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Foreword

The determination of elevations from overlapping aerial images by image matching is an
operational procedure in most digital photogrammetric workstations. However, the
computed elevations are usually subject to errors caused by matching on objects other
than the terrain surface, such as trees and buildings. While software is available for
modelling some of these errors, most of them must be corrected manually. This can be a
time-consuming process which reduces the efficiency of digital photogrammetry. There
is a need to be able to interpret the content of the images so that terrain cover can be
determined, and if this cover is elevated above the terrain surface, to correct the
computed elevations so that bare earth elevations can be derived. Therefore, an
intermediate step in the process of determining bare earth elevations involves extracting
features in the images such as buildings and trees. This thesis describes the process of
extracting buildings. The School of Surveying and Spatial Information Systems at UNSW
has undertaken research on the determination of elevations from overlapping space and
aerial images, since the early 1990s. The research described in this thesis has been partly
supported by an ARC Large ARC Grants A49700856 in 1997-1999 and A10007004 in
2000-2002, in collaboration with Kurt Kubik, from the University of Queensland.
Future work in this research involves the fusion of elevation information extracted from

laser scanners and aerial images

This thesis presents a number of components in the extraction of buildings from aerial
images. They include the determination of a dense digital surface model (DSM) by
stereo image matching, a multi-spectral image classification, and Normalised Difference
Vegetation Index (NDVI) computation on the images to determination vegetation areas.
A shape modelling algorithm based, on the level set formulation of curve and surface
motion, has then been developed to precisely delineate the building boundaries. These
processes have derived three types of information which describe the locations of
buildings, namely, the DSM, areas determined by the classifications, and the building
boundaries. These three sets of information were then combined by a data fusion

approach using the Dempster-Shafer algorithm, to extract the most likely buildings in the



images. The Dempster-Shafer algorithm is a statistical approach providing a theoretical |
basis for evaluating the reliability of the extracted buildings from the combination of the

different data sources.

The methods have been tested on a series of large scale colour aerial photographs in
Australia. Because large scale images covering the infrared region were not available, the
computation of the NDVI was replaced by the VVI (visible vegetation index), based on
the colour images. The tests demonstrate accuracies of extracting buildings of the order
of 90% for a range of areas covered by the aerial images. While the methods achieve
satisfactory results on most of the samples tested, there are some examples where the
algorithms were below expectations. Further refinements of the methods may lead to

better results and overcome some of the deficiencies.

The original thesis was presented with many colour images, which cannot be reproduced
in this volume because of the cost. These images are produced in black-and-white in the
body of the volume, but the colour versions of the images are contained on the CD
stored at the back of this volume. The work of Mr Brian Donnelly from the School of
Surveying and SIS in producing the CD is acknowledged.

Emeritus Professor John C. Trinder
June 2004
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Abstract

The production of Digital Terrain Models (DTM) from images has been an active
research topic in computer vision and digital photogrammetry. DTM are often used as a
component in complex Geographic Information Systems (GIS) modelling, and also used
for cartography, urban and town planning. Conventional image matching techniques are
unable to overcome the disparity discontinuities in the stereo model caused by man-made
structures. As well they supply a Digital Surface Model (DSM), because the matching
occurs on the top of man-made objects such as buildings, or on the top of the vegetation
rather than the terrain surface. In order to produce a more accurate DTM of the bare
earth, the characteristics of the terrain cover, such as buildings and trees must to be

determined, to reduce the elevations derived from image matching to the terrain surface.

An automatic approach and strategy for extracting building information from aerial
images using combined image analysis and understanding techniques is described in this
thesis. For a more accurate DTM, the approach involves the interpretation of the images

to provide greater reliability in eliminating the errors due to ground cover.

The thesis begins with the discussion on deriving building interest areas from complex
scenes in urban areas using unsupervised classification, stereo image matching and
texture segmentation methods. Based on the building interest areas, shape modelling
using level set formulation of curve and surface motion is used in order to precisely

delineate the boundary of building.

In order to provide more reliability in the automatic extracting building system, the
formal treatment of the combination of multiple data sources and of the uncertainty in the
image interpretation is desired. Data fusion in remote sensing is undertaken to combine
several image data sets for the purpose of information extraction. The Dempster-Shafer
approach is a statistically-based classification algorithm used for data fusion. It can be
used to combine the information from several data sources of the same region, and to find

the intersection of propositions on extracted information derived from these datasets,

1ii



together with the associated probabilities. An uncertainty estimation, based on Dempster-
Shafer evidence theory, is presented which combines evidence from three data sources to
effectively guide the segmentation to a suitable solution. A number of test areas have
been investigated, the results of the study for extracting buildings are very encouraging

and can result in the determination of more accurate elevations of the terrain surface.
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CHAPTER 1

INTRODUCTION

1.1 Background

One of the most challenging problems in the fields of computer vision and digital
photogrammetry is 3D reconstruction of the terrain surface from complex aerial images
in urban or suburban areas where buildings, roads, trees and vegetations are intermingled
in an intricate and complex fashion. Digital Terrain Models (DTM) produced by stereo
image matching algorithms have been one of the primary goals of cartography for many
years. Recently, interest in the area has been stimulated by the need for digital
orthophotos, 3D city models, 3D building reconstruction, production and management of
3D databases for urban and town planning and Geographic Information Systems (GIS)
modelling. DTM in this thesis is defined as the elevations of the bare earth, which
excludes the effects of man-made structures and vegetation, whereas a Digital Surface
Model (DSM) represents the elevations of the visible surface, including man made

structures.



Stereo image matching involves the matching of corresponding pixels or features in two
overlapping images and is the fundamental to digital photogrammetry for elevation
determination. Difficulties in stereo image matching in urban areas are caused by the
density of man-made structures and vegetation, leading to many hidden areas or
occlusions in the images. Therefore, corresponding points often may not exist in the two
images and/or the geometry of the images may vary significantly. Difficulties are also
caused by the fact that many scene features, such as walls or roads, have a similar
appearance in the images, often roof areas are homogeneous, and moving cars may
disrupt the images. These characteristics of aerial images of urban scenes cause the
matching process to become ambiguous. Because disparity discontinuities are common in
the images, the normal methods of ambiguity checking, such as geometric constraints,

and order constraints must be used carefully.

Conventional image matching techniques cannot overcome these matching problems and
therefore only supply a DSM. This means that matching occurs on the top of man-made
objects such as buildings, or on the top of the vegetation rather than the terrain surface
and hence the computed elevations are therefore not on the terrain surface. In order to
provide a more accurate DTM, the characteristics of the terrain cover, such as buildings
and trees must to be determined to predict errors in the computed elevations. Although
there are many features on images that may lead to errors in the DTM, the most common
features are buildings and trees. There are many types of buildings in urban areas. This
study will concentrate on houses because they represent the majority of structures in
many urban areas. The final outcome of the extraction of buildings is to derive an

accurate DTM of the bare terrain surface.

The problem of building extraction from aerial images can be approached using different
methodologies depending on the purpose of the extraction and the available data.
Although many automatic building extraction algorithms have been proposed by
researchers, there are still no commonly accepted algorithms because each method

focuses on a particular application and is dependent on the types of features extracted in



the study. A more detail summary for building extraction methods can be found in

Chapter 2.

The purpose of building extraction in this thesis is to interpret the image and identify and
locate building areas to guide terrain reconstruction. It is proposed that the methods
developed in this study will enable the determination of more accurate elevations of the
bare terrain surface. In order to realize these aims, an automatic approach and strategy for
extracting building information from aerial images is needed. The contribution of this
research is that it integrates compound image analysis and interpreting techniques into a
building extraction system. Once building areas are extracted, errors in DSM due to the

ground cover can then be eliminated.

1.2 Objectives of The Research

The main objectives of the research are:
e To improve the process of DTM determination by recognizing types of terrain cover

and correction of their effects on the computed DSM.

o To develop robust building extraction procedures that include multiple data sources

and combine image analysis and interpretation techniques.

e To establish practical and effective modules in the building extraction process
including:

1) an efficient matching algorithm based on least squares and robust estimation,
which can achieve greater accuracy in the computation of disparities in
overlapping images for areas where discontinuities caused by buildings and
trees exist.

2) algorithms for differentiating buildings from other objects and revealing
building areas based on the integration of multiple information sources

derived from different image interpretation techniques.



3) an algorithm for extracting building boundaries based on level set
shape modelling for curve propagating interfaces. The method is highly robust
and accurate for tracking building boundaries in complicated urban areas.

4) the use of multiple information data in automatic building extraction and a

mechanism for integration of multiple knowledge. A data fusion method is

desired to provide more reliability in the automatic extracting building system.

The scientific significance of the research lies in the treatment of the process of 3D
surface reconstruction from stereo images, as an operation of an image understanding and
interpretation procedure. This procedure is required to acquire knowledge of the content
of the images, since the 3D information cannot be extracted accurately unless the

characteristics on the terrain surface are known.

The results of the image interpretation approach can lead to improved 3D reconstruction
over current approaches in most existing software packages, which are based on the
determination of elevations of regularly spaced points on the terrain. Since these
elevation points are usually derived in isolation from one another, no account is taken of
the fact that neighbouring elevation points represent a terrain surface that has a particular,
but yet to be determined shape. Therefore, if an elevation point occurs on the top of a
man-made structure or a tree, there is normally no means of checking whether the height
of that point is consistent with the height of the neighbouring bare earth surface. The
errors caused by elevations being determined on the tops of buildings and trees are
included in DSM. The study aims to provide an accurate DTM of the bare earth, by
recognising the characteristics of the terrain cover, such as trees, vegetation, river, road
and buildings, and thus reducing the elevations derived from image matching to the

terrain surface.

1.3 Organization of the Thesis

The thesis consists of eight chapters and references.



Chapter 2 gives a general overview of the stereo image matching for 3D reconstruction
and building extraction techniques. After reviewing and comparing the building
reconstruction algorithms, the framework of this research is introduced, comprising the
proposed models for the steps in the process of identifying and extraction of building

arcas.

Chapter 3 introduces a robust hybrid-based image matching algorithm and a least square
matching algorithm using robust estimation for detecting breaklines in the images. Using
these breaklines will enable greater accuracy in the computation of disparities in the

areas comprising discontinuous surfaces and occlusions.

Chapter 4 describes the module of low-level image analysis and interpretation. In this
module, the significant features from images are extracted and classified into the
meaningful regions. An effective compound image analysis technique, which analyses
the relationships between spatial analysis and spectral properties, is proposed to reveal

the building interest areas.

In Chapter 5 the automatic extraction of boundaries of building is addressed. The
proposed method is based on image segmentation that implements mathematical and
numerical shape modelling using level set formulation of curve and surface motion. It
offers a highly robust and accurate method for tracking curve interfaces moving under

complex motions.

In Chapter 6 the uncertainty estimation is presented. The Dempster-Shafer data fusion
technique provides the theoretical basis for evaluating the reliability of the extracted
buildings from the combination of the different data sources by a statistically-based
classification. This procedure uses the evidence from different data sources to effectively

guide the segmentation to a suitable solution.

Results of experiments using these methods on aerial images are given in Chapter 7, for

a number of test areas, which include buildings with different sizes, shapes and roof



colour. The tests results are encouraging and demonstrate that the modules of the system
are effective procedures for building extraction, and the determination of more accurate
elevations of the terrain surface. The test data available is limited to colour aerial
photography. Multispectral images with 2 metre and 1 metre resolution were evaluated
for the proposed automatic building extraction system. After an analysis, these images
proved to be inadequate as it was not possible to generate high accuracy DSM and supply
large enough buildings. It was more practical and appropriate to use higher resolution

colour aerial images for the system.

The conclusions and perspectives for future studies are given in Chapter 8.



CHAPTER 2

Review of Building Extraction from
Stereo Images Matching

In this chapter, stereo image matching algorithms and building extraction methods will be
reviewed. After comparing the wide variety of methods, an approach to automatic
building extraction for 3D terrain reconstruction using interpretation techniques will be

proposed.

2.1 Stereo Image Matching for 3D Reconstruction

Methods of automatically generating digital surface models from overlapping aerial
photographs use stereo image matching techniques. Stereo image matching, also known
as the correspondence problem, requires the location and matching of corresponding
pixels or features in two overlapping images. The 3D world coordinates of the object
points represented by the pairs of corresponding pixels in two images can then be

determined by triangulation, using the image coordinates and known orientation of the

7



images (Marr and Poggio 1979, Wolf 1983, Gonzalez and Woods 1992). Many
techniques have been explored to solve the stereo image matching problem. Most
techniques are optimized for a particular application, such as in manufacturing, robotics,

surveying and vehicle guidance.

Image matching techniques may be broadly classified as area-based matching and
feature-based matching algorithms (Alwan and Naji 1996, Atkinson 1996, Aschwanden
and Guggenbuhl 1993, Hahn 1993, Baltsavias 1991, Gruen and Stallmann 1991, Li 1991,
Allision et al. 1991, Brockelband and Tam 1991, Tu and Dubuisson 1990, Hoff and
Ahuja 1989, Zhang and Zhou 1989, Levy 1988, Mcintosh and Match 1988, Eastman and
Waxman 1987, Gruen and Baltsavias 1987, Foerstner and Guelch 1987, Foerstner 1986,
Grimson 1985, 1983, 1981, Ohta and Kanade 1985, Medioni and Nevatia 1985, Haralick
1984, Medioni and Nevatia 1984, Rosenfeld 1984, 1982, Hummel and Zucker 1983).
Combinations of these two have also been proposed. A detailed review and comparison
of image matching techniques can be found in Mei (2001), Baillard and Dissard (2000),
Lang and Foerstner (1995), Brown (1992), Doorn et al. (1990), Day and Muller (1989),
Dhond and Aggarwal (1989), Guelch 1988, Hannah (1988, 1989) and Barnard and
Fischler (1982).

Each of the following sections describes the techniques developed by various researchers
within the particular fields, according to the above three classes. Area-based matching
algorithms are mostly used in photogrammetry for smooth terrain surface reconstruction,
while feature-based and hybrid matching algorithms are widely applied in computer
vision, close range photogrammetry and 3D building reconstruction. Some commercial
software systems have been successfully implemented based on the image matching
techniques. Area-based matching and relaxation correlation have been used in the LH
systems Socet set and VirtuoZo systems. Feature-based matching techniques have been

used in the Match-T system, originally implemented by Inpho company.



2.2 Area-based Methods

In area-based image matching techniques, a sample window comprising a rectangular
grid of pixels is selected in one image, let us assume it is the left image, and the window
is moved over the right image until a match, based on the intensity values of the two
windows, is found. This process continues until as many as possible areas in the left
image are matched with the corresponding areas in the right image. The matching
windows are usually chosen to be square and with a size selected according to data

content in the images.

2.2.1 Correlation matching

The most common area-based matching technique used is known to as cross-correlation.
This method has been in use for many years as a means of establishing matching areas of
two images (Gonzalez and Woods 1992, Jain 1989, Gonzalez and Wintz 1987, Hannah
1974). If s(x, y) is a sample area in the left image and #(x, y) is a test area in the right

image, the two dimensional correlation equation describing correspondence between the

windows is:
1 Y-1 X-1
R(m,n) = ————-Z ZS(x,y)t(x +m,y+n) (2.1)
XY y=0 x=0
where

R(m, n) 1is the array of correlation coefficient values produced by the correlation,
with values between O and 1,

X is the horizontal size of the sample area,

Y is the vertical size of the sample area,

M is the horizontal search range in the right image,

N is the vertical search range in the right image,

m ranges from =¥ to 4,

n ranges from =¥ to &,

x, y is current position of window.



The location of right window when the correlation value R(m, n) is a maximum defines
the position of the best match with the window on the left image. The method needs an
estimation of the approximate matched location before matching is commenced to speed-
up the process and ensures that erroneous matches do not occur. Equation (2.1) is simple
and easy to program. Since several maxima may occur in the region of a matched point,
other auxiliary methods such as probability relaxation and constraints are needed to
ensure that the best estimate of the matching point is determined. A comparison of the

correlation formulas can be found in (Aschwanden and Guggenbuhl 1993).

2.2.2 Least squares correlation

The high precision least squares approach to image matching, developed by Foerstner
(1982) and Ackermann (1984), determines the optimum match between two windows by
minimizing the grey value differences of corresponding pixels in windows on two

images.

For the two dimensional correlation case, the grey values of the left and right image
windows are given by g,(x,y) and g,(x,y). They represent the unknown image

functions g,(x,y) and g,(x,y) which are perturbed by noise #,(x,y) and n,(x,y).

gl(x’y)=gl(x>y)+nl(xay) (22)
g,(x,y)=g,(x,y)+n,(x,)

Because g,(x,y) and g,(x,y) are images of the same object, g,(x,y) can be described
by g,(x,y) subjectto geometric and radiometric transformations as follows:

8 (x,y)=hy +h - g, (X', y') (2.3)
where

h, represents a zero level shift of the grey level values

h, represents a brightness scale factor of the grey level values

Six parameters (a,,q,,4,,b,,b,,b,) may be used to apply affine linear transformation of

one window to the geometry of the other, as follows:
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X'=a,+ax+a,y 2.4
y'=by+bx+b,y '

Expanding Equation (2.3) to linear increments, the following equation for discrete

coordinate (x;,y;) can be obtained.
8, (x,y;) =8 (x,,¥,)+ &, (x;, y;)day + x,8,(x,,y,)da, + y & .(x;, v )da,
+8,(x;,y,)db, +x,8,(x;,y;)db, + y,&,(x,,y,)db,
+dh, +g,(x;,y,)dn (2.5)

Where
g,(x;,y;)=0g(x;,y;)/0x and g (x,,y,)=0g,(x;,y,)/ 0y are the discrete values of

gradient function of g,(x,,»;) inx and y directions respectively.

Considering the difference between the left and right images, Equation (2.6) can be
obtained.
A_g(xiayj)=§2(xiayj)_§1(xiayj)

= gZ(xi’yj)_gl(xHyj)+n2('xi’yj)_nl('xi5yj) (2.6)

Substituting g, (x;,y;) with Equation (2.5) and let v(x,,y,) =n,(x,,y,)—n/(x,,y;), the
final observation equation is in (2.7).
A_g(xiayj) +v(x;, ;) = gx(xi9yj)da0 +xigx(xi9yj)dal + ngx(xi’yj)daZ
+g,(x;,y,)db, +x,8,(x;,y,)db, +y,8,(x;,y;)db,
+dh, +g,(x;,y,)dh 2.7)

A least squares solution minimizes the sum of squares of residual differences v(x,,y,)

and produces the transformation required to determine the optimum window geometry

for matching. The window in the image g,(x',)') is required to be resampled to the

11



geometry of the optimum window and the procedure of minimizing the residual
differences is iterated until the accuracy requirements are satisfied. The method

determines the matching with sub-pixel accuracy.

Least squares matching has been extended by other researchers and developed into
different forms, such as the adaptive least squares matching proposed by Gruen (1985).
These algorithms are applied in different matching situations. It has been demonstrated
that least squares matching makes it possible to fully exploit the accuracy potential of
images and systems. It provides a measurement accuracy which is beyond the capabilities
of a human operator (Atkinson, 1996). Least squares matching method has been applied
in the transform domain by Reeves and Kubik (1998). Object space least squares
correlation was proposed by Wrobel (1987), Helava (1988) and Heipke(1992). Due to its
complexity with respect to implementation and handling, object space least squares

matching has been used only occasionally and under laboratory conditions.

2.3 Feature-based Methods

Feature-based methods match primitives of features within stereo pairs. Firstly, these
primitives must be extracted by appropriate image processing methods, then they are
used as the basis for matching. The extraction of features is achieved through a variety of

techniques, as will be described below.

2.3.1 Interest point matching using labelling relaxation

Scene labelling by relaxation operations was proposed by Rosenfeld (Rosenfeld et al.
1976). In this approach a set of objects in a scene is labelled by a set of possible labels. In
the beginning, these labels are ambiguous, so relationships among the objects are used to
reduce or eliminate the ambiguity. This algorithm has been extended by many
researchers for use in matching algorithms (Marr et al. 1978, Barnard and Thompson
1980, Drumbheller and Poggio 1986, Kim and Aggarwal 1987, Lo and Mulder 1992). A

detailed comparison of the labelling relaxation can be found in Price (1985).
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Based on relaxation labelling, an interest point matching algorithm was proposed by
Barnard and Thompson (1980). Matchable points should be small discrete local features
such as spots and corners which are likely to be detectable in both images. They should
be the centres of highly variable areas. This means the variance should be high in all
directions. Since the Moravec interest operator (Moravec 1977) calculates the variance of
a window in four directions: horizontal, vertical, and the two diagonals, Barnard and

Thompson selected interest points using this operator.

The selected interest points are then matched using the probability relaxation process.
Initial match probabilities are assigned to each interest point in the left image for each
possible match in the right image. These probabilities are then iteratively refined
according to the consistency property of disparity in a local area. If the neighbouring
points surrounding a current interest point have similar disparities and high probabilities,
the probability of this point having that particular disparity is increased. The iterations
continue until each point in the left image has a match in the right image, or the point is

assigned no match.

A feature-based correspondence algorithm for image matching was also proposed by
Foerstner (1986). The procedures consist of three steps. Firstly, distinct points are
selected in the images separately using the Foerstner operator. Then, a preliminary list of
candidate pairs of corresponding points is built, which is based on the similarity of the
points using the correlation coefficient. The final list of corresponding point pairs can be
derived using consistency measure algorithms. This feature-based matching is superior to
image correlation in speed and versatility and is also superior to least squares matching in
convergence, speed and versatility, but it usually has lower accuracy than area-based

matching methods.

The above approach is the basis of the Match-T. Algorithm of Match-T (Ackermann,
1991) is claimed to be a complete and highly automated DSM generation environment.
The thorough optimization of the core matching algorithms is reflected in the higher

quality of results, and a considerable speed gain is achieved by performing feature point
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extraction and epipolar computation. Match-T demonstrates the advantages of feature-

based matching techniques.

2.3.2 Edge matching based on polygon approximation and y —s
representation

Edge matching is the process to determine, among the candidates in the two images,
which edges correspond. There are many operators for finding edge elements in images.
When the edges have been extracted from the images, edge matching can be implemented
based on the attributes of edge elements, such as end point coordinates, local orientations
and local intensity profile. An edge feature-based matching algorithm was successfully
applied to stereo matching in photogrammetry by Greenfeld (Greenfeld, 1987). Later, this
algorithm was improved by several researchers (Greenfeld and Schenk, 1989, Schenk at
el. 1991). Two edges matching methods based on different representations are introduced

here.

Edges matching based on polygon approximation representation

In Greenfeld’s algorithm, the images are firstly convolved with the LOG (Laplacian of
Gaussian) operator and the edges defined by zero crossings. Since the chain code is a
simple and very useful function of a digital curve, the curves obtained from zero crossing

are then converted to the chain code representation.

The polygon approximation process involves breaking the chain code curve into
segments. The break points are chosen at points of maximum local curvature, in order to
ensure that the structure and shape characteristics of the curve are maintained. The
curvature at each point can be computed by the first and second differences of the chain

code curve.

When all edges have been extracted and converted to the polygon approximation
representation, each edge in the first image is compared with all the edges in the other
image. The matching is a selection process in which edges are considered corresponding,

according to measures of similarity and consistency.
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First, an initial list of matches is established using similarities in the characteristics of the
approximating polygon. This polygon matching algorithm is based on vertices rather than
on polygon sides. After the initial list of pairs of similar vertices are obtained, the
consistency check is used to eliminate the incorrect matches and resolve the ambiguities.
The consistency check uses voting schemes to study the geometric pattern and the inter-

relationships between the neighboring correct matches.

Edges matching based on v -s representation

In the algorithm of edge matching based on polygon approximation, some edge segments

which appear to be very similar can only be partially matched. The y-s representation

method (Greenfeld 1989, Schenk et al. 1991) is proposed to overcome this drawback.

The method commences in the same way as the polygon approximation. Edges are
obtained from zero crossings of images convolved with the LOG operator and converted
to chain codes. When the chain code representations of the edges are described in the

y—s domain, s is the index of the pixel in the curve, and y is the sum of the

differences between all neighboring chain codes up to position s. The formula is as

follows:
Y= _Zl:l(fjﬂ -/ (2.8)
1=

i=1
where y; and s; are the y —s representation at point i along the curve and f; is an

integer value corresponding to the chain code value of point j. The y —s representation

has many advantages in edge matching, such as invariance to the original position of the

edge in the image and vertices in the y-s domain corresponding to changes of

curvature in the original curve.

Edge matching in y—-s domain is the same as the matching in the polygon

approximation method. Since vertices in the y —s domain correspond to changes in the

15



curvature of the original curves and edges of similar shape have similar vertices, the

matching process requires finding the \ —s representation with similar vertices in two

steps. In the first step, a set of possible matching candidates is determined by comparing
the angles and orientations at each vertex in the left image. In the next matching step, the
possible matching points can be refined by the criteria of maximum line consistency,

which checks for consistency with neighbouring vertices on the edge. The y —s method

offers a simple and robust matching procedure.

2.3.3 Relational matching

Relational matching plays an important role in computer vision. A thorough introduction
to relational matching techniques is given in Ballard and Brown (1982) and Vosselman
(1992). The relational technique is not new, but it can be thought of as an extension of
feature-based matching. It is particularly important in image understanding. Its main
characteristic is that it collects the detected features into groups of lines or curves

depending on the particular application.

Edge pixels can be determined by a variety of edge detection operators which also
provide information on edge properties, such as gradient magnitude and direction.
Popular edge detection operators include those of Roberts, Sobel, Prewitt, Marr-Hildreth
and Canny. The type of data under consideration will determine the appropriate technique
to be applied (Russ 1995). The detected edge pixels are then vectorized, by connecting
adjoining pixels, resulting in mathematical representations of the groups of edges, rather
than physical ones. This forms a more robust technique than feature matching, since
relational matching is a high level vision process which involves matching relational

descriptions of objects.

A critical step in applying relational matching is the proper representation of the features
and their relations. Shapiro (1980) presented an example of wuseful feature
representations. Shapiro and Haralick (1981) formulated structural description as a
relational representation of a 2-D or 3-D entity consisting of a set of primitives each

having its own attributes and named relations. Successfully extracting the structural
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description of the objects tends to be highly dependent on the application. Relational
matching then involves comparing the two relations using the primitives of the structural

descriptions (Zilberstein, 1992).

2.4 Hybrid Methods

Hybrid methods combine area-based and feature-based matching methods to improve the

overall matching.

2.4.1 A stereo image matching system based on intelligent vision

A stereo image matching system based on intelligent vision was introduced by Greenfeld
(Greenfeld 1991). Instead of interpreting the matching problem as one of simply finding
similar points, he proposed that it as an intelligent vision problem should be capable of

performing stereo matching automatically.

In Greenfeld’s system, the Central Monitoring System (CMS) is the heart of the matching
system and is similar to the engine of an expert system. The goals and functions of the
CMS are to interpret the user’s request and efficiently control the feature matching,
resolve difficult matching problems and supply the products needed by the user. CMS
assigns the tasks to different modules and provides the necessary data to each process. In
turn, the various modules provide information and feedback to the CMS in order to assist
the solution of the problem areas. For example, information from the object recognition

and image interpretation can be used to guide the edge matching.

The system also includes image preprocessing, edge extraction, symbolic representation
and edge matching. The digital terrain model is generated by means of correlation
methods. Area-based correlation is performed following the edge matching, so that edges
can be used to break up images into smaller regions and constrain the correlation process.
The matched edges serve as a guide for selecting corresponding image patches. If point

positioning is required, the interest point and interpolation module is started by CMS.
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For poor textured content areas, a surface interpolation can be employed instead of

correlation.

The above system cannot be fully realized because it lacks knowledge about the cognitive
and intelligent process. Greefeld only implemented those tasks that can be realized, such
as interest point matching, DTM generation by correlation and automatic relative
orientation, but he stressed the importance of a knowledge based reasoning process for

selection of the features is stressed.

Although low level image processing has achieved some success for information
extraction from images, intelligent image understanding and interpretation have become
more important. Researchers in photogrammetric computer vision and artificial
intelligence are working on those high level image processes. The detailed review for
some algorithms used in knowledge based representation and modelling for machine

vision can be found in (Sowmya and Trinder, 2000).

2.4.2 Area-based correlation with edge information

Area-based correlation with an edge information algorithm was proposed by Cochran and
Medioni(1992). First, the original images are preprocessed to find the epipolar images.
Next, a pyramid of three image pairs is formed by convolving the epipolar images with
a Gaussian operator and subsampling by a factor of two in both directions. The area and
feature based processes are done independently to produce a set of edge features and a

dense disparity estimate. These are then combined to refine the disparity map.

e Area-based matching

Area-based matching uses a measure of the local texture in the image pair to produce
a dense disparity map by the cross correlation formula. Lack of texture causes the
matching of some selected features to be ineffective. In this algorithm, the local
variation of the image texture is computed. When there is little or no matchable
texture, a small value is returned. This is used to mark points for which no match

should be generated during the initial disparity estimation. After the above

18



processing, the initial disparities can be obtained. Then a set of constraints such as
the left and right consistency checking, order constraint and isolated pixels are
applied to identify and remove unlikely matches. Order constraint ensures two points

in the left image have the same order as their corresponded points in the right image.

e Disparity map refinement

The ambiguous points in the disparity map can be refined using edge information.
Instead of using matched edges by independent feature-based matching, the algorithm
uses the edges from one image and associates them with the disparity obtained from
the area-based matching. The advantage of this combination is that even those edges
with an orientation close to epipolar line still play an active role, but they are

discarded in all other feature-based matching approaches.

2.4.3 A stereo matching algorithm for urban digital elevation models
This method was proposed by (Baillard and Dissard 2000) and takes advantage of both
feature-based and area-based matching methods. It takes occlusions into account through
a dynamic programming optimization process. The novelty of the approach lies in the use
of several successive steps, each of them is useful for certain kinds of pixels. The system
includes the following steps:
e Edge matching
Edges are extracted from each image with the Canny filter followed by thresholding.
A local elementary similarity cost function is computed for each edge pair. This cost
function defines potential edge pairs and potential disparity values. An analysis of the
distribution of potential disparity values along edge chains leads to the computation
of the final matching cost function. The matching is then achieved by dynamic
programming (Ohta and Kanade, 1985) for each epipolar line pair. Finally, a post
processing is performed to remove local errors and guarantee the consistency of the

3D chains.

e Area-based matching
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In order to produce dense elevation data, area-based matching is performed between
the matched edge points. Dynamic programming is used again, which aims to match
the pairs of intervals defined by the matched edges in the first step. Using matched
edges as anchor points reduces the search space for corresponding pixels, therefore
decreasing the number of false matches and the computation time. During the
matching, two constraints have been used:
e A strong radiometric similarity constraint is applied in order to produce only
reliable pairs.
e A looser radiometric but a stronger geometric constraint is used to complete
the matching on unmatched areas.
This hierarchical strategy relies on the assumption that local extremes of depth along
epipolar lines are recovered as reliable pairs during the radiometrically constrained
processing. Some information about image radiometry and shadows is also computed
and exploited during the matching. The algorithm provides dense elevation values
and preserves height discontinuities. Its main drawback is the relative planimetric

inaccuracy in the neighborhood of height discontinuities.

2.5 Summary of the Image Matching Methods

Comparing the matching methods described above, both area-based and feature-based

matching techniques have inherent advantages and disadvantages.

Feature-based matching provides generally good and highly reliable results because of
the distinctive properties of features. This method is less expensive, but usually produces
fewer disparity values because the feature extraction process disregards some of the
information in the images. In some regions, few points may be matched, which leads to
large areas being subject to inaccurate interpolation on calculation (Cochran and Medioni
1992). The problem is overcome in Match-T, since advanced techniques are used, such
as interpolation from an extremely dense cloud of derived 3D points, elimination of

outliers using robust finite element interpolation and automatic adaptive DTM grid
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spacing depending on the surface curvature. High reliability and accuracy have been

achieved.

Area-based techniques are simple and have the potential to produce dense disparity maps,
but tend to be computationally more expensive. Area-based global image matching can
be designed to match at regular grid points in image space or object space, and the denser
the grid points are, the more object details can be described. Area-based methods are
intolerant to distortions caused by terrain slopes and are more suited to undulating or
smooth terrain. Area-based methods work well only if there is sufficient texture in the

image. Hence there must be adequate feature information available in the images.

In general, matching algorithms work well if there is adequate detail in the images and
fail if the content is repetitive or inadequate. After reviewing and comparing the matching
algorithms, it is clear that most matching algorithms involve the initial determination of
corresponding points, then refinement of the matches to discard the ambiguous points.
The refining process includes probability estimation and global continuity checking and
ordering constraints. These constraints are based on the assumption that disparity changes

smoothly.

The area-based matching algorithms are normally used in photogrammetry for smooth
and undulating terrain reconstruction. The feature-based and hybrid matching algorithms
are usually used in computer vision, close range photogrammetry and 3D building
reconstruction. In urban areas, since many discontinuities exist in the disparity map, a
refinement process such as those suggested above, cannot be used. Neither area-based
matching nor feature-based matching can supply sufficient accurate information for
reconstruction of an accurate DTM in such areas. DTM modelling therefore needs to
integrate multiple information cues and image understanding techniques, in addition to
geometry constraints. A DSM which preserves the discontinuities over urban areas is an
important information cue and is needed to assist automatic building extraction in urban

areas. In this thesis, a hybrid matching method for DSM generation is proposed.
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2.6 Building Extraction

Accurate 3D building representation is required for many purposes, by professionals
such as urban planners, architects and telecommunication and environment engineers.
Manual 3D processing of aerial images is time consuming and requires experienced
people and expensive equipment. A method of interpreting and accurately processing
digital aerial images for building reconstruction and integrating the results into spatial

information system is urgently needed.

Until the early 1990s, most researchers focused on detecting the buildings and extracting
the outline of the roof using a single grey-valued image together with simplified object
models. Even though the assumption of simple roof models is used, the analysis of single
image for building extraction is a very difficult task because feature correspondences
cannot be used to infer 3D and ambiguities are hard to resolve (Huertas and Nevatua
1988, Shufelt and McKeown 1993, Lin and Nevatia 1998). Over the past decade,
researchers have presented new and encouraging results from automated 3D building
reconstruction methods. Stereo matching has been proved to be an important information

cue for building extraction.

Based on the early vision studies and stereo image matching algorithms introduced in
sections 2.1-2.4, a large number of automated structure extraction methods have been
proposed (Huertas and Nevatia 1988, Liow and Pavlidis 1990, Mckeown 1991, Shufel
and McKeown 1993, Haala and Hahn 1995, Baltsavias et al. 1995, Henricsson et al. 1996,
Lammi 1996, Henricsson and Baltsvias 1997, Gabet, et al. 1997, Jaynes et al. 1997,
Haala et al. 1998 , Baillard et al. 1998, Kim and Muller 1998, Vosselman 1999, Sahar and
Krupnik 1999, Chen and Hsu 2000, Masaharu and Hasegawa 2000, Mcintosh et al. 2000,
Lu et al. 2002, 2003,). Shadow analysis based algorithms have been used (Liow and
Pavlidis 1990, Nevatia et al. 1999). Information fusion based systems have been reported
(Mckeown 1991, Haala and Hahn 1995). Methods supported by DTM and orthoimages
have also been reported (Baltsavias at al. 1995, Horiguchi et al. 2000, Straub and Heipke

2001, Brunn 2001). Considering the different shapes, environments and image intensity
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for different buildings, together with the occurrence of occlusions and shadow effects,
the automation of building extraction is a complicated and difficult procedure (Sahar and
Krupnik 1999). In addition to developing better schemes, the inclusion of more
information is an essential direction for the research. Henricsson (1998), Chen and Hsu
(2000) and Niederost (2001) used colour images to improve the system performance for
roof determination and edge extraction. Spreeuwears (1997) and Gabet (1997) used
multi-view images to reduce the effect of occlusions. Multi-image 3D feature and DSM
extraction for building change detection were proposed by Paparoditis (1998, 2001).
Laser scanner data is used by (Mcintosh et al. 2000, Masaharu and Hasegawa 2000 ,
Haala et al. 1998). Multi-resolution analysis of wavelets for house extraction has been
proposed by Shi and Shibasaki (1995). A detailed review and comparison of building
reconstruction techniques can be found in (Noronha and Nevatia, 2001, Henricsson 1998,

Collins et al. 1998).

The purpose of this research is to extract the building boundaries for more accurate DTM
reconstruction rather than extract the buildings themselves. The extracted buildings are
used to guide the DTM reconstruction in the urban areas. In the following sections, the
methods of automatic 3D building reconstruction are classified and reviewed in four

classes.

2.7 Semi-Automatic Building Reconstruction

Semi-automatic building reconstruction systems normally make use of a human operator
to choose corner points or lines in a flat building roof. Quiguer (1996) introduced a
rectangular building reconstruction method which involves manually selecting a building
corner for low level feature extraction. The extraction of high quality low level features
greatly assists high level processing. The process follows four steps:

¢ Building corners are selected manually

A building corner is chosen as a seed point. In order to compensate for wrong manual

selection, a feature point detection technique is used to ensure the seed point is a

sharp corner in the image.

23



e Detection of the first two sides

When the seed point is selected, the building sides can be detected on a single image.
The selection criteria for line detection are based on the largest gradient along a line,
and on the continuity of the magnitude and the direction of the gradient along that
line. The second line is extracted, because it is perpendicular to the first.

e Parallelogram closing

The criterion of parallelism is used to close the parallelogram which constitutes a
building. For a set of lines parallel to the first two perpendicular sides, cost function
values can be calculated. The lines which have minimum cost function values can be
chosen to close the parallelogram. The cost function integrates the homogeneity and
discontinuity information.

¢ 3D reconstruction

When a building is recognized in one image by extracting its sides, the homologous

feature in the other image can be found using normalized correlation.

The algorithm has been tested on rectangular building areas with satisfactory results.
Because the seed point is selected manually, the errors from low level line detection are
avoided, so the algorithms for parallelogram closing and 3D reconstruction of buildings
are usually successful. The algorithm cannot extract lines which have poor continuity of

gradient direction and poor contrast with the background.

Other semi-automatic building reconstruction methods have been proposed by Gruen
(1997) and Fua (1996). The semi-automatic system proposed by Gruen aims at the
automatic structuring of manually measured 3D point clouds to generate CAD models of
complete buildings. It is a reliable and flexible procedure which has a large potential to
be useful for professional practice. Fua optimized the shapes of buildings in three views
simultaneously based on rough building outlines entered into the system. This algorithm

is suitable for rectangular structures.
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2.8 Automatic Building Reconstruction Based on
2D Features

Automated construction and management of 3D man-made structures is the key part of
the research and development for image understanding systems for aerial images. Man-
made structure modelling enables efficient exploitation of the tremendous volume of
information collected by the sensors. The expected benefits are to decrease the heavy and
tedious workload for human operators. By utilizing digital image understanding and
photogrammetry techniques, measurement accuracy can also be increased. Automatic
building reconstructions are designed to extract 2D image features and group 2D features
into larger united 2D building structures based on rooftop boundaries. Then the extracted
polygons can be matched in two images using different 3D constraints. Because the
method supplies the initial roof hypotheses in 2D rather than 3D, the very complex and
difficult 2D inference must be solved in a single image. While many methods (Noronha
and Nevatia 2001, Sohn and Dowman 2001, Collins et al. 1995, 1992) have been
proposed based on 2D features, only two methods will be described here.

2.8.1 Building modelling system using rapid feature extraction in urban
areas

3D feature extraction creates many problems including those of segmentation, 3D
inference and shape description, Nevatia (1999) proposed a building modelling system
based on feature extraction. In urban aerial scenes, segmentation is difficult due to the
presence of a large number of objects that may be confused with buildings such as
sidewalks, landscaping, trees and shadows near buildings. The objects to be modelled
may be partially occluded. Based on multiple sources of data and perceptual grouping,
Nevatia (1999) used a combination of reconstruction and reasoning in 3D. Context and
domain knowledge guide the applications of these combinations. Context is derived from
knowledge of camera parameters, geometry of objects to be detected and illumination
conditions, such as the sun position. The system uses hypotheses and verification. It can
work with just a pair of panchromatic images, but can also utilize more images and

information cues from DTM and hyperspectral sensors.
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The method can be used for building modelling where the buildings are rectilinear,

relatively simple and are not close to each other. Complex buildings are decomposed into

rectangular parts. The system includes:

Processing of multiple panchromatic images: low level features such as lines and
junctions between lines, and sets of parallel lines, are matched from the available
views. These features are the basis to form roof hypotheses.

Hypotheses of potential roofs are derived from a pair of matched parallel lines or
three sides of a parallelogram. Closed hypotheses are formed from these features
using the best available image lines. If there are no available lines, the closures
are synthesized from the ends of the lines.

Hypotheses verification is used to verify whether the selected hypotheses have
additional evidence in support of the object being a building. This evidence is
collected from the roof, the walls and shadows. Each evidence parameter is
represented by smaller components of the evidence. For example, shadow
evidence is composed of smaller evidence elements such as strong junctions,
weak junctions and darkness etc. Bayesian reasoning is used to combine these
elements of evidence to decide whether a building is present or not, and how
much confidence should be placed in it.

3D roof hypotheses are inferred by searching 2D flat roof parallelograms in the
other images. This method supplies a single height for a flat roof and overcomes
the non unique results in line matching stage. Different heights can be estimated
by this method for separated parts of a building.

A methodology for evaluation of 3D geospatial building modelling systems is
used. In order to characterize the performance of the system, detection and false

alarm rates are computed.

The important part of the system is integration of information from different image

sources and sensors. This results in significant improvements in the quality of the

building reconstruction.
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2.8.2 Automated building reconstruction from multiple aerial images

An automated building reconstruction system developed by Collin et al (1998) from
multiple aerial images includes two parts. It uses 2D image features and grouping
operators to detect rooftop boundaries, and then matches these polygons under 3D
constraints. After the height is computed, a 3D volumetric model is built. The system
works successfully for flat roof building extraction. However, a considerable number of
false structures are generated due to the complexity of the scene and presence of
buildings outside of the class for which the system is designed. In order to solve this
problem, the system has been further developed by Hanson et al (2001) which
incorporates artificial intelligence techniques for dynamically controlling the image
understanding processes. The improved system can utilize a set of algorithms which fuse
2D and 3D information and make use of available information during the reconstruction

process, such as SAR and multispectral image data.

The original system included the following components
e Line segment extraction
A straight line feature extraction algorithm is used to produce a set of symbolic line
segments which represent potential building features. Firstly, zero crossings of the
Laplacian of the intensity image provide an initial set of local edges. Then,
hierarchical grouping proceeds iteratively, using measures of co-linearity and
connectedness. At each iteration, edge pairs are linked and replaced by a single longer
edge if the end points are close, the perpendicular offset is small, and the orientation
and the difference of average intensities across the line are similar.
¢ 2D polygon extraction
The aim of this step is to approximately delineate building boundaries that will later
be verified in other images by epipolar feature matching and triangulated to create 3D
geometric building models. The algorithm groups the line segments into image
polygons which correspond to the boundaries of flat, rectilinear rooftops. The
processes comprise three levels and each level generates features that are used in the

next level.
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1. The low level process uses straight line segments and corners derived
from previous step. In order to determine a set of relevant corners, if a pair
of line segments are spatially proximate, their end points are grouped
together into candidate image corner features.

2. The mid level process collates features and groups corners and lines to
form a chain. The collated feature chains are created by paths in a feature
relation graph.

3. The high level process extracts the polygon hypothesis based on the
collated feature chains. Then, polygon hypotheses are derived in order to
obtain a final set of non conflicting, high confidence rooftop polygons.

e Epipolar line segment matching

After a potential rooftop is detected in one image, corresponding geometric evidence
is sought in other images based on epipolar feature matching. The roof edge matching
often obtains multiple potentially matching line segments of the appropriate length
and orientation. The way to solve this problem is to simultaneously process multiple
images. Because the disparity of each potential match of a segment line in the rooftop
polygon supplies a different roof height, heights from each line matching are
combined in a one dimensional histogram. Each height is weighted based on the
potential line’s orientation and length. Finally, the histogram bucket supplies an
estimate of the roof height.

¢ 3D building models

A nonlinear estimation algorithm has been developed for triangulating 3D rooftop
polygons from the line segment correspondences determined by epipolar feature
matching. The algorithm determines the precise size, shape, and position of a building
model in the 3D site coordinate system. After processing, each refined 3D roof
polygon is extended vertically down to the terrain to form a volumetric model.

e Projective intensity mapping for buildings

For each 3D building model recovered by the above steps, a planar projective
transformation algorithm is developed for acquiring image intensity maps for walls
and roof surfaces. The algorithm provides a mathematical description of how the

surface structure from planar building facets maps into an image. By inverting this
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transformation using known building position and camera geometry, intensity
information from each image can be back projected to paint the walls and roof of the
3D building model. Because multiple images are used, intensity information from all
faces of the 3D building can be recovered, although not all of them can be seen in a

single image.

In order to delete the number of false buildings generated by the system, a knowledge-
based building reconstruction has been proposed based on the original system. More
details can be found in Hanson et al (2001). The original system works successfully for
flat roof building reconstruction. The knowledge-based system focuses on the use of
multiple alternative reconstruction strategies from which the most appropriate strategies
are selected by the system. The system utilizes a wider set of algorithms that fuse 2D and
3D information. It is a more robust reconstruction of 3D building models than the

original one.

2.9 Automatic Building Reconstruction Based on
3D Features

The approach of this automatic building reconstruction method generates the roof
hypotheses based on 3D information rather than firstly grouping the 2D features. 3D
information can consist of high quality DSM and 3D features extracted at the early stage.
The difference with respect to the automatic building reconstruction based on 2D features
is that the 2D grouping problem does not have to be solved before inferring 3D
information. The choice of the automatic building reconstruction based on 2D features or
3D features, depends on which one can be achieved more easily, and on the available

data, algorithms, the complexity of the scene and the building models.

There are many methods based on 3D features ( Paparoditis et al. 2001,1998, Straub and
Heipke 2001, Horiguchi et al. 2000, Fischer et al. 1998, Haala et al. 1998 ,Haala and
Hahn 1995, ). Only three methods are described here.
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2.9.1 3D building reconstruction from aerial images
Henricsson proposed an algorithm of man-made object reconstruction from aerial images

(Henricsson, 1996) as illustrated in Figure 2.1.

A digital surface model (DSM) is a rich information source for building detection, but
must have high accuracy and sufficient density. It can be obtained from area-based
correlation or hybrid matching methods. Combined analysis of colour images can detect
3D building blobs which are the approximate positions of buildings and supply guidance
for 2D feature extraction and feature matching. 2D edges are extracted from a source
image. Photometric and chromatic attributes and their similarity relationships of the
edges are computed. The extracted edges are matched in the multiple stereo image pairs
by maximizing a function of the gradient along the epipolar line. Geometric and
photometric constraints are also used to reduce the number of mismatches. After
computing the 3D location of these edges, planes can be obtained by grouping 3D edges.
In addition, 2D enclosures are extracted and combined with the 3D planes to create 3D
roof primitives. All extracted hypotheses of 3D parts are ranked according to their
geometric quality. Finally, the best set of 3D parts that are mutually consistent is retained,

and can be used to define the reconstructed buildings.
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Figure 2.1 The system of man-made object extraction

The majority of research on building reconstruction relies on the use of edge or point

based features and their 2D or 3D geometry. Many algorithms rely on the assumption that
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man-made objects possess a large amount of geometric regularity, mostly in the form of

flat rectilinear roofs. However, these very constrained geometric models may be

appropriate for isolated buildings with single flat roof, but not for the majority of

suburban and urban buildings. In order to automatically reconstruct a general class of

roof types in 3D with a high metric accuracy, Henricsson (1998) further developed his

3D building reconstruction system. The difference between his system and other

algorithms is not only the extensive use of colour attributes and similarity relations, but

also the far-reaching goal to reconstruct a general class of buildings. The advantages of

his system are as following:

Based on the colour cues, the important role of colour region attributes and
similarity grouping in automated 3D building reconstruction was demonstrated.

A novel framework for grouping contours based on similarity grouping is
proposed, using similarity in orientation, position, and photometric and chromatic
regional attributes. This general grouping technique efficiently extracts
hypotheses of roof parts and is also general enough to extract hypotheses of other
man made objects.

The system shows that although the geometric regularity is important, it cannot
serve as the only basis for extracting complex structures for which no generic
models exist. The system demonstrates that colour is a very important cue in
reconstructing a general class of objects. A general class of object parts can be
efficiently extracted by grouping edges and lines by means of similarity, not
geometric regularity.

All available data and information should be retained throughout the entire
process and be shared among the individual processing modules as it becomes
available. Combining colour region attributes and grouping, the system shows that
not only the symbolic features are important but also their attached rich image

attributes.
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2.9.2 Statistical interpretation of DTM and image data for building
extraction

In building extraction, statistical interpretation of data in combination with DTM and
image data becomes increasingly important, because many works are based purely on
geometry and lack open interfaces to non geometric information. A statistical approach
which models and operates on geometric and semantic relations, has been proposed by
Brunn (1998, 2000) to give a framework for integration of models of multiple types and
of multiple sensors data.
o The statistical detection of buildings in multi-sensor data
A raster DSM has been generated and the DTM is extracted by morphological
filtering from the DSM. The normalized DSM is derived by calculating the
difference between the DSM and the DTM. A Bayesian Net (BN) is constructed by
meta rules, which makes the approach independent of size and resolution of the
datasets. Each random variable of the BN is used for classification. It comprises
probabilities for the detection of a building object or a non building object. The
probabilities for different objects have different evaluated information which are
obtained from observation and prior knowledge. The observation information can be
the height values of normalized DSM, step edge magnitudes and the variances of
DTM surface, as well as colour. For the prior knowledge, the appearance of the
objects as a building and as a non-building in all datasets is learned. A user is asked
to mark some pixels in one dataset where the objects such as buildings and non-
buildings are found. Empirical distributions of both objects on each sensor data type
can be obtained. All information features are transformed into probability
distributions. The detection procedure based on Bayesian nets calculates the
probability distributions of building hypotheses and of other non-buildings, and

finally gives a bounding polygon which encloses the complete building.

e Interpretation and reconstruction of buildings using their topology
In order to reconstruct the buildings, an approximate description of the building is
generated using a new method called simplicial complexes. It is a graph

representation and describes the topology of building surface. The basic elements of
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this representation are called simplices. Because the topology is independent of the
sensor type used, the topology of the surface can be used as the base representation

of the building.

Simplicial complexes consists of 0, 1 and 2 simplices, to represent the topology of
the surface of buildings. Each simplex is associated with some appearance attributes,
such as geometric or radiometric. The meaning of classified simplices for geometric
model is as following:

e (O-simplices are corner points, edge points on the borders of two building

planes, and face point inside one plane of the building.

e l-simplices are breaklines, face edges inside one building plane.

e 2-simplices are vertical, oblique and horizontal faces.
The interpretation is done by classification of the simplices of the building
representation using statistical models. During this processing, a set of interactively
classified simplices could be evaluated, and an optimum graph representation which
includes the attributes is chosen. After this correction of the appearance of the
building, different buildings are reconstructed. This method combines geometric and
semantic relations, and models multiple building types, but it depends on the prior

knowledge learning.

2.9.3 Automated house extraction based on wavelet transform

The physicist Grossmann and Morlet introduced the concepts of “wavelet” and “wavelet
transform” in 1984. After a large amount of work of many researchers (Mallat 1989,
1992, Daubechies 1988, 1992, Chui 1992), it has been proved to be practical in both

signal analysis and image processing.

In two dimensional wavelet transform cases, for a scale increase, the resolution increases
in the spatial domain and decreases in the frequency domain. This is the advantage of the

‘.

wavelet transform which can be used to “zoom in “ and “zoom out” on very sharp
changes, such as discontinuities in images. Taking advantage of this, Shi (1995) proposed

automated house extraction system based on wavelet transforms. The system includes:
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¢ Multiscale feature extraction based on wavelet analysis

A directional wavelet transform model for images is used, from which local extremes
and zero crossings can be found and used to detect the sharp variations of images.
The results of wavelet transform show that not only the edges in an image can be
detected, but also their orientations. Furthermore, the local maximum can also

characterize the local shape of the sharp variations.

By analyzing the shape of wavelet transform of 2”7 resolution under the first and
second derivative, the modulus of transform near the corners of a man-made structure
reaches a peak. It is therefore easy to extract the corners of man-made structures such
as houses by searching the local peaks. In addition, the information about the type of
comner, either a convex corner or a concave corner, can also be obtained. Such
information is significant and useful for the image segmentation and stereo matching,
because the corners can be used as the seeds in region growing and the number and
types of corners are very important constraints for stereo image matching and pattern

recognition.

e Region segmentation based on wavelet transform

A multi-resolution analysis based on wavelet theory is used in image segmentation.
Local maxima, zero crossings, contrast sign of zero crossings and corners are
extracted, then a seed-based region growing algorithm has been implemented using a
coarse-to-fine procedure. The attribute parameters of regions are calculated for

region matching (Shi and Shibasaki,1995).

The object which is unable to be extracted at high resolution may be extracted at the
low resolutions. The efficiency of a region segmentation algorithm is higher than
that of either a split-and-merge algorithm or seed-based region growing methods,
because only features such as edges and corners will be taken into account in the
procedure, whereas every pixel of an image should be processed in region growing
algorithms. The final regions of the image segmentation will be uniform and

homogeneous with respect to some characteristic, such as gray level or texture.
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e Hierarchical image matching based on multi-features

Two kinds of hierarchical stereo matching schemes corresponding to the above
selected features are proposed in this matching system. One is the coarse-to-fine
stereo matching scheme which performs the feature-based stereo matching in
different scales. The other is the hierarchical stereo matching scheme in which
matching based on regions, lines and corners is carried out at each scale. The system

is successful on flat roof scenes (Shi and Shibasaki, 1995).

2.10 Automatic Building Reconstruction Based on
Laser Data

Airborne laser scanning data supplies a new technique for the highly automated
generation of digital terrain model and surface models. Laser scanning and
photogrammetry are two complementary techniques and their integration can lead to
more accurate and complete new products. A new application of laser scanning is the
automatic reconstruction buildings in the urban areas for city modeling. (Ackermann,
1999, Baltsavias, 1999). There are many methods in literature on the extraction of
buildings from laser scan data (Masaharu and Hasegawa 2000, Vosselman, 1999,
Axelsson, 1999, Haala et al. 1998, Hug, 1997). It is beyond the scope of the thesis to

review all these methods. Hence, only methods which also use images are reviewed here.

2.10.1 Improvement of automatic DSM generation for automatic
building reconstruction using laser scanner data

Laser scanning data is an efficient and accurate method to obtain visible surface
information, but the data only provides coordinates. Additional terrain information, such
as breaklines, is not available. The location of surface discontinuities may be detected by
a planar segmentation method, but the accurate positions cannot be obtained. A method
of merging the accurate terrain information from images with the laser scanner data was
proposed by Mcintosh, et al (2000). The method can supply more accurate DSM data for

automatic building reconstruction than either of the two separate data sets. Surface
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matching and data fusion are the key ideas of the method. The algorithm can be

implemented using the following components.
e Surface registration
Although photogrammetric data and laser scanner data should theoretically be on the
same coordinate system, systematic errors in the laser data may cause a misalignment
between the two surfaces. The errors must be eliminated before data fusion can be
performed accurately. The algorithms for surface registration have been proposed by
Schenk et al, (2000) and Habib and Schenk (1999).
e Image edge extraction
Firstly, the optimal zero-crossings operator (Sarkar and Boyer, 1991) is used for the
detection of the edge pixels. Then the connected edge chains are found based on
analysis of the edge pixels and straight line segments are determined.
e Line segment matching
Line segments are compared using the correlation coefficient for corresponding
points between line segments based on epipolar geometry. Two segments which have
the highest average correlation coefficient can be chosen from many potential
matching segments and labelled as correctly matched line segments.
e Line segment reconstruction
3D coordinates of the line segments are calculated using the interior and exterior
orientation parameters of the aerial image. The accuracy can be checked by
comparison with the range of elevations of the laser data.
o Filtering laser data
The laser data is classified as either ground, vegetation or building points based on
the spatial frequency of the data. The laser points nearest the breaklines derived from
image analysis are checked and determined whether they are associated with a
building. The laser data can be used to detect the roofline of buildings and also the
ground surface near that roofline.
e Surface discontinuities
The most important edges to be detected are the discontinuities between the roof and
the ground. The detection of breaklines is difficult and the results depend on the

image and algorithms. When the breaklines representing the roof are detected, they
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will be projected vertically onto the ground surface to produce a new breakline in the
DSM. The elevation of the ground surface at the location of the added breakline must

be determined by searching the laser data in the areas surrounding the breakline.

An integration algorithm to improve the automatic DSM generation for building
reconstruction using airborne laser scanner data has been tested (Mcintosh, et al 2000).
The results show more accurate DSM can be obtained for automatic building

reconstruction.

2.10.2 Automatic reconstruction of buildings in laser scanning data for
disaster management

After a strong earthquake, many areas are not accessible because of the blocked streets
and the risk of collapsing buildings. Rapid automatic reconstruction of buildings and
change detection in buildings using laser scanning data is an important requirement for
disaster management. Steinle and Vogtle (2001) proposed a system for this purpose.
Because the reconstruction of post-disaster building models should consider missing
components of buildings and roofs, changes of object size, shape and structures, which
cannot be described by planes, the system is independent of rectangle or parallel edges.
The system includes:

¢ Finding the objects with height above the ground

In order to find these objects, the normalized DSM is calculated based on the

difference between the original DSM and a digital terrain model (DTM) of the same

area. Then all 3D objects with significant size and height are segmented by a region

growing method. The purpose of this segmentation is to separate 3D objects areas,

from all smaller and lower objects.

e Spectral signature

The spectral image can be used to discriminate buildings from trees and bushes. In

the past, an additional sensor had to be used to obtain the spectral image during the

same flight. However, new generation of laser sensors involve an integrated system,

where not only the DSM may be derived, but also the spectral intensities of the laser

pulses can be recorded in the near infrared domain.
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e Analysis of the laser data

Laser data has been analyzed using the height texture parameters. One of these
parameters, obtained by a Laplace operator, can be used to distinguish between
vegetation and buildings. The local curvature, which is the difference of two
subsequent gradients, is used to find the areas of significant height texture.

e Normalized vectors

In the planar areas, such as roofs, all normalized vectors have the same direction.
However, within tree surfaces, the normalized vectors have different directions. This
feature can be further used to support the discrimination of vegetation and buildings.

e Shape and size parameters

In order to calculate the shape and size parameters of the segmented 3D objects with
height over the ground, a vectorization has to be carried out to provide 2D contour
lines of each segment. All information from the above steps is input to help calculate
the features of the regions and separate buildings from all the other objects. The final
building hypotheses can then be created.

e Reconstruction and modelling of buildings

Building reconstruction method is strongly influenced by the application. For
estimating the changes and damage to buildings caused by a disaster, a fast building
reconstruction to support rescue activities is need. It is not necessary to reconstruct
the highest level of detail of the buildings. The resulting building models are used not
only to overview the damaged situation, but also to find a suitable rescue method. A
building reconstruction process is proposed which is strongly based on segmentation
of roof planes in a laser height data set. Using the roof segmentation, the
neighbouring relations are detected to build up the topology of the roof parts. The
intersection of the adjacent planes and building edges can be derived. Intersecting
these building edge lines leads to the estimation of building corners and the correct

length of the edges.

This automatic 3D building reconstruction is based on dense height data from laser

scanner techniques and spectral images. The system is suitable for fast data derivation of
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large areas after an earthquake disaster. Reconstructed building models are approximated

by planar surface, without the need to form rectangle or parallel edges of buildings.

2.11 Summary of the Building Extraction
Techniques

Sections 2.6-2.10 have presented a wide range of building reconstruction techniques
which have been described in literature. After reviewing and comparing the building
reconstruction algorithms, it can be concluded that most use a bottom-up process by
extracting building features and components, then reconstructing the components into
building models. One of the objectives of this thesis is to investigate automatic building
extraction techniques for 3D terrain reconstruction over urban areas. While complete
building reconstruction systems have been described in this review, the locations of
building outlines are of primary interest in this thesis rather than the actual complete

construction.

Semi-automatic of building reconstruction techniques discussed in this chapter will not
usually be suitable because they require manual input. Laser scanner data is a new

technique and complements the photogrammetric methods, but it is expensive.

Automatic building reconstruction based on 2D and 3D features using multiple data
sources will be the approach taken in this thesis. It is a complex research task which
cannot be solved by a single step, and must be solved by a combination of different
techniques. Automatic building reconstruction based only on 2D features, involves
extracting 2D image features and grouping them into 2D building structures based on
rooftop boundaries. Because this method supplies the initial roof hypotheses in 2D rather
than 3D, 2D inference of building boundaries must be solved in a single image. On the
other hand, the approach of building reconstruction based on 3D features generates the
roof hypotheses from the 3D information, but the matching of the features creates

problems.
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The work in this thesis is concentrated on building boundary extraction for DTM
reconstruction. It combines the above two techniques. 3D information such as DSM, with
addition information extracted from the 2D images is used to locate building areas. Then
2D shape modelling is used to delineate the precision building boundaries. Because the
shape modelling is undertaken over a small area, the complicated and difficult 2D
inference based on multiple information datasets can be overcome. Finally, a data fusion
method has been used to evaluate the extracted building regions. The approach uses a
combined image analysis and understanding technique, which enables greater reliability
in the image analysis, and is essential for providing a more accuracy DTM. The details of

this method will be given in Chapter 3.

2.12 Architecture of the Proposed Automatic
Building Extraction System

In this section, the automatic building extraction system developed in this study will be

introduced. The main purpose for developing this system is for DTM reconstruction over

urban areas. In order to achieve this aim, the methods chosen for this system should be
based on the following principles:

o The methods should have the ability to differentiate buildings from other objects
above the ground surface.

As described in the sections 2.3~2.5, stereo image matching in urban areas results

in errors in the elevations derived by conventional image matching techniques,

because the matching is made on the top of buildings and trees. In order to

provide more accurate DTM, the characteristics of the terrain cover, such as

buildings and trees, must to be determined to predict errors in the computed

elevations.

e The methods should include integrated image understanding techniques to
interpret the content of the aerial image for building extraction.
In order to differentiate buildings from other objects, the spectral content of the

image is needed to classify and interpret the image. However, in urban areas, the
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Intensity of an object in an image may vary greatly due to the image noise, its
texture, weather conditions, sun angle and slope, etc, leading to incorrect
classifications. Therefore, the methods adapted for this system will use

classification in addition to other methods of object identification.

In the previous sections, it has been recognized that automatic building extraction
cannot be solved satisfactorily by a single step and must be solved by a
combination of different image interpretation techniques. The approach taken will
depend upon the information that can be extracted from the data. When there are
insufficient observed or measured values derived from the images, an ambiguous
interpretation may result. Hence the integration of information from multiple data

sources has been shown to be an essential procedure for interpretation of image.

The approach taken in this research involves the extraction of building boundaries
to guide the DTM reconstruction.

In section 2.4.3, a stereo matching algorithm for urban digital elevation models
(Baillard and Dissard 2000) is introduced, in which edge features have been used
to guide DTM reconstruction. The method shows that such features are important
for urban DTM reconstruction. Boundaries of building are superior evidence for
feature extraction than isolated pixels and edges, because they are connected
edges and present meaningful regions. When building boundaries have been
extracted in the left and right images, they indicate the existence of buildings. As
a result, in producing dense elevation data, area-based matching can be performed
between the matched building regions. Then using matched buildings as seed
regions reduces the search space for corresponding pixels on each images, thereby
decreasing the number of false matches and the computation time. For each
building region, the DTM can be interpolated from the neighbouring terrain points

or a building region can be assigned the same elevation value.

The methods can supply reliable extracted buildings based on evidential

evaluation from statistical theory.
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The complex urban scene and drawbacks of the algorithms can result in wrongly
extracting building regions. The methods are required to evaluate the reliability of
the evidence of buildings and delete those buildings that have been wrongly

identified.

Figure 2.2 illustrates the architecture of the proposed automatic building extraction
system to aid the reconstruction of elevations from overlapping aerial or satellite images
over a variety of terrain types and ground cover. It consists of four main modules. Based
on the above principles, the following methods for combining multiple data sources have

been chosen for the automatic building extraction procedures.
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Figure 2.2 The architecture of the proposed automatic building extraction system
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The aim of module 1 is to extract a DSM and shown in Figure 2.2, the functions of data
acquisition and pre-processing, are to acquire the images in digital form and produce
epipolar images from the original left and right images for the subsequent processes by
interior orientation and exterior orientation. The detail description of this method of

image matching and DSM extraction will be given in Chapter 3.

As shown in section 2.9, Henricsson (1996) used DSM to detect 3D building blocks
which can supply evidence for 2D feature extraction and feature matching, while Brunn
(1998,2000) statistically detected buildings based on DSM. Therefore, it has been shown
that DSM extracted by stereo image matching provides important information cues for
automatic building extraction, since 3D information reduces ambiguity in the
interpretation of the images. In this study, DSM is required as evidence to differentiate
the buildings from other objects. Elevation areas above the terrain surface are likely to be
buildings and trees, while objects with elevations similar to the terrain surface are likely
to be grassland, cultivated areas or road. In order to supply accurate DSM for subsequent
building extraction, a robust hybrid-based image matching and least square matching
with robust estimation algorithms have been tested as an approach. The contribution of
the methods is to supply greater accuracy in the computation of disparities in the images

for areas where discontinuities caused by buildings and trees exist.

The module of low-level image analysis and interpretation (LLIAI) shown as module 2 in
Figure 2.2, aims to extract significant features from images and classify the images into
the meaningful regions, to reveal the building interest areas using classification and
spectral analysis techniques. It includes the following processes and is discussed in
Chapter 4:

e Preliminary image analysis using unsupervised classification

o Segmentation of the results of the classification

e Spectral analysis based on Normalised Difference Vegetation Index

(NDVI)
e Spatial analysis modelling combining the four data sources to extract

building interest areas.
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Classification techniques, which include supervised and unsupervised methods, are
widely used in remote sensing (Richard and Jia 1999, Chen at al 2000). In this study, an
unsupervised K-Mean clustering procedure is used because supervised classification is
dependent upon correctly choosing the spectral classes in the regions of interest. For
supervised maximum likelihood classification, each class is to be modelled by a normal
probability distribution. If a class happens to be multimodal and this is not resolved, then
the modelling cannot be effective and some pixels could not be classified correctly. Users
of classification techniques can only specify the information classes, but would have little
idea of the number of distinct unimodal groups that the data falls into in multispectral
space. Clustering method can be used for this purpose (Richard and Jia 1999). It has been
applied in many data analysis fields to enable inherent data structures to be determined.
K-Means unsupervised classification calculates initial class means evenly distributed in
the data space and then iteratively clusters the pixels into the nearest class using a
minimum distance technique. The image is segmented into classes representing by class
1, class 2 etc.. Based on the label number, the user can label those classes to
corresponding ground cover types. To eliminate the small number of pixels which have
not been correctly classified and result in poor segmentation, a basic approach for
integrating spatial contextual information with a spectral classifier involves post
classification techniques. A majority filter, which examines spatial patterns of class labels
within a local neighbourhood of a given pixel, and reclassifies pixels depending on class
frequencies within this neighbourhood has been used in this study. Post classification
partitions a classified image into meaningful regions and associates the regions with

spatial attributes.

Since it is not possible to differentiate buildings from trees by the DSM only, further
image classification is required to assist this task. Baltsavias et. al (1995) introduced a
method which can distinguish buildings from trees based on analysis of the histogram of
the orientations of edges of the regions. This method is only effective for regularly
shaped buildings. Henricsson (1996,1998) described a method of colour attributes and
similarity grouping in 3D building reconstruction. He proved that colour is a very

important cue in reconstructing a general class of buildings. NDVI transforms
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multispectral data into a single image band representing vegetation distribution.
Therefore, in this study, NDVI method has been used to differentiate the vegetation from
buildings based on their spectral response in suburban areas. NDVI and DSM combine to
assist in determining the difference between vegetated and non-vegetated objects above
the ground. Areas that are above the surface with low NDVI are likely to be buildings,
whereas areas above the surface with high NDVI are likely to be trees. Areas with
heights similar to the earth’s surface and a high NDVI are likely to be grassland or

cultivated areas.

In order to extract building interest areas, a spatial analysis modelling is required to
combine the above four data sources of DSM, land cover classification, the results of the
post classification and NDVI, which represent 2D and 3D information and are indicated
by blue in Figure 2.2. This integration is implemented during interpretation and supplies
‘building interest’ areas for further shape modelling. The spatial analysis model is a
multistage decision method and consists of a number of connected decision nodes. Each
decision node only performs part of the segmentation task. The advantages of using a
multistage decision method in the spatial analysis model are that different data sources,

different sets of features and even different algorithms can be used at each decision stage.

Level set modelling based image segmentation (LSMBIS), shown as module 3 in Figure
2.2 is used to precisely delineate the boundaries of buildings. Because of its importance

in this research, it will be described in detail in Chapter 5.

The building interest areas detected by the module 1 and module 2 only indicate that
buildings may exist, but the method does not supply the boundaries of the buildings.
Hence, as explained earlier, an algorithm is required to extract the building boundaries.
Although the building boundary extraction methods have been described in sections
2.8~2.9, the difficulties mentioned in section 2.11 still exist. In order to precisely extract
the building boundaries, 2D shape modelling based on the level set method is used. The
level set method for curve propagating interfaces is based on mathematical and numerical

work of curve and surface motion. It offers a highly robust and accurate method for
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tracking curve interfaces moving under complex motions based on user input. This
method has not previously been applied for complicated urban image analysis. The
multiple data sources used for interpretation and integration above, result in the
modelling of shapes for extracted building interest areas. This enables level set shape
modelling without user input. The method also overcomes the complicated and difficult
2D inference in a single image. Since the evolving function in the level set method is
associated with edge information in the image through a speed function, the precise

building boundaries can be obtained.

Multisource evidential reasoning based region evaluation (MEBRE) shown as module 4
in Figure 2.2 is based on multisource evidential reasoning and evaluates the regions using
the combination of uncertain evidence from multiple information sources. Uncertainty

estimation, based on Dempster-Shafer evidence theory, is presented in Chapter 6.

After the building boundaries are extracted, according to the principles on which the
methods for the system are based, a method is required to evaluate the reliability of the
extracted building regions. The multiple data sources present the same scene, so they are
partly redundant. Since they may highlight different characteristics, they are also partly
complementary. None of the data sources provides completely decisive and reliable
information. In addition, the information is often imprecise and uncertain. The aim of the
evaluation 1s to improve the decision by increasing the global information while
decreasing its imprecision and uncertainty, by making use of redundancy and
complementarity. Data fusion techniques have the ability to interpret simultaneously
information from multiple data sources, in order to obtain correct conclusions, and hence
will be used in this study. Three main numerical data fusion techniques are the
probabilistic methods, fuzzy set theory and Dempster-Shafer (Hegarat-Mascle et al
1997). The limitation of probabilistic method such as Bayesian inference is that the
imprecision of measurement cannot be modelled. Although the fuzzy fusion approach
enables the analysis of many combinations, they must be selected by the user. The
advantage of Dempster-Shafer evidence theory is that it provides estimations of

imprecision and uncertainty of the information derived from different sources. The
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Dempster-Shafer data fusion technique has not previously been applied for evaluating the
reliability of building areas. It provides the theoretical basis for evaluating the reliability
of the extracted buildings by a statistically-based classification. It can be used to combine
the knowledge from several data sources of the same region, to find the intersection of
propositions of extracted information derived from these datasets, together with the

associated probabilities.
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CHAPTER 3

Stereo Image Matching and DSM
Extraction

3.1 Introduction

In this chapter, the focus will be on stereo image matching and the DSM extraction. The
analysis of single images for building extraction is a very difficult task because it often
leads to an ambiguous solution. A DSM derived from stereo image matching is an
important information cue for building extraction. Processing steps for stereo image

matching and DSM extraction are shown in Figure 3.1 and highlighted in green.

Two approaches for producing a better quality DSM are proposed in this chapter. The
first is robust hybrid-based image matching algorithm developed in this study, described
in section 3.2. The algorithm combines cross correlation with edge information and
supplies a disparity map which preserves the discontinuities in the images. The second is

a least square matching using robust estimation, described in section 3.3. The algorithm
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can detect breaklines in the images and supply greater accuracy in the computation of

disparities in the discontinuous areas.
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Figure 3.1 DSM extraction in the architecture of the proposed automatic building extraction system

3.2 Robust Hybrid-based Image Matching
Algorithm

In order to produce an accurate DSM for subsequent building extraction, a more accurate
and robust image matching algorithm has been developed and tested. It considers the

discontinuities caused by the man-made structures and trees in the images and supplies
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more reliable building areas which would not be recovered if existing area-based

matching algorithms were used.

The algorithm uses area-based stereo matching method with information derived from
feature-based processing. Figure 3.2 illustrates the overall flow through the new

algorithm.

In summary, left and right epipolar images are input to the system. Area-based image
matching is used to produce a dense disparity map in which buildings should appear
higher than the terrain surface. At the same time, the left image is used to produce an
edge map defining the edges of objects. From appropriate start points for region growing
and boundary tracking, the object areas such as buildings can been found in the edge
map. Then the results from these two parts of Figure 3.2 are combined to produce a dense
disparity map which preserves depth discontinuities. This algorithm takes account of the

discontinuities in the images and supplies a more accurate disparity map for the further

processing.
Sobel edge detector ¥  Edge map Reg_ion Y Object

| LOG edge detector growing areas
Leﬁ Seed of region A
fmage | | rowin

> Local extreme points £ & —
Right v Adaptive Final disparity
image —® Area-based matching ¥ Disparity map *—| smooth filter map

Figure 3.2 Procedure for new image matching algorithm

3.2.1 Area-based image matching

As discussed in Chapter 2.2, area-based matching procedures are based upon the
correlation between the pixels in small windows surrounding the corresponding points in
two images. There are a number of methods that can be used to find the corresponding
points. The correlation equation has been introduced in Section 2.2.1. Since a zero mean

normalized correlation coefficient (Wang, 1990) is not affected by brightness difference
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of the left and right images, it has been used to determine a dense disparity map for the

robust hybrid-based image matching algorithm.

3.2.2 Feature-based processing

The disparity results obtained from area-based matching could be subject to inaccuracies
of up to half a window width, due to the averaging effect caused by using a window of
significant size for matching (Gonzalez and Woods 1992). In the disparity map, this
would be revealed as poorly defined object discontinuities. Matching on buildings and
tree tops are also obvious problems. In order to correct the disparity values at the
discontinuities, a feature-based extraction procedure has been used to support the image

matching.

The Sobel operators have the advantage of providing both a differencing and a smoothing
effect. Since derivatives enhance noise, the smoothing effect is a particularly attractive
feature of the Sobel operators. Laplacian of Gaussian (LOG) operator combines the two
operations of the second derivative and Gaussian filter. As shown in Figure 3.2, the left
image has been processed using both Sobel and Laplacian of Gaussian edge detectors.
Because the edges can be extracted by thresholding the gradient magnitude derived by
Sobel operator, the width of the edges can be more than one pixel. The edge map from
LOG operator can include the zero crossings of noise. In this study, the combined edge
map from the two edge detectors has been used to keep the true edges. Based on the
results of the Sobel edge detection, local maxima of the edge gradient magnitude can be
extracted. The points which are in both the combined edge map, derived by two edge
operators, and local maxima map were used as the seeds for region growing. Then a seed
based pixel to pixel boundary tracking procedure was performed to extract the building
boundaries. The method is effective because only the points on the edges will be taken

into account in the procedure and it is not necessary to process every pixel in the region.
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3.2.3 Adaptive smoothing filter

An adaptive smoothing filter (Saint-Marc et al, 1991) smoothes a signal while preserving

discontinuities. This is achieved by repeatedly convolving the signal with a small averaging
mask, weighted by a measure of the signal continuity at each point. Let /¥ (x,y) be the
image before smoothing. The smoothed image 7¢*"(x, y) at the (¢+1)th iteration is simply

shown as following:

1 +1 +1
1 (5,3) = 2L ety ) W (x4 )
i=1 j=1
_Gi+G;
WOy m e P (3.1)

+1 +1
N (D= w D (x+i,y+ j)
i=-1j=-1

G, and G, are gradients in x and y directions. The parameter k determines the

X

magnitude of the edges to be preserved during the smoothing process.

When w"(x,y)=1 for all (x,y), the filter smoothes the data equally everywhere, even
across the discontinuity areas. If the locations of these discontinuities are known, then
the corresponding weights at these points can be set to zero in the filter window, so that
no smoothing near discontinuities would occur at these points. Averaging will not occur
for points belonging to regions separated by discontinuities since the filter is limited to 3
x 3 in size. For points along discontinuities or points next to edges, the repeated
averaging process would force them to be assigned to one of the nearby regions, for

example, the region for which they have similar disparity values.

In this procedure, an adaptive smoothing filter is applied to the disparity map derived by
area-based matching. Since the area-based matching algorithm has an averaging effect on
the disparities and hence causes blur in the disparity map, some discontinuity information
may be lost. By only using the disparity map and an adaptive smoothing filter, it is still

difficult to recover the discontinuities in the depth information. The weights used for the
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adaptive smoothing filter of the disparities are obtained from both the disparity map and
edge locations from the feature-based processing. These weights are converted to binary
maps and then added, because this is a simple and easy process to implement. After the
adaptive smoothing filter with the combined weights is applied to the disparity map, the
depth discontinuities should have been enhanced because the weights force the pixels to
be assigned to different regions based on the discontinuities. The discontinuities become
the boundaries of regions with significantly different height values. The accuracy of the
method is dependent on the quality of the disparity values from the area-based matching

and the weights derived from edge detection.

Figure 3.3 illustrates some test results of this method. Fig. 3.3(a) and Fig. 3.3(b) are a pair
of aerial images with 67 x 162 pixels in the row and column directions respectively.
Fig.3.3(c) illustrates the disparity map obtained from area-based stereo image matching
based on correlation coefficients. Fig. 3.3(d) is the result of Sobel edge detection on left
image. The result of threshold of Fig. 3.3(d) is Fig. 3.3(e), in which edges are too wide.
Fig. 3.3(f) shows too dense edges derived from LOG. Since edges in Fig. 3.3(e) and 3.3(f)
are not satisfied, the final edge map from original left image is Fig. 3.3(g), which includes
the pixels in both edge maps derived from Sobel in Fig. 3.3(d) and LOG edge detection in
Fig. 3.3(f). Fig. 3.3(h) is the left image processed only by adaptive smooth filter. Fig. 3.3(i)
is the result of Sobel edge detection for Fig. 3.3(h). Fig. 3.3(j) is the threshold result of
Fig. 3.3(i). Fig. 3.3(k) shows the edges from LOG and Fig. 3.3(1) is the final edge map
from smoothed left image. Comparing Fig. 3.3(g) with Fig. 3.3(l), the latter shows some
false edges deleted and is more suitable for further processing, since this will enable fast
and reliable region growing. Fig. 3.3(m) shows the seed points for boundary tracking
which are in both the edge map and local maxima map. Fig. 3.3(n) illustrates all the tracked
boundaries. There are no seed points on the black edges, so they will not be tracked and
can be deleted. Some grey edges are tracked, but they are not closed and can also be
deleted. Fig. 3.3(o) shows the final tracked boundaries, on which the gaps have been filled.
Fig. 3.3(p) shows the weights derived from Fig. 3.3(c), while Fig. 3.3(q) shows the weights
from Fig. 3.3(p) and Fig. 3.3(0). Fig. 3.3(r) is the final disparity map which is related to the

heights, and the discontinuities in building areas can be obtained.
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Figure 3.3 Test results of a matching algorithm based on adaptive smoothing

This matching algorithm is a hybrid method which combines cross correlation with edge
information. The contribution of the method is that disparity map preserves the
discontinuities in the images and can supply more robust DSM for further processing.
Investigating the stereo images 3.3(a~b), it can be found that the buildings and trees have
the higher elevations. In Figure 3.3 (r), bright grey level represents higher disparity values,

while dark represents low disparity values. The disparity values in Figure 3.3(r) prove the
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buildings and tree have higher elevations. Comparing Fig. 3.3(c) with Fig. 3.3(r) it is clear
that the discontinuities around the building area have been enhanced. Because the building
information in the disparity map is important for subsequent processing, robust hybrid-

based image matching algorithm can supply more reliable result.

After determining the disparity map, the 3D world coordinates of the object points
represented by the pairs of corresponding pixels in two images can be determined by
triangulation, using the image coordinates and known orientation of the images. Based on

this transformation, the final DSM can be obtained.

3.3 Least Squares Matching Using Robust
Estimation

Like the cross-correlation method, the least squares matching algorithm is based on a
finite window size and a single disparity value is computed for each window. Hence, it
does not work well in the case of windows that include breaklines, or sudden changes in
disparity. A further stereo image matching algorithm has been developed based on the
least squares formulation, together with robust estimation and weight constraints. It
overcomes some of the drawbacks of the least squares method and detects the breaklines

and disparity changes during the matching.

3.3.1 Robust estimation theory
A brief introduction to robust estimation is provided first, based on details from (Huber,
1981, Hampel et al., 1986, Rousseeuw et al 1987, Zhang 1995, Zhang et al 1995). Robust

estimation techniques enable the location and rejection of outliers in data. Assume 7, is

th

the residual of the i* data value, that is the difference between the i observation and

its true value. The no-weighted least squares method used for computing the most

probable values of variables from redundant data minimizes sum of residuals er I

1

there are outliers in the data, the result of the no-weighted least squares will be biased.
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The robust estimation reduces the influence of outliers by minimizing the function as

follows.

E)(ri )—>min (3.2)

i
The new function £ is a function of the residuals, which is defined as a symmetric,

positive-definite function with a unique minimum of zero.

Assuming S=[s,,...5;,....s,,] is the parameter vector to be estimated. Equation (3.2) is

minimized, enforcing the condition of least squares, by taking partial derivatives with

respect to each unknown and setting them equal to zero. For each residual 7, the

following equation can be derived:

csrne seens 3 — Lyen.nn

0s, 0s; Os

J m

op(r) ,  0p(r) . 3p(r) Zaf’(”) 0,/ =1,...m (3.3)

The influence function @(r) measures the influence of data on the estimated value of the
parameter. Let the influence function ¢(r) be the derivative of function?,
o(r)=dp(r)/dr, then for each residual r,, the Equation (3.3) can be rewritten in the

following form:

9 d or, o
25 p(r) Zap . —Z¢(n)grf=¢(n)2—a—sﬁf=o,j=1, ..... m (3.4)

J
When the weight function is defined as w(r) = ¢(r)/r. Equation (3.4) becomes:

or. Oor,
)Y —=w(r)r,y —=0,j=1,..m ' 35
qo(r,);asj (’)’;asj J 3.5)

So Equation (3.5) is the least squares solution of robust estimation, which satisfies robust

estimation condition Equation (3.2).
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It is well known that the weighted least squares solution attempts to satisfy the following

condition through an iterative solution explained earlier by section 2.2.2.

Z w(r("™V )r? = min imum (3.6)

i

Where n is the iterations and w(r"™")is weight at (n —1) th iteration.

Again, assuming S={s,,...s,....s, ] is the parameter vector to be estimated. By taking

partial derivatives with respect to each unknown and setting them equal to zero, for an

individual residual r,, the following sum of gradients must be zero in order to satisfy the

least squares condition:
(n-1) or; .
w(r, )riz—=0,j =1,...m 3.7
~ 05

Comparing Equation (3.5) and Equation (3.7), it is clear that the solution of robust
estimation is equivalent to the solution of weighted least squares. Therefore, robust
estimation technique reduces the influence of outliers in the same manner as weighted
least squares method does (Zhang 1995). The comparisons between the results of the
robust estimation and the results of weighted least squares can be found in
(Harvey,1993). He suggested robust estimation method is not a replacement for weighted

least squares method.

If the function p=7r2/2 is chosen, the influence function is @(7) =r and weight
function w(r)=1. This means the influence of a data value on the estimate increases

linearly with the size of its error. It reveals the non-robustness of the least squares
estimate. When an estimator is robust, the influence of a single observation value is
insufficient to introduce a significant bias in the results. Many estimators are available. In

this study, Huber’s estimator has been chosen because it has rarely been shown to be
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inferior to other # functions (Zhang, 1995). Huber’s function, shown in equation (3.8),

is a parabola in the vicinity of zero, and increases linearly at a given level | *> ¥

ifx<k _, ¥ x !
averleoe O e P Mg 0y (-8)

Where x is the residual.

3.3.2 Least squares matching using robust estimation

In the traditional least squares image matching algorithm, corresponding pixels in each
window pair form the data for least squares solution, which determines the parameters
that transform one window to the other. Therefore, one disparity value is determined for a
window. If the window includes breaklines and sudden changes in elevations, the

assumption of one disparity value for a window is incorrect.

The algorithm with robust estimation proposed in this study overcomes this limitation by
formulating the matching problem without requiring a fixed square window. Instead, it
can be based on a whole image. The unknowns are an array of unknown disparity values
for every pixel and the parameters of transformation applied to each pixel. In order to
detect the discontinuities during the matching, constraints are used. For one dimensional
constraints in the x direction, each disparity value must be the similar to its neighbours. A
second order constraint is used as follows:

—dispy .y, +2disp,; — dispy .,y =0 (3.9

Equation (3.9) requires neighbouring points to have similar disparity values. But in many
areas, there are breaklines and discontinuities in the images. To successfully find the
discontinuities and supply more accurate disparities, the constraints must be limited by
the breakline areas. This is achieved by applying weights to the constraint matrix and the

operation of robust estimation as described above.
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At the breaklines and discontinuities, the weights of the constraints are set to zero using
robust estimation and the corresponding constraints are removed from the solution. The

new algorithm can be expressed as follows in one dimension:

Observation equation Ax+v, =L,
Constraints equation Cx+v, =0 (3.10)
Where

x=[da, da, .. day,, da, dh, dh]"

are the unknown increment values of the disparities and transformation parameters
which are solved in the matching. Vector v is the residual. Vector L is the vector of

observations. A is a coefficient matrix and C is the constraint matrix.

Based on Equation (2.7) in Chapter 2, for a one dimensional case, the coefficient matrix

can be shown as follows:

[¢,(0) 0O 0 N . 0 1 g,(0)

0 gi(1) 0 SN 2 g.1(1) 1 g1(1)

4= 0 0 g,(2) . . . 26,(2) 1 g,/(2)
.0 0 0 v o &(N=1) Ng((N-1) 1 g(N-1)], .,

Where g, are the grey levels for pixels and g, are the discrete values of gradient

function of g, inx direction. Ng,(N-1) represents x ;g , ( x ;) in Equation (2.7).

o 0 0 0 0 00 0 0
-1 2 -1 0 0 00 0 0
c=| 0 -1 2 -1 0 00 0 0
0 0o 0 -1 2 -10 0 0
0 0o 0 0 0 00 0 0J,,.
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Lo=[z0) 2z . g -l

The two equations in (3.10) can be made into a single equation as following:
A N v, L,
X = .
C v 0 (3.11)

The solution of equations can be solved by the method of least squares

x=(A"A+C"C)"' (4" L) (3.12)
. . w, 0
With weight W= (3.13)
0o W,

The solution of equations can be obtained as following
x=(A"W_A+C" W, C)"' (4" W_L,) (3.14)

As shown in Equation (3.13), W_ is the weight for least squares equation and W, is the

[4

weight matrix of the constraints. W, can be set to identity matrix and W, can be set by

Huber weight. If the weight W, can be forced to zero at the breaklines by robust

c

estimation, the constraints will force the solution to find the discontinuities. Since the
neighbouring pixels have different disparities at the breaklines, the residual v of the
disparities should be large in the first iteration, smaller weights will be assigned for
subsequent iteration. After several iterations, the weights in the breakline areas will tend
to zero, while others at pixels which are not the breaklines will increase. Hence, the

breaklines and discontinuities will be located.

The above one dimensional constraint system can be extended to two dimensions. For a
two dimensional sample grid, the array of unknowns x includes increment values of the
disparities denoted as da; and three transformation parameters da,, dh, and dh, for
each pixel, with the index i, j denoting the rows and the columns respectively. Because
the algorithm is designed for epipolar images and there are no y directional disparities,
only three transformation parameters are needed. For an image which has M rows and N

columns, there are M*N+3 samples in an array of unknown values to be solved for.
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By taking the measurement array in row by row order, it can be converted to a column

vector, and solved using Equation (3.11). The matrix 4 will be (M*N, M*N+3). The

matrix L, is also formed by taking the measurements in row by row order. However, the

constraint matrix C must be carefully built to accurately indicate the two dimensional

case. C will include C, and C, constrains in the x and y directions respectively. The

constraints in the x direction can be as follows, and as shown in Figure 3.4(a):

—disp, ;. +2disp, —disp, ;,,, =0 (3.15)
The constraints in y direction are as follows, and shown in Figure 3.4(b):
—disp, ,y, + 2disp,; — disp,,,,; =0 (3.16)
Where 0<i<M,0<j< N
Cx
(1) ) (1) e
.......................... M M
T C,
N N
(a) (b)

Figure 3.4 Constraints in x and y directions

For x direction constraints in each row of the image, there will be N-2 constraints,
because there are no x direction constraints for the first and last columns. This is the same
as the one dimensional constraints C in Equation (3.10) and the top and bottom rows are
set to 0 in matrix C. For M rows in the image, there will be (N-2)*M x direction
constraints. Since one constraint requires one row in the constraint matrix, C, will be a
((N-2)*M, N*M+3) matrix. To determine the coefficients of the constraint matrix, the i
and j indexes in Equation (3.15) must be converted to an equivalent index corresponding

to the unknown vector x, which is numbered row by row.

For each row in the matrix C_, three elements in Equation (3.15) are represented by the

first, second and third terms in the constraint matrix respectively. All the remaining

elements are zero. There are three non zero diagonal elements in the constraint matrix
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C ., which is same as matrix C in Equation (3.10). Since C, represents two dimensional

constraints, the size of C, is larger than C.

In a similar way to the above, for the y direction constraints in each column of the image,
there will be M-2 constraints, because there are no y direction constraints for the top and

bottom rows. C, will be ((M-2)*N, N*M+3) matrix as shown below and can be built
using Equation (3.16). Three elements in Equation (3.16) are represented by three a;

terms in the constraint matrix respectively.

[a,, a, a 00 0 0 O 0 0 00
0 . a . a, d, 0 0 0 0 000
0 0 0 .. a . a . a 0 0 0 0 000

meyy = Gy 0 0 0

(000 0 0 0 0 0 0 g,,,

After establishing the constraints matrix, Equation (3.14) can be used to calculate the x
matrix. In each iteration, the previous residuals are used to obtain the weights for the next

iteration and the right image is resampled based on the transformation parameters.

3.3.3 Testing for least squares matching using robust estimation

To test this algorithm, two 128x128 artificial images were used. The grey levels of the
left image change linearly and there are no elevation points in the left image. The right
image is generated by resampling the left image based on new disparity values. For case
1, there are two blocks, one on top of the other. The bottom block is from 20 to 110 rows
and 20 to 110 columns in left image. The top block is from 50 to 80 rows and 50 to 80
columns in left image. The bottom and top blocks have 0.8 and 1.5 pixel disparity values
respectively. The right image can be created based on these disparity values. After
implementing the least squares matching using robust estimation, the disparity values
can be recovered by Equation (3.14). The calculated disparity values are 0.8 and 1.5

pixel, the same as the assumed values. Figure 3.5(a) is the results from stereo image
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matching, which shows that the correct disparity values corresponding to two blocks have
been obtained. Figures 3.5(b) shows the final weights after 20 iterations, corresponding
to the breaklines in the images. The blue lines indicate the lowest weight areas which are
exactly on the edges of the blocks. The figures show the algorithm can detect the

discontinuities during the matching and supply an accurate disparity map.

Dhsparty suface

Figure 3.5 Disparity surface and weights for case 1

For case 2, there are two blocks beside each other. The first block is from 20 to 50 rows
and 20 to 50 columns in left image. The second block is from 20 to 50 rows and 80 to
100 columns in left image. They have 0.8 and 1.3 disparity values respectively. Based
on these disparity values, the right image can be created. Figure 3.6(a) shows the 0.8 and

1.3 pixel disparity surface, which have been correctly recovered by Equation (3.14) and

(2) (®)

Figure 3.6 Disparity surface and weights for case 2
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correspond to the two blocks. Figure 3.6(b) shows the final weights which correspond to
the discontinuities. The blue lines are the lowest constraint weight areas and exactly
correspond to the block edges. Although the blocks are close to each other, the algorithm

can detect the breaklines and supply an accurate disparity surface.

3.34 Summary

The stereo image matching algorithm combines least squares algorithm with the robust
estimation of constraint weights. It can detect the breaklines in the images and supply
greater accuracy in the computation of disparities in the discontinuous areas. This method
will be a robust and efficient matching algorithm for urban environments. This algorithm
has limitation compared to traditional least squares method. The algorithm is expansive
in computing time as it is 20 times slower to converge due to the computation of the
weight image. Because of the limitations, the method is not effective for large real
images. The further study is needed to improve the algorithm. For this thesis, this topic is
not pursued any further.

The robust hybrid-based image matching algorithm is proposed in Section 3.2. The
contribution of the method is that disparity map preserves the discontinuities in the
images and can supply more robust DSM for further processing. The accuracy of the
method is dependent on the quality of the disparity values from the are-based matching

and the weights derived from edge detection.

In sections 3.2 and 3.3, the robust image matching algorithms have been developed. The
contribution of the methods is to supply greater accuracy in the computation of disparities
in the discontinuities. The DSM derived from the matching algorithms can be used for
subsequent building extraction. Since completely implementing the software package for
DSM extract is a huge work, including orientation, epipolar image generation, matching
and DSM extraction, only the matching algorithms described in this thesis have been
tested. The study shows the principle of robust image matching algorithms is useful for
automatic building extraction over urban areas. In the future, the potential software

package can be set up using all the algorithms.
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As mentioned earlier in section 2.12, a high accuracy DSM is important information cue
for the proposed automatic building extraction system. In the next chapter, the DSM
derived from LH Systems’ Socet Set v4.2 has been used for building extraction. This
DSM is obtained based on the conventional stereo matching method. If the methods of
computing a DSM based on the robust image matching proposed in this thesis are

effective, a more accurate DSM should be available.
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CHAPTER 4

Low-level Image Analysis and
Interpretation

4.1 Introduction

This chapter will focus on the module of low-level image analysis and interpretation. The
details of module are described in section 4.2, which includes theory of unsupervised
classification and its application, post classification filtering and extraction of spectral
properties. In section 4.3, a spatial analysis model is described, which analyses the
relationships between spatial analysis and spectral properties, and reveals building
interest areas based on spatial attributes, such as height and size, and features related to

spectral properties of the image.
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4.2 Low-Level Image Analysis and Interpretation

The aim of low-level image analysis and interpretation (LLIAI) in this research is to
extract significant features from images and classify them into the meaningful regions.
Then the building interest areas are extracted using classification and spectral analysis
techniques. The components of the module LLIAI are shown in Figure 4.1 and
highlighted in green. The module includes unsupervised classification, post classification,

spectral analysis and extracted building interest areas.

Color images or
Multispectral images

Stereo image pairs

v

Image preprocessing

v

K-Means-unsupervised
classification

¢ A 4
Spectral
Segmentation of analysis

classification

Image matching

B e e e i e i M e e e e S S A A A e e e o e o

i
i
H

SRR USROS UG PN UG

Final building areas

Figure 4.1 LLIAI module in the architecture of the proposed automatic building extraction system
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4.2.1 Unsupervised class detection

Multispectral image classification can be used to detect individual object primitives, such
as buildings, trees and roads. It is also helpful to reduce the complexity of image content
for the next processing step of object structure detection. Many supervised and
unsupervised classification algorithms have been developed (Ripley, 1996, Richards and
Jia, 1999, Stein et al, 1999 and Chen et al, 2002). As mentioned in section 2.12, image

classification is the essential step to differentiate buildings from other objects.

In order to find building interest areas, a K-Means unsupervised classification algorithm
is used because it is an automatic procedure and is an easy operation for the user. K-
Means unsupervised classification calculates initial class means evenly distributed in the
data space and then iteratively clusters the pixels into their nearest class using a minimum
distance technique. Each iteration recalculates class means based on all the pixels in one
class cluster and reclassifies pixels with respect to the new means. All pixels are
classified to the nearest class unless a standard deviation or distance threshold is
specified, in which case some pixels may remain unclassified if they do not meet the
selected criteria. This process continues until the number of pixels in each class changes
by less than the selected pixel change threshold or the maximum number of iterations is

reached.

K-Means classification is sensitive to initial values, since the choice of the initial
locations of the cluster centres has an influence on the time it takes to reach a final,
acceptable clustering. The K-Means technique also requires a pre-specified number of
cluster centers. If the initial specification is too high, then post merging and deletions are
needed. On the other hand, if the initial number of clusters is too small, multiple class
groups will be merged to one class group and the accuracy of classification will be

degraded.

The initial locations of the cluster centers are generally chosen uniformly spaced along
the multidimensional diagonal of the multispectral pixel space. This is a line from the

origin to the point corresponding to the maximum spectral brightness value. From
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previously computed histograms, the initial locations of the cluster centers can be refined
within the actual range of brightness values. Choice of the initial locations of clusters in
the above method is a reasonable and effective way because the centres are well spread

over the multispectral space where many spectral classes occur.

The objective of the K-Means algorithm is to minimize the cluster variability. The
objective function is the sums of squares of the distance (error) between each pixel and

its assigned cluster center.

SSD =[x - C(x)] (4.1)

where C(x) is the mean of the cluster that pixel x is assigned to, and x is the grey level

of a pixel.

Minimizing the SSD is equivalent to minimizing the Mean Squared Error (MSE), which

is a measure of the cluster variability.

2. [x=C)T’

MSE = 5= SSD

(N-c)b  (N-c)b “2)

Where N is the number of pixels, ¢ indicates the number of clusters and b is the number

of spectral bands.

When the clustering is completed, pixels within a given class group are given a symbol to
indicate that they belong to the same spectral class. Using these symbols, a cluster map
can be produced, which allows a classification to be made. If some pixels with a given
label can be identified with a particular ground cover type, then all pixels with the same
label can be associated with that class. The classification map interprets original
multispectral data into meaningful regions. The classification analysis can be
implemented based on the clustering computations, and user defined training fields for

every cover type are not needed.
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4.2.2 Post classification filtering

Post classification filtering can refine the classification results and remove errors. Based
on the labels of classes on the classification map, post classification filtering can extract
regions of connected pixels that are contained in the same class. For a class of buildings,
post classification filtering supplies the extracted building image by segmentation of the
classification. Each connected region is given a unique digital number. The minimum
number of pixels that must be contained in a region can be specified in order to remove

the isolated noise.

In order to make a decision and reveal the building interest areas in the spatial analysis
model described in section 4.3, the region attributes for the extracted building
segmentation image from post classification filtering are needed. Based on each region,
the following seven types of post-filtering attributes are extracted:

e mean gray level

* arca

e perimeter

e area to perimeter ratio

e width of principal axis (PA)

e height perpendicular to the PA
height

width )

e logarithm of the ratio of height to width = 108, (

These attributes are used to filter out extracted regions which are unlikely to be building

areas, based on the seven feature values for every region.

4.2.3 Vegetation detection using NDVI

The application of remote sensing for recognition and measurement of the variations of
types and densities of living forests, fields, and crops, is based on their spectral
responses. Because the leaves absorb a great deal of the red and blue light and reflect
much of the green, healthy vegetation appears green to our eyes. In addition to reflecting
green light, healthy leaves also reflect radiation in the near infrared portion of the
spectrum, which is particularly useful for detection.
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Many mathematical formulas for combining bands of multispectral data have been found
to be useful as indicators of vegetation. Normalized Difference Vegetation Index (NDVI)
transforms multispectral data into a single image band representing vegetation
distribution. The NDVI values indicate the amount of vegetation present in the image.

NDVI is calculated from

NIR-R
NIR + R

NDVI = (4.3)

In the building extraction procedure, the DSM is an important cue since it supplies the
height information. As building and tree areas have similar heights above the ground, it is
necessary to find a method to differentiating them. The image comprising the NDVI

values has been used for this purpose.

A multispectral image is an important dataset for NDVI calculation. Multispectral images
of 1 and 2 metre resolution were supplied by SpecTerra Systems Pty Ltd. These images
were evaluated for use in the proposed automatic building extraction system. After a
thorough analysis these images proved to be inadequate as it was not possible to generate
a high accuracy DSM from them. As SpecTerra Systems could not supply any high
resolution data, it was more practical and appropriate to use colour aerial images with 0.6
metre resolution. The visible vegetation index (VVI) was used to substitute the NDVI and

calculated using the following formula:

G-R
G+R

visible vegetation index = (4.4)

The advantage of using colour, demonstrated by the experiments in section 4.3.2, is that
colour information is an important evidence source and can aid in differentiating

buildings from trees.
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4.3 Spatial Analysis Model Combining Four Data
Sources

The VVI and DSM are two key parameters which assist to determining the differences
between vegetated and non-vegetated objects on flat terrain. Simplistically, the area
which has height above some limit, must either be a tree or building. Areas with low VVI
which are above the surface area are likely to be buildings, whereas areas with high VVI
and which are above the surface are likely to be trees. Areas with high VVI and located
on the height of the earth surfaces are likely to be grassland or cultivated areas. The
spatial analysis model combining four data sources, comprising the 2D and 3D

information, has been used to determine which areas are possible building areas.

4.3.1 Spatial analysis model

The spatial analysis model used to determine the correct building regions is a multistage
decision method implemented using the ArcView GIS software from ESRI. A series of
consecutive decisions is made. Figure 4.2 shows the decision tree in the spatial analysis
model, consisting of a number of connected decision nodes, none of which is expected to
perform the complete segmentation of the image data set. Each decision node (DN) only
performs part of the task as noted in the Figure. The advantages of using a multistage
decision tree in spatial analysis model are that different data sources, different sets of

features and even different algorithms can be used at each decision stage.

The fundamental purpose of Geographic Information Systems (GIS) is the analysis of
geographic data. This data is organized into layers or thematic maps that can be
graphically overlaid by the software system. However, the power of a GIS is not limited
to creating composite imagery by performing data layering operations. Its principal
usefulness is that the GIS supports a query system on the database which allows the user
to perform both visual and analytical inquiries with a high degree of sophistication and
complexity. ArcView is a powerful and easy-to-use tool which visualizes, explores,
queries and analyzes data spatially. Map Query in ArcView is an analysis function based

on multiple thematic layers. It allows the user to select areas spatially by defining a query
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Classification data set comprising
Buildings, Trees, Grass and Ground

DNI1
Height > Valuel

Buildings and Trees Grass and Ground

DN2
VVI < Value2 VVI data set

Buildings Trees
(A=Buildings)

DN3 Segmentation of K-mean classification data set
AUB (B=Buildings satisfying 7 attributes)

Building interest areas

DN4
Regions > size

Final building interest areas

DSM data set

Narrow hypothesis

Figure 4.2 Decision trees in spatial analysis model combining four data sources

equation based on the values of the thematical layers. Four information layers consisting
of the land cover classification, segmentation of classification, DSM and VVI are input
into ArcView. Map Queries are used to implement the decision by the user defined query
operations based on decision trees in Figure 4.2. When an area is concluded as a building

interest area, it should have a height above the terrain surface, low VVI value and
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satisfies the minimum number of pixels for building region. The majority of building

interest areas can be extracted correctly using this process.

4.3.2 Results of spatial analysis

Figure 4.3 illustrates a pair of colour aerial images with 580 x 560 pixels in the row and

KBTI 3 a0 &
¢ 2

SR

(right)

Figure 4.3 Stereo aerial images
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column directions respectively. The focal length of the camera is 153mm and resolution

1s 0.6 meter. The flying height is 3070 meter.

Figure 4.4 illustrates the DSM map obtained from stereo image matching method. Figure
4.5 is the result of unsupervised classification using the K-Means method. Yellow is
assigned to building areas, red and green are the vegetation areas and blue is assigned to
ground areas. Classification for some areas is not correct, because some ground areas are
classified as buildings. Based on the classification of Figure 4.5, using a post
classification procedure in ENVI software package without filtering attributes criteria, a
segmentation image was created to show the building areas in the classification map as
illustrated in Figure 4.6. After this stage, most of the building areas have been detected,
but several dark roof buildings have been missed and some road areas have been wrongly

assigned as buildings.

Figure 4.4 DSM from stereo image matching
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Figure 4.5 Unsupervised classification by clustering

The results of processing by VVI are shown in Figure 4.7, where high VVI represent the
vegetation and the areas with low VVI represent the ground and building areas. There is

also a difference revealed between grass and trees.

Figure 4.6 Building areas extracted by segmentation in Figure 4.5
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Figure 4.7 VVIimage revealing vegetation

The four information data sources of Figures 4.4~4.7 are input into the spatial analysis
model. Using the Map Queries operation in ArcView, the possible building areas are
extracted in Figure 4.8. By implementing a region growing algorithm, the small spots
which do not belong to buildings can be deleted. The final building interest areas are
derived by the module of low-level image analysis and interpretation and shown in Figure

4.9.

Figure 4.10 is the ortho image. The building interest areas are overlaid on the ortho image
as shown in Figure 4.11. Comparing Figure 4.10 with Figure 4.11, the road areas wrongly
assigned as buildings in Figure 4.5 have been deleted and all the correct building areas
from classification have been successfully maintained. Several red and dark roof buildings
have been missed. Because the further processing introduced in next chapters is based on
the building interested areas shown in Figure 4.11, the missed the buildings will never be

recovered.
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Figure 4.9 Final building interest areas
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Figure 4.11 The building interest areas overlapped on ortho image

This is an example of how the application of low-level image analysis and interpretation

(LLIAI) module operates for the extraction of building interest areas. Based on the above
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test data, although several buildings are missed, the results are encouraging. The example
shows that the low-level image analysis and interpretation is an efficient module to
supply building interested areas for further processing. The extracted building interest
areas will be input into level set modelling based image segmentation (LSMBIS) module,
which delineates the precision building boundaries. The details of LSMBIS module will

be described in next chapter.
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CHAPTER 5

Level Set Modelling Based Image
Segmentation

5.1 Introduction

From the process describe that in the previous chapter, the building interest areas have
been detected. The interest areas only indicated buildings may exist and cannot supply
the boundaries of buildings. In order to precisely delineate the building boundaries, the
level set modelling based image segmentation (LSMBIS) module will be introduced in
this chapter. The traditional techniques for tracking curved boundaries will be presented
in Section 5.2. The details of LSMBIS will be described in Section 5.3. The LSMBIS
module is based on mathematical and numerical theory. Shape modelling is carried out
on the extracted building interest areas derived with previous chapter, thus the

complicated and difficult 2D segmentation inference based on single information dataset
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can be overcome. Because the LSMBIS module is integrated intellectually with other
modules in the system, it can work effectively without user input. In section 6.4, the
examples based on LSMBIS module to delineate the boundaries of buildings are

presented.

5.2 Traditional Techniques for Tracking Curve
Boundary
There are many methods can be used to tracking curved boundaries and more details can

be found in Sethian (1999). In this section, the traditional Lagrangian method will be
described. After studying the algorithm, the drawbacks can be investigated.

Consider a closed curve moving in the plane. Let y(0) be a smooth, closed initial curve in

Euclidean plane R* as shown in Figure 5.1, and let y(¢) be the one-parameter family of
curves generated by moving y(0) along its normal vector field with speed F(K), F isa
given scalar function of the curvature K. If p is the position vector of the curve, ¢ is

time, and 7 is the unit normal to the curve, then #-p, = F.

Kﬁ p:x(s, t=0), y(s, t=0)
—> (@_’@)=F 7i
ot ot
s

Figure 5.1 Parameterised propagating curve

Let p(s,t) be the position vector which parameterises y(f) by s, 0<s<S. Assume

periodic boundary conditions, p(0, f)= p(S, t). Since the curve is parameterised, the

interior is on the left in the direction of increasing s as shown in Figure 5.1.
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. =x(t .
For a parametric curve {x x((t)) , based on the definition of the curvature, the curvature at
y=Jy

point s inside the speed function F(K) is shown as follows:

= yssxs _xssys

(x2 +y2)3/2
dx(t dy(t d2x(t d?y(t
Where Xg =L|t=s ’ s =£|t=s’ Xss =#'t=s3 Vss = y( ) |t=s
dt dt dr? dt*

The normal equation at point s is:

X [X(t)=x(s)]+ys [ () -3(s)] =0

For a straight line /, if its slope is &, then the vector of the straight line / is:
[=i,+ki,

Where i, and i, are unit vectors in x and y directions respectively.

For normal equation, its slope is (- % ), the vector of normal is shown as follows:

s

- T Xg o =
n'=i, +(—=)-i,
Vs

In order to normalize the #', #' is divided by /1 +(- L)
Vs

- X =
. b +H(——) i,
]
Vs

- n Vsly = X1,
n= = =

- T (2,2
\/1+(_x_s)2 \/1+(_x_5)2 Xs t Vs
Vs Vs

The normal can be described as

= (ys,—xs)/(xs2 +ysz)”2 (5.1)

The equations of curve motion can be presented for individual components of p(x, y) as:
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_F yXSxS-—'xSSyS yS )’

(x: +y2)3/2 (x2 +y2)l/2
5 N 5 5-2
_ yss‘xs _xssys xs ( )
Ve = (x2 +y2)3/2 (x2 +y2)1/2

Where x, and y, are the x and y changes at time t respectively. y, and x are the
second order derivatives for curve s respectively. x, and y, are the first order

derivatives.

Since (x(s, t), y(s, t)) describes the curve moving, this is a Lagrangian representation for
tracking curved boundaries. A standard approach to modelling moving curves comes
from discretizing the Lagrangian form of the equations (5.2). In this method, the
parameterisation is discretized into a set of points whose positions at any time are used to

reconstruct the curve.

Assume the parameterisation interval [0, S] is divided into M equal intervals of size As,
then M+ mesh points s, =iAs,i =0,...M are created. Time is divided into equal
intervals of length Ar. Each mesh point iAs at each time step nAr is a marker point

(x,y!) on the moving curve. The aim of the method is to use a numerical algorithm that

n+l n+l

will supply new values (x;",y;"") from the previous position (x;,y;).

At each marker point, parameter derivatives can be approximated using neighbouring

mesh points. Based on Taylor’s series, central difference approximations can be shown as

follows:
dx; N Xt = Xy
ds 2As
dy:n ~ yin+l _yin—l (53)
ds 2As

2_n n n n
d x| X —-2x; + X,

ds? As?
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d’y!  yr =2yl +yr
y: ~ y1+1 yz yl-—l (54)
ds* As?
Similarly, using the forward difference approximations, time derivatives can be shown

as:

dt At
&y yi" -yl (5.5)
dt At '

Substituting Equations (5.3)~(5.5) into Equation (5.2), Equation (5.6) can be obtained.

(Vi = YD) —x4) (5.6)

(a0, ) = (a2 1)+ A () — i = Vi )=y =2
((x7 _xi—l)z + (Vi _yi—l)2)1/2

Where

K" = 4(y:l+1 _2yzn +yin—1)('xin+l _xin—l)_(xinﬂ —2x? +xin—l)(yin+l _yin—l)
l (E2 _xin—l)2 + (Vi __yin_])2)3/2

This is the equation for updating the positions of marker points in the curve. These
discrete markers points are updated in time by approximating the spatial derivatives in
the equations of motion, and advancing their positions. However, there are several
problems with this approach.

e A very sensitive calculation can be obtained. This is because the fixed
discretization interval As is no longer in the Equation (5.6). When the marker
points come together, the numerator and denominator on right hand side of
Equation (5.6) approach zero.

e Small errors in the computed particle positions are significantly amplified by the
curvature term, and calculations become unstable unless an extremely small time
step is used.

e In the absence of a smoothing curvature term, singularities develop in the
propagating curve, and an entropy condition must be invoked to produce a

reasonably weak solution which can overcome the formation of the singularity.
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e The topological changes are difficult to manage as the evolving interface breaks
and merges.

o Significant problems occur in the extension of this technique to three dimensions.

Lagrangian approximation provides a numerical method to describe the moving curve. It
can be accurate for small-scale motions of curve. Since the method uses a local
representation of the curve rather than a global one, it could not take into account the
proper entropy conditions and weak solutions. Thus, the method can suffer instability and

some limitations.

5.3 Image Segmentation wusing Level Set
Modelling

In order to overcome the drawbacks of Lagrangian method, the level set method for
propagating interfaces was proposed by Sethian(1985,1999) and Osher (1988). It is based
on mathematical and numerical work of curve and surface motion. It offers a highly

robust and accurate method for tracking interfaces moving under complex motions.

5.3.1 Fundamentals of level set shape recovery using curve propagation

Level set method represents the curve y(¢f) as the level set {® =0} of a function @.
Thus, given a moving, closed hypersurface y(0), a formulation for the motion of the

hypersurface propagating along its normal direction with speed F is needed. /" can be a
function of various arguments, including the curvature, normal direction, etc. The main

idea is to embed this propagating interface as the zero level set of a higher dimensional
function ®.Let @(p,t=0), where pe R" is defined by

O(p,t=t)==d (5.7)
where d is the distance from p to y(t =0), and the plus sign is chosen if the point p is
outside the initial hyersurface y(¢f =0), minus sign‘ is chosen if the point p is inside the
initial hypersurface. Thus, the initial function ®(p,z=0):pe R" can be defined as

follows:
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Y(¢=0)=(p|®(p,t=0)=0) (5.8)

Figure 5.2 illustrates the example of an expanding circle. Suppose the initial curve y at
t=0 is a circle in the xy plane and shown in Figure 5.2(a). Assume the solid blue circle is
the level set {® =0} of an initial surface z=®(x,y,z=0) in R’ shown in Figure

5.2(b). At time #=0, the solid blue circle can be evolved into broken green curve shown in
Figure 5.2(b). This broken green curve can be assigned as level set at time =/ and shown
as solid green circile in Figure 5.2(d). Based on the solid green circle in Figure 5.2(d), the
final evolved curve becomes the broken purple circle. As illustration in Figure 5.2(c) and

Figure 5.2(d), the one parameter family of moving curves y(¢#) can be matched with a

one parameter family of moving surfaces in such a way that the level set {® =0}

always yields the moving curve.

Now, it is necessary to produce an equation for the evolving function ®(p,t) which
contains the embedded motion of y(¢) as the level set {® =01}. Let p(¢),t €[0,0] be
the path of a point on the propagating curve. That is, p(# =0) is a point on the initial
curve (¢ =0), and p, = F(p(¢)) with the vector p, normal to the curve at p(f). Since

the evolving function @ is always zero on the propagating hypersurface, the following

level set equation can be obtained

D(p(1),1)=0 (5.9)

Using the chain rule in Sethian(1999, 1995), Equation (5.9) become as:
@, +VO(p@),1) p,()=0 (5.10)

Because speed F is in the outward normal direction as shown in Figure 5.1, then

p(t)n=F (5.11)
where n=VO/|VO|
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Substituting the Equation (5.11) into Equation (5.10), the evolution equation for @ can
be obtained as following:

O, +F|VO=0 (5.12)

’ y(0) =level set
@=0 )
7(0)
(a)
Y
\ y(t) =level set
x @©=0
40
© (d)

Figure 5.2 Level set formulation of equations of motion (Sethian, 1995)
(a) and (b) show the curve ¥ and the surface z = ®(x,y) at r=0.

(c) and (d) show the curve ¥ and the surface z = O(x,y) at t=1.

In order to develop a numerical method to solve the Equation (5.12), a method based on
the link between Hamilton-Jacobi equations and hyperbolic conservation laws is
presented, with a given value of ®(p,t=0). Formula (5.12) is a type of Hamilton-

Jacobi equation. For certain of forms of the speed function F, the standard Hamilton-

90



Jacobi equation can be obtained, which can converge to correct solutions (Sethian 1999,

Sethian and Strain 1992).

Based on the advantages of the Hamilton-Jacobi equation, the evolving function @ p,t)
always remains a function as long as F is smooth. The propagating hypersurface y(¢)

may change topology, break, merge, and form sharp corners as the function ® evolves.

The Eulerain Hamilton-Jacobi formulation concerns numerical approximation. Using a

uniform mesh of spacing 4, with grid nodes ij, and employing the standard notation that

dDZ. is the approximation to the solution ®(ih, jh,nAt), where Atis the time step,

Equation (5.12) can be written as:

n+l n

—E—A—;——”L+(F)(v,.j.q>;) =0 (5.13)

Let V,®; be the appropriate finite difference operator for the spatial derivative. The

correct technique for approximating the spatial derivative in the above comes from using
the appropriate entropy condition for propagating curves. In order to build a correct
entropy satisfying approximation to the difference operator, the technology of hyperbolic
conservation laws is needed. More details about entropy condition can be found in

Sethian (1999) and Osher and Sethian (1988).

The speed function F(K) is as follows:

F(K)=F, + F(K) (5.14)
where K is the curvature of level set and shown as :
Vo = D0 20,0 0+ O]
VO] (@2 +@2)*?

In two space dimensions, based on the forward and backward difference approximations

in @, Equation (5.13) can become:
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O = @f - FyAr((max( D;®;,0))* + (min( D; ®;,0))*

i

+(max(D, ;,0))* + (min(D; @,,0))*)""? - AtF| | V@ | (5.15)

ij?

where D] computes the new values at j using information at j and j+1,

D!®, =D, -

i) T
D_ computes the new values at j using information at j and j-1;

D;®, =®, -

i(j-1)

D, computes the new values at i using information at i/ and i+1;

o

+Dj T T

+ —
Do, =
D computes the new values at i using information at i and i-1;

D, ®; =D, ~®y,
The advantages of the level set shape recovery using curve propagation are:

e The evolving function ®(p,?) always remains a function as long as F is smooth.

e Because the entropy condition has been used in level set shape recovery based on

Hamilton-Jacobi equations and hyperbolic conservation laws, the formation of the

singularity can be overcome.

e The intrinsic geometric properties of the curve may be easily determined from the

level function @ because F, is related to curvature K. Topological changes in the

evolving curve can be handled.

e The above level set approach can be used in high spatial dimensions.
5.3.2 Boundary values for level set shape recovery

Level set shape recovery method is used to find the boundary of an evolving curve. In

order to extract object shapes from an image, the curve should be forced to surround the

92



object boundaries. When the evolving curve reaches the boundaries of the objects, all the

points on the curve stop evolving anymore and the computation is ended.

In Equation (5.15), if the speed function can be related to the image, it can be a criterion

to stop the curve propagation. In Equation (5.14), the speed F has two components. F is

the advection term and is independent of the moving curve’s geometry. Since the second
term is related to the curvature of curve, it is dependent to the curve geometry. In order to
make the speed approach to zero in the areas of shape boundaries, a quantity k, is

multiplied with Equation (5.14). The speed function (5.14) can be as follows:
F=k (F,+F(K)) =k, (-1.0-0.025K) (5.16)

If there are boundaries in the image, the intensity will change sharp. As shown in Figure
5.3 (Gonzalez and Woods 1992), the first derivative corresponds to the local maximum
and second derivative corresponds to the zero crossings. The Figure illustrates how
intensity changes result in zero crossings of the second derivative which correspond to

the boundaries in the image.

The second derivative alone is a high pass operator. Therefore the zero crossings would
be correlated with the fine details of the image. A two dimensional Gaussian filter is used
to smooth the high frequency detail before application of the second derivative. The two
operations can be combined into one filter, known as the Laplacian of Gaussian (LOG),

which can be calculated by Equation (5.17).

2 2 x4y’

X FY ) o (5.17)

> .

VG (x,y) =1
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Image

Profile of horizontal line

First derivative

Second derivative

Figure 5.3 The relationship between the local maximum, zero crossings and grey level change
(Gonzalez and Woods, 1992)
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Figure 5.4 shows a cross-section of the LOG operator. From Equation (5.17), the width of

the central lobe w is related to o, which determines the degree of smoothing.

Figure 5.4 Cross section through LOG operator

If k, is defined as Equation (5.18), around the boundaries, | LOG * I(x,y)| supplies the
maximum value, then k, approaches to zero. Based on Equation (5.16), the speed is

closed to zero too, and the process of curve propagation will stop.

1
k,(x,y) = 5.18
) =T T0G Ty | ©-18)

Figure 5.5 shows the convolution of the LOG with the image to find zero crossings which
corresponding to the boundaries in the image. Figure 5.5(a) is the processed image.
Figures 5.5(b)~ 5.5(d) show the convolution with the different sizes of LOG to produce
zero crossings at different scales of resolution. In Figure 5.5, the processing window size

is 9x9. When o increases, the density of zero crossings becomes coarse.
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More detailed examples of the level set shape recovery using the speed function based

on the image edges can be found in Section 5.4

3L
:\J . V)
)

73
s

e
57
oo

(c) Zero crossings with G =2 (d) Zero crossings with ¢ =3.25

Figure 5.5 LOG convolving with the image
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5.3.3 Region growing algorithm for evolving curve recovery
As shown in Figure 5.2, after curve y(0) evolves iteratively, the new level set @ =0 can

be obtained as curve y(¢). Based on curve y(f), new iterative evolving can start. The
level set @ =0 can be constructed from Equation (5.15) CI);'.+1 . Since the approximated

construction of the zero level set can create a discontinuous curve away from the zero
level set, reinitialization of the level set function during fixed time steps is needed to
make sure the level set evenly evolves around the curve. For every reinitialization of the

level set, it is necessary for the discontinuous curve to become a closed curve.

A seed based pixel-to-pixel region growing procedure has been used to following the
curve. A seed can be any point on the tracking curve. In a similar method to that shown in
Section 3.2.3, the method tries to link the points, which belong to the same curve but also
separated from each other, into a closed curve. The example of this operation is given in

Figure 5.6.

ND

(a) Local curve points (b) After dilation
Figure 5.6 The break points linking sample using dilation

Figure 5.6(a) shows the points in the curve. When break point 1 appears, point 1 and the
untracked points such as points 2,3,4 will extend to its 8 neighbours. The purpose of this
operation is to link the break points. Figure 5.6(b) shows that point 1 can connect with
point 2 and point 2 can connect with point 3 because of the dilation of points 1,2,3,4. The
blue points construct the final curve. This region growing algorithm is efficient because
only the points on the curve will be taken into account in the procedure, it is not

necessary to process every pixel of the region.
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5.4

Implementation of Module of Level Set
Modelling

The theory of the level set modelling based image segmentation (LSMBIS) module has

been introduced in the last section. In this section, the details and implementation of

LSMBIS are described.

A Dbrief flow diagram of LSMBIS is shown in Figure 5.7 and includes following main

steps:

Step 1, the processed image is convolved with the LOG to supply a zero crossings
map using Equation (5.17).

Step 2, based on the building interest areas from low-level image analysis and
interpretation in Chapter 4, define an initial curve y(0). This initial curve is a
square curve in the processed area. The minimum distance between a pixel to

initial curve can be the initializing value for ®(p,7 =0).

Step 3, based on Equation (5.14), the curvature from ®; can be calculated. The

speed F can be obtained using Equations (5.16) and (5.18). Finally, CI);'.+l can be

updated using Equation (5.15).
Step 4, since At is small in Equation (5.15), after iterative evolving, a new level

set @ = 0 can be constructed from (I)l'.j’.+l using linear approximation. For a point

p(i, j), if
max(®, ;15 Py s Py Py @ s @i 5 P ) <0
mln(q)i——l,j—l’q)i—l,j’cDi,j-—l’cDi,j’(Di,j+1’q)i+l,j’q)i+l,j+l) >0

then p(i, j) ¢ y(¢) is not included in new level set curve.

Step 5, seed based region growing algorithm to construct the closed evolving

curve.
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Step 6, based on reinitialized curve y(¢,), ®(p,t=1,)==tdistance from p to
v(t,) can be calculated. The evolving processing will stop when the evolving

curve is around the boundaries because the evolving speed is close to zero.

Image

v

Convolving with LOG to supply zero
crossings map using Eq (5.17)

'

Based on the building interest areas,
e  define the initial curve y(0)

e initialize ®(p,¢ = 0) = Ldis tan ce fromp to y(0)

N

h 4
Calculating the curvature from (DZ. using Eq (5.14) ]

r

.

h 4
Calculating the speed F using Eqs (5.16) and (5.18) ]

v

~

.

'd It
Calculating (I)Z.+l using Eq (5.15)

\ J/

N

Construct an approximation for the level set
® =0 from CD;;.H

. J/

: y \
Region growing to supply closed curve

v

» Reinitialized curve ()
e Initialize ®(p,t =¢,) = tdistance frompto y(t,)

:

Results: Region boundaries

Figure 5.7 Brief diagram of LSMBIS
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Figure 5.8 shows an example of building boundary extraction using LSMBIS module.
The example demonstrates that when the evolving curve reaches the boundaries of the

building, all the points on the curve stop evolving and the computation is ended.

Figure 5.8(a) shows the zero crossings in the building interest obtained by convolving the
image with LOG operator. Zero crossings overlaid on images are illustrated in Figure
5.8(b). The initial curve is defined in Figure 5.8(c) as shown in blue. At Ar=0.00005, the
curve will be reinitialized at 50 time steps. Figure 5.8(d) shows the result of curve
reinitialization after 10 times. Figure 5.8(e) shows the final result of the evolving curve
using level set modelling. The final extracted building boundary overlaid on the image is

shown in Figure 5.8(f). The building boundary has been extracted correctly.

(di:igure 5.8 The example 1 of delineation the boundary of the building ar(ez
Figure 5.9 shows a second example of building boundary extraction using LSMBIS
module. Figure 5.9(a) shows the zero crossings in the building interest area. Zero
crossings overlaid on images are illustrated in Figure 5.9(b). The initial curve is defined
as a square in building interest area. Figure 5.9(c)~5.9(e) show the results of curve
evolving after 10,15,20 times reinitialization respectively. Figure 5.9(f) shows the final

result of curve evolving using level set modelling. The final extracted building boundary
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result of curve evolving using level set modelling. The final extracted building boundary
overlaid on the image is shown in Figure 5.9(g). The building boundary has been

correctly extracted.

[P

(8
Figure 5.9 The example 2 of delineation the boundary of the building area

Figure 5.10 shows a third example of building boundary extraction using LSMBIS
module. Figure 5.10(a) shows the zero crossings in the building interest area. Zero

crossings overlaid on images are illustrated in Figure 5.10(b). Figure 5.10(c)~5.10(¢e)
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show the results of curve evolving after 10,15,20 times reinitialization respectively.
Figure 5.10(f) shows the final result of curve evolving after 25 iterations using level set
modelling. The final extracted building boundary overlaid on the image is shown in

Figure 5.10(g). The building boundary has been successfully extracted.

(8
Figure 5.10 The example 3 of delineation the boundary of the building area
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Figure 5.11 shows a fourth example of building boundary extraction using LSMBIS
module. Figure 5.11(a) shows the zero crossings in the building interest area. Zero
crossings overlaid on images are illustrated in Figure 5.11(b). Figure 5.11(c)~5.11(e)
show the results of curve evolving after 2, 5, 10 times reinitialization respectively. Figure
5.11(f) shows the final result of curve evolving after 20 iterations using the level set
modelling. The final extracted building boundary overlaid on the image is shown in

Figure 5.11(g). The building boundary has been successfully extracted.

(2)
Figure 5.11 The example 4 of delineation the boundary of the building area
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For the whole image which has been processed in Chapter 4 and shown in Figure
5.12(a), level set modelling based image segmentation (LSMBIS) module has been used
to delineate the boundaries of the buildings. Based on the approximate building areas
obtained from low level image analysis and interpretation, for every building interest
area, shape modelling with level set method is implemented. Figure 5.12(b) shows the
zero crossings map which has =2 and window size=13x13. Figure 5.13(a) is the final
building boundaries extracted by LSMBIS. The level set results overlaid on the ortho
image are shown in Figure 5.13(b).

The level set method has successfully delineated most of the building boundaries. The
examples show LSMBIS is effective module for automatic building extraction system.
However it could not supply the correct boundaries for areas where several building
interest areas are mixed together, such as areas at the top of the image. Some areas are
wrongly assigned as building areas in the image because the building interest areas from
previous processing are not correct. The method which will evaluate the extracted

building areas and delete the wrong areas will be introduced in next chapter.

(b)

Figure 5.12 The processed image and corresponding zero crossings
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(b)

Figure 5.13 Results from LSMBIS module
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CHAPTER 6

Multi-source Evidential Reasoning based
Region Evaluation

6.1 Introduction

The preliminary data analysis in Chapter 4 illustrated that a single source of evidence
does not provide a consistent means of interpretation of the image for extraction of
buildings. Each data source used in this thesis has strengths and weaknesses. In order to
evaluation the reliability of extracted building regions, an approach combining evidence
from a number of data sources is need. Region evaluation with redundant data can help
reduce imprecision while complementary data can provide a more complete description.
A multi-source evidential reasoning based region evaluation (MEBRE) module has been
developéd for this task. The module uses three data sources: DSM derived in Chapter 3,

the classified image in Chapter 4 and regions from level set modelling based image

107



segmentation (LSMBIS) as derived in Chapter 5. Evaluation at feature level has been
implemented in the MEBRE module by the Dempster-Shafer method, which is a
statistical-based data fusion classification algorithm and used when the data contributing
to determination of the analysis of the images is subject to uncertainty. One of the
advantages of this module is that it uses the spectral and spatial characteristics of the
features. This approach effectively combines and counterbalances the multiple evidence
from different data sources, in order to extract correct building regions instead of relying
on scoring techniques. The architecture of MEBRE module for decision making is
presented in Section 6.2. Data fusion using Dempster-Shafter theory is described in

Section 6.3. Multi-source region evaluation is examined in Section 6.4.

6.2 The Architecture of MEBRE Module

Images are subject to poor resolution, noise, occlusions, shadows and other artifacts that
cause errors in the processing. Therefore the processing of a single data source has
uncertainties that affect the quantity and quality of information extraction. The use of
multiple redundant data sources can overcome many of these shortcomings for decision
making. As an example, as described in Chapter 5, region boundaries are extracted using
level set modelling based image segmentation (LSMBIS) module. Initial values for
LSMBIS are derived from low-level image analysis and interpretation. If these initial
values are subject to uncertainties, the region boundary may not be correctly extracted.
Therefore, the MEBRE module applies the Dempster-Shafer data fusion technique to
combine the information from multiple sources of derived data, such as DSM, classified
images and regions from level set method, to supply reliable building regions. Figure 6.1
illustrates the multi-source evidential reasoning based region evaluation (MEBRE)
module. More detail explanation of Figure 6.1 will be described in Section 6.4, after the

theory of Dempster-Shafer is introduced.

Data fusion techniques have the ability to interpret simultaneously information from
multiple data sources of the same scene, in order to obtain correct conclusions. Since the

data sources may highlight different characteristics, they are also partly complementary.
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None of the data sources provides completely decisive and reliable information. In
addition, the information is often imprecise and uncertain. The application of a data
fusion technique aims to improve the quality of a decision by increasing the number of
date sources while decreasing its imprecision and uncertainty, by making use of
redundant and complementary data. A further advantage of Dempster-Shafer evidence
theory is that it provides estimations of imprecision and uncertainty of the information
derived from different sources (Klein 1999 and Hegarat-Mascle 1997). In order to
easily refer the names of multiple data sets, the short terms of the names have been
defined as:

Clustered image: classification image described in Chapter 4

Regions of LevelSet: building regions extracted by level set modelling based image
segmentation in Chapter 5

DSM: digital surface model described in Chapter 3.

Clustered image Regions of LevelSet DSM

v

Feature based inference

m,(4,) m2<A,->l my(A)

Calculate the mass distribute m (A4;) using
Dempster-Shafer evidence theory

v

Calculate the support and plausibility functions
Sup(A,), Pls(A;)

v

Decision making

v

Satisfied regions

Figure 6.1 Multi-source evidential reasoning based region evaluation (MEBRE) module
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6.3 Data Fusion Using Dempster-Shafer Theory

Assume a set of n propositions making up the hypothesis space and is denoted by @ .
2% is the subsets of ®. Based on the information from the data source, a probability
mass m can be assigned to any proposition or union of propositions. For V Ae 2°, m
is defined for every element A and the mass value m(4) is in the interval [0,1]. The
following mass equations can be obtained:

m (J)=0

m(©)= > m(4)=1 (6.1)

A=2®

where O is the empty set.

In image classification, ® is the set of hypotheses about pixel classes. The Dempster-
Shafer theory allows the consideration of any subset of ®. Applied to image
classification problems, it means that not only single classes but also any union of classes
can be represented. Including all possible unions and excluding the null set, the number
of classes is equal to 2" —1. For example, if n=3, 2’ —1=7 classes given by Cl1, C2,
C3,CluC2,Cl u C3,C2 uC3,and C1 U C2 U C3 (Klein 1999, Hegarat-Mascle
1997 and Shafer 1976).

The Dempster-Shafer theory provides a representation of both imprecision and
uncertainty through the definition of two parameters: support (Sup) and plausibility (PIs),
which are obtained from the probability mass function m. Support for a given
proposition means that all masses assigned directly by the data sources are summed.
Plausibility for a given proposition means all masses not assigned to its negation are
summed. For V de 2° and V Be 2°, two parameters are defined respectively as

follows:

Sup (A4) = Z m(B)

BcA

Pls(4)= > m(B) (6.2)

BNA=D
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An uncertainty interval is defined by [Sup(4), Pls(4)] where
Sup(4)< Pls(A4)
Pls(A)=1-Sup(4), AUVA=0,ANnA=0 (6.3)

A is the complementary hypothesis of A. Sup(A4 ) is called the dubiety and represents
the degree to which the evidence impugns a proposition. It supports the negation of the

proposition.

The support value of hypothesis A may be interpreted as the minimum uncertainty value
about 4. Its plausibility may be interpreted as the maximum uncertainty value of 4. The

uncertainty interval gives a measurement of the imprecision about the uncertainty values.

The Dempster-Shafer method allows compatible propositions to combine the probability

masses from several data sources and obtain a single value for the probability of the

intersection (union) of the propositions. Assume there are 4, object types in data source

1 and B, object types in data source 2, the total probability mass committed to a subset

Ais
D m(4,)m,(B))
i
m(4)= 2001 LK %1
1-K
K= > m(4)m,(B)) (6:4)
’,«i,-jnBj=®

The hypotheses about single classes and unions of classes are called simple hypotheses
and compound hypotheses respectively. The final decision of class types can be made by
a combination of the probability masses from multiple data sets based on the decision
rule. There are different decision rules. When the probability mass of simple hypotheses
is not null, a decision rule such as the maximum of support over simple hypotheses can

be used. The formula is as following:
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max(Sup(A4))

— (6.5)
Sup(A) = Sup(A4)

Table 6.1 shows the computed probability mass, plausibility and support values for each
simple and compound hypothesis of two data sources (Hegarat-Mascle et al 1997).
Assume three classification types C1, C2, C3 in the images. Since there is no general
answer to the problem of the probability mass definition, the probability masses should
be defined based on the application. If two classes Ci and Cj cannot be distinguished
by a data source, it makes sense to give a non null probability mass to their union

CiuCj. The probability masses for classes and their union for two data sources have

been showed in Table 6.1.

In this table, for data set 1, the probability masses for class C1, C2, C3 and the union
of their classes are defined as:

m (ClUuC2)=m,(CluC3)=m,(©®)=0
m,(C2)=m,(C3)=m,(C2UC3) =1t

t is a constant probability and normalizing the probability masses for all classes in data

set 1, the probability mass for ClI class can be:

m,(C)=1-m (CluC2)-m (CluC3)-m (C2UC3)-m (C2)—m (C3)—m, (O)
=1-3¢

Similarly, the probability masses can be assigned to all the classes in data set 2 as shown

in Table 6.1. The combination of probability masses of two data sets is obtained from

Equation (6.4). The above definition of probability masses has been used by Hegarat-

Mascle (1997) to implement an unsupervised classification.

For simple class C1, according to Equation (6.2) and the values in the table, the support
and plausibility functions can be calculated as follows:

Sup(C1) = m(C1)

Pls(CH)=m(CD)+ m(Clu C2)+ m(Clu C3) + m(Clu C20U C3) = m(Cl)
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Table 6.1 : Dempster-Shafer calculation from two data sources

1-k =2(t +u—4ut)

A m,(A) m, (A) m(A) Sup(A) Sup(A)
Cl 1-3¢ u 2u(1-3¢) 2u(1-3¢) 2t(1—u)
1-k 1-k 1-k
C2 t 1-3u 2t(1-3u) 2t(1-3u) 2u(l-1)
1-% 1-k 1-k
C3 t u 4tu 4tu 2(t +u—6tu)
1-k 1-k 1-%
CluC2 0 0 0 2(t + u — 6tu) 4tu
1-k 1-%
CluC3 0 u 0 2u(l-1t) 2t(1-3u)
1-k 1-k
C2uC3 t 0 0 2t(1-u) 2u(l-3t)
1-k 1-k
® 0 0 0 1 0

For compound hypothesis class C1 U C2, according to Equation (6.2) and the values in
the table, the support and plausibility functions can be calculated as follows:
Sup(C1u C2) = m(C1)+ m(C2)+ m(C1u C2) = m(Cl)+ m(C2)
Pls(C1lu C2)=m(Cl) + m(C2)+m(C1u C2) + m(C1u C3)
+m(C2UC3)+m(CluC2uU(C3)
=m(Cl)+ m(C2)

By the above inference, Sup(C1) and Pls(Cl), Sup(C1u C2) and Pls(CluC2) have
the same values respectively. The support and plausibility functions for other classes can
be obtained using the same method. Supports for the negation of the proposition can be

calculated using Equation (6.3).

In table 6.1, since all the compound hypothese m(CluC2),m(CluC3) and
m(C2 U C3) have null probability masses after combination, Sup and Pls are equal

according to Equation (6.2) and the uncertainty interval as described in Equation (6.3)
reduces to zero. This means that there is no longer imprecision after the two data sets are

combined.
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6.4 Multi-sources Region Evaluation

In this section, the theory fundamentals of multi-sources region evaluation in MEBRE
module are introduced, including the method of choosing the initial probabilities, and

their combination for evaluating building areas.

6.4.1 Fundamentals of multi-sources region evaluation

If there are more than 2 data sources, m, is the basic probability mass provided by

n

source n (1< n < p, p>3). Using Dempster-Shafer evidential theory, the combination of
all the data sources is defined as follows:

> T m.4)

_ Andy..nd,=4  lsn<p

1-K

K= 3 [T m.(4) (6.6)

ANdy...NA,=D  1<n<p

In Figure 6.1, m,(A,;) is the probability mass for class 4 in data set n. Regions of

LevelSet are spatial features from previous processing. Corresponding feature areas in
DSM and clustered image can be extracted respectively. For each feature area in the

different data sources, probability masses m,(A4,) can be defined. Based on Dempster-
Shafer theory, combined probability masses m(A,) from multiple data sources are

calculated using Equation (6.6). Using the support and plausibility functions in Equation
(6.5), the MEBRE module can then be used to predict the building regions.

As mentioned earlier, Dempster-Shafer theory has been used for unsupervised pixel level
classification (Hegarat-Mascle et al 1997). Because only non spatial features were
considered, classification errors occur at the boundaries of features. The evaluation
procedure by Dempster-Shafer evidential reasoning described in this study is based on
spatial features. This means that the determination of probability masses and their

combination are based on features. For each region of LevelSet, there are corresponding
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areas obtained from the DSM and clustered image. The total possible evidence

combinations are shown in Figure 6.2. The clustered image, regions of LevelSet and

Data 1:clustered image

Data 3:PS} N (A)

[Cl J [CZ ] [03 ] [c1ucz ][c1uc3 ] [czuc3 ]LLJ

Figure 6.2 Calculation probability masses based on three data sets

DSM are assigned as data sets 1,2, and 3 respectively. Classes C1, C2 and C3 represent
trees, buildings and ground respectively. For determining probability mass m(C1), Class
C1 in data set 1 is combined with all the classes in data sets 2 and 3 to find propositions
which belong to class C1. Although there are 49 possible combinations for calculating
probability mass m(C1), only the combinations which belong to class C1 can be added to
probability mass m(C1). Intersections of other classes, such as C1 U C2 in data set 1 with
C1 in data set 2 and 3, belong to class C1, they are also added to probability mass m(C1).
Similarly, the probability masses for other classes can be calculated as shown in Figure

6.2.

Table 6.2 shows the computed probability mass, plausibility and support values for each
simple and compound hypothesis based on three data sources. For data set 1, the
clustered image, the probabilities for all the simple and compound classes are represented
by probability ¢ as an example. Similarly, for data sets regions derived from LevelSet and

DSM, the probabilities for the classes are represented by u and s respectively.
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Table 6.2 : Dempster-Shafer calculation from three data sources

1-k = 4(ut + st + us —uts)

A m(A) | my(A) | my(A) | m(A) Sup(A) Sup(A)
clustered | regions | DSM
image LevelSet
C1 1-3¢ u s 4us(1-3¢) 4us(1-3¢) 4t(s +u—6su)
trees 1-k 1-k 1-k
C2 t 1-3u s 4st(1-3u) 4s5t(1-3u) 4u(s +t - 6st)
buildings 1—k 1-k 1—k
C3 t u 1-3s | 4ut(1-3s) 4ut(1-3s) 4s(u +1t—6ut)
ground 1—k 1-k 1-k
CluC2 0 0 s 0 4s(u+t —6ut) 4ut(1-3s)
1-% 1-k
Clu(C3 0 u 0 0 4u(s +1t —6st) 4st(1-3u)
1-k 1-%k
C2u(C3 t 0 0 0 4t(s +u—6su) 4us(1-3t)
1-k 1-%
® 0 0 0 0 1 0

6.4.2 Initial probability mass definition for region evaluation

The definition of probability functions for region evaluation remains a largely unsolved
problem. In image processing, the definition of the initial probability masses can be
obtained at three different levels. At the most abstract or highest level, information
representation is derived in a way similar to method in artificial intelligence, where
probability masses are assigned to propositions, often provided by experts (Gordon and
Shortliffe, 1985). At the middle level, the definition of probability masses is derived from
attributes, and may involve simple geometrical models (Van Cleynenbreugel et al,,
1991). This definition is suitable to model-based pattern recognition, but it is difficult to
use in image fusion for the classification of complex structures such as buildings in urban
areas for which no model exists. At the pixel level, probability masses are obtained from
statistical pattern recognition. The most widely used approach assigns probability masses
based on simple hypotheses (Rasoulian et al., 1990). Because there are no probability
masses for compound hypothesis, this limits the power of Dempster-Shafer evidential

method.
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For the multi-source evidential reasoning based region evaluation (MEBRE) module, the
probability masses are assigned based on a reasoning approach where knowledge about
the information provided by each image is used. This method is more reliable and is able
to take into account a larger variety of situations. For data set 1, the clustered image,

m , (4) has no null values to C1, C2, C3 and C2 C3 as shown in Table 6.2. Since C2 for

buildings and C3 for the ground may have the same texture in the image, there are
ambiguities between these two classes in clustered image. In Table 6.2, C2, C3 and
C2uU C3 are assigned the same probability, . Null probability masses are assigned to the
other compound hypotheses. Since all the masses sum to 1, the probability mass for C1 is
1-3¢. For each extracted region of LevelSet, the numbers of pixels representing trees,
ground, grasses and building can be calculated respectively. The probability ¢ can be
defined based on pixel assigned to each building region:
total=NumofTree+NumofGround+NumofGrass+NumofBuilding

probBuilding=NumofBuilding/total

Since ¢ €[0,1] and varies from 0 to 1/3, the calculated probability mass of pixels being

buildings from the above formula can be normalized in the ¢ range.

probBuilding
t= 3 (6.7)

For data set 2, regions of derived by LevelSet, since the extracted building regions are
from the processing of low-level image analysis and interpretation (LLIAI) and level set
modelling based image segmentation (LSMBIS), they are more reliable and are assigned
higher probabilities. As shown in Table 6.2, buildings in class C2 are assigned a
probability of 1-3u and other non-null classes are assigned a probability of u. If the
other classes are assigned lower probabilities, the class of building will have higher

probability since the sum of probabilities is 1.

For data set 3, DSM image, since buildings and trees are above ground areas in the DSM,
these two classes areas are easily confused. As shown in the Table 6.2, class Cl

representing trees, C2 of buildings and C1 U C2 are assigned the same probabilities, s.
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The probability mass of class C3, the ground is /-3s. The calculation of s is based on the
mean of the DSM values. For example, if the mean of elevations for a building area is
high, the probability s assigned to that building area in the DSM is assigned as higher

than other areas.

6.4.3 Experiments with region evaluation module
The application of the multi-source evidential reasoning based region evaluation
(MEBRE) module has been tested on one area. The data sets and original left image are

shown in Figure 6.3.

a) Datal: Clustered image

¢) Data3: DSM d) Left image
Figure 6.3 Three data sets in MEBRE module and left image

The evaluation using two data sources

Firstly, two data sets, clustered image and regions of LevelSet are input to the MEBRE

module. Based on the decision rule Equation(6.5), most building areas can be reliably
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extracted, as shown in Figure 6.4. The building regions derived from level set modelling
overlaid on ortho image are shown in Figure 6.5. Comparing Figure 6.4 with Figure 6.5,
it is noted that some correct areas have also been deleted although some incorrect

building areas have been detected and eliminated.

Figure 6.4 Result from Dempster-Shafer Figure 6.5 Regions of LevelSet
calculation based on two data sources overlaid on ortho image

Figure 6.6 Data fusion using two data sets
clustered image and regions of LevelSet
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In Figure 6.6, the green regions are false building areas and correctly deleted by fusion of
the two data sets. Red regions are correct building regions that has been wrongly deleted.
For example, the building No.35 indicated by arrow is a correct building area and deleted

from building regions by data fusion.

Figure 6.7 shows the small areas of building No.35 in ortho image (a), clustered image (b)

and region of LevelSet (c). In the clustered image, red, green, blue and yellow represent

(@) (b) ©
Figure 6.7 Small region areas for building No.35

trees, grass, ground and building respectively. Table 6.3 shows the numbers of pixels for 4
classes in Figure 6.7 (b) corresponding to the building region in Figure 6.7 (c). Based on

the Equation (6.7), the normalized probability of building #is 0.16.

Table 6.3 Pixel numbers in clustered image

% Tree Grass Ground Building
Number

17 90 194 276

Table 6.4 shows computed probability masses, plausibility and support values for each
simple and compound hypothesis for the model based on the two data sources, ie
clustered image and building regions of LevelSet. In the case where the probability
masses of simple hypotheses are not null, a decision rule based on the maximum value of

the support over all hypotheses will always favour compound hypotheses. For example,
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in Table 6.4, compound hypotheses C1 U C2 has Sup(4)=0.78 and Sup(4)=0.22. 1t
satisfies the decision rule. In order to avoid this bias, a decision rule involving only the

simple hypotheses is used. Based on Equation (6.5), there is no Sup(4) which is the max
and Sup(A) > Sup(A4). In this analysis, building No. 35 is evaluated as non-building

class, which is the reason for the incorrect deletion of building No. 35 from two data

sets model.

Table 6.4 Building No.35 evaluation using two datasets: clustered image and
regions of LevelSet

=016, u=0.15 1-k=0.428
A m, (A) m,(A) m(A) Sup(A) Sup(A)
clustered img regions LS

Cl 0.52 0.15 0.36 0.36 0.64

C2 0.16 0.55 0.41 0.41 0.59

C3 0.16 0.15 0.22 0.22 0.78
CiluC2 0 0 0 0.78 0.22
CluC3 0 0.15 0 0.59 0.41
C2u(C3 0.16 0 0 0.64 0.36

® 0 0 0 1 0

The evaluation using three data sources

Based on the decision rule given in Equation (6.5), the three data sources, the clustered
image, regions of LevelSet and DSM are input to MEBRE module and used by the
Dempster Shafer algorithm to produce building areas shown in Figure 6.8. The regions of
LevelSet overlaid on ortho image are shown in Figure 6.9. Comparing Figure 6.8 with
Figure 6.9, it is clear that using three data sets will result in a much better extraction of

buildings than the fusion of two data sets.

In this case, five incorrect building areas have been detected and deleted in the final
result, which are the green areas shown in Figure 6.10. The correct building areas shown
in Figure 6.3 (b) are unchanged after data fusion in Figure 6.10. Only one red area which
is incorrectly shown as a building has not been detected, because of its higher elevation

values in DSM information layer. This area contains ground and trees. The ground makes
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the area being classed as a building and the height of tree indicated a building area, so the

Dempster-Shafer processing could not detected the error.

Figure 6.8 Result from Dempster-Shafer Figure 6.9 Regions of LevelSet
calculation based on three data sources overlaid on ortho image

Figure 6.10 Data fusion using three data sets
Clustered image, regions of LevelSet and DSM
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For building No. 35, Table 6.5 shows computed probability masses, plausibility and
support values for each simple and compound hypothesis of three data sources. Based on
the decision rule Equation (6.5), it is clear why building No. 35 has been evaluated as

buildings from three data sets.

Table 6.5 Building No.35 evaluation using three datasets: clustered image,
regions of LevelSet and DSM (definition 1 of probabilities)

t=0.16, wu=0.15, s=0.33, 1-k=0.22
A m, (A) m,(A) | my(A) | m(A) | Sup(A) | Sup(A)
clustered img | regions LS DSM
Cl1 0.52 0.15 0.33 0.47 0.47 0.53
frees
C2 0.16 0.55 0.34 0.53 0.53 0.47
buildings
C3 0.16 0.15 0 0.01 0 1
ground
CiluC2 0 0 0.33 0 1 0
CluCs 0 0.15 0 0 0.47 0.53
C2uC3 0.16 0 0 0 0.53 0.47
® 0 0 0 0 1 0

Since choosing the initial probability masses is important, several experiments have been
made to investigate how they affect the results of the region evaluation. Assume Table
6.5 is definition 1 of the probabilities for building No. 35, while Table 6.6 shows
definition 2. The initial probabilities for data sets 2 and 3 are kept the same, while the
probabilities for data set 1 are changed. Since grass is included in class C3 as ground and
are possibly confused with the class of tree, the probability of the compound class C1w C3
is increased. Normalizing the probabilities requires the probability for class C1 to be
decreased. From Table 6.6, it is noted that the initial probability for class C2 is
unchanged. After data fusion, building No. 35 still can be correctly assigned as building.
Although the initial probabilities for clustered image have been changed, the building can

be detected because it has enough supporting probabilities.

For definition 3 of probabilities, in Table 6.7, the probabilities for data sets 2 and 3 are
same as in definition 1, the probability of ¢ is decreased from its value in Table 6.2

while the compound probability C1w C3 is increased. Since the supporting probabilities
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for the class of building are not high enough, it is not possible to detect building No. 35

using this scenario.

Table 6.6 Building No.35 evaluation using three datasets: clustered image,
regions from LevelSet and DSM (definition 2 of probabilities)

A m,(A) m,(A) | my(A) | m(A) | Sup(A) | Sup(A)
clustered img | regions LS DSM
C1 0.27 V 0.15 0.33 0.47 0.47 0.53
trees
C2 0.16 0.55 0.34 0.53 0.53 0.47
buildings
C3 0.16 0.15 0 0.01 0.01 0.99
ground
CluC2 0 0 0.33 0 0.99 0.01
CluC3 025 N 0.15 0 0 0.47 0.53
20 C3 0.16 0 0 0 0.53 0.47
® 0 0 0 0 1 0

For definition 4 of probabilities in Table 6.8, the probabilities for data sets 1 and 2 are
same as definition 1, the initial probability for the class of building s is decreased from
its value in Table 6.2 and the compound probability C2 U C3 is increased. In this case
building No. 35 can be detected.

Table 6.7 Building No.35 evaluation using three datasets: clustered image,
regions from LevelSet and DSM (definition 3 of probabilities)

A m,(A) my(A) | my(A) | m(A) | Sup(A) | Sup(A)
clustered img | regions LS DSM
C1 0.52 0.15 0.33 0.65 0.65 0.35
trees
C2 0.10 V 0.55 0.34 0.34 034 0.66
buildings
C3 0.10 V 0.15 0 0.01 0.01 0.99
ground
CluC2 0 0 0.33 0 0.99 0.01
CluC3 0.18 p 0.15 0 0.66 0.34
C2uC3 0.10 V 0 0 0 0.35 0.65
® 0 0 0 0 1 0
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Table 6.8 Building No.35 evaluation using three datasets: clustered image,

regions from LevelSet and DSM (definition 4 of probabilities)

clustered img | regions LS DSM |
C1 0.52 0.15 023 Vv 0.47 0.30 0.70
trees
2 0.16 0.55 024 V 0.53 0.57 0.43
buildings
C3 0.16 0.15 0 0.01 0.13 0.87
ground
CiluC2 0 0 0.23 \/ 0 0.87 0.13
CluCs 0 0.15 0 0 0.43 0.57
C2uC3 0.16 0 03 AN 0 0.70 0.30
©) 0 0 0 0 1 0

For definition 5 of probabilities in Table 6.9, the probabilities for data sets 1 and 3 are
same as in definitionl, the probability # in Table 6.2 is decreased and the compound
probability C1 U C2 and C2u C3 are increased, resulting in correct detection of the class

of building.

Table 6.9 Building No.35 evaluation using three datasets: clustered image,

regions from LevelSet and DSM (definition 5 of probabilities)

A m,(A) m,(A) | my(A) | m(A) | Sup(A) | Sup(A)
clustered img regions LS DSM
Cl 0.52 0.12V 0.33 0.45 0.45 0.55
trees
C2 0.16 0.45\/ 0.34 0.55 0.55 045
buildings
C3 0.16 0.12\/ 0 0 0 1
ground
CluC2 0 0.10 \ 0.33 0 1 0
CluC3 0 011V 0 0 0.45 0.55
C2uC3 0.16 0.10\ 0 0 0.55 0.45
® 0 0 0 0 1 0

From above tests, it is noted that all buildings can be extracted if they are assigned
sufficiently high probabilities from multiple data sets. If the probabilities of the union

classes, which do not include the class of building, are too high, the class of building

will not be correctly assigned as the building class.
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For the whole test image, based on the definition of initial probability masses in Table
6.2, there are 96 buildings which are more than 100 pixels in size. The method has
successfully detected 85 buildings, which is a detection rate of 88.54%. The result is

encouraging.

In order to test different combinations of data sets by Dempster-Shafer data fusion, the two
data sets of the clustered image and DSM have been input to MEBRE module. Fusing of
these two data sets can only be implemented at pixel level because there is no spatial
boundary information. The pixels assigned as the class of building based on the fusion of
these two datasets are shown in Figure 6.11. A Sobel edge detector has been used to
derive building boundaries as shown in Figure 6.12, which are overlaid on the ortho
image displayed in Figure 6.13. It is clear that the clustered image and DSM modelling
cannot supply unambiguous building regions. Some road areas are still wrongly assigned
as building areas. This shows that the building regions derived from level set modelling is
an important information layer in MEBRE module and that fusion based on three data sets

implemented at feature level is important.

Figure 6.11 The pixels assigned as building class based on
classification and DSM fusion
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In this chapter, multi-source evidential reasoning based region evaluation (MEBRE)
module has been described in detail. Based on Dempster-Shafer theory and tested on one
image set, the MEBRE module has been proven an efficient way to evaluate the
reliability of the extracted building regions. It is an important procedure in the system of
automatic building extraction for 3D reconstruction. In addition, after tuning the initial
probabilities of the module, it is noted that when the probabilities of union of classes are
increased, the buildings can still be extracted if their initial probabilities from multiple
data sets are high enough. The processing of the previous chapters results in some
buildings missing, which are not possible to be detected by MEBRE module. Refining
the low-level image analysis and interpretation module is an important step to help detect

these missing buildings. In next chapter, more test examples will be presented.

Figure 6.12 Building boundary extracted from Figure 6.11
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Figure 6.13 Extracted building boundary overlaid on ortho image
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CHAPTER 7

Test and Results

7.1 Introduction

The purpose of this chapter is to demonstrate the effectiveness of the system of automatic
building extraction for 3D reconstruction with a number of tests of the techniques
described in previous chapters. The test and results so far demonstrate that the four
components of the system described in Figure 2.2 are important procedures to effective
building extraction. No part can be ignored because each component contributes to the
extraction process. The contributions of each process are important for the next level of
processing. Four image pairs have been used to dependently test the system in this
chapter. Test of the low-level image analysis and interpretation, level set modelling based

segmentation and multi-source evidential reasoning based region evaluation will be
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analyzed and discussed. The conditions under which these tests have been undertaken are
same as the example in Chapter 6. For all the cases in this study, definition 1 described in

Chapter 6 has been used as initial probability masses for data fusion.

7.2 Image Data

In order to effective extract the buildings, the high resolution aerial images have been
used. The principle distance of the camera is 153mm and the images have been digitized

with a pixel size of 0.3 metre. The flying height is 3070 metres.

The image of Test 1 is shown in Figure 7.1, which illustrates one of a pair of aerial images
with 515 x 521 pixels in the row and column directions respectively. The image contains a
number of white roof and two red buildings. The buildings have a distinguishable contrast

against the background.

Figure 7.1 Test area 1

The image in Test 2 is shown in Figure 7.2, which is one of a pair of aerial images with
584 x 521 pixels in the row and column directions respectively, in which the buildings
have different shapes and colour. The red and white roof buildings have significant contrast

compared with road surface and trees, but the dark roof building such as one in the middle
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of the left image is surrounded by the trees and has blurred contrast compared with the

surrounding areas.

The image in Test 3 is shown in Figure 7.3 and has a size of 522 x 584 pixels. The
majority of buildings have white or red roofs, but there are some dark roof buildings as

well. There is good contrast between the buildings and the background.

3 X
Figure 7.3 Testarea 3
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The image for Test 4 is shown in Figure 7.4, which has a size of 579 x 515 pixels. The
image contains extensive trees which surround the buildings. Two dark roof buildings in
the bottom of image have a poor contrast with the background and one of them is hardly

recognizable. Each data set will be processed in order.
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Figuf 7.4 Test area 4

7.3 Description of Experiments

7.3.1 Test 1

The image in Figure 7.1 has been processed as follows. Figure 7.5 illustrates the DSM map
obtained from stereo image matching method. Figure 7.6 displays the result of
unsupervised classification using the K-Means clustering, where yellow is assigned to
building areas, red and green are the vegetation areas, and blue is ground areas.
Classification of some areas is not correct, because some ground areas are classified as

buildings. Also, some cars are assigned as buildings in the left of image.

Based on the classification of Figure 7.6, using a post classification procedure, a
segmented image is created to show the building areas in the classification map in Figure
7.7. Most building areas have been detected, but one red roof building has been

completely missed and some road areas have been wrongly assigned as buildings.
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The results of processing by VVI are shown in Figure 7.8, where high VVI represents the

vegetation and low VVI represents the ground and building areas.

Figure 7.6 Unsupervised classification by clustering
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Figure 7.7 Building areas extracted by segmentation on Figure 7.6

fL ol

Figure 7.8 VVI image revealing vegetation

The four information data sources of Figures 7.5~7.8 are input into the spatial analysis

model. Using the Map Queries operation in ArcView, the possible building areas are
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extracted. By implementing the region growing algorithm, the small spots which do not
belong to buildings can be deleted from the result. The final building interest areas are

derived by analyzing the colour and stereo images as shown in Figure 7.9.

The building interest areas are overlaid on the ortho image in Figure 7.10 as shown in
Figure 7.11. Comparing the Figure 7.11 with Figure 7.10, most the road areas wrongly
assigned as buildings have been deleted and the correct building areas from classification

have been successfully maintained.

Based on the building interest areas in Figure 7.9, level set modelling based image
segmentation (LSMBIS) has been used to delineate the boundaries of the buildings, as
shown in Figure 7.12. Building regions from the level set modelling overlaid on ortho

image are shown in Figure 7.13.

Figure 7.9 Final building interest areas derived after map query operation
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Figure 7.11 The building interest areas overlaid on ortho image in Test 1
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Figure 7.13 Building regions from level set modelling
overlaid on ortho image in Test 1
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In Figure 7.13, it is noticeable that some regions, which belong to road and car areas
still are assigned as building areas after the level set shape modelling. This is because the
building interest areas supply wrong information and caused the interpretation of some
building regions to be unreliable. Thus, it is necessary to use multi-source evidential
reasoning based region evaluation (MEBRE) module to evaluate these regions by data

fusion.

The results of the application of the Dempster Shafer data fusion algorithm are shown in
Figure 7.14. The areas, which were incorrectly assigned as buildings and, have been
detected and deleted are shown in green. The blue regions are correctly extracted

buildings.

Figure 7.14 Data fusion using three data sets

The building regions derived from MEBRE module evaluation overlaid on ortho image
are shown in Figure 7.15. This test demonstrates that the fusion of three data sets is an
effective way to evaluate the reliability of the extraction of building regions, because it
has deleted all incorrect regions and the correct building areas remain unchanged. In this
case, similar roof types have been chosen. One red roofed building is completely missed,

while all other buildings have been successfully extracted. One large building exists in
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the left bottom of image, which has a partly bright roof and partly dark. As shown in
Figure 7.15, only the bright parts of this building have been successfully detected. There
are 32 buildings in the image with a size greater than 100 pixels. The detection rate is
96.8%.

Figure 7.15 The building regions from the proposed system
overlaid on ortho image for Test 1

7.3.2 Test 2

Since majority of buildings in Test 2 in Figure 7.2 are red and dark roofed building, the
classification is more difficult than in Test 1. The result of unsupervised classification is
shown in Figure 7.16, where most of the building areas have been detected, but some dark
roofed buildings and small buildings are completely missed. Classification of large road
areas in the left part of the image is not correct. Also, some cars are assigned as buildings in

the top of image.

The four information data sources are input into the low-level image analysis and

interpretation module. The final building interest areas overlaid on ortho image are

derived as shown in Figure 7.17. Although some large road areas have been wrongly

classified as building in LLIAI module, information from DSM and VVI assists to
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differentiate between the road areas and building areas. Finally, the road areas wrongly
assigned as buildings have been deleted and the correct building areas from classification
have been successfully maintained. All the white roofed buildings have been indicated in
Figure 7.17, while all the dark roofed buildings are missed. Some red roofed buildings
are partly presented.

Figure 7.17 The building interest areas overlaid on ortho image in Test 2
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Based on the building interest areas in Figure 7.17, the level set modelling based image
segmentation (LSMBIS) module has been used to delineate the boundaries of the

buildings as shown in Figure 7.18, which are overlaid on ortho image in Figure 7.19.

Figure 7.19 Building regions from level set modelling
overlaid on ortho image in Test 2
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In Figure 7.19, some regions in the top and bottom of image, which belong to ground
and car areas still are assigned as building areas after level set shape modelling.
Subsequently, MEBRE module has been used to evaluate the reliabilities of the building
regions as shown in Figure 7.20. The green regions, which were previously incorrectly
assigned as building areas, have been detected and deleted. But four red regions are still
kept because of their higher elevation values and the texture in DSM and VVI information
layers respectively. Four red regions do not have regular building shapes and could be
deleted from the building interest areas in Figure 7.17. But this may also delete some
correctly assigned building interest areas with red or dark roof, since for most of red and
dark roofed buildings, only parts of building areas can be assigned as building interest
areas. Hence a reasonable threshold should be chosen to delete small areas, which do not
belong to buildings, from building interest areas. In this case, in order to detect more red
roofed buildings, a lower threshold has been set, to maintain building interest areas larger
than 100 pixels. As a result, four red regions in Figure 7.20, which could not be deleted
from the earlier processing have been wrongly kept. The building regions derived by the

MEBRE module are overlaid on ortho image as shown in Figure 7.21.

...t

Figure 7.20 Data fusion using three data sets
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Figure 7.21 The building regions from the proposed system
overlaid on ortho image in Test 2

There are 61 buildings in the image and 50 buildings have been correctly detected. Four

non-building areas have been assigned as buildings. The detection rate is 81.9%.

7.3.3 Test 3

Figure 7.22 is the result of unsupervised classification on Test 3 as shown in Figure 3. Most
of the building areas have been detected, but the dark roofed buildings are completely
missed. Some red roofed buildings are partly detected. Also, one car is assigned as a

building in the top of image.

After the low-level image analysis and interpretation processing. The final building
interest areas overlaid on ortho image are derived as shown in Figure 7.23. In LLIAI
module, the larger road area in left bottom of image and a car area in the top of image
have been deleted based on the information from DSM and VVI, while the correct
building areas from classification have been successfully kept. Based on Figure 7.23, the
boundaries of the buildings are delineated by LSMBIS module as shown in Figure 7.24.

Building regions from the level set modelling overlaid on ortho image are shown in
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Figure 7.25. Although most of the building boundaries are correct, three regions in the
top and bottom left are wrongly assigned as building areas. In this case, in order to delete
the small spots in building interest areas processing, the threshold for building interest
areas is set as 170 pixels. This value maintains some of the red roofed buildings, such as
one on the right top of image in Figure 7.23, but it does not successfully delete

three wrongly assigned building interest areas on the left top and bottom of image.

Figure 7.23 The building interest areas overlaid on ortho image in Test 3
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MEBRE module has been used to evaluate the reliabilities of the building regions as
shown in Figure 7.26. The three wrong building areas mentioned before are detected and
deleted after data fusion. The building regions derived from MEBRE module evaluation
overlaid on ortho image are shown in Figure 7.27. There are 50 buildings in the image

and 40 building are detected. The detection rate is §0%.

5
£
N

Figure 7.25 Bilding regions from level set modelling
overlaid on ortho image in Test 3
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Figure 7.27 The building regions from the proposed system
overlaid on ortho image in Test 3
As described in Chapter 6, the determination of initial probabilities are important for
data fusion. In order to test the effectiveness of the initial probabilities for Test 3, the
initial probabilities have been revised for this case. As in Chapter 6, variations of the

initial probabilities were tested and the detection rates were as shown in Table 7.1.
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Table 7.1 Definitions for the initial probabilities and the detection rates

Initial Total Regions of Detected | Deleted False Detection

prob. buildings LevelSet buildings | wrong blds | evaluation rates
Defintionl 50 43 40 3 0 80%
Definition2 50 43 40 3 0 80%
Definition3 50 43 31 3 9 62%
Definition4 50 43 40 3 0 80%
Definition5 50 43 40 3 0 80%

From Table 7.1, it is clear that the detection rate will be high if the class of buildings
have sufficiently high initial probabilities in the multiple data sets. For definition 3, since
the initial probabilities for the simple and compound classes of buildings are not high
enough, many buildings were not correctly evaluated and the detection rate was lower.
For definitions 2, 3 and 4, although the initial probabilities have been changed, the
detection rates were not changed because the class of buildings still has enough
supporting probabilities. After tuning the initial probabilities, it was proved that the

assignment of the initial probabilities by definition! is a reasonable choice.

7.3.4 Test 4

Figure 7.28 is the result of the classification on Test 4 shown in Figure 7.4. As occurred
for the previous cases, all the white roofed buildings have been correctly classified, but
many road areas have been wrongly classified as buildings. All the dark roofed buildings
have been completely missed, such as two dark roofed buildings in bottom of the image
are assigned as the class of trees. Figure 7.29 is the VVI colour image. The range of
colour changes from green, yellow to brown, where green represents the lowest VVI
value and the brown represents the highest. The two dark roofed buildings mentioned
above, are shown as brown and have similar VVI values as trees. Although DSM supplies
high elevation values for the two dark roofed buildings, the VVI and classification cannot
give supporting information. This is why after LLIAI processing, the dark roofed
buildings still cannot be detected as building interest areas. The final building interest
areas overlaid on ortho image are derived as shown in Figure 7.30. The boundaries of the
buildings are delineated by LSMBIS module as shown in Figure 7.31. Figure 7.32 shows
the building regions overlaid on ortho image. Two regions which belong to roads are

wrongly assigned as buildings in the top left of Figure 7.31. The building regions from
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MEBRE module evaluation overlaid on ortho image are shown in Figure 7.33. Two false
building regions have been successfully deleted by MEBRE module, but there is a
swimming pool in the left bottom of Figure 7.33 which is wrongly assigned as buildings.
A total of 26 buildings exist in Figure 7.4 and 21 buildings are correctly detected as
shown in Figure 7.33. The detection rate is 80.8%. Although trees are mixed within the
buildings, the system still can be effective to detect the buildings.

Figure 7.29 VVI colour image revealing the vegetation in Test 4
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Figure 7.32 Building regions from level set modelling
overlaid on ortho image in Test 4
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one in Chapter 6.

R

Figure 7.33 The building regions from the proposed system
overlaid on ortho image in Test 4

7.4 Summary of Test Results

Table 7.2 gives the over all results of all tests including the 4 tests in this Chapter and the

Table 7.2 Results of all tests in this study

Tests Total Regions of | Detected Deleted False Detection
In this study | buildings LevelSet | buildings | wrong blds | evaluation rates
Test in Ch6 96 91 85 5 1 88.5%
Testl in Ch7 32 39 31 8 0 96.8%
Test2 in Ch7 61 65 50 11 4 81.9%
Test3 in Ch7 50 43 40 3 0 80%
Test4 in Ch7 26 24 21 2 1 80.8%
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The system described in this thesis combines stereo image matching, multispectral image
analysis, shape modelling with level set method and Dempster-Shafer data fusion theory,
to locate building areas in the test images. The test results demonstrate that each
procedure is an important step in determining the accuracy of the system. The testing
results also prove that the system of automatic building extraction using interpretation

techniques is effective and robust and provides a success rate of greater than 80%.

The purpose of the automatic building extraction is to supply more accurate DTM. One
example shown here demonstrates that the extracted building boundaries can be used to

overcomes errors in the DSM caused by matching on tops of man-made objects. Figure




7.34 is the extracted building boundaries. Based on a combination of the 3D DSM
derived from the image matching and 2D building boundaries, the elevations derived in
building regions can be removed from the DSM, as they do not represent the terrain
surface, thus leading to a more accurate DTM. In the case of the buildings, the elevations
can then be interpolated from the surrounding terrain. Where trees exist, the DSM heights

can be reduced by the tree heights. Figures 7.35 and 7.36 illustrate the DSM and 3D

Figure 7.34 Etracted building  Figure 7.35 DSM from matching Figure 7.36 3D perspective view
boundaries from matching

Figure 7.37 more accurate DTM Figure 7.38 3D perspective view
from more accurate DTM

perspective view derived directly from stereo image matching. A more accurate DTM and
3D perspective view produced by the method in this study are shown in Figures 7.37 and
7.38. It is noted that the points on the top of buildings in DSM have been put on the ground
in Figures 7.37 and 7.38. The DTM represents the bare earth which excludes buildings. In
this study, only building areas have been investigated and the corresponding building
boundaries have been extracted to reconstruct DTM over these areas. The tree areas
should also be extracted for DTM reconstruction over urban areas. The above example

shows that the extracted building boundaries do improve DTM reconstruction
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CHAPTER 8

Conclusions

8.1 Conclusions of This Study

In this thesis, an automatic building extraction system for 3D reconstruction using
interpretation techniques has been presented. The system offers effective algorithms for
building extraction for DTM reconstruction from complex photographs over urban areas.
Since reliable results for building extraction cannot be achieved by using a single step,
the system developed was based on the integration of multiple information from different
image interpretation techniques. DSM providing 3D information, and classification, post
classification processing and NDVI (VVI in the tests), which represent 2D information,
have been used to differentiate buildings from other objects above the ground surface.
Based on the building interest areas detected by the above process, 2D shape modelling

using the level set method was then used to precisely extract the buildings to guide DTM
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reconstruction. The extracted buildings were then evaluated based on the evident from

the multiple data sets using data fusion method.

As described in Chapter 1, the main objectives of this study were:

e To improve the process of DTM determination by recognizing types of terrain cover

and correction of their effects on the computed DSM.

e To develop robust building extraction procedures that include multiple data sources.

e To establish practical and effective modules in the building extraction process

From the previous chapters, it can be seen that these objective have been successfully

achieved. The main contributions of this thesis include:

¢ Implementation of robust image matching algorithms for DSM extraction
Because there are numerous conventional image matching algorithms and
approaches, this thesis concentrates on the development of a matching method,
which detects the breaklines in the computation of disparities in the images for
areas where discontinuities caused by buildings and trees exist. A robust hybrid-
based least squares imaged matching algorithm has been developed. The
contribution of this approach is that the disparity map should preserve the
discontinuities in the images and supply more a robust DSM for further processing.
It overcomes the disadvantages of the least squares method and detects the

breaklines and disparity changes during the matching.

e Establishment of low-level image analysis and interpretation (LLIAI) module
based on multiple data sources for extracting building interest areas
In this study, the low-level image analysis and interpretation module based on
multiple data sources was developed to detect the building interest areas in high

resolution images. DSM, land cover classification, the results of the post
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classification procedure and NDVI (VVI for the aerial photography case), were
integrated into the spatial analysis model to extract building interest areas for
further shape modelling. The experiments show this module is an important step
in the system. It differentiates buildings from other objects in the images and
enables shape modelling to be implemented over the small building interest areas.
It overcomes the problems created in 2D segmentation inferencing, when it is

based only on single information dataset.

Development of level set modelling based image segmentation (LSMBIS)
module for delineating the building boundaries

To extract building boundaries to guide DTM reconstruction, the level set
modelling based image segmentation module was developed. The module offers a
highly robust and accurate method for tracking curve interfaces moving under
complex motions. The level set method has been applied for the first time in this
thesis for complicated urban image analysis. The multiple data sources used for
interpretation and integration in the previous procedures, result in the initial
modelling of shapes for extracted building interest areas, enabling the level set
shape modelling to be achieved without user input. The module also overcomes
the complicated and difficult 2D inference in a single image. Since the evolving
function in the level set method is associated with edge information in the image
through a speed function, when the evolving curve reaches the boundaries of the
buildings, all the points on the curve stop evolving further and the computation is

ended. Therefore, precise building boundaries can be obtained.

Since the approximated construction of the zero level set can create a
discontinuous curve away from the zero level set, re-initialization of the level set
function during fixed time steps is needed to make sure the level set evenly
evolves around the curve. For every re-initialization, the discontinuous curve is
needed to become a closed curve. A modified seed based pixel-to-pixel region
growing procedure has been presented to follow the curve. A seed can be any

point on the tracking curve. The method successfully links the points, which
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belong to the same curve but are also separated from each other, into a closed

curve.

Development of multi-source evidential reasoning based region evaluation
(MEBRE) module for evaluating extracted building regions.

In order to evaluation the reliability of extracted buildings, multi-source evidential
reasoning based region evaluation module was developed. Dempster-Shafer
theory has been applied in this context for the first time for evaluating multiple
data sources for extracting buildings and their reliability. The theoretical basis for
the module is also given. The module is unique because it integrates the spectral
characteristics and spatial features and evaluates the reliability of the extracted

buildings at feature level.

Similar textures for the road, building roofs and vehicles on road surface, are a
common phenomenon in the complicated urban images. They usually lead to
misclassification, and thus cause some generated building interest areas to be
assigned to an incorrect class. When the level set shape modelling is based on the
wrongly assigned building interest areas derived from the earlier steps in the
procedure, an incorrect region will be supplied. Region evaluation with redundant
data can help eliminate incorrectly extracted regions, while complementary data
can provide a more complete description. To remove the wrongly assigned
building regions, the three data sets were combined by data fusion. The use of the
three data sets rather than two, ie clustered image, regions of LevelSet and DSM,
can improve the reliability of system. The comparison of using two and three data

sets has been demonstrated in Chapter 6.

The experiments also demonstrate that the initial probabilities in MEBRE module
are important to correctly evaluating the extracted building boundaries. The
buildings can be extracted if their initial probabilities derived from the multiple
data sets are appropriately assigned. A number of test areas, which include

buildings with different sizes, shape and roof colour have been investigated. The
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tests are encouraging and demonstrate that the MEBRE module is important
procedure for effective building extraction, and the determination of more
accuréte elevations of the terrain surface. The detection rate largely depends on
the building interest areas. As shown in the case studies, some dark roof buildings
have been missed in building interest areas and never recovered. MEBRE module
cannot recover the missed buildings, but it does supply an effective way to

evaluate the reliability of the extracted buildings.

8.2 Further Studies

This thesis has investigated and established an automatic building extraction system for
extracting buildings for 3D terrain reconstruction over urban areas. While significant

achievements have been made with the system, further studies are also recommended.

¢ Modelling more reliable low-level image analysis and interpretation

In this thesis, building boundaries are extracted based on the previous processes.
Thus, the results of building extraction rely on the quality of DSM and low-level
image analysis and interpretation. When the building interest areas are not reliable,
the level set modelling based image segmentation (LSMBIS) module may produce
regions which are wrongly assigned as building areas. Also, the buildings which are
missed in the low-level image analysis and interpretation module, will never be
recovered from the later processing. Therefore, LLIAI module needs to be further
modify to supply more reliable building interest areas. Firstly, multi-spectral images
should be more efficient to differentiate between buildings and trees. As mentioned in
Chapter 4, because the multi-spectral images were not available for this study, the
VVI method was proposed to substitute the NDVI. Because dark roofed buildings
have similar VVI values as trees, all dark roofed buildings have be missed in LLIAI
module. This limitation may be overcome if multi-spectral images are available.
Secondly, the spatial analysis model in the module could comprise more information
than the four sets used in this study. This may result in more reliable building interest

areas. In addition, the spatial analysis model should also have the ability to combine
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information from high resolution aerial images and coarse resolution multi-spectral
image. These techniques should be tested on a range of data sets and different scenes.

The suitable data sets and modelling method can be obtained by investigation.

e Integration of matching algorithms

As mentioned earlier, the proposed matching algorithms can be packaged in a
complete software package. If the methods of computing a DSM based on the robust
image matching proposed in this thesis prove effective, a more accurate DSM should
be available. This module can be input into the automatic building extraction system

instead of using DSM from LH Systems’ Socet Set v4.2.

e Modelling more data sources for MEBRE

The experiments in this study have demonstrate that three data sources can supply
more reliable result than two. In some cases, even when three data sources had been
used, some extracted building, which are wrongly assigned, cannot be detected as
such, and deleted in MEBRE module. Modelling of more data sources from different
sensors in the MEBRE module may lead to improved decisions. In addition, GIS data,
such as land parcels, can be important information for evaluating the extracted
buildings. The correctly extracted buildings should be within known land parcels.
Which data sources can be effectively used and how they can be combined with the

other data sources in MEBRE module require further investigation.
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