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ABSTRACT 
 
 
An example of least squares calculations of a 
small control survey with GPS and traditional 
survey measurements on Sydney’s Middle 
Harbour is given in this paper.  Students and 
programmers can see, and follow, the steps 
required.  The new Australian geocentric map 
grid coordinates are used.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

INTRODUCTION 
 
This paper contains an example of calculations of a 
control survey carried out on the Geocentric Datum of 
Australia (GDA) with coordinates on the Map Grid of 
Australia (MGA).  There are two reasons for this, firstly 
the Inter-governmental Committee on Surveying and 
Mapping has recommended that Australia convert to the 
GDA by 2000.  Secondly, very few numerical examples 
have been published that show practicing surveyors, 
students and programmers the steps inside software that 
calculates least squares adjustments of control surveys.  
This paper attempts to give an example using the new 
geocentric coordinates.  
 
Showing all the steps in a worked example of least squares 
adjustment takes a lot of space.  So this paper is limited to 
only part of a real survey and not all the analysis 
considerations are discussed.  
 
Much could be said about the analysis of this data set, for 
example: choice of model equations and parameters, 
observation preprocessing, standard deviations and 
correlation's of observations, statistical analysis of output 
etc.  They are important topics but are beyond the scope of 
this paper, see Harvey (1994) for more details. 
 
 
 
NETWORK AND DATA DESCRIPTION 
 
The network contains 6 points and 38 observations being a 
mix of GPS and traditional survey data. This type of 
survey is becoming more commonplace for control 
surveys because GPS can observe long and non-
intervisible lines and traditional survey observations can 
observe at sites with limited sky visibility and (currently) 
often with better precision. 
 
The survey was carried out on the shores of Sydney’s 
Middle Harbour, pictures and a plan are given below.  The 
observations and coordinates are given later.  The 
coordinates of the fixed points are estimates and the 
results given in this paper are for educational purposes 
only. 
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Figure 1.  Sketch plan of network 
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Figure 2.   SSM 57110, point 3 
 
 
 
 
 

 
 

Figure 3.  SSM 57112, point 4 
 

 
 

Figure 4.   SSM 68977, point 5 
 
 
DESIGN QUESTIONS 
 
There are several ways to adjust this data.  Firstly, we 
chose least squares because we wanted to keep the 
changes to our observations (corrections, residuals) as 
small as possible.  Secondly, we could choose to solve for 
coordinate parameters in XYZ or ENH or latitude, 
longitude and height (on an ellipsoidal surface or in 3D 
space).  In this paper we show the latitude, longitude and 
height in 3D space adjustment. Various approaches have 
been used to check our answers and commercial programs 
have also been used for testing.  Those people who want 
to adjust their control surveys on a plane surface or purely 
on grid coordinates may wish to use the data in this paper 
and compare their results with those below.  Shortis & 
Seager (1994) provide equations for an alternative 
approach with calculations on the map grid. 
 
Most of the geodetic equations used in this paper are well 
documented elsewhere.  Instead of quoting an original 
source for each equation we suggest the reader see, for 
example, Vanicek & Krakiwsky (1986) or Leick (1995) 
and the publications in their reference lists. 
 
To keep the paper as short and simple as possible we have 
not solved for geoid separation, transformation or 
refraction parameters and have not applied deflection of 
the vertical corrections.  Also, only one iteration of the 
Least Squares is shown in detail.  Final results, including 
coordinates, are also shown.  Partial derivatives 
(coefficients), observed-computed terms (OMC), and 
statistical input have been shown step by step for only one 
line, a line with all types of observations involved.   
 
The numbers shown below have been rounded off for 
display purposes, the actual calculations used values 
stored in the computer, so if intermediate calculations are 
attempted using numbers shown below then slightly 
different answers may be obtained due to round off errors. 
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COORDINATES 
 
Coordinates of known points 
           
Fixed coordinates of the points on the Map Grid of 
Australia (MGA), which is a Transverse Mercator 
projection, are assumed to be:  
 
Point MGA East              MGA North Name 
1 337675.093  6257970.269  SSM87451 
2 337733.104   6257870.969  SSM22768 
 
Approximate coordinates of other points 
 
Point MGA East MGA North Name 
3 337185  6257712   SSM57110 
4 336690  6258157   SSM57112 
5 336867  6257689   SSM68977 
6 336232  6258477   SSM22575 
 
Heights 
 
No gravity or astronomic azimuth, latitude or longitude 
observations were available.  So N (geoid-ellipsoid 
separation, not north coordinate) values were calculated 
by interpolation of AUSLIG Geodesy’s (AUSLIG,1997) 
precise geoid for the Australian region, known as 
AUSGEOID93. “The absolute accuracy of these 
AUSGEOID93 values is estimated to be better than 0.5 
metre, while the relative accuracy has been estimated as 2-
5 parts per million ( 2-5 mm per km) … An N value 
interpolated from the AUSGEOID93 grid will generally 
only differ from a rigorously computed N value by a few 
cm.  ” (AUSLIG,1997). 
 
AUSGEOID93 N values range <3cm across the site and 
refer to WGS84, not GRS80, ellipsoid.  However, for the 
purposes of this paper, a constant value of 22.86m was 
chosen to represent all points. AUSLIG (1997) also give 
deflections of the vertical, but no deflection of the vertical 
corrections were applied in the work below (we expect 
values of several seconds in this area but they vary by less 
than 0.4” across the network). 
 
The AHD heights (H) of points 1 and 2 are known, other 
points have approximate AHD heights.  The ellipsoidal 
heights of the points are obtained as follows. 
 
h1 = N1 + H1 = 22.86 + 2.732 = 25.592 m 
 
Similarly for other points:   
 
Point AHD H (m)  N (m)      Ellipsoidal h (m) 
1 2.732 22.86 25.592 
2 4.403 22.86 27.263 
3 0.8 22.86 23.660 
4 4.0 22.86 26.860 
5 0.7 22.86 23.560 
6 1.3 22.86 24.160 
 
Convert coordinates  
 
Redfearn's formulae, as implemented in AUSLIG’s 
spreadsheet (AUSLIG, 1997), were used to convert 
between latitude & longitude and easting & northing, with 

the following constants.  The process is similar to that 
used for AMG coordinate conversions but with different 
ellipsoid parameters. 
 
Ellipsoid: GRS80   
Semi major axis (a)    6,378,137.000 m  
Flattening (f) 1/ 298. 257 222 101 
False easting  500,000 m 
False northing  10,000,000 m 
Central Scale factor (K0)  0.9996 
Zone width  6° 
Eccentricity (e2) = 2f - f2  = 0. 006 694 380 
 
Point       Latitude         Longitude  
1 -33° 48' 21.64352" 151° 14' 46.77449" 
2 -33° 48' 24.89826" 151° 14' 48.96402" 
3 -33° 48' 29.75397" 151° 14' 27.54982" 
4 -33° 48' 15.03716" 151° 14' 08.60200" 
5 -33° 48' 30.32389" 151° 14' 15.17149" 
6 -33° 48' 04.39692" 151° 13' 51.01080" 
 
Even though we chose coordinate parameters to be 
ellipsoidal latitude, longitude and height it is helpful for 
later calculations to also calculate the earth centered X Y 
Z coordinates of each point.  For point 1, the first step is to 
calculate radii of curvature: 
 

ν
φ

1 2 2
11
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−

a

e sin
= 6384756.074 m  

ρ
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2 2
1
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2
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1
=

−

−

a e

e

( )

( sin )
 = 6355184.095 m 

 
Often the symbols M and N are used, but we chose ν and 
ρ to avoid confusion with the geoid ellipsoid separation 
and North coordinates.  Similar calculations for other 
points yield: 
 
Pt             ν  (m)        ρ  (m) 
1 6384756.074 6355184.095 
2 6384756.387 6355185.028 
3 6384756.853 6355186.420 
4 6384755.440 6355182.201 
5 6384756.908 6355186.583 
6 6384754.419 6355179.151 
 
Next we calculate the Cartesian coordinates: 
 
X1 = (ν1+h1) cosφ1 cosλ1  = -4651118.768 m  
Y1 = (ν1+h1) cosφ1 sinλ1    =  2552079.134 m 
Z1 = {(1-e2) ν1+h1} sinφ1   = -3528601.849 m 

  
Pt              X (m)                     Y (m)          Z (m) 
1 -4651118.768 2552079.134 -3528601.849 
2 -4651098.159 2552003.590 -3528686.105 
3 -4650757.588 2552444.958 -3528808.412 
4 -4650746.584 2552994.855 -3528433.419 
5 -4650595.765 2552719.312 -3528822.946 
6 -4650686.743 2553478.182 -3528159.499 
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CALCULATIONS FOR LINE 3 TO 4 
 
Least Squares calculations require the observations and 
estimates of their precision, approximate starting values 
for parameters (mainly point coordinates), partial 
derivatives (coefficients) and OMC terms (the differences 
between the observations and the equivalent values 
calculated from the starting coordinates).  Harvey (1994) 
gives a fuller explanation of least squares and further 
examples of the application of least squares. 
 
We show all the steps in all these calculations for just one 
line, from point 3 to point 4.  This line contains all four 
types of observations dealt with in this paper.  All the 
other observations and the results of their calculations are 
presented in summary form. 
 
Preliminary values calculated from starting 
coordinates 
 
∆X34 = X4 - X3 =   11.004  m 
∆Y34 = Y4 - Y3 = 549.897  m 
∆Z34 = Z4 - Z3     = 374.993  m 
 
Bearing (take care with quadrant) (Leick, 1995): 

α
λ λ

φ λ φ λ φ
34 1 3 34 3 34

3 3 34 3 3 34 3 34
=

− +
− − +







−tan sin cos

sin cos sin sin cos
∆ ∆

∆ ∆ ∆
X Y

X Y Z
= 312.93° = 312°56’02.9” 
 
Slope distance:  
s X Y Z34 34 34 342 2 2= + +∆ ∆ ∆ = 665.678m 
 
Slope angle  (Leick, 1995): 

θ
φ λ φ λ φ

34 1 3 3 34 3 3 34 3 34

34
=

+ +





−sin
cos cos cos sin sin∆ ∆ ∆X Y Z

s
= 0.272° 
 
To use equations with zenith angles instead of slope 
angles see Strang & Borre (1997).  To work in units of  " 
and mm for corrections to φ λ h we need the following 
unit conversion factor: 
 
U = (3600*180/π )/1000  = 648 / π  ≅ 206.264   
 
Distance observations  
 
We enter slope distance, corrected for instrument 
calibration and refraction (first velocity correction), and 
we enter instrument height (hi) and target height (ht).  
There is no need to reduce it to the distance between 
ground marks or to the ellipsoid, grid or sea level. 
 
At         To      Distance      Hi        Ht 
1    3       547.222  1.480   1.700 
3    2       566.518   1.698   1.660 
3    4       666.493   1.698   1.630 
4    5       500.700   1.629   1.633 
4    6       558.406   1.629   1.632 
5    6      1012.101   1.635   1.633 
 
Calculate Cartesian coordinate components between the 
instrument and target axes: 
 

∆X34' = (ν4+h4+ht)cosφ4cosλ4 - (ν3+h3+hi)cosφ3cosλ3  
= 11.054m 

∆Y34' = (ν4+h4+ht)cosφ4sinλ4 - (ν3+h3+hi)cosφ3sinλ3   
 = 549.870m    

∆Z34' = {(1-e2)ν4+h4+ht}sinφ4 - {(1-e2)ν3+h3+hi}sinφ3  
 = 375.031m 

 
s X Y Z' ' ' '34 34 34 34

2 2 2= + +∆ ∆ ∆ = 665.678m 
 
OMCs34 = (obs dis34 - s'34) *1000 = +815 mm  
  
Partial derivatives (Vanicek & Krakiwsky, 1986): 
In the partial derivative equations for slope distances new 
values of α and θ could be calculated using ∆X' ∆Y' ∆Z' at 
the instrument and target axes. 
 
∂

∂φ
ρ α θ

dis h U34

3
3 3 34 34= − +( )cos cos /  = -20987mm/" 

∂
∂λ

ν φ α θ
dis h U34

3
3 3 3 34 34= − +( ) cos sin cos / =  18831 mm/" 

∂
∂

θ
dis

h
34

3
34= − sin  = -0.0047 unitless 

∂
∂φ

ρ α θ
dis h U34

4
4 4 43 43= − +( ) cos cos /  = 20988 mm/" 

∂
∂λ

ν φ α θ
dis h U34

4
4 4 4 43 43= − +( ) cos sin cos / = -18830mm/" 

∂
∂

θ
dis
h

34

4
43= − sin  = 0.0048 unitless 

 
Standard deviations of the distances are estimated to be 
+(2mm + 1ppm). 
 
Standard deviation = 2 + 1*(665.678/1000) = +2.67mm 
Variance = (Standard deviation)2 = 7.1  mm2. 
 
The distance 3 to 4 is our third observation, the relevant 
term in the P matrix (the inverse of the variance 
covariance matrix of the observations) is: 

P3,3 = 1/variance = 0.14 
The rest of the third column and third row of P contains 0. 
 
Direction observations  
 
At  To   Mean Direction    
1 3     0° 00' 00.0"    
1 2 266 14 24.3        
2 3 119 23 26.3        
2 1 193 56 36.0        
3 2     0 00 00.7    
3 4 236 45 34.0        
3 1 348 18 42.0        
4 6     0 00 00.0    
4 3 186 59 15.7        
4 5 214 18 44.3        
5 6    0 00 00.0    
5 4  18 07 09.0     
6 4 100 15 28.0        
6 5 116 26 59.0        
 
Directions do not need to be reduced to 0° on the 'RO' or 
swung to approximate bearings.  Least squares will 
determine the best fit swing (orientation) as a parameter.  
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Calculate starting value of orientation for first direction in 
an arc: 
 
Ω3 = α32 - obs dir32 = 74°48'17.9" - 0°00'00.7"  

   = 74°48'17.2" 
  
then apply that orientation value to all other directions in 
the arc, so 
 
OMCdir34 = obs dir34 - a34 + Ω3   
= 236°45'34.0" - 312°56'02.9" + 74°48'17.2" = -4932"
  
Corrections to directions, for deflections of the vertical, 
are constant at any one site.  We are not including zenith 
angle observations, where corrections are a function of the 
azimuth of each line, and we are not solving for 
astronomic latitude, longitude or deflections of the vertical 
as parameters.  So our orientation parameter will include 
the 'Laplace azimuth' correction for our directions. 
  
Partial derivatives (Vanicek & Krakiwsky, 1986): 
 
∂

∂φ
ρ α

θ
dir h

s
34

3

3 3 34

34 34
=

+( ) sin
cos

  =-6990 unitless 

∂
∂λ

ν φ α
θ

dir h
s

34

3

3 3 3 34

34 34
=

− +( ) cos cos
cos

  =  -5429 unitless 

∂
∂
dir

h
34

3
0=  

∂
∂φ

ρ α
θ

dir h
s

34

4

4 4 43

34 43
=

+( )sin
cos

  = 6989 unitless 

∂
∂λ

ν φ α
θ

dir h
s

34

4

4 4 4 43

34 43
=

− +( ) cos cos
cos

  = 5429 unitless 

∂
∂
dir
h

34

4
0=    

dir
  34

3

∂
∂Ω

= -1 unitless 

 
Standard deviations of the direction observations (sd) are 
estimated to be +1.7" and centring error at instrument (i) 
and target (t) to be + 1mm.  Line 3-4 is 666m long so: 
 
Variance = (sd )2 + (U* i mm /L m) 2 + (U*t mm/L m) 2  
Variancedir34 = (1.7)2 + (U*1/666) 2 + (U*1/666) 2  = 3.08 
Standard deviation = 308.  = +1.76" 
P12,12 = 1/3.08 = 0.32    
Direction 34 is the 12th observation. The rest of the 34th 
column and 34th row of P contains 0. 
 
  
GPS observations 
 
At   To          (m) s (mm)   correlations 
3     2  ∆X  -333.402   8.2   xy -0.63  xz 0.69 
3     2  ∆Y  -444.401   4.2                 yz -0.50 
3     2  ∆Z  110.849    5.7 
 
3     4    ∆X       11.369   9.6   xy -0.72   xz 0.42 
3     4    ∆Y    550.763    9.7   yz -0.36 
3     4    ∆Z     375.141    7.5 
 
3     5     ∆X   162.067   11.7   xy -0.74 xz 0.79 
3     5     ∆Y   274.763    9.9   yz -0.72 
3     5     ∆Z     -14.474    11.8 
 

3     6     ∆X      71.329   17.   xy -0.89   xz 0.83 
3     6     ∆Y  1033.793  12.   yz -0.83 
3     6     ∆Z     648.836   12. 
 
The standard deviations of the GPS vectors obtained from 
preprocessing software were about +1 to 2 mm.  We have  
increased  them to the values shown above, see Rizos 
(1997) for reasons and methods. 
 
In this paper we ignore any scale and rotational 
differences between these WGS84 vectors and the GDA 
datum.  
 
OMC∆X34 = (obs GPS ∆X34 - ∆X34) * 1000  

= (11.369 - 11.004)*1000 = +395 mm 
OMC∆Y34 = (obs GPS ∆Y34 - ∆Y34) * 1000  

= (550.763 - 549.897)*1000 = +866 mm 
OMC∆Z34 = (obs GPS ∆Z34 - ∆Z34) * 1000  

= (375.141 - 374.993)*1000 = +148 mm 
 
∂∆

∂φ
ρ λ φ

X h U34

3
3 3 3 3= +( ) cos sin /  = 15029 mm/" 

∂∆
∂λ

ν φ λ
X h U34

3
3 3 3 3= +( ) cos sin /  = 12375 mm/" 

∂∆
∂

φ λ
X
h

34

3
3 3= − cos cos  = 0.728    unitless 

∂∆
∂φ

ρ λ φ
X h U34

4
4 4 4 4= − +( ) cos sin /  = -15027 mm/" 

∂∆
∂λ

ν φ λ
X h U34

4
4 4 4 4= − +( ) cos sin /  = -12377 mm/" 

∂∆
∂

φ λ
X
h

34

4
4 4= cos cos = -0.728  unitless   

∂∆
∂φ

ρ λ φ
Y h U34

3
3 3 3 3= +( ) cos sin /  = -8248 mm/"  

∂∆
∂λ

ν φ λ
Y h U34

3
3 3 3 3= − +( ) cos cos /  = 22548 mm/"  

∂∆
∂

φ λ
Y
h

34

3
3 3= − cos sin  = -0.400 unitless  

∂∆
∂φ

ρ λ φ
Y h U34

4
4 4 4 4= − +( ) sin sin / = 8249 mm/"  

∂∆
∂λ

ν φ λ
Y h U34

4
4 4 4 4= +( ) cos cos / = -22547 mm/"  

∂∆
∂

φ λ
Y
h

34

4
4 4= cos sin = 0.400 unitless 

∂∆
∂φ

ρ φ
Z h U34

3
3 3 3= − +( ) cos /  = -25601 mm/" 

∂∆
∂λ

Z34

3
0=   

∂∆
∂

φ
Z
h

34

3
3= − sin  = 0.556 unitless 

∂∆
∂φ

ρ φ
Z h U34

4
4 4 4= +( ) cos /  = 25602 mm/" 

∂∆
∂λ

Z34

4
0=  

∂∆
∂

φ
Z
h

34

4
4= sin = -0.556 unitless 
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We take the correlations between ∆X, ∆Y and ∆Z into our 
adjustment but ignore correlations between the 
components of one line and those of another.  We 
construct a 3x3 symmetric variance covariance matrix as 
follows: 
s2

∆X34 = 9.62 = 92.2 mm2 
s ∆X34 ∆Y34 = ρ∆X34 ∆Y34 s∆X34 s∆Y34 = -0.72 * 9.6 * 9.7 = -67.0 
 

VCV = 
9 6 72 9 6 9 7 42 9 6 7 5

9 7 36 9 7 7 5
7 5

2

2

2

. . * . * . . * . * .
. . * . * .

.

−
−















sym

 

= 
92 2 67 0 30 2

941 26 2
56 3

. . .
. .

.

−
−















sym

 

P = VCV-1 = 
. . .

. .
.

024 016 006
022 002

022

−













sym

 

 
 
Height difference observations 
 
Most lines in this network were observed across the 
harbour.  Instead of levelling we have used height 
differences obtained from reciprocal (non-simultaneous) 
zenith angle observations and EDM distances. 
 
We are not including zenith angle observations because 
corrections or additional parameters would be needed to 
account for deflections of the vertical and refraction. 
 
At        To        Obs ∆H (m)      Calc ∆H (m) 
1  3 -1.885  -1.932 
4  6 -2.781  -2.700 
3  4  3.188   3.200 
3  2  3.561   3.603 
5  6  0.565   0.600 
5  4  3.332   3.300 
 
∆H34 = H4 - H3 = h4 - N4 - h3 + N3 

 

OMC ∆H34 = (obs  ∆H34 - ∆H34) * 1000    
= (3.188 - 3.200) * 1000 = -12 mm 
 
∂∆

∂φ
H34

3
0=   ∂∆

∂λ
H34

3
0=   ∂∆

∂
H
h

34

3
1= −   

∂∆
∂φ

H34

4
0=   ∂∆

∂λ
H34

4
0=   ∂∆

∂
H
h

34

4
1=  

 
Here the standard deviation of all the ∆H observations is 
assumed to be +7mm and not a function of line length.  
This gives a variance of 49 and P35,35 =1/72 = 0.02 (∆H34  
is the 35th observation). 
 
 
 
 
 
  

LS VECTORS AND MATRICES FOR ALL 
OBSERVATIONS 
 
For the other observations, calculations similar to those 
above yield the OMC vector, partials matrix A, and P 
matrix as shown below. 
 
The b vector is the column vector of the OMC terms. The 
order of the terms corresponds with the order of the 
observations above.  First, distance observations in mm, 
then direction observations in ", then GPS observations in 
mm, then ∆Ht observations in mm. To save space the 
terms are listed in order rather than as a column. 
(dist obs in mm) -6804,  -4230,  815, 298,  -359,  13,  
(dir obs in ") 0, -4517,  0, -4780, 0, -4932, -267, 0, -94, -
105, 0, -98, 0, -12,  
(GPS obs in mm) 7170, -3040, -11457, 392, 845, 160, 
239, 410, 59, 484, 569, -76,  
(∆Ht in mm) 47, -81, -12, -42, -35, 32  
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Matrix A is also called the design matrix, partial derivatives, or coefficients.  A contains the partial derivatives with one line 
per observation (1 GPS vector = 3 observations).  The observations are in the order listed in this paper.  There is one column 
per parameter, in the order shown below (no columns for fixed points). 
  
φ3  λ3   h3 φ4  λ4   h4 φ5  λ5   h5 φ6  λ6   h6         Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 
-13896. -22955. -0.0034 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-8076. -24820. -0.0063 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-20987. 18830. -0.0048 20988. -18830. 0.0049 0 0 0 0 0 0 0 0 0 0 0 0   SDIS34 
0 0 0 29001. -8685. 0.0066 -29000. 8685. -0.0066 0 0 0 0 0 0 0 0 0 
0 0 0 -18077. 20829. 0.0049 0 0 0 18078. -20829. -0.0048 0 0 0 0 0 0 
0 0 0 0 0 0 -24318. 15793. -0.0005 24319. -15793. 0.0007 0 0 0 0 0 0 
10238. -4319. 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 
10746. -2436. 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 
10746. -2436. 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 
-6990. -5429. 0 6989. 5429. 0 0 0 0 0 0 0 0 0 -1 0 0 0   DIR34 
10238. -4319. 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 
0 0 0 -9211. -5571. 0 0 0 0 9210. 5571. 0 0 0 0 -1 0 0 
-6990. -5429. 0 6989. 5429. 0 0 0 0 0 0 0 0 0 0 -1 0 0 
0 0 0 4289. 9980. 0 -4289. -9979. 0 0 0 0 0 0 0 -1 0 0 
0 0 0 0 0 0 -3856. -4137. 0 3855. 4138. 0 0 0 0 0 -1 0 
0 0 0 4289. 9980. 0 -4289. -9979. 0 0 0 0 0 0 0 0 -1 0 
0 0 0 -9211. -5571. 0 0 0 0 9210. 5571. 0 0 0 0 0 0 -1 
0 0 0 0 0 0 -3856. -4137. 0 3855. 4138. 0 0 0 0 0 0 -1 
15029. 12375. 0.7284 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-8248. 22548. -0.3998 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-25601. 0 0.5564 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
15029. 12375. 0.7284 -15027. -12377. -0.7284 0 0 0 0 0 0 0 0 0 0 0 0  GPS34x 
-8248. 22548. -0.3998 8249. -22547. 0.3999 0 0 0 0 0 0 0 0 0 0 0 0  GPS34y 
-25601. 0 0.5564 25602. 0 -0.5564 0 0 0 0 0 0 0 0 0 0 0 0  GPS34z 
15029. 12375. 0.7284 0 0 0 -15029. -12376. -0.7284 0 0 0 0 0 0 0 0 0 
-8248. 22548. -0.3998 0 0 0 8249. -22547. 0.3998 0 0 0 0 0 0 0 0 0 
-25601. 0 0.5564 0 0 0 25601. 0 -0.5564 0 0 0 0 0 0 0 0 0 
15029. 12375. 0.7284 0 0 0 0 0 0 -15025. -12380. -0.7284 0 0 0 0 0 0 
-8248. 22548. -0.3998 0 0 0 0 0 0 8249. -22547. 0.3999 0 0 0 0 0 0 
-25601. 0 0.5564 0 0 0 0 0 0 25603. 0 -0.5563 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0   HT34 
0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0 0 
 

P, a 38x38 matrix, contains all zeros except as follows.  The first 20 diagonal terms = 1
2s for distances and directions, in 

units of mm-2 and "-2:  
 
0.154 0.152 0.141 0.160 0.153 0.110 0.316 0.107 0.317  0.107 0.317 0.324 0.316 0.316  0.324  0.310 0.336 0.310 0.316 
0.336  
 
The structure of our P matrix looks like (except within PGPS, all off diagonal terms are zero): 
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Then block diagonals of PGPS = VCV-1 for GPS observations are (blank cells contain 0):  
 

. . .

. . .

. . .
. . .
. . .
. . .

. . .

. . .

. . .
. . .
. . .
. . .

036 027 026
027 095 009
026 009 060

240 016 006
016 022 002
006 002 022

023 010 012
010 025 008
012 008 021

019 017 008
017 038 011
008 011 026

−

−
−

−
−

−
−

−













































 

Then the last 6 diagonal terms = 1
2s  for height differences in units of mm-2;  

 
0.20    0.020   0.020   0.020   0.020   0.020  

 
 
Once we have constructed the A and P matrices and b 
vector then we solve for corrections to our starting values 
for the parameters using the least squares solution 
equation:   
 
∆x = [ AT PA] -1 AT P b  
 
The matrix algebra and solution method are not shown 
here, see Harvey (1994) for more details.  ∆x is a column 
vector with the following terms: 
φ3  λ3  h3 0.44848"    0.02619"   20.5mm  
φ4  λ4  h4 0.45423"   -0.01057"   14.4mm  
φ5  λ5  h5 0.44960"    0.00794"  -22.9mm  
φ6  λ6  h6 0.44334"   -0.00263"  -61.9mm 
Orientations Ω 1 - 6    

4488.3  4761.7  4757.9   -60.6   -67.6  -56.1 " 
 
Adjusted values of the parameters are calculated using  
X = xa + ∆x For point 3  
φ3 = -33°48'29.75397" + 0.44848" = -33°48'29.30549" 
λ3  = 151°14'27.54982" + 0.02619" = 151°14'27.57601" 
Ell. Height = 23.660m + 20.5 mm = 23.680 m 
 
These adjusted coordinates are then used as starting values 
and the least squares is repeated.  This continues until the 
∆x are insignificant. 
 
The Qx matrix, standard deviations of results, error 
ellipses, variance factor, etc. are also calculated.  Our final 
results are shown below. 
 
 
 
 
 
 
 
 
 

FINAL RESULTS 
 
3D Network Adjustment by Program: Elfy Version 1.41  
 
There are 12 coordinate parameters, 6 orientation 
parameters and 0 transformation parameters. There are 4 
GPS baselines, 14 directions, 6 slope distances and 6 
height differences. Reference Ellipsoid: GRS80. 
 
v = residual = correction 
s = input standard deviation of observation, incl. centring 
and ppm where applicable. 
 
Type At To   Adjusted     v        s          
SDIS  1  3   547.2207m  -1.35mm  2.55mm  
SDIS  3  2   566.5173m  -0.67mm  2.57mm   
SDIS  3  4   666.4921m  -0.90mm  2.67mm   
SDIS  4  5   500.6988m  -1.16mm  2.50mm   
SDIS  4  6   558.4042m  -1.82mm  2.56mm   
SDIS  5  6  1012.1027m   1.72mm  3.01mm    
DIR   1  3  244 26 32.02  -0.17"   1.8"    
DIR   1  2  150 40 56.97   0.49"   3.1"      
DIR   2  3  256 07 47.91   0.47"   1.8"      
DIR   2  1  330 40 55.75  -1.39"   3.1"     
DIR   3  2   76 07 59.81   0.86"   1.8"      
DIR   3  4  312 53 29.04  -3.22"   1.8"     
DIR   3  1   64 26 42.70   2.45"   1.8"      
DIR   4  6  305 54 27.25   0.82"   1.8"      
DIR   4  3  132 53 39.60  -2.53"   1.8"     
DIR   4  5  160 13 12.53   1.81"   1.8"      
DIR   5  6  322 05 56.78  -1.48"   1.7"     
DIR   5  4  340 13  8.87   1.61"   1.8"      
DIR   6  4  125 54 37.03  -1.13"   1.8"     
DIR   6  5  142 06 10.23   1.07"   1.7"      
GPS   3  2  -333.4165m -14.51mm  8.20mm   
            -444.3963m   4.69mm  4.20mm    
             110.8483m  -0.71mm  5.70mm   
GPS   3  4    11.3678m  -1.21mm  9.60mm   
             550.7635m   0.49mm  9.70mm    
             375.1563m  15.33mm  7.50mm    
GPS   3  5   162.0600m  -7.01mm 11.70mm   
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             274.7557m  -7.32mm  9.90mm   
             -14.4727m   1.31mm 11.80mm    
GPS   3  6    71.3319m   2.92mm 17.00mm    
            1033.7923m  -0.66mm 12.00mm   
             648.8396m   3.57mm 12.00mm   
HT_D  1  3    -1.8853m  -0.34mm  7.00mm    
HT_D  4  6    -2.7766m   4.37mm  7.00mm    
HT_D  3  4     3.1914m   3.38mm  7.00mm   
HT_D  3  2     3.5563m  -4.66mm  7.00mm  
HT_D  5  6     0.5615m  -3.51mm  7.00mm  
HT_D  5  4     3.3381m   6.13mm  7.00mm   
 
Variance Factor:   1.48 
 
ADJUSTED MGA COORDINATES (ZONE 56)  
Point  East(m)    North(m) AHDHeight(m) 
3     337185.551  6257725.832     0.847 
4     336689.614  6258171.007     4.038 
5     336867.085  6257702.868     0.700 
6     336231.821  6258490.674     1.261 
 
Standard Deviations & Error Ellipses (mm)  
Point   E    N    H     S-Maj/Min  Brg 
3      1.7  2.7  4.3     2.8  1.6  163 
4      2.9  4.1  7.0     4.1  2.9    8 
5      4.1  4.3  8.4     4.4  3.9   33 
6      3.8  5.1  8.5     5.4  3.4   24 
 
GEOGRAPHIC COORDINATES  
Pt. Sth Latitude   Longitude  Ell Ht(m) 
1  33 48 21.6435  151 14 46.7745 25.592 
2  33 48 24.8983  151 14 48.9640 27.263 
3  33 48 29.3054  151 14 27.5804 23.707 
4  33 48 14.5824  151 14 08.5963 26.898 
5  33 48 29.8739  151 14 15.1840 23.560 
6  33 48 03.9530  151 13 51.0130 24.121 
 
CARTESIAN COORDINATES  
Pt.    X(m)         Y(m)           Z(m) 
1 -4651118.768 2552079.134 -3528601.849 
2 -4651098.159 2552003.590 -3528686.105 
3 -4650764.743 2552447.987 -3528796.953 
4 -4650753.375 2552998.750 -3528421.797 
5 -4650602.683 2552722.742 -3528811.426 
6 -4650693.411 2553481.779 -3528148.113 
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