CONDITION METHOD LEAST SQUARES - MORE EXAMPLES

Currently condition method LS is rarely used by surveyors so it is briefly dealt with in chapter 8 of Monograph 13. In the past with limited computer power (or none at all) the condition method was more popular than now. Perhaps it will become useful again in the future.

The first two of these examples are based on my class notes from when I was a student. So my teachers are the original authors. I have added comments and changed the symbols to match those used in Monograph 13. I think the data is not based on real observations, but I may change that to real student observations sometime in the future.

You will see that these example problems do not have to concern themselves with datums, i.e. what to hold fixed, because they adjust the observations only – not the parameters. So these solutions might be comparable to Free Net adjustments.

1. Condition Method Equations

This method includes only the observations, and not parameters, in the model. Conditions, such as misclose sums, are used to adjust the observations.

Arrange the basic equations in the form F(L) = 0where L = adjusted observations and ℓ are the observations (a vector n terms)

$$B = \frac{\partial F}{\partial \ell} = \begin{pmatrix} \frac{\partial F_1}{\partial \ell_1} & \frac{\partial F_1}{\partial \ell_2} & \frac{\partial F_1}{\partial \ell_3} & \cdots \\ \frac{\partial F_2}{\partial \ell_1} & \frac{\partial F_2}{\partial \ell_2} & \cdots & \cdots \\ \frac{\partial F_3}{\partial \ell_1} & \cdots & \cdots & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
B is n_e by n

The number of model equations equals n-u (the number of observations minus the number of unknown parameters), and make sure that the model equations are

© 2010 B Harvey

independent.

Model	Bv - b = 0
Functions	F(L) = 0
misclose (OMC) vector, n _e terms	$b = -F(\ell)$
Estimated Variance Factor	$VF = v_{T}^{T} P v / n_{c}$
Residuals	$v = QB^{T} (BQB^{T})^{-1} b$
Adjusted observations	$L = \ell + \vee$
Quality of corrected observations	$Q_L = Q - QB^T (BQB^T)^{-1}BQ$ (n by n)
Quality of residuals	$Qv = QB^{T} (BQB^{T})^{-1}BQ$ (n by n) ri $\approx s^{2}_{v} / s^{2} = 1 - (s^{2}_{L}/s^{2})$
Redundancy Numbers	ri ≈ s_v^2 / s^2 = 1 - (s_L^2/s^2)

n number of observations

n_c number of condition equations

- n_e number of model equations
- Q a priori VCV matrix of observations (n by n)

2. Level net example

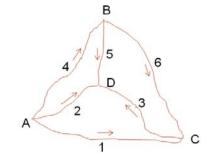


Figure 1 Fictitious height network plan

The measurements are assumed to be not correlated. The measurements are:

Level line (see fig)	ΔH (m)	s ² (cm ²)
1	6.16	4
2	12.57	2
3	6.41	2
4	1.09	4
5	11.58	2
6	5.07	4

Possible condition equations are the loop miscloses, e.g. the three inner loops ABD, BCD, ADC and the outer loop ABC:

 $\Delta H_{AB} + \Delta H_{BD} - \Delta H_{AD} = 0$

There are 6 observations (n) and 3 unknowns (u). So n-u = 3, thus we need 3 condition equations. The above four equations are not independent because the last one is simply the sum of the first three. So I select the first three equations as the conditions.

I have chosen units of cm for residuals etc because they are similar to the size of the standard deviation. The VF is always unit less so set the units of P to cancel the units of v^2 . For the diagonal elements of P the units are cm⁻² and the units of Q are cm², A check equation in the condition method is Bv - b = 0, so set the units of B to balance the units in this equation, b is in cm therefore Bv is in cm. Now all six terms of v are in cm, therefore the units of B must be unit less, and they are.

Substituting observations into the 3 condition equations yield b = -F(l):

With the observations in the order 1 to 6 as listed above the terms in B and Q are:

									(4	0	0	0	0	0)	١
(0	-1	0	1	1	0)			0	2	0	0	0	0	
$B = \frac{\partial f}{\partial f} =$	0	0	1	0	-1	1	and	0-	0	0	2	0	0	0	
$B = \frac{\partial f}{\partial \ell} =$	-1	1	-1	0	0	0		Q –	0	0	0	4	0	0	
									0	0	0	0	2	0	
								Q =	0	0	0	0	0	4)	

An intermediate step, to check your calculations if you are working on this problem yourself. $(BQB^{T})^{-1} =$

0.15	0.05	0.05
0.05	0.15	0.05
0.05	0.05	0.15

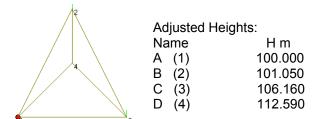
Residuals $v = QB^T (BQB^T)^{-1} b = (0, 2, 2, -4, -4, 4)^T cm$ [Includes inversion of only a 3x3 matrix]

The adjusted observations are l + v:

1	ΔH_{AC}	6.16
2	ΔH_AD	12.59
3	ΔH_{CD}	6.43
4	ΔH_{AB}	1.05
5	ΔH_{BD}	11.54
6	ΔH_{BC}	5.11

After some matrix calculations the Quality of corrected observations $Q_L = Q - QB^T$ $(BQB^T)^{-1}BQ$, then standard deviations of corrected observations s_L (sqrt of diagonal terms of Q_L) and redundancy numbers ($r = 1 - (s_L^2/s^2)$) are:

		Q_L				SL	r
1.60	0.80	-0.80	0.80	0.00	0.80	1.26	0.6
0.80	1.20	0.40	0.80	0.40	0.00	1.10	0.4
-0.80	0.40	1.20	0.00	0.40	-0.80	1.10	0.4
0.80	0.80	0.00	1.60	-0.80	-0.80	1.26	0.6
0.00	0.40	0.40	-0.80	1.20	0.80	1.10	0.4
0.80	0.00	-0.80	-0.80	0.80	1.60	1.26	0.6


It's a linear problem so there is no need to do a second iteration; except to check the calculations. The second iteration does yield all v = 0. Substituting the adjusted observations into the original loop misclose equations also gives zero errors.

 $v^{T}Pv = 20$

Three conditions equations so VF = 6.7 (which is statistically too large)

This concludes the condition method LS adjustment. If you want to determine the heights of the points then you need to do additional calculations. To determine the standard deviations of the adjusted heights you need to do propagation of variance calculations too.

For comparison, a parametric LS solution of this problem was calculated with the height of point A held fixed at 100. The results are the same as the condition method above.

Residuals		adju LOM	Istment TO	t MEASUREMENT	STD DEV	v	v/s	Redun
				m	Cm	Cm		
1 Height	Df	1	3	6.16	2.00	0.0	0.0	0.6
2 Height	Df	1	4	12.57	1.41	2.0	1.4	0.4
3 Height	Df	3	4	6.41	1.41	2.0	1.4	0.4
4 Height	Df	1	2	1.09	2.00	-4.0	-2.0	0.6
5 Height	Df	2	4	11.58	1.41	-4.0	-2.8	0.4
6 Height	Df	2	3	5.07	2.00	4.0	2.0	0.6

Variance Factor is 6.67 [n-u = 3]

3. Braced Quad directions example

Theodolite direction observations were made on a braced quadrilateral as shown in figure 3. Solution by the condition method adjusts the directions without need to consider coordinates, datum constraints or orientation parameters, as we see below.

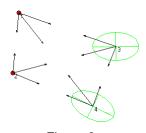


Figure 3.

We number the points A as 1, B as 2, C as 3 and D as 4. We assume all directions have the same precision of \pm 1["] standard deviation. The observations are, in order:

1	DIRECTION	4	2	0	00	00.
2	DIRECTION	4	1	29	04	04.0
3	DIRECTION	4	3	88	20	53.49
4	DIRECTION	2	1	0	00	00.
5	DIRECTION	2	3	69	42	26.92
6	DIRECTION	2	4	106	45	40.5
7	DIRECTION	1	3	0	00	00.0
8	DIRECTION	1	4	32	31	32.9
9	DIRECTION	1	2	76	41	47.73
10	DIRECTION	3	4	0	00	00.
11	DIRECTION	3	2	54	35	55.62
12	DIRECTION	3	1	88	11	43.2

There are 12 observations (n) and 8 unknowns (u; in the parametric method they would be E and N of C and D and an orientation unknown at each corner). So four (n-u = 4) condition equations are needed.

Calculated Loop Miscloses from the observations are: 4.92" Outer loop Points used: 1 2 4 3 1 = 2.23" Triangle ABC Points used: 1 2 3 1 = -0.67" Triangle ABD -2.69" Triangle BCD -5.59" Triangle ACD Points used: 1 2 4 1 = 2 Points used: 3 4 2 = Points used: 1 3 4 1 =

The outer loop misclose is simply the sum of two triangles so it is not independent of the other equations. Of the other 4 triangle miscloses only three are completely independent, so choose any 3. Here we take the first three triangles listed above and write D12 as the direction AB etc. Remember theodolite directions measure clockwise.

ABC:	(D12-D13) + (D23-D21) + (D31-D32) – 180° = 0
ABD:	(D12-D14) + (D24-D21) + (D41-D42) – 180° = 0
BCD:	(D24-D23) + (D32-D34) + (D43-D42) – 180° = 0

The final condition equation is called a side equation and uses all the directions as though we were completing a circuit around a fictitious point at the centre of the figure. Chapter 3 describes the side condition, for example see fig 3.2 (LHS):

sinA₁₁ * sinA₁₃ * sinA₁₅ * sinA₁₇ = sinA₁₂ * sinA₁₄ * sinA₁₆ * sinA₁₈

The side condition is formed by multiples of the sines of angles alternating around the figure as shown by the pattern in the following equation, where D12 is the direction AB.

$$\frac{\sin(D14 - D13)\sin(D23 - D21)\sin(D41 - D42)\sin(D32 - D34)}{\sin(D12 - D14)\sin(D24 - D23)\sin(D43 - D41)\sin(D31 - D32)} - 1 = 0$$

What difference does it make if we use the $\dots - \dots = 0$ or $\dots / \dots - 1 = 0$? To work in units of secs throughout these calculations the side equations b term needs to be multiplied by the conversion between radians and seconds i.e. 206264.8... (= $180^{+3600}/\pi$)

Substituting the observations into these 4 condition equations yields the b vector b = -F(l) in seconds: $(-2.23, 0.67, -2.69, 13.45)^T$

The partial derivations in the B matrix for the first three condition equations with the observations in the order listed above are quite simple and unit less:

	(0	0	0	-1	1	0	-1	0	1	0	-1	1)
	-1	1	0	-1	0	1	0	-1	1	0	0	0
B =	-1	0	1	0	1 0 -1	1	0	0	0	-1	1	0
	(.											.)

Now to the derivatives for the side equation. Let

$$S = \frac{\sin(D14 - D13)\sin(D23 - D21)\sin(D41 - D42)\sin(D32 - D34)}{\sin(D12 - D14)\sin(D24 - D23)\sin(D43 - D41)\sin(D31 - D32)}$$

Then

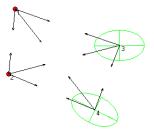
$$\frac{\partial S}{\partial D42} = -\cos(D41 - D42) * \frac{\sin(D14 - D13)\sin(D23 - D21)\sin(D32 - D34)}{\sin(D12 - D14)\sin(D24 - D23)\sin(D43 - D41)\sin(D31 - D32)}$$
$$= -\cot(D41 - D42) * S = -S / \tan(D41 - D42) = -1.799$$

This term is unit less, as are all the other terms in B. The terms for all the directions along the sides of the braced quad are similarly derived to the term above. The derivatives for the directions along the diagonals of the braced quad are a little more complicated because those directions appear in two places in the side condition equation. For example, the partial derivative of the side equation with respect D41 is:

7

$$\frac{\partial S}{\partial D41} = S[\cot(D41 - D42) + \cot(D43 - D41)] = 2.393$$

The last row in B is: -1.799 2.393 -0.594 -0.370 1.694 -1.324 -1.568 2.597 -1.029 -0.711 2.216 -1.505


Since the directions all have a standard deviation of 1, then Q is the identity matrix.

Residuals, $v = QB^{T}(BQB^{T})^{-1} b = (in secs)$ [Includes inversion of only a 4x4 matrix] v is a column vector, but I write it here as a row: -0.49, 1.87, -1.38, -0.05, 0.92, -0.87, 0.25, 0.31, -0.56, 0.81, 0.79, -1.59,

 $v^{T}Pv = 11.51$ and since $n_{c} = 4$ then VF = 2.88

The partial derivatives in the first three rows of B are constant and the terms in the last row do not change very much unless there are huge corrections to the direction observations. So B is virtually constant and a second iteration will not normally change the adjusted values, but is useful as a check. A second iteration was performed and all the b terms were 0. That also shows that the loop miscloses using the adjusted directions is now 0. All the residuals were also 0 in the second iteration. So it is a linear adjustment problem.

Notice that we didn't need to know the coordinates of any points or any distance in the network. We also did not need to hold any coordinates fixed or deal with orientation parameters. But we did need to know how to construct the condition equations particular to this figure.

The condition method does not yield the adjusted coordinates or the error ellipses of the points, they take further calculation.

For comparison, a parametric LS solution of this problem was calculated with coordinates as shown below. The coordinates of A and B are assumed to be known and fixed. Are the results are the same as the condition method above? Yes!

Adjusted Coordinates after iteration 5											
Point Fixed Name				Εm	N	m					
1 ENH A				3474.0190	11480	.2820					
2 ENH B				3295.9940	9726	.7060					
3 H C				6297.2453	10502	.6243					
4 H D				5630.4448	8756	.9802					
RESIDUALS AFTER A	DJUSTN	1ENT	(5	iterations) s = 1''	for a	ll obs				
OBS TYPE FROM	I TO	MEA	ASUE	REMENT	v	v/s	Redun				
1 Direction 4	2	0	00	00.0	-0.5″	-0.5	0.3				
2 Direction 4	1	29	04	04.0	1.9″	1.9	0.4				
3 Direction 4	3	88	20	53.5	-1.4″	-1.4	0.3				
4 Direction 2	1	0	00	00.0	0.0″	0.0	0.3				
5 Direction 2	3	69	42	26.9	0.9″	0.9	0.4				
6 Direction 2	4	106	45	40.5	-0.9″	-0.9	0.3				

7 Directi	on 1	3	0	00	00.0	0.3″	0.3	0.3
8 Directi	lon 1	4	32	31	32.9	0.3″	0.3	0.4
9 Directi	lon 1	2	76	41	47.7	-0.6″	-0.6	0.3
10 Directi	lon 3	4	0	00	00.0	0.8″	0.8	0.3
11 Directi	lon 3	2	54	35	55.6	0.8″	0.8	0.4
12 Directi	on 3	1	88	11	43.2	-1.6″	-1.6	0.3

After iteration 5 the Variance Factor is 2.88 [n-u = 4]

4. Traverse example

Here we solve the traverse given in Chapter 3, by the condition method. We will omit the radiation from 103 to 201. [Once we get the adjusted observations for the rest of the traverse we can work out the bearing for the radiation, and then use it with observed distance to get coordinates. There are no corrections (zero residuals) for radiation observations.]

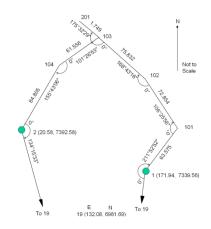


Figure 4. Student traverse at Morpeth survey camp

I will renumber the points here to make subscripts easier to follow in the equations below. Thus point 19 becomes 9, 1 becomes 7, 1 becomes 8, 101 becomes 1 etc. The given data, in FIXIT format is:

The given data, in the termation													
COMMENT	Dist	mm	p	om	D	lrn	" mm	cent					
DSD	3.0		0	.0	Ę	5.0	0	.0					
COORDINATE	9	EN	RO				132.08		6981.6	9			
COORDINATE	7	EN	STAI	RT BM			171.94		7339.5	б			
COORDINATE	8	EN	END			20.58		7392.5	8				
DIRECTION	7		9	0	00	00							
DIRECTION	7		1	211	52	52							
DIRECTION	1		7	0	00	00							
DIRECTION	1		2	106	25	56							
DIRECTION	2		1	0	00	00							

DIRECTION	2	3	168	43	16
DIRECTION	3	2	0	00	00
DIRECTION	3	4	101	26	53
DIRECTION	4	3	0	00	00
DIRECTION	4	8	155	43	06
DIRECTION	8	4	0	00	00
DIRECTION	8	9	134	15	33
H DISTANCE	7	1	6	3.5	575
H DISTANCE	1	2	7	2.8	354
H DISTANCE	2	3	7	15.8	332
H DISTANCE	3	4	6	51.5	556
H DISTANCE	4	8	8	84.8	305

There are 17 observations, we will use them in the order listed above. Traverses of this type are known to have 3 condition equations, namely one for each misclose in angles, in Eastings, and in Northings. So the b and v vectors will have 17 terms and the B matrix will be 3 by 17. Approximate coordinates for the intermediate traverse points are not required. If this was a loop traverse we wouldn't need any coordinates, and would assign a bearing to one line.

We set the input standard deviation terms ppm and centring to zero to ease the calculations in this example.

From the fixed coordinates we calculate the 'known' bearings at the start and end of the traverse, B79 and B89 (I carry the full D M S values on a spreadsheet and show rounded off values in degrees and a decimal here): $B79 = 186.4^{\circ}$ $B89 = 164.8^{\circ}$

Our first condition (CE1) is that the angular misclose for perfectly adjusted data is zero. Using B12 to represent bearing 1 to 2, D12 to represent direction 1 to 2, and d12 to represent distance 1 to 2.

CE1: B79+D71-D79-360+D12-D17+180+D23-D21-180+D34-D32-180+D48-D43-180+D89-D84-180-B89 = 0

Remember that to produce the bearings, we desire an answer between 0 and 360. Also be careful with using angles or directions to calculate bearings, here we assume they are clockwise from the backsight to the foresight.

Inserting the data gives bearings carried forward and the b term = - F(l)The bearings are:

B71	38.2	
B12	324.7	
B23	313.4	
B34	234.8	
B48	210.6	
B89	164.8	

Angular misclose's b term = 8.0"

Our second condition (CE2) is the misclose in Easting. This is easier to write in terms of bearings than directions. So we determine 'raw' bearings using our directions starting from one end of the traverse, in our case we start at 7, as shown above. But

when differentiating the equation to form the B matrix we need to recall the formula for each bearing. For points in sequence i j k: Bjk = Bij + Djk - Dji - 180°

CE2: E7 + d71sinB71 + d12sinB12 + d23sinB23 + d34sinB34 + d48sinB48 - E8 = 0

Inserting our data in this equation gives 0.0316m, so b = - 31.6 mm

Similarly, the third condition is:

CE3: N7 + d71cosB71 + d12cosB12 + d23cosB23 + d34cosB34 + d48cosB48 - N8 = 0

Inserting our data in this equation gives -0.0324 m, so b = 32.4 mm

Thus the b vector in seconds and mm is:

8.0 -31.6 32.4

The three conditions, in the order above, are differentiated by the 17 observations, also in the order above, to produce the terms in the B matrix. A few terms are shown in detail, the others are similarly derived.

The derivatives of CE1 are simple, e.g. $\partial CE1/\partial D71 = 1$

The other derivatives are not simple because a direction or angle observation appears in bearings of all subsequent lines around a loop. One of the terms (it appears in following bearings too) in CE2 containing D12 is

... + d12sinB12 which really is ... + d12sin(B79+D71-D79-360+D12-D17+180) so

The equations become longer the further we move along the traverse. The full details of this example are not further included in these notes. See Cooper's book for an example. Also, see the paper Efficient Least Squares Traverse Adjustment Using Spreadsheets by Hu, Tan and Barnes in the journal Australian Surveyor June 2003.

Alternative Solution Method using Spreadsheet Solver function.

It is possible to solve this problem using MS Excel's Solver function, as shown in the spreadsheet screen capture below. The answers are the same as those obtained by FIXIT3 software using a parametric least squares solution. Note that in this example below we minimise $\sum (v/s)^2$, so it is a least squares solution. While the solution uses coordinates it does so only as intermediate steps to work out bearings and coordinate miscloses. The adjustment deals with the residuals v, not the changes in coordinates.

	A I	B C	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R
1																	
2	CONDITION METHO	D SOLUTIO	By	Solve	r												
3			1000													E	N
4		Back		An	le					Adj fwd					9	132.08	6981.69
5	BS AT TO	Bearing	d d	m	S	dd	v "	s "	v/s	bearing	dist	v mm	s mm	v/s	Adj dist	171.94	7339.56
6	971	186	4 21	1 52	52	211.9	-6.0	5	-1.2	38.2	63.575	-0.4	3	-0.1	63.5746	211.2855	7389.4965
7	7 1 2	218	2 10	5 25	56	106.4	5.8	5	1.2	324.7	72.854	13.2	3	4.4	72.8672	169.1462	7448.9432
8	1 2 3	144	7 16	3 43	16	168.7	10.1	5	2.0	313.4	75.832	13.8	3	4.6	75.8458	114.0320	7501.0489
9	234	133	4 10	1 26	53	101.4	11.9	5	2.4	234.8	61.556	4.4	3	1.5	61.5604	63.7010	7465.6022
10	3 4 8	54	8 15	5 43	6	155.7	1.0	5	0.2	210.6	84,805	-1.4	3	-0.5	84,8036	20,5800	7392,5800
11	4 8 9	30	6 13	4 15	33	134.3	-14.8	5	-3.0	164.8							
12	fixed/known o	losing v	alues						9	164.8					8	20.58	7392.58
13									-						-		0.00
14										0.00						0.00	0.00
15						VTP	V = SI	mso	u(v/s)	64 04		VF	21 35				
16									1(1.0)	01.01			21.00				
-	Harrista una actua	22															
	CONDITION METHOD SOLUTION By Solver Image: Condition of the state																
					ean	ngs and	a dista	ince	5								
					hav		o "bucc	han	aina	unluno'							
												put th	ana in	with	the Add by	tton	
						na mis	CINE	anu	IN al	i must eq	ual zero	, put tr	lese in	with	the Add bu	luton	
24			mmse	6				-									
				5	Solver Parameters											<	
26	As shown in scree	en capture.			_												
27					5et T	arget Ce	ell:	38	\$15						Solve		
28			-		Equa	I To:	OM		ON		alue of:	0		E 9 132.08 9 132.08 9 132.08 9 132.08 9 132.08 9 132.08 9 132.08 9 132.08 1 1285 3 4.4 72.8672 169.1462 3 4.6 75.8458 114.0320 3 1.5 61.5604 63.7010 3 -0.5 84.8036 20.5800 8 20.58 misc mm 0.00 21.35 21.35 20/ve Close guess Options Add Pange Reset All relete			
29									01	•••• •••	value or .						
30											-	-		_		E 9 132.08 t 171.94 6 211.2855 2 169.1462 8 114.0320 4 63.7010 6 20.5800 8 20.58 m 0.00 button	
31					\$H\$	\$6:\$H\$1:	L,\$M\$6	:\$M\$	10				Guess				
32		1 186.4 211 52 52 21.9 -6.0 5 -1.2 38.2 63.575 -0.4 3 -0.1 63.574 211.2855 7383 2 218.2 106 25 56 106.4 5.8 5 1.2 324.7 72.854 13.2 3 4.4 72.8672 169.1462 7444 3 144.7 168 43 16 168.7 10.1 5 2.0 313.4 75.832 13.8 3 4.6 75.8458 114.0320 7500 4 133.4 101 26 23.48 61.56.6 4.4 3 1.5 61.5604 63.7010 76.838 8 54.8 155 43 6 155.7 1.0 5 0.2 210.6 84.805 -1.4 3 -0.5 84.8036 20.580 7382 9 30.6 134 15 31.34.3 -14.8 5 -0.0 misc misc misc 70.00 misc misc 70.00 misc misc 10															
33					_		2002	20160.0	200						Options		
34											~		Add				
35													Change			10	
36			-		100.000								gnango		Reset All		
37											~		Delete				
38					_										Help		
20				-													
39																	