) the sy stematic biases contained within the
GPS measurements. This would be relatively straightforward if there were some gpriori
knowledge of the phenomena related to these errors. Common way s of dedingwith this
problem include: (i) changes to the stochastic modelling, and (ii) redefinition of the
functional modd.

In this study, a method based on wavdets is applied to decompose GPS double-
differenced residuds into a low-frequency bias term and a high-frequency noise term.
The extracted bias component is then gpplied directly to the GPS measurements to
correct for this term. The remaning terms, largey characterised by the GPS range
measurements and high-frequency measurement noise, are expected to gve the best
linear unbiased solutions from a least-squares process. A robust VCV estimation, using
the simplified M INQUE procedure, controls the formulation of the stochastic modd.
The results indicate that this method can improve both the ambiguity resolution and the

accuracy of the estimated baseline components.

8.2 Recommendations

Based on both the theoretica studies and experimentd results obtained in this research,

the following recommendations are made for future research work.

1) As demonstrated in Chapter 5, initid experiments have shown promising results.
However, there are some chalenges in implementing the segmented stochastic
modelling procedure for precise positioning in geodetic applications. These are

summarised as follows:

e The optimad length of the segments to be used in the stochastic moddling
procedure needs to be investigated in more detall. Thisis to ensurethat arobust
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performance can be achieved. A possible criterion for this purposeis the degree
of stationarity of the time series of residuas. Appropriate measures will need to
be developed and tested to check for stationarity of dataon-line.

e The significance of the inter-tempord corrdations (for different satelite pairs)
should be statisticaly tested. Although extensive experiments have confirmed
that there are significant tempora corrdations within the residuas for the same
satellite pairs, the inter-tempora correlations between the time series for the
different satdlite pairs are not well understood. If some of the inter-tempora
correlation coefficients are smal, or insignificant, they could be considered as
zero, and then removed from the unknown parameter set. This will improvethe
certainty of the estimation of the other unknown parameters since the geometry
of the solution is strengthened.

2) As demonstrated in Chapter 6, a new method based on the wavelet decomposition
technique and a robust estimation of the variance-covariance matrix has been
shown to improve the certainty of ambiguity resolution and the accuracy of
estimated basdine components. However, there are some chdlenges in
implementing the proposed procedure. These are summarised as follows:

¢ In order to optimise the effectiveness of the proposed method, an optima degree
of wavelet coefficients for different types of systematic errors (i.e. multipath

error, ionospheric delay, tropospheric delay etc.) needs to beinvestigated.

e Before a firm conclusion can be made, the effectiveness of this method should
be tested and evauated with various data sets, especidly for medium and long

basdines. Future work will focus on comparing the segmented stochastic
moddlling procedure and the proposed method based on a combination of the

wavelet decomposition technique and a robust estimation of the variance-

covariance matrix.

e This method may be further developed for other gpplications (for example, dua-

frequency multi-reference stations for a smdl area network). The waveet

110



Chapter 8 Conclusions and Recommendations

decomposition may be applied to reduce the noise leve of the correction terms
generated by a network of multi-reference stations for various applications (e.g.
Chen et d., 2000; Janssen et d., 2001; Rizos et a., 2000).
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APPENDIX

Define r as the number

accompanying matrices are:

T(r )i =

0 10 .
100.
000..
000..
000..

.0 0]
.00

00

00

00

of double-differenced measurement a epoch i, the

0 00.0
1.0 00.0
Tri:
0 0, ........... f OO 1
0 01..00] 0 00 ..0 O]
0 00..00O0 O 00..00O0
1 00..00 0 00..00O
T(r+2)i: Tki:
0 00.. 00O 0 0O0.. 01
0 0O 00 0 00 10|

where k = r(r+1)/2 is the number of unknown variance and covariance components. For

asession solution with m epochs of data, the covariance matrix of al measurements is

C=>0T

i

M-

whereT; = diag(T;),1=1,2,....m and j=1.2,....k
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