Calculation of Control Surveys on the Map Grid of Australia and new Geocentric Datum

This is a modified version of a paper that has been published in The Australian Surveyor journal, June 1998, Vol 43 No 2 p109-118.

Bruce R Harvey, David Elford and Craig Turner School of Surveying and Spatial Information Systems (formerly School of Geomatic Engineering), University of New South Wales.

David Elford and Craig Turner were final year Geomatic Engineering students at UNSW while working on the foundations of this paper.

> ABSTRACT

> An example of least squares calculations of a small control survey with GPS and traditional survey measurements on Sydney's Middle Harbour is given in this paper. Students and programmers can see, and follow, the steps required. The new Australian geocentric map grid coordinates are used.

INTRODUCTION

This paper contains an example of calculations of a control survey carried out on the Geocentric Datum of Australia (GDA) with coordinates on the Map Grid of Australia (MGA). There are two reasons for this, firstly the Inter-governmental Committee on Surveying and Mapping has recommended that Australia convert to the GDA by 2000. Secondly, very few numerical examples have been published that show practicing surveyors, students and programmers the steps inside software that calculates least squares adjustments of control surveys. This paper attempts to give an example using the new geocentric coordinates.

Showing all the steps in a worked example of least squares adjustment takes a lot of space. So this paper is limited to only part of a real survey and not all the analysis considerations are discussed.

Much could be said about the analysis of this data set, for example: choice of model equations and parameters, observation preprocessing, standard deviations and correlation's of observations, statistical analysis of output etc. They are important topics but are beyond the scope of this paper, see Harvey (1994) for more details.

NETWORK AND DATA DESCRIPTION

The network contains 6 points and 38 observations being a mix of GPS and traditional survey data. This type of survey is becoming more commonplace for control surveys because GPS can observe long and nonintervisible lines and traditional survey observations can observe at sites with limited sky visibility and (currently) often with better precision.

The survey was carried out on the shores of Sydney's Middle Harbour, pictures and a plan are given below. The observations and coordinates are given later. The coordinates of the fixed points are estimates and the results given in this paper are for educational purposes only.

Figure 1. Sketch plan of network

Figure 2. SSM 57110, point 3

Figure 3. SSM 57112, point 4

Figure 4. SSM 68977, point 5

DESIGN QUESTIONS

There are several ways to adjust this data. Firstly, we chose least squares because we wanted to keep the changes to our observations (corrections, residuals) as small as possible. Secondly, we could choose to solve for coordinate parameters in XYZ or ENH or latitude, longitude and height (on an ellipsoidal surface or in 3D space). In this paper we show the latitude, longitude and height in 3D space adjustment. Various approaches have been used to check our answers and commercial programs have also been used for testing. Those people who want to adjust their control surveys on a plane surface or purely on grid coordinates may wish to use the data in this paper and compare their results with those below. Shortis \& Seager (1994) provide equations for an alternative approach with calculations on the map grid.

Most of the geodetic equations used in this paper are well documented elsewhere. Instead of quoting an original source for each equation we suggest the reader see, for example, Vanicek \& Krakiwsky (1986) or Leick (1995) and the publications in their reference lists.

To keep the paper as short and simple as possible we have not solved for geoid separation, transformation or refraction parameters and have not applied deflection of the vertical corrections. Also, only one iteration of the Least Squares is shown in detail. Final results, including coordinates, are also shown. Partial derivatives (coefficients), observed-computed terms (OMC), and statistical input have been shown step by step for only one line, a line with all types of observations involved.

The numbers shown below have been rounded off for display purposes, the actual calculations used values stored in the computer, so if intermediate calculations are attempted using numbers shown below then slightly different answers may be obtained due to round off errors.

COORDINATES

Coordinates of known points

Fixed coordinates of the points on the Map Grid of Australia (MGA), which is a Transverse Mercator projection, are assumed to be:

Point	MGA East	MGA North	Name
1	337675.093	6257970.269	SSM87451
2	337733.104	6257870.969	SSM22768

Approximate coordinates of other points

Point	MGA East	MGA North	Name
3	337185	6257712	SSM57110
4	336690	6258157	SSM57112
5	336867	6257689	SSM68977
6	336232	6258477	SSM22575

Heights

No gravity or astronomic azimuth, latitude or longitude observations were available. So N (geoid-ellipsoid separation, not north coordinate) values were calculated by interpolation of AUSLIG Geodesy's (AUSLIG,1997) precise geoid for the Australian region, known as AUSGEOID93. "The absolute accuracy of these AUSGEOID93 values is estimated to be better than 0.5 metre, while the relative accuracy has been estimated as 2 5 parts per million ($2-5 \mathrm{~mm}$ per km) ... An N value interpolated from the AUSGEOID93 grid will generally only differ from a rigorously computed N value by a few cm. " (AUSLIG, 1997).

AUSGEOID 93 N values range $<3 \mathrm{~cm}$ across the site and refer to WGS84, not GRS80, ellipsoid. However, for the purposes of this paper, a constant value of 22.86 m was chosen to represent all points. AUSLIG (1997) also give deflections of the vertical, but no deflection of the vertical corrections were applied in the work below (we expect values of several seconds in this area but they vary by less than 0.4 " across the network).

The AHD heights (H) of points 1 and 2 are known, other points have approximate AHD heights. The ellipsoidal heights of the points are obtained as follows.
$\mathrm{h}_{1}=\mathrm{N}_{1}+\mathrm{H}_{1}=22.86+2.732=25.592 \mathrm{~m}$
Similarly for other points:

Point	AHD H (m)	$\mathrm{N}(\mathrm{m})$	Ellipsoidal $\mathrm{h}(\mathrm{m})$
1	2.732	22.86	25.592
2	4.403	22.86	27.263
3	0.8	22.86	23.660
4	4.0	22.86	26.860
5	0.7	22.86	23.560
6	1.3	22.86	24.160

Convert coordinates

Redfearn's formulae, as implemented in AUSLIG's spreadsheet (AUSLIG, 1997), were used to convert between latitude \& longitude and easting \& northing, with
the following constants. The process is similar to that used for AMG coordinate conversions but with different ellipsoid parameters.

Ellipsoid:	GRS80
Semi major axis (a)	$6,378,137.000 \mathrm{~m}$
Flattening (f)	$1 / 298.257222101$
False easting	$500,000 \mathrm{~m}$
False northing	$10,000,000 \mathrm{~m}$
Central Scale factor $\left(\mathrm{K}_{0}\right)$	0.9996
Zone width	6°
Eccentricity $\left(\mathrm{e}^{2}\right)=2 \mathrm{f}-\mathrm{f}^{2}=0.006694380$	

Point	Latitude	Longitude
1	$-33^{\circ} 48^{\prime} 21.64352^{\prime \prime}$	$151^{\circ} 14^{\prime} 46.77449 "$
2	$-33^{\circ} 48^{\prime} 24.89826^{\prime \prime}$	$151^{\circ} 14^{\prime} 48.96402^{\prime \prime}$
3	$-33^{\circ} 48^{\prime} 29.75397^{\prime \prime}$	$151^{\circ} 14^{\prime} 27.54982^{\prime \prime}$
4	$-33^{\circ} 48^{\prime} 15.03716^{\prime \prime}$	$151^{\circ} 14^{\prime} 08.60200^{\prime \prime}$
5	$-33^{\circ} 48^{\prime} 30.32389^{\prime \prime}$	$151^{\circ} 14^{\prime} 15.17149^{\prime \prime}$
6	$-33^{\circ} 48^{\prime} 04.39692^{\prime \prime}$	$151^{\circ} 13^{\prime} 51.01080^{\prime \prime}$

Even though we chose coordinate parameters to be ellipsoidal latitude, longitude and height it is helpful for later calculations to also calculate the earth centered X Y Z coordinates of each point. For point 1 , the first step is to calculate radii of curvature:

$$
\begin{aligned}
& v_{1}=\frac{\mathrm{a}}{\sqrt{1-\mathrm{e}^{2} \sin ^{2} \phi_{1}}}=6384756.074 \mathrm{~m} \\
& \rho_{1}=\frac{\mathrm{a}\left(1-\mathrm{e}^{2}\right)}{\left(1-\mathrm{e}^{2} \sin ^{2} \phi_{1}\right)^{3 / 2}}=6355184.095 \mathrm{~m}
\end{aligned}
$$

Often the symbols M and N are used, but we chose v and ρ to avoid confusion with the geoid ellipsoid separation and North coordinates. Similar calculations for other points yield:

Pt	$\nu(\mathrm{m})$	$\rho(\mathrm{m})$
1	6384756.074	6355184.095
2	6384756.387	6355185.028
3	6384756.853	6355186.420
4	6384755.440	6355182.201
5	6384756.908	6355186.583
6	6384754.419	6355179.151

Next we calculate the Cartesian coordinates:
$\mathrm{X}_{1}=\left(v_{1}+\mathrm{h}_{1}\right) \cos \phi_{1} \cos \lambda_{1}=-4651118.768 \mathrm{~m}$
$\mathrm{Y}_{1}=\left(v_{1}+\mathrm{h}_{1}\right) \cos \phi_{1} \sin \lambda_{1}=2552079.134 \mathrm{~m}$
$\mathrm{Z}_{1}=\left\{\left(1-\mathrm{e}^{2}\right) v_{1}+\mathrm{h}_{1}\right\} \sin \phi_{1}=-3528601.849 \mathrm{~m}$

Pt	X (m)	$Y(\mathrm{~m})$	Z (m)
1	-4651118.768	2552079.134	-3528601.849
2	-4651098.159	2552003.590	-3528686.105
3	-4650757.588	2552444.958	-3528808.412
4	-4650746.584	2552994.855	-3528433.419
5	-4650595.765	2552719.312	-3528822.946
6	-4650686.743	2553478.182	-3528159.499

CALCULATIONS FOR LINE 3 TO 4

Least Squares calculations require the observations and estimates of their precision, approximate starting values for parameters (mainly point coordinates), partial derivatives (coefficients) and OMC terms (the differences between the observations and the equivalent values calculated from the starting coordinates). Harvey (1994) gives a fuller explanation of least squares and further examples of the application of least squares.

We show all the steps in all these calculations for just one line, from point 3 to point 4 . This line contains all four types of observations dealt with in this paper. All the other observations and the results of their calculations are presented in summary form.

Preliminary values calculated from starting coordinates

$\Delta X_{34}=X_{4}-X_{3}=11.004 \mathrm{~m}$
$\Delta \mathrm{Y}_{34}=\mathrm{Y}_{4}-\mathrm{Y}_{3}=549.897 \mathrm{~m}$
$\Delta Z_{34}=\mathrm{Z}_{4}-\mathrm{Z}_{3}=374.993 \mathrm{~m}$
Bearing (take care with quadrant) (Leick, 1995):
$\alpha_{34}=\tan ^{-1}\left(\frac{-\sin \lambda_{3} \Delta \mathrm{X}_{34}+\cos \lambda_{3} \Delta \mathrm{Y}_{34}}{-\sin \phi_{3} \cos \lambda_{3} \Delta \mathrm{X}_{34}-\sin \phi_{3} \sin \lambda_{3} \Delta \mathrm{Y}_{34}+\cos \phi_{3} \Delta Z_{34}}\right)$
$=312.93^{\circ}=312^{\circ} 56^{\prime} 02.9^{\prime \prime}$
Slope distance:
$\mathrm{s} 34=\sqrt{\Delta \mathrm{X}_{34}{ }^{2}+\Delta \mathrm{Y}_{34}{ }^{2}+\Delta \mathrm{Z}_{34}{ }^{2}}=665.678 \mathrm{~m}$
Slope angle (Leick, 1995):
$\theta_{34}=\sin ^{-1}\left(\frac{\cos \phi_{3} \cos \lambda_{3} \Delta \mathrm{X}_{34}+\cos \phi_{3} \sin \lambda_{3} \Delta \mathrm{Y}_{34}+\sin \phi_{3} \Delta \mathrm{Z}_{34}}{\mathrm{~S} 34}\right)$
$=0.272^{\circ}$
To use equations with zenith angles instead of slope angles see Strang \& Borre (1997). To work in units of " and mm for corrections to $\phi \lambda \mathrm{h}$ we need the following unit conversion factor:
$\mathrm{U}=\left(3600^{*} 180 / \pi\right) / 1000=648 / \pi \cong 206.264$

Distance observations

We enter slope distance, corrected for instrument calibration and refraction (first velocity correction), and we enter instrument height $\left(\mathrm{h}_{\mathrm{i}}\right)$ and target height $\left(\mathrm{h}_{\mathrm{t}}\right)$.
There is no need to reduce it to the distance between ground marks or to the ellipsoid, grid or sea level.

At	To	Distance	Hi	Ht
1	3	547.2221 .480	1.700	
3	2	566.518	1.698	1.660
3	4	666.493	1.698	1.630
4	5	500.700	1.629	1.633
4	6	558.406	1.629	1.632
5	6	1012.101	1.635	1.633

Calculate Cartesian coordinate components between the instrument and target axes:

$$
\begin{aligned}
\Delta \mathrm{X}_{34^{\prime}}= & \left(v_{4}+\mathrm{h}_{4}+\mathrm{h}_{\mathrm{t}}\right) \cos \phi_{4} \cos \lambda_{4}-\left(v_{3}+\mathrm{h}_{3}+\mathrm{h}_{\mathrm{i}}\right) \cos \phi_{3} \cos \lambda_{3} \\
& =11.054 \mathrm{~m} \\
\Delta \mathrm{Y}_{34^{\prime}}= & \left(\mathrm{v}_{4}+\mathrm{h}_{4}+\mathrm{h}_{\mathrm{t}}\right) \cos \phi_{4} \sin \lambda_{4}-\left(\mathrm{v}_{3}+\mathrm{h}_{3}+\mathrm{h}_{\mathrm{i}}\right) \cos \phi_{3} \sin \lambda_{3} \\
& =549.870 \mathrm{~m} \\
\Delta \mathrm{Z}_{34^{\prime}}= & \left\{\left(1-\mathrm{e}^{2}\right) v_{4}+\mathrm{h}_{4}+\mathrm{h}_{\mathrm{t}}\right\} \sin \phi_{4}-\left\{\left(1-\mathrm{e}^{2}\right) v_{3}+\mathrm{h}_{3}+\mathrm{h}_{\mathrm{i}}\right\} \sin \phi_{3} \\
& =375.031 \mathrm{~m}
\end{aligned}
$$

$\mathrm{OMCs}_{34}=\left(\mathrm{obs} \mathrm{dis}_{34}-\mathrm{s}_{34}\right) * 1000=+815 \mathrm{~mm}$
Partial derivatives (Vanicek \& Krakiwsky, 1986):
In the partial derivative equations for slope distances new values of α and θ could be calculated using $\Delta \mathrm{X}^{\prime} \Delta \mathrm{Y}^{\prime} \Delta \mathrm{Z}^{\prime}$ at the instrument and target axes.
$\frac{\partial \operatorname{dis} 34^{\partial \phi}}{\partial \phi_{3}}=-\left(\rho_{3}+\mathrm{h}_{3}\right) \cos \alpha_{34} \cos \theta_{34} / \mathrm{U}=-20987 \mathrm{~mm} / "$
$\frac{\partial \operatorname{dis} 34}{\partial \lambda_{3}}=-\left(v_{3}+h_{3}\right) \cos \phi_{3} \sin \alpha_{34} \cos \theta_{34} / \mathrm{U}=18831 \mathrm{~mm} / "$
$\frac{\partial \operatorname{dis} 34^{\partial h}}{\partial \mathrm{~h}_{3}}=-\sin \theta_{34}=-0.0047$ unitless
$\frac{\partial \operatorname{dis} 34}{\partial \phi 4}=-(\rho 4+\mathrm{h} 4) \cos \alpha 43 \cos \theta 43 / \mathrm{U}=20988 \mathrm{~mm} / "$
$\frac{\partial \operatorname{dis} 34}{\partial \lambda 4}=-(v 4+h 4) \cos \phi 4 \sin \alpha 43 \cos \theta 43 / \mathrm{U}=-18830 \mathrm{~mm} / "$
$\frac{\partial \operatorname{dis} 34}{\partial \mathrm{~h}_{4}}=-\sin \theta 43=0.0048$ unitless
Standard deviations of the distances are estimated to be $\pm(2 \mathrm{~mm}+1 \mathrm{ppm})$.

Standard deviation $=2+1 *(665.678 / 1000)= \pm 2.67 \mathrm{~mm}$
Variance $=(\text { Standard deviation })^{2}=7.1 \mathrm{~mm}^{2}$.

The distance 3 to 4 is our third observation, the relevant term in the P matrix (the inverse of the variance covariance matrix of the observations) is:
$P_{3,3}=1 /$ variance $=0.14$
The rest of the third column and third row of P contains 0 .

Direction observations

At	To	Mean Direction		
1	3	0°	00^{\prime}	$00.0^{\prime \prime}$
1	2	266	14	24.3
2	3	119	23	26.3
2	1	193	56	36.0
3	2	0	00	00.7
3	4	236	45	34.0
3	1	348	18	42.0
4	6	0	00	00.0
4	3	186	59	15.7
4	5	214	18	44.3
5	6	0	00	00.0
5	4	18	07	09.0
6	4	100	15	28.0
6	5	116	26	59.0

Directions do not need to be reduced to 0° on the 'RO' or swung to approximate bearings. Least squares will determine the best fit swing (orientation) as a parameter.

Calculate starting value of orientation for first direction in an arc:

$$
\begin{aligned}
\Omega_{3}=\alpha_{32}-\text { obs dir } \mathrm{di}_{32} & =74^{\circ} 48^{\prime} 17.9^{\prime \prime}-0^{\circ} 00^{\prime} 00.7^{\prime \prime} \\
& =74^{\circ} 48^{\prime} 17.2^{\prime \prime}
\end{aligned}
$$

then apply that orientation value to all other directions in the arc, so

OMCdir $_{34}=$ obs $\operatorname{dir}_{34}-\mathrm{a}_{34}+\Omega_{3}$
$=236^{\circ} 45^{\prime} 34.0^{\prime \prime}-312^{\circ} 56^{\prime} 02.9^{\prime \prime}+74^{\circ} 48^{\prime} 17.2^{\prime \prime}=-4932^{\prime \prime}$
Corrections to directions, for deflections of the vertical, are constant at any one site. We are not including zenith angle observations, where corrections are a function of the azimuth of each line, and we are not solving for astronomic latitude, longitude or deflections of the vertical as parameters. So our orientation parameter will include the 'Laplace azimuth' correction for our directions.

Partial derivatives (Vanicek \& Krakiwsky, 1986):

$$
\begin{aligned}
& \frac{\partial \operatorname{dir} 34}{\partial \lambda_{3}}=\frac{-\left(v_{3}+h_{3}\right) \cos \phi 3 \cos \alpha_{34}}{\mathrm{~s} 34 \cos \theta_{34}}=-5429 \text { unitless } \\
& \frac{\partial \operatorname{dir} 34}{\partial \mathrm{~h}_{3}}=0 \\
& \frac{\partial \operatorname{dir} 34}{\partial \phi 4}=\frac{(\rho 4+\mathrm{h} 4) \sin \alpha 43}{\mathrm{~s} 34 \cos \theta 43}=6989 \text { unitless } \\
& \frac{\partial \operatorname{dir}_{34}}{\partial \lambda_{4}}=\frac{-(\nu 4+\mathrm{h} 4) \cos \phi 4 \cos \alpha 43}{\mathrm{~s} 34 \cos \theta 43}=5429 \text { unitless } \\
& \frac{\partial \operatorname{dir}_{34}}{\partial \mathrm{~h} 4}=0 \quad \frac{\partial \mathrm{dir}_{34}}{\partial \Omega_{3}}=-1 \text { unitless }
\end{aligned}
$$

Standard deviations of the direction observations (sd) are estimated to be $\pm 1.7^{\prime \prime}$ and centring error at instrument (i) and target (t) to be $\pm 1 \mathrm{~mm}$. Line $3-4$ is 666 m long so:

Variance $=(\mathrm{sd})^{2}+\left(\mathrm{U}^{*} \text { i mm /L m }\right)^{2}+\left(\mathrm{U}^{*} \mathrm{t} \mathrm{mm} / \mathrm{L} \mathrm{m}\right)^{2}$
Variance $_{\text {dir34 }}=(1.7)^{2}+\left(U^{*} 1 / 666\right)^{2}+\left(U^{*} 1 / 666\right)^{2}=3.08$
Standard deviation $=\sqrt{3.08}= \pm 1.76^{\prime \prime}$
$P_{12,12}=1 / 3.08=0.32$
Direction 34 is the $12^{\text {th }}$ observation. The rest of the 34 th column and 34 th row of P contains 0 .

GPS observations

At	To		(m)	$\mathrm{s}(\mathrm{mm})$ correlations	
3	2	$\Delta \mathrm{X}$	-333.402	8.2 xy -0.63	xz 0.69
3	2	$\Delta \mathrm{Y}$	-444.401	4.2	yz -0.50
3	2	$\Delta \mathrm{Z}$	110.849	5.7	
3	4	$\Delta \mathrm{X}$	11.369	9.6 xy -0.72	xz 0.42
3	4	$\Delta \mathrm{Y}$	550.763	9.7	yz -0.36
3	4	$\Delta \mathrm{Z}$	375.141	7.5	
3	5	$\Delta \mathrm{X}$	162.067	11.7 xy -0.74	xz 0.79
3	5	$\Delta \mathrm{Y}$	274.763	9.9	yz -0.72
3	5	$\Delta \mathrm{Z}$	-14.474	11.8	

3	6	$\Delta \mathrm{X}$	71.329	17.	$\mathrm{xy}-0.89$	xz 0.83
3	6	$\Delta \mathrm{Y}$	1033.793	12.	$\mathrm{yz}-0.83$	
3	6	$\Delta \mathrm{Z}$	648.836	12.		

The standard deviations of the GPS vectors obtained from preprocessing software were about ± 1 to 2 mm . We have increased them to the values shown above, see Rizos (1997) for reasons and methods.

In this paper we ignore any scale and rotational differences between these WGS84 vectors and the GDA datum.

$$
\begin{aligned}
& \mathrm{OMC} \Delta \mathrm{X}_{34}=\left(\text { obs GPS } \Delta \mathrm{X}_{34}-\Delta \mathrm{X}_{34}\right) * 1000 \\
& =(11.369-11.004) * 1000=+395 \mathrm{~mm} \\
& \mathrm{OMC} \Delta \mathrm{Y}_{34}=\left(\text { obs GPS } \Delta \mathrm{Y}_{34}-\Delta \mathrm{Y}_{34}\right) * 1000 \\
& =(550.763-549.897) * 1000=+866 \mathrm{~mm} \\
& \mathrm{OMC} \Delta \mathrm{Z}_{34}=\left(\text { obs GPS } \Delta \mathrm{Z}_{34}-\Delta \mathrm{Z}_{34}\right) * 1000 \\
& =(375.141-374.993) * 1000=+148 \mathrm{~mm} \\
& \frac{\partial \Delta X_{34}}{\partial \phi_{3}}=\left(\rho_{3}+h_{3}\right) \cos \lambda_{3} \sin \phi_{3} / \mathrm{U}=15029 \mathrm{~mm} /{ }^{\prime \prime} \\
& \frac{\partial \Delta X_{34}}{\partial \lambda_{3}}=\left(v_{3}+h_{3}\right) \cos \phi_{3} \sin \lambda_{3} / \mathrm{U}=12375 \mathrm{~mm} / " \\
& \frac{\partial \Delta \mathrm{X}_{34}}{\partial \mathrm{~h}_{3}}=-\cos \phi 3 \cos \lambda_{3}=0.728 \quad \text { unitless } \\
& \frac{\partial \Delta X_{34}}{\partial \phi_{4}}=-\left(\rho_{4}+\mathrm{h}_{4}\right) \cos \lambda_{4} \sin \phi_{4} / \mathrm{U}=-15027 \mathrm{~mm} / " \\
& \frac{\partial \Delta \mathrm{X}_{34}}{\partial \lambda_{4}}=-\left(v_{4}+\mathrm{h} 4\right) \cos \phi 4 \sin \lambda_{4} / \mathrm{U}=-12377 \mathrm{~mm} / " \\
& \frac{\partial \Delta \mathrm{X}_{34}}{\partial \mathrm{~h}_{4}}=\cos \phi 4 \cos \lambda_{4}=-0.728 \text { unitless } \\
& \frac{\partial \Delta Y_{34}}{\partial \phi_{3}}=\left(\rho_{3}+h_{3}\right) \cos \lambda_{3} \sin \phi_{3} / \mathrm{U}=-8248 \mathrm{~mm} / " \\
& \frac{\partial \Delta \mathrm{Y}_{34}}{\partial \lambda_{3}}=-\left(\mathrm{v}_{3}+\mathrm{h}_{3}\right) \cos \phi_{3} \cos \lambda_{3} / \mathrm{U}=22548 \mathrm{~mm} / " \\
& \frac{\partial \Delta Y_{34}}{\partial h_{3}}=-\cos \phi_{3} \sin \lambda_{3}=-0.400 \text { unitless } \\
& \frac{\partial \Delta Y_{34}}{\partial \phi_{4}}=-\left(\rho_{4}+\mathrm{h}_{4}\right) \sin \lambda_{4} \sin \phi_{4} / \mathrm{U}=8249 \mathrm{~mm} / " \\
& \frac{\partial \Delta \mathrm{Y}_{34}}{\partial \lambda_{4}}=\left(v_{4}+\mathrm{h}_{4}\right) \cos \phi 4 \cos \lambda_{4} / \mathrm{U}=-22547 \mathrm{~mm} / " \\
& \frac{\partial \Delta \mathrm{Y}_{34}}{\partial \mathrm{~h}_{4}}=\cos \phi 4 \sin \lambda_{4}=0.400 \text { unitless } \\
& \frac{\partial \Delta \mathrm{Z}_{34}}{\partial \phi_{3}}=-\left(\rho_{3}+\mathrm{h}_{3}\right) \cos \phi_{3} / \mathrm{U}=-25601 \mathrm{~mm} / " \\
& \frac{\partial \Delta Z_{34}}{\partial \lambda_{3}}=0 \\
& \frac{\partial \Delta \mathrm{Z}_{34}}{\partial \mathrm{~h} 3}=-\sin \phi 3=0.556 \text { unitless } \\
& \frac{\partial \Delta Z_{34}}{\partial \phi 4}=(\rho 4+h 4) \cos \phi 4 / U=25602 \mathrm{~mm} /{ }^{\prime} \\
& \frac{\partial \Delta Z_{34}}{\partial \lambda_{4}}=0 \\
& \frac{\partial \Delta \mathrm{Z}_{34}}{\partial \mathrm{~h} 4}=\sin \phi 4=-0.556 \text { unitless }
\end{aligned}
$$

We take the correlations between $\Delta \mathrm{X}, \Delta \mathrm{Y}$ and $\Delta \mathrm{Z}$ into our adjustment but ignore correlations between the components of one line and those of another. We construct a 3×3 symmetric variance covariance matrix as follows:
$\mathrm{s}_{{ }_{\Delta X 34}}=9.6^{2}=92.2 \mathrm{~mm}^{2}$
$\mathrm{s}_{\Delta X 34 \Delta Y 34}=\rho_{\triangle X 34 \Delta Y 34} \mathrm{~s}_{\Delta X 34} \mathrm{~s}_{\Delta Y 34}=-0.72 * 9.6 * 9.7=-67.0$
$\mathrm{VCV}=\left(\begin{array}{ccc}9.6^{2} & -.72 * 9.6 * 9.7 & .42 * 9.6 * 7.5 \\ & 9.7^{2} & -.36 * 9.7 * 7.5 \\ \mathrm{sym} & & 7.5^{2}\end{array}\right)$
$=\left(\begin{array}{ccc}92.2 & -67.0 & 30.2 \\ & 94.1 & -26.2 \\ \text { sym } & & 56.3\end{array}\right)$
$\mathrm{P}=\mathrm{VCV}^{-1}=\left(\begin{array}{ccc}.024 & .016 & -.006 \\ & .022 & .002 \\ \mathrm{sym} & & .022\end{array}\right)$

Height difference observations

Most lines in this network were observed across the harbour. Instead of levelling we have used height differences obtained from reciprocal (non-simultaneous) zenith angle observations and EDM distances.

We are not including zenith angle observations because corrections or additional parameters would be needed to account for deflections of the vertical and refraction.

At	To	Obs $\Delta \mathrm{H}(\mathrm{m})$	Calc $\Delta \mathrm{H}(\mathrm{m})$
1	3	-1.885	-1.932
4	6	-2.781	-2.700
3	4	3.188	3.200
3	2	3.561	3.603
5	6	0.565	0.600
5	4	3.332	3.300

$\Delta \mathrm{H}_{34}=\mathrm{H}_{4}-\mathrm{H}_{3}=\mathrm{h}_{4}-\mathrm{N}_{4}-\mathrm{h}_{3}+\mathrm{N}_{3}$
$\mathrm{OMC} \Delta \mathrm{H}_{34}=\left(\right.$ obs $\left.\Delta \mathrm{H}_{34}-\Delta \mathrm{H}_{34}\right) * 1000$
$=(3.188-3.200) * 1000=-12 \mathrm{~mm}$
$\begin{array}{lll}\frac{\partial \Delta H_{34}}{\partial \phi_{3}}=0 & \frac{\partial \Delta H_{34}}{\partial \lambda_{3}}=0 & \frac{\partial \Delta H_{34}}{\partial \mathrm{~h}_{3}}=-1 \\ \frac{\partial \Delta H_{34}}{\partial \phi_{4}}=0 & \frac{\partial \Delta \mathrm{H}_{34}}{\partial \lambda_{4}}=0 & \frac{\partial \Delta \mathrm{H}_{34}}{\partial \mathrm{~h}_{4}}=1\end{array}$
Here the standard deviation of all the $\Delta \mathrm{H}$ observations is assumed to be $\pm 7 \mathrm{~mm}$ and not a function of line length. This gives a variance of 49 and $\mathrm{P}_{35,35}=1 / 7^{2}=0.02\left(\Delta \mathrm{H}_{34}\right.$ is the $35^{\text {th }}$ observation).

LS VECTORS AND MATRICES FOR ALL OBSERVATIONS

For the other observations, calculations similar to those above yield the OMC vector, partials matrix \mathbf{A}, and \mathbf{P} matrix as shown below.

The b vector is the column vector of the OMC terms. The order of the terms corresponds with the order of the observations above. First, distance observations in mm, then direction observations in ", then GPS observations in mm , then $\Delta H t$ observations in mm . To save space the terms are listed in order rather than as a column. (dist obs in mm) $-6804,-4230,815,298,-359,13$, (dir obs in ") $0,-4517,0,-4780,0,-4932,-267,0,-94,-$ 105, 0, -98, 0, -12,
(GPS obs in mm) 7170, -3040, -11457, 392, 845, 160, 239, 410, 59, 484, 569, -76,
$(\Delta \mathrm{Ht}$ in mm$) 47,-81,-12,-42,-35,32$

Matrix \mathbf{A} is also called the design matrix, partial derivatives, or coefficients. A contains the partial derivatives with one line per observation (1 GPS vector $=3$ observations). The observations are in the order listed in this paper. There is one column per parameter, in the order shown below (no columns for fixed points).

ϕ_{3}	λ_{3}	h_{3}	ϕ_{4}	λ_{4}	h_{4}	ϕ_{5}	λ_{5}	h_{5}	ϕ_{6}	λ_{6}	$\mathrm{h}_{6} \quad \Omega^{\prime}$	$\Omega_{1} \Omega_{2} \Omega_{3} \Omega_{4} \Omega_{5} \Omega_{6}$
-13896.	-22955.	-0.0034	0	0	0	0	0	0	0	0	0	000000
-8076.	-24820.	-0.0063	0	0	0	0	0	0	0	0	0	000000
-20987.	18830.	-0.0048	20988.	-18830.	0.0049	0	0	0	0	0	0	000000 SDIS34
0	0	0	29001.	-8685.	0.0066	-29000.	8685.	-0.0066	0	0	0	000000
0	0	0	-18077.	20829.	0.0049	0	0	0	18078.	-20829.	-0.0048	4800000
0	0	0	0	0	0	-24318.	15793.	-0.0005	24319.	-15793.	0.0007	7000000
10238.	-4319.	0	0	0	0	0	0	0	0	0	0	-100000
0	0	0	0	0	0	0	0	0	0	0	0	-100000
10746.	-2436.	0	0	0	0	0	0	0	0	0	0	0-10000
0	0	0	0	0	0	0	0	0	0	0	0	0-10000
10746.	-2436.	0	0	0	0	0	0	0	0	0	0	00-1000
-6990.	-5429.	0	6989.	5429.	0	0	0	0	0	0	0	00-1000 DIR34
10238.	-4319.	0	0	0	0	0	0	0	0	0	0	00-1000
0	0	0	-9211.	-5571.	0	0	0	0	9210.	5571.	0	000-100
-6990.	-5429.	0	6989.	5429.	0	0	0	0	0	0	0	000-100
0	0	0	4289.	9980.	0	-4289.	-9979.	0	0	0	0	000-100
0	0	0	0	0	0	-3856.	-4137.	0	3855.	4138.	0	0000-10
0	0	0	4289.	9980.	0	-4289.	-9979.	0	0	0	0	0000-10
0	0	0	-9211.	-5571.	0	0	0	0	9210.	5571.	0	$00000-1$
0	0	0	0	0	0	-3856.	-4137.	0	3855.	4138.	0	$00000-1$
15029.	12375.	0.7284	0	0	0	0	0	0	0	0	0	000000
-8248.	22548.	-0.3998	0	0	0	0	0	0	0	0	0	000000
-25601.	0	0.5564	0	0	0	0	0	0	0	0	0	000000
15029.	12375.	0.7284	-15027.	-12377.	-0.7284	0	0	0	0	0	0	000000 GPS34x
-8248.	22548.	-0.3998	8249.	-22547.	0.3999	0	0	0	0	0	0	000000 GPS34y
-25601.	0	0.5564	25602.	0	-0.5564	0	0	0	0	0	0	000000 GPS34z
15029.	12375.	0.7284	0	0	0	-15029.	-12376.	-0.7284	0	0	0	000000
-8248.	22548.	-0.3998	0	0	0	8249.	-22547.	0.3998	0	0	0	000000
-25601.	0	0.5564	0	0	0	25601.	0	-0.5564	0	0	0	000000
15029.	12375.	0.7284	0	0	0	0	0	0	-15025.	-12380.	-0.7284	84000000
-8248.	22548.	-0.3998	0	0	0	0	0	0	8249.	-22547.	0.3999	9000000
-25601.	0	0.5564	0	0	0	0	0	0	25603.	0	-0.5563	63000000
0	0	1	0	0	0	0	0	0	0	0	0	000000
0	0	0	0	0	-1	0	0	0	0	0	1	000000
0	0	-1	0	0	1	0	0	0	0	0	0	000000 HT34
0	0	-1	0	0	0	0	0	0	0	0	0	000000
0	0	0	0	0	0	0	0	-1	0	0	1	000000
0	0	0	0	0	1	0	0	-1	0	0	0	000000

\mathbf{P}, a 38×38 matrix, contains all zeros except as follows. The first 20 diagonal terms $=1 / \mathrm{s}^{2}$ for distances and directions, in units of mm^{-2} and ${ }^{-2}$:
0.1540 .1520 .1410 .1600 .1530 .1100 .3160 .1070 .3170 .1070 .3170 .3240 .3160 .3160 .3240 .3100 .3360 .3100 .316 0.336

The structure of our \mathbf{P} matrix looks like (except within $\mathrm{P}_{\mathrm{GPS}}$, all off diagonal terms are zero):

Then block diagonals of $\mathbf{P}_{\mathrm{GPS}}=\mathrm{VCV}^{-1}$ for GPS observations are (blank cells contain 0):
$\left(\begin{array}{rrrrrrrrrrrr}.036 & .027 & -.026 & & & & & & & & & \\ .027 & .095 & .009 & & & & & & & & & \\ -.026 & .009 & .060 & & & & & & & & \\ & & & .240 & .016 & -.006 & & & & & \\ & & & .016 & .022 & .002 & & & & & & \\ & & & -.006 & .002 & .022 & & & & & & \\ & & & & & & .023 & .010 & -.012 & & & \\ & & & & & & .010 & .025 & .008 & & & \\ & & & & & & -.012 & .008 & .021 & & & \\ & & & & & & & & .019 & .017 & -.008 \\ & & & & & & & & .017 & .038 & .011 \\ & & & & & & & & -.008 & .011 & .026\end{array}\right)$

Then the last 6 diagonal terms $=1 / \mathrm{s}^{2}$ for height differences in units of mm^{-2};
$\begin{array}{llllll}0.20 & 0.020 & 0.020 & 0.020 & 0.020 & 0.020\end{array}$

Once we have constructed the \mathbf{A} and \mathbf{P} matrices and b vector then we solve for corrections to our starting values for the parameters using the least squares solution equation:
$\Delta x=\left[\mathrm{A}^{\mathrm{T}} \mathrm{PA}\right]^{-1} \mathrm{~A}^{\mathrm{T}} \mathrm{Pb}$
The matrix algebra and solution method are not shown here, see Harvey (1994) for more details. $\Delta \mathrm{x}$ is a column vector with the following terms:

$\phi_{3} \lambda_{3} \mathrm{~h}_{3}$	$0.44848{ }^{\prime \prime}$	0.02619"	20.5 mm
$\phi_{4} \lambda_{4} \mathrm{~h}_{4}$	0.45423 "	-0.01057"	14.4 mm
$\phi_{5} \lambda_{5} \mathrm{~h}_{5}$	0.44960 "	$0.00794 "$	-22.9mm
λ	0.4433	-0.002	-61.9m

Orientations Ω_{1-6} $4488.34761 .74757 .9-60.6-67.6-56.1 "$

Adjusted values of the parameters are calculated using
$X=x_{a}+\Delta x \quad$ For point 3
$\phi_{3}=-33^{\circ} 48^{\prime} 29.75397^{\prime \prime}+0.44848^{\prime \prime}=-33^{\circ} 48^{\prime} 29.30549^{\prime \prime}$
$\lambda_{3}=151^{\circ} 14^{\prime} 27.54982^{\prime \prime}+0.02619^{\prime \prime}=151^{\circ} 14^{\prime} 27.57601^{\prime \prime}$
Ell. Height $=23.660 \mathrm{~m}+20.5 \mathrm{~mm}=23.680 \mathrm{~m}$
These adjusted coordinates are then used as starting values and the least squares is repeated. This continues until the $\Delta \mathrm{x}$ are insignificant.

The Qx matrix, standard deviations of results, error ellipses, variance factor, etc. are also calculated. Our final results are shown below.

FINAL RESULTS

3D Network Adjustment by Program: Elfy Version 1.41
There are 12 coordinate parameters, 6 orientation parameters and 0 transformation parameters. There are 4 GPS baselines, 14 directions, 6 slope distances and 6 height differences. Reference Ellipsoid: GRS80.
$\mathrm{v}=$ residual $=$ correction
$\mathrm{s}=$ input standard deviation of observation, incl. centring and ppm where applicable.

Type	At	To	Adjusted	v	S
SDIS	1	3	547.2207 m	-1.35mm	2.55 m
IS	3	2	566.5173 m	-0.67mm	2.57 mm
SDIS	3	4	666.4921 m	$-0.90 \mathrm{~mm}$	2.67 mm
SDIS	4	5	500.6988 m	$-1.16 \mathrm{~mm}$	2.50 m
SDIS	4	6	558.4042 m	$-1.82 \mathrm{~mm}$	2.56 mm
SDIS	5	6	1012.1027 m	1.72 mm	3.01 mm
DIR	1	3	2442632.02	$2-0.17{ }^{\prime \prime}$	1.8 "
IR	1	2	1504056.97	70.49 "	3.1
R	2	3	2560747.91	$10.47{ }^{\prime \prime}$	1.
DIR	2	1	3304055.75	-1.39"	3.1"
DIR	3	2	760759.81	$10.86 "$	$1.8{ }^{\prime \prime}$
DIR	3	4	3125329.04	$4-3.22 "$	1.8 "
R	3	1	642642.70	2.45"	$1.8{ }^{\prime \prime}$
DIR	4	6	3055427.25	$50.82 "$	$1.8{ }^{\prime \prime}$
DIR	4	3	1325339.60	0-2.53"	$1.8{ }^{\prime \prime}$
R	4	5	1601312.53	$31.81 "$	1.8 '
DIR	5	6	3220556.78	8-1.48"	1.
R	5	4	$34013 \quad 8.87$	1.61"	1.8 "
DIR	6	4	1255437.03	-1.13"	1.8 '
DIR	6	5	1420610.23	$31.07 \prime$	1.7 '
GPS	3	2	-333.4165m -	-14.51mm	8.20 mm
			-444.3963m	4.69 mm	4.
			110.8483 m	-0.71mm	5.70 m
GPS	3	4	11.3678 m	-1.21mm	9.
			550.7635 m	0.49 mm	9.
			375.1563 m	15.33 mm	7
		5	162.0600 m	-7.01m	

	3	6	274.7557 m	-7.32mm	9.90 mm
			-14.4727m	1.31 mm	11.80 mm
GPS			71.3319 m	2.92 mm	17.00 mm
			1033.7923 m	$-0.66 \mathrm{~mm}$	12.00 mm
			648.8396 m	3.57 mm	12.00 mm
HT_D	1	3	-1.8853m	-0.34mm	7.00 mm
$\mathrm{HT}^{-} \mathrm{D}$	4	6	-2.7766m	4.37 mm	7.00 mm
HT_D	3	4	3.1914 m	3.38 mm	7.00 mm
$\mathrm{HT}^{-} \mathrm{D}$	3	2	3.5563 m	$-4.66 \mathrm{~mm}$	7.00 mm
$\mathrm{HT}^{-} \mathrm{D}$	5	6	0.5615 m	$-3.51 \mathrm{~mm}$	7.00 mm
$\mathrm{HT}^{-} \mathrm{D}$	5	4	3.3381 m	6.13 mm	7.00 mm

Variance Factor: 1.48

ADJUSTED MGA COORDINATES (ZONE 56)			
Point	East (m)	North (m) AHDHeight (m)	
3	337185.551	6257725.832	0.847
4	336689.614	6258171.007	4.038
5	336867.085	6257702.868	0.700
6	336231.821	6258490.674	1.261

Standard Deviations \& Error Ellipses (mm)						
Point	E	N	H	S-Maj /Min	Brg	
3	1.7	2.7	4.3	2.8	1.6	163
4	2.9	4.1	7.0	4.1	2.9	8
5	4.1	4.3	8.4	4.4	3.9	33
6	3.8	5.1	8.5	5.4	3.4	24

GEOGRAPHIC COORDINATES

| Pt. Sth Latitude | Longitude Ell Ht(m) | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 33 | 48 | 21.6435 | 151 | 14 | 46.7745 | 25.592 |
| 2 | 33 | 48 | 24.8983 | 151 | 14 | 48.9640 | 27.263 |
| 3 | 33 | 48 | 29.3054 | 151 | 14 | 27.5804 | 23.707 |
| 4 | 33 | 48 | 14.5824 | 151 | 14 | 08.5963 | 26.898 |
| 5 | 33 | 48 | 29.8739 | 151 | 14 | 15.1840 | 23.560 |
| 6 | 33 | 48 | 03.9530 | 151 | 13 | 51.0130 | 24.121 |

CARTESIAN COORDINATES

Pt.	$X(m)$	$Y(m)$	$Z(m)$
1	-4651118.768	2552079.134	-3528601.849
2	-4651098.159	2552003.590	-3528686.105
3	-4650764.743	2552447.987	-3528796.953
4	-4650753.375	2552998.750	-3528421.797
5	-4650602.683	2552722.742	-3528811.426
6	-4650693.411	2553481.779	-3528148.113

ACKNOWLEDGEMENTS

During 1997, as part of Year 4 theses at the University of New South Wales, the second and third authors wrote software to do the calculations required (Elford, 1997) and carried out the fieldwork (Turner, 1997). Some of the fieldwork was carried out while Craig Turner was working at the Waterways Authority, NSW.

REFERENCES

AUSLIG, (1997) The following relevant web site addresses were accessible in December 1997. Contents page and links:
http://www.auslig.gov.au/geodesy/geodesy.htm AUSGEOID93:
http://www.auslig.gov.au/geodesy/geoid.htm Coordinate conversion calculations: http://www.auslig.gov.au/geodesy/calcs.htm Information on GDA2000 and MGA: http://www.auslig.gov.au/geodesy/gda.htm

Elford, D. (1997) GPS Network Adjustments, Unpublished Thesis, School of Geomatic Engineering, University of New South Wales.

Harvey, B.R.(1994) Practical Least Squares and Statistics for Surveyors. Monograph 13. $2^{\text {nd }}$ Ed. School of Geomatic Engineering, UNSW. 319pp.

Leick, A. (1995) GPS Satellite Surveying. $2^{\text {nd }}$ Ed, John Wiley \& Sons Inc.

Rizos, C. (1997) Principles and Practice of GPS Surveying. Monograph 17. School of Geomatic Engineering, UNSW. 565pp.

Shortis, M.R. and J.W. Seager (1994) The use of Geographic and Map Grid Coordinate Systems for Geodetic Network Adjustments, Survey Review, 32, 254. P495-511.

Strang, G. and K. Borre (1997) Linear Algebra, Geodesy, and GPS. Wellesley-Cambridge Press. 624pp.

Turner, C. (1997) Middle Harbour GPS Control Survey, Unpublished Thesis, School of Geomatic Engineering, University of New South Wales.

Vanicek, P. and E.J. Krakiwsky, (1986) Geodesy - The Concepts. $2^{\text {nd }}$ Ed Elsevier. 697pp.

