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Abstract 
 
The application of the L1 method to adjust survey networks of directions and 
distances while minimising the sum of the absolute values of the weighted 

residuals,Σ| vs  |, is investigated in this paper.  The L1 norm algorithms are robust in 
the presence of gross observation errors but are different from iteratively reweighted 
least squares.  Comparisons are made between the results of the L1 method and the 
results of conventional least squares (LS) adjustment. The L1 method can easily be 
programmed to read the same input file as a conventional least squares adjustment 
program.  It can be used to generate approximate coordinates, locate gross error 
observations, and adjust the network despite rank defects in the network.  It is 
particularly useful for analysing erroneous input data files which cause conventional 
least squares programs to crash or not converge.  It is suggested that the L1 method 
be considered as an additional tool that is sometimes useful to use as well as, but 
not as a replacement for, least squares.    
 



 

1.  Introduction and Historical Development 
 
According to Dodge (1987) a form of the L1 method was used by Galilei in 1632 to do 
astronomical positioning.  Least squares has been well used since the time of Gauss 
and Legendre (late 1790s), but gross errors or outliers can have an unfairly large 
influence on least squares results.  Robust methods have been created by modifying 
least squares to reduce the effect of outliers.  The L1 method (also called the least 
absolute values method or L1 norm method) is a robust alternative to least squares 
(eg Huber (1964), Fuchs (1981), Hahn & Bill (1984), Kampmann (1989)). 
 
Rousseeuw (in Dodge, 1987) presents some examples of people's reactions to the 
promotion of the L1 method.  The L1 method has not been used as much as least 
squares because of its computational difficulties (there is no direct formulae like the 
normal equations of least squares, just a 'searching algorithm') and because it does 
not use much of the data, redundant data is virtually ignored.  Also, statistical 
analysis of the results of an L1 adjustment was not available in the early years.   
Rousseeuw and Leroy (1987) concentrate on the use of robust techniques such as 
L1 for outlier detection especially applied to regression problems and gives modified 
methods that aim to combine the best features of L1 and least squares. 
 
Huber (in Dodge, 1987) refers to the L1 method as "the starting point for estimates 
that have to be calculated by iterative procedures."  This paper advocates the use of 
the L1 method, in some circumstances, as an addition to, but not a replacement for, 
a conventional least squares adjustment (eg Harvey, 1991).  The L1 method could be 
used to generate approximate values of parameters (coordinates), and help solve or 
clarify difficulties that a least squares solution may have with rank defects and data 
outliers.  Any problems could be rectified and then least squares and associated 
statistical analysis could be used to obtain the best results. 
 
This paper will cover how to obtain a  minimum v

s∑  solution, its features, whether it 

can be used to generate approximate coordinates, how it treats gross observation 
errors, and whether it can help solve problems in input files when a least squares 
solution does not converge. 
 
Much has been written about the analysis of survey data containing outliers, 
particularly detection techniques, robust estimation and iteratively reweighted least 
squares (eg Baarda, 1968, Pope, 1976, Kubik et al, 1985, Jorgensen et al, 1985, 
and Caspary, 1987 ).  Perhaps more emphasis needs to be placed on the 
avoidance or prevention of such errors rather than their cure or detection.  
Moreover, apart from their initial attempts with new equipment, surveyors and survey 
students rarely make large errors in observations, especially when using modern 
electronic instruments with data recording and electronic transfer to computer files.   
 
However there are other sources of errors in input files for least squares adjustments 
regardless of the software package used.  For example, the approximate (starting) 
coordinates of points may be in incorrect relative positions, or errors in the format or 
layout of the data, or incorrect point numbers or set/arc numbers for observations.  If 
a least squares solution of the data does not converge beginners can experience 
considerable difficulty.  



 

 
2.  The L1 Method 
 
The L1 method minimises the sum of the absolute values of the residuals (v).  It is a 
robust method that can cope with errors in input files. It is not the same as iteratively 
reweighted least squares.   
 
The procedure is to set up equations (one per observation), as in parametric least 
squares, of the form Ax = b.  Where A is the matrix of partial derivatives ∂F/∂x, x is a 
vector of parameters, and b is a vector representing the difference between 
observations and values calculated from estimates of the parameters.  If there are n 
observations and u unknown parameters then solve n simultaneous equations (Ax = 
b) directly instead of solving u normal equations (eg ATAx = ATb) as in least squares.  
[Least squares problems can also be solved without forming normal equations see, 
for example, Lawson and Hanson (1974).]  
 
The first step in an L1 solution is to decide which equations to use.  One way is to try 
every possible combination of equations, solve for x with each (uxu) combination, 
and select the one with the smallest ∑|v|. This simple approach is very inefficient.  A 
better method is to use the algorithm of Barrodale and Roberts (1974) based on 
Linear Programming concepts.  Branham (1990) gives a modified version of the 
Fortran source code.  Other algorithms have also been developed (see Branham 
(1990), Dodge (1987)).    
 
One of the theorems of linear programming is that given a region of possible 
solutions the best solution is either at a corner or on an edge (boundary line) of the 
region.  In the case of a corner there is one single best solution.  In the edge case 
any point on the line including the corners at the end of the line are equally suitable 
solutions, thus there are multiple solutions that all give the same ∑|v|.  The Barrodale 
and Roberts algorithm (see Branham (1990)  for details) selects one combination of 
u equations (a 'corner') as a basis then using a process similar to the pivot row 
operations of Gaussian elimination replaces one of the basis equations with one of 
the other equations, solves the equations and sees whether the ∑|v| is smaller or 
not. The choice of which equations to swap is determined systematically by the 
algorithm in an efficient manner. 
 
Thus one feature of the L1 method is that u of the n equations will be satisfied exactly 
giving zero residuals for the corresponding observations (see Branham, 1990 and his 
references for proof).  Many (n-u) of the observation equations are virtually not used 
in the solution for x.  Their only use is in deciding which of the equations are used.  
This is a concern to many people and is one of the reasons Gauss preferred least 
squares to L1 (Branham, 1990).  This paper suggests the L1 method be used as a 
tool to find the causes of problems with a data set, then use least squares on the 
'cleaned' data. 
 
Given A and b the Barrodale and Roberts algorithm solves for x, even if the A matrix 
is rank deficient (eg not enough parameters held fixed).  It calculates the rank of the 
matrix and indicates if there is more than one solution with the same ∑|v|.  There are 
two types of iteration in an L1 solution of a nonlinear survey adjustment.  Firstly, the 



 

common least squares iteration: approximate coordinates, A and b, solution, 
improved coordinates, new A and b, another solution, etc.  Secondly, an iteration 
within each solution of Ax=b where the algorithm iterates to find which observation 
equations to use to determine the values of x.   
 
The computation time of the L1 method is usually larger than the computation time of 
a least squares solution of the same data set.  This is because the L1 method solves 
a nxu set of equations and least squares solves uxu with symmetric normal 
equations (n is usually considerably larger than u).  For small data sets the 
difference is insignificant.  However, if the data set is so large that virtual memory 
has to be used the L1 method can be very slow.  With 'clean' data least squares is 
therefore preferable.  However if there are many problems with the input data that 
cause least squares not  to converge (eg rank deficient, very poor approximate 
values of the parameters, large gross errors in the data),  then the L1 method may be 
useful. 
 
Branham (1990) describes how to use the L1 method to determine the quality of the 
parameters.  However this author prefers not to do those calculations and prefers to 
use least squares to determine standard deviations (etc) of the parameters. 
 
 
3.  Modification of the L1 Method 
 
To account for the fact that survey networks usually have observations with different 
units (eg directions and distances) and observations of varying qualities the following 
simple modification of the L1 method is suggested.  Huber (in Dodge, 1987) 
discusses some aspects of other choices of weights in the L1 method.  The L1 
method solves:  
 

Ax = b   so that ∑|v| is a minimum.   
 
The modified method solves:  
 

P1/2 Ax = P1/2 b   so that  v
s∑  is a minimum,  

 

where       P1/2 =   
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si is the standard deviation of the ith observation and the observations are assumed 
uncorrelated. 
 
This is easily achieved by dividing each row in the A matrix (one row per 
observation) and each term in the b vector, by the standard deviation of the 



 

corresponding observation.  Then use the standard L1 algorithm.  For comparison 
purposes, least squares solves: (ATPA)x = ATPb, and the modified L1 method 
solves:  P1/2 Ax = P1/2 b 
 
 
4.  Other considerations 
 
A conventional least squares program to adjust a survey network could be changed 
to use an L1 algorithm instead of solving normal equations, or the L1 algorithm could 
be added as an option.  However the A matrix and b vector need to be formed and 
stored rather than the common practice of adding each observation's contribution to 
the normal equations directly.  Some care also needs to be taken with fixed 
parameters when forming the A matrix. 
 
Since the L1 method calculates coordinates from non redundant subsets of the data 
it would appear to be a possible method for calculating approximate coordinates for 
use in a least squares adjustment.  The examples which follow will investigate this.  
Some alternative methods of finding approximate coordinates for least squares can 
be time consuming and error prone.  If coordinates are calculated by software that 
uses the observations and known coordinates then gross errors may yield subsets of 
the points with grossly incorrect coordinates. 
 
 
5.  Mean and median example 
 
The following hypothetical example is used to highlight the differences between a 
simple L1 adjustment, the median, and a least squares adjustment, the mean, in the 
presence of an artificially introduced gross error.  The remaining examples in this 
paper are all real data sets. 
 
Suppose 5 measurements of a distance are:  96, 98, 100, 102, 140.  The last 
observation should have been 104 not 140.  Table 1 shows the results of L1 and 
least squares solutions.  The gross error in the last observation has less effect on the 
median than on the mean.  Least squares has spread the effect into all residuals L1 
has not. 
 

Table 1. Comparison of L1 and LS with artificial data 
 
              median (L1) = 100          mean (LS)   = 107.2  
measurement      v    |v|    v2           v      |v|       v2   
  96             4     4     16         11.2    11.2    125.44 
  98             2     2      4          9.2     9.2     84.64 
  100            0     0      0          7.2     7.2     51.84 
  102           -2     2      4          5.2     5.2     27.04 
  140          -40    40   1600        -32.8    32.8   1075.84 
                 Σ    48   1624                 65.6    1364.8 
 
 
6.  Distance resection example 



 

 
The example data in figure 1 was used to determine the E and N coordinates of a 
point P by distances observed to four control marks A, B, C, and D.   A, B, C, and D 
have known fixed coordinates, which are considered error-free.  The distances are 
have equal precision and are uncorrelated.  Since all observations are in the same 
units and equal precision, this example will minimise Σ|v| rather than Σ|v/s|. 
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Figure 1.  Distance resection data, coordinates are in the order (E,N). 
  
 
A least squares solution gave:  P =  (764.77, 582.70) and residuals, v = ( 2.2, -4.4, 
1.9, -4.9)T  and Σ|v| = 13.4.  
 
Several 'intersection by distances' solutions were calculated by choosing pairs of 
lines and then calculating P from two points.  The distances from P to the other two 
points were calculated and thus residuals.  This was repeated for all possible 
combinations (six for this data) of pairs of lines.   The solution with the smallest Σ|v| 
used the lines from B and C with P = (763.15, 577.48) and Σ|v| = 12.4. 
 
The L1 method yielded a single solution with a rank of 2, which equals the number of 
parameters and therefore no rank defect.  The coordinates of P, after iteration, were 
(763.15, 577.48).  The residuals, v = (3.3, 0,0,-9.1)T and Σ|v| = 12.4. 
 
Both L1 and least squares solutions give the largest residual to the distance to D, but 
it was most pronounced in the L1 solution.  The coordinates differ by 5.5 which is not 
large compared to the least squares solution error ellipse.   As expected, the least 
squares solution had the smaller Σv2 and the L1 solution had the smaller Σ|v|. 
 
A semigraphic solution of this data is shown in figure 2.  There is an arc (line when 
magnified) for each distance.  The least squares solution is near the centre of the 
error figure formed by the 4 arcs.  The L1 solution is at one of the corners of the error 
figure, ie the intersection of 2 arcs.  So it uses only two distances, but the algorithm 
has to decide which of the possible corners gives the smallest Σ|v|. 
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Figure 2.  Semigraphic LS and L1 solution of resection by distances. 
 
 
7.  Simple triangle traverse example 
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Figure 3.  Simple triangle traverse 
 
Figure 3 shows a plan of a simple traverse where points 7 and 12 have known 
coordinates held fixed.  The measurements and the residuals from two solutions are 
shown in table 2.  
 
Both L1 and least squares required 3 iterations for convergence.  The L1 method 
gave a non unique optimal solution with matrix rank 7 and 7 parameters.  The 
adjusted coordinates from the two methods were compared.  The differences are of 
the order 2-3mm, the least squares error ellipses are about 1 cm. 
 
 
 
 
 
 
 
 
 



 

Table 2. Results of triangle traverse adjustments. 
 
  Obs Type  From  To  Measurement   s      v (LS)      v (L1)    
  DIRECTION   1   5     40 47 30    1"     -1.2"       -0.9"     
  DIRECTION   1   7    187 43 19    1"      1.2"        0.0"   
  DIRECTION   5   7    179 59 52    1"     -2.8"        0.0"       
  DIRECTION   5   1    204 57 35    1"      2.8"        6.8"     
  DIRECTION   7  12    139 17 49    1"      0.0"        0.0"       
  DIRECTION   7   1    308 28 22    1"      0.5"        0.0"   
  DIRECTION   7   5    316 34 43    1"     -0.5"       -0.7"     
   HOR DIST   1   5      552.968    1mm    -0.48mm      0.0mm  
   HOR DIST   1   7     1655.179    1mm    -0.72mm      0.0mm      
   HOR DIST   7   5     2139.950    1mm     0.68mm      0.0mm 
 
Final L1 coordinates: 
   Point     E m         N m    
     1    9279.747    5154.883    
     5    8794.460    4889.798    
     7   10064.072    6612.433   Fixed 
    12   22099.220   21416.713   Fixed 
  
 
Another L1 solution was calculated but nothing was held fixed.  There were thus 11 
parameters and 10 observations.  The L1 solution noted the rank of the matrix was 7 
and there were 11 parameters.  It yielded a non unique optimal solution after 3 
iterations and did not require any special techniques to overcome the rank 
deficiency.   In least squares programs special steps are needed to overcome such a 
rank deficiency. 
 
The final coordinates and residuals from the L1 solution with no points held fixed are 
given in Table 3.  Note that the coordinates are not the same as when 7 and 12 were 
held fixed, but they are accurate enough to use as starting points in a least squares 
analysis. However the residuals are very similar (but different) to those for the L1 
solution with points 7 and 12 fixed. 
 
 

Table 3.  Results from an L1 solution with no points held fixed. 
 
     OBS  FROM  TO        v        Point     E m         N m  
     DIR    1    5       0.0"        1    9279.285    5154.002           
     DIR    1    7       0.9"        5    8794.000    4888.912           
     DIR    5    7       0.0"        7   10063.596    6611.559           
     DIR    5    1       6.8"       12   22099.220   21416.713          
     DIR    7   12       0.0"      
     DIR    7    1       0.0"      
     DIR    7    5      -0.7"      
     DIS    1    5       0.0mm     
     DIS    1    7       0.0mm     
     DIS    7    5       0.0mm  
    
 
 



 

Several other related solutions were calculated.  Solutions using zero as 
approximate values for coordinates for points 1 and 5, but with points 7 and 12 held 
fixed, were calculated.  Both least squares and L1 methods converged to correct 
answers at a similar rate.  In another solution a 2m radiation from point 1 was added.  
The approximate coordinates for this point were placed in the reverse bearing.  
Again both least squares and L1 methods converged to correct answers at a similar 
rate. 
 
Another solution used included a direction but left out the distance for a radiation 
from point 1.  Least squares programs usually 'crash' unless special precautions are 
taken.  The L1 method did not 'crash'.  It calculated the rank of the matrix to be one 
less than the number of parameters (thus indicating a rank defect of one).  The 
residuals of all observations were the same as for an L1 solution that included the 
distance observation, and the coordinates of all points (except the radiated point) 
were correct.  So in this case the L1 method is far more robust and stable in the 
presence of rank defects (and therefore more 'crash' proof).   
 
 
8.  Traverse example with gross error. 
 
Figure 4 shows a comparison of L1, least squares and a Bowditch adjustment for a 
traverse.  The position of L1 (r) and Bowditch (b) coordinates are shown with respect 
to the least squares solution at the same scale as the least squares standard error 
ellipse.  This particular data gave a variance factor of about 5, the error ellipses 
shown here are not scaled by this factor.  The difference vectors show that L1 
coordinates are not significantly worse than Bowditch coordinates. 
 
In the least squares adjustment the largest scaled residual |v/s| was the distance 
from 2 to 3, it had a v of +14mm (about 2 times standard deviation,s ).  In the L1 
solution the same observation also had the largest |v/s|, here v was +29mm (about 
5s), and was thus more prominent.  A check of field notes and reductions 
subsequently showed a 12mm error in this distance.  Note that the residual from the 
L1 solution includes this gross error and absorbs normal measurement errors from 
some other observations (they were given v = 0). 
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Figure 4.  Comparison of coordinates obtained by L1(r),  LS and Bowditch (b) 

adjustment for a traverse.  
 
Despite this example, in general least squares tends to hide gross errors by 
spreading error to the residuals of other observations, L1 does the opposite.  L1 
magnifies gross errors by absorbing errors from other observations.  Neither case, in 
general, gives residuals that indicate true errors. 
 
When no approximate coordinates were entered for the unknown points in this 
traverse both L1 and least squares converged to correct solutions after about the 
same number of iterations.  So for this data set there is no advantage in using the L1 
method to generate approximate coordinates for a least squares solution.  In this 
traverse it would be more efficient to use the mean of the fixed points' coordinates as 
the approximate coordinates for all other points rather than zero coordinates and L1 
calculations.  An alternative method described by Gruendig (1985) is far more 
efficient.   



 

9.  Network example 
 
The network in figure 5 was designed, observed, preprocessed and computed by 
students at a survey camp.  It contains about 1500 observations and 1000 
parameters.  Students had a lot of difficulty processing this data - they couldn't get a 
converging least squares solution or find the problems.  There were enormous 
corrections to the approximate coordinates.  This data set was too large to run on a 
portable computer with the author's L1 program.   
 

 
 

Figure 5.  Survey camp network plan. 



 

 
One strategy was to carefully check the input file for transcription, format and other 
errors.  Unfortunately the students involved were not able to detect any errors, 
probably because checking over a thousand lines of input is a very demanding task. 
Other strategies were then used to locate the problems, including investigating 'prefit' 
residuals (O-C terms) ie before any adjustment, plotting the network (by reading the 
same input file into a network drawing program), and dividing the total area into 
sections.  Using this last strategy, all sections except one were then able to be 
'cleaned'.  The remaining section is enclosed by a dotted curved line in figure 5.  
 
A least squares adjustment of the troublesome section did not converge.  There 
were corrections to coordinates of the order 40 m at every iteration.  A solution by 
the weighted L1 method for this data converged quickly.  There were 86 parameters 
and 162 observations.  Before any adjustment the residuals (O-C terms) for most 
observations including all distances were acceptable.  However  the residuals for 9 
directions from one point were enormous (about 130°).  The L1 solution calculated 
the rank of the A matrix to be 85 but there were 86 parameters!  The correction to 
approximate coordinates was less than 0.2m for all points.  The L1 solution gave only 
one large residual and together with the rank defect information led to the discovery 
of a direction input with an incorrect arc/set number.   
 
Certainly, more experienced users or more sophisticated least squares software may 
have detected and rectified this error, but the L1 solution did it without the expertise.  
The errors were corrected and a least squares solution was then performed. 
 
 
10.  Conclusions 

 
This paper has shown how to calculate an L1 solution for a survey network. Its  
features have been described and compared with conventional least squares, and 
examples given.  L1 uses a minimum subset of the data, so many observations have 
zero corrections and the adjusted coordinates are determined directly from non- 
redundant data.  It has been shown that it can do adjustments of data without 
approximate coordinates but does not do this any better than least squares.  
Perhaps a combination of Gruendig's method (Gruendig, 1985) and the L1 method 
could be considered for approximate coordinate generation for survey networks.  
The L1 method can highlight gross observation errors, but the residuals are usually 
larger than the true errors (compare this with least squares where residuals of gross 
error observations are usually smaller than the true errors).  However it is also robust 
against rank deficient data sets and thus perhaps more likely to be 'crash proof'.  L1 
algorithms require considerably more computer time and space than least squares 
methods for networks so large that they need virtual computer memory.   
 
This paper has not  suggested L1 be used instead of least squares, but it may be a 
useful program to use as well as a least squares program or as an option in a least 
squares program. It may help to resolve difficulties with some troublesome data sets. 
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