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ABSTRACT 
 
 
A simple equation is given to calculate the degrees of freedom of a least squares 
computation which has a priori weights on the parameters and on the 
observations. The method can be applied easily because it requires a few simple 
calculations rather than multiplying several large matrices. The method also 
clearly indicates whether an a priori weight on any parameter contributes 
significantly to the least squares solution or not. 
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1. INTRODUCTION  
 
This paper outlines the equations used in a general least squares and in 
Bayesian least squares. Bayesian least squares includes weighted a priori 
estimates of the parameters and is very useful in a number of geodetic 
applications. However, a rigorous method of calculating the degrees of freedom 
of the solution, as presented by Theil (1963) and described by Bossler (1972), is 
rather difficult to apply in practice. 
 
An approximate method is presented which is easy to apply in practice and is 
sufficiently accurate in most cases. The method can be computed easily on a 
pocket calculator using results that are usually printed out by least squares 
computer programs without modifying the computer program. An example is 
given which compares the results of the rigorous and simplified methods. The 
example also shows that the simplified method is easy to apply and that it 
indicates clearly whether an a priori weight on an individual parameter is 
significant or not.  
 
 
2. LEAST SQUARES THEORY REVIEWED 
 
Least squares theory is covered in many textbooks (e.g. Mikhail, 1976; 
Krakiwsky, 1981; Harvey, 2006). A general method follows which takes into 
account the a priori estimates of the parameters and their variance covariance 
matrix (VCV), equations which relate observables to each other and equations 
which relate observables to the parameters to be estimated. 
 
The general mathematical model relating the true parameters and the true 
observations is 
 

F (X, L) = 0 
 
The Iinearised model is 
 

A∆x + Bv = b  (1) 
 
and the results are obtained from 
 

Δx = [ AT(BQBT)-1A+Qxa
-1]-1 AT(BQBT)-1b  (2) 

 
v = QBT (BQBT)-1 (b - A Δx)  (3) 
 

umn

xQxvQv
VF

o

xa
TT

o +−
ΔΔ+

==
−− 11

2σ̂  (4) 

 
QX = [AT(BQBT)-1A + Qxa

-1]-1  (5) 
 

QL = Q + QBT(BQBT)-1AQXAT(BQBT)-1BQ - QBT(BQBT)-1BQ  (6) 
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where: 
  
xa  are the a priori parameters 

X are the adjusted parameters 

ℓ  are the observations 

L are the adjusted observations 

v   = L- ℓ are the residuals; the order of v is (n, 1) 

Δx  = X - xa are the corrections to parameters  

A  = ∂F/∂X at (xa, ℓ); the order of A is (no, m) 

B  = ∂F/∂L at (xa, ℓ); the order of B is (no, n) 

b  = -F(xa, ℓ); the order of b is (no, 1) 

VF is the a posteriori estimate of the variance factor 2ˆoσ=  

Q  is VCV matrix of observations 

Qxa  is VCV matrix of a priori parameters 

QL  is cofactor matrix of adjusted observations 

QX  is cofactor matrix of estimated parameters 

no  = number of observation equations 

n  = number of observations 

m  = total number of parameters 

u  = number of parameters with a priori weights 

 
Some related quantities are: 
 

Pxa = Qxa
-1   and    P = Q-1 

 
ΣL = VF QL  is VCV matrix of adjusted observations 

 
ΣX = VF QX  is VCV matrix of estimated parameters 

 
Now consider the special case where B = -I and no = n; that is, in the 
mathematical model each equation contains contributions from only one 
observation (there are no conditions relating observations). The above equations 
then reduce to: 
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A∆x = b + v  (7) 
 

Δx = [ ATPA+Pxa]-1 ATPb  (8) 
 
QX = [ATPA + Pxa]-1  (9) 
 
v = A Δx - b  (10) 
 
QL = AQXAT  (11) 
 

umn

xPxPvv
VF xa

TT

o +−
ΔΔ+

== 2σ̂  (12) 

 
 
The set of Equations (7) to (12) is commonly used in geodetic adjustments, such 
as VLBI.  
 
 
2.1 Applications of a priori Weights on Parameters 
 
There are many applications of least squares analysis where it is convenient to 
use prior knowledge of the parameters. These cases arise where model variables 
have been measured or estimated prior to the current data set being analysed but 
are not known well enough to hold them fixed. Some examples are as follows:  
 

i. Observations are often made in VLBI of radio sources whose 
positions have been determined in previous experiments and are 
recorded in catalogues. The accuracy of these positions is usually 
unknown. Additional observations may also be made of 'new' 
sources. The observations are used to determine parameters such 
as baseline vectors, positions of the new sources, changes in polar 
motion, etc. Obviously a better solution is obtained if the a priori 
accuracies of the catalogue sources are used in the solution rather 
than holding these source positions fixed. An example of this 
application is given later in this paper. 

 
ii. In satellite positioning (e.g. GPS or SLR) it may be feasible in some 

cases to include an a priori 'ephemeris' and an estimate of the VCV 
of its terms, obtained from an independent tracking network. This 
may then lead to an improvement in the determination of the satellite 
orbit. Depending on the circumstances, it may also be better than 
either completely solving for the orbit with no a priori information, or 
holding the given orbit parameters fixed.  

 
iii. If a survey team measures a geodetic network and connects on to 

points measured by another survey team, it may be preferable to 
include the given coordinates of these points and an estimate of their 
accuracies than to hold these points fixed. An example of this 
application is given by Bossler and Hanson (1980). 
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3. DEGREES OF FREEDOM 
 
3.1 Introduction  
 
The degrees of freedom of a solution are required for several calculations and 
statistical tests. As shown in (4) and (12), they are required in the calculation of 
VF. A statistical test may be applied to determine whether VF is significantly 
different from the a priori variance factor ( 2

oσ= ). This is useful for determining 
whether the models are reasonable and whether the data is likely to be severely 
contaminated by gross errors. 
 
Moreover VF is also often used to scale the estimated cofactor matrices of 
estimated parameters and adjusted observations (see equations for the VCV of 
adjusted and observed parameters). This most often occurs when 2

oσ  is poorly 
known, as is the case with new measurement techniques. Note that an error in 
the degrees of freedom will then directly affect the estimated precisions, error 
ellipses and confidence intervals of the least squares results. 
 
Many techniques for the detection of gross errors by statistically analysing the 
observation residuals require reliable knowledge of the degrees of freedom of the 
least squares solution. 
 
In a standard least squares adjustment (sometimes called weighted least squares 
or parametric adjustment), with no a priori weights on the parameters, the a 
posteriori variance factor (VF) is found from: 
 

r
Pvv

VF
T

=  

 
where r is the degree of freedom in the adjustment and equals the number of 
observations minus the number of (free) parameters. 
 
In Bayesian least squares, where a priori weights are assigned to the parameters, 
VF is found from (Krakiwsky, 1981): 
 

'r

xPxPvv
VF xa

TT ΔΔ+
=  

 
where r' is approximately equal to the number of observations minus the number 
of parameters without a priori weights. 
 
This is an approximate formula that works best when r' is large. When r' is small a 
slight error in it will cause significant errors in VF. Another problem is the 
magnitude of the a priori weight of a parameter. If the weight is large - i.e. with 
small variance - then the parameter estimate is obviously affected by this weight. 
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If the weight is small then it may not have much effect on the solution, so 
counting it as a weighted parameter would give a misleading value of r'. In such a 
case the analyst may chose to regard parameters with small weights as not 
weighted for the purposes of calculating r' and VF. Then the problem of 
determining whether a weight is large or small arises. Again this problem is not so 
critical when there are many more observations than parameters, i.e. r’ is large. 
Theil (1963) describes a procedure to overcome this problem and to obtain more 
accurate estimates of r' and VF. The procedure to be used with weighted 
parameter solutions is outlined below.  
 
3.2 Rigorous Calculation of Degrees of Freedom  
 
Step i. Compute a value of VF (VFf) from a solution with no weights on the 
parameters. Using 
 

v = A Δx - b   
 

Δx = (ATPA)-1 ATPb   
 

mn
Pvv

VF
T

f −
=   

 
Step ii. Multiply the VCV of the observations by VFf 
 
Step iii. Compute Δx and v from a solution with weighted parameters (use 
Equations 8 and 10).  
 
Step iv. Compute u', the number of unweighted parameters, from (Theil, 1963) 
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where  P
VF

P
f

t ⎟
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⎠

⎞
⎜
⎜
⎝

⎛
=

1    and tr{ } is the trace i.e. sum of the diagonals, of a matrix 

 
P being the inverse of the original VCV of the observations, and  

 
Pt the inverse of the new (by step ii) VCV of the observations. Note that u' 
is not necessarily an integer. Therefore the degrees of freedom in the 
adjustment, which is the number of observations minus u', is not 
necessarily an integer. 
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Step v. Compute the final VF from 
 

'un

xPxvPv
VF xa

T
t

T

−
ΔΔ+

=  

 
Step vi. Compute Ωs, the share of VF due to the VCV of the observations, and 
Ωp, the share of VF due to the a priori weights of the parameters, where 
 

Ωs = u'/m and  Ωp = 1 - Ωs 
 
 
3.3 A Disadvantage of Theil's Method 
 
Many computer programs do not write out the A matrix, so in order to apply 
Equation (14) the program has to be modified, either to write out the A matrix or 
to do the complete calculation. However, a number of least squares programs, 
especially commercially available programs, do not supply a listing of the 
program source code. In this case it is not possible for the user to modify the 
program. 
 
3.4 Simplified Equations for Degrees of Freedom 
 
If good estimates of the VCV of the observations are available then VFf is usually 
close to 1 (assuming the a priori 2

oσ is 1, as in common practice). If VF is close to 
1 then it can be ignored. In any case it is usually simple enough to compute two 
solutions, one with Pxa = 0 and one with Pxa ≠ 0. That is, the second solution is 
computed with a new, scaled, VCV matrix - i.e. a new P matrix, Pt. In the 
following sections we deal with the results of the second solution. From (9) we 
have 

(ATPtA + Pxa)-1 = QX 
 
so  u' = tr{ATPtA QX} 
 
now  ATPtA + Pxa = QX

-1 
 
so  ATPtA = QX

-1 - Pxa 
 
thus  u' = tr{( QX

-1 - Pxa) QX } 
 

    = tr{I- PxaQX } 
 

    = tr I – tr{PxaQX} 
 

    = m – tr{PxaQX}  (15) 
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Equation (15) is simpler than (14). The degrees of freedom, r', equals n - u', so: 
 

r' = n - m + tr(PxQX)  (16) 
 
Since Pxa is known (it is input to the solution) and QX is usually output, the 
degrees of freedom can be calculated without modifying the program. Note that 
some programs may not produce QX but merely give the standard deviations of 
the estimated parameters, or the standard deviations plus the correlations 
between the estimated parameters. In these cases QX can be regenerated or at 
least approximated. Equation (16) does not require the A matrix, which may be 
large and is rarely output by least squares programs. 
 
Further simplifications may be made depending on the structure of Pxa and QX.  
Pxa is often a diagonal matrix. The ith diagonal term is 1/σai

2, where σai
2 is the a 

priori variance of the ith parameter. QX is usually not diagonal. However, if the 
correlations between the estimates of the parameters are small then QX will be 
close to diagonal. If Pxa and QX are both diagonal then the calculation PxaQX is 
simple. Let the ith diagonal terms of QX be σei

2 i.e. the estimated variances. Then 
the number of weighted parameters is  
 

∑∑
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So dividing the estimated standard deviation of a parameter by the corresponding 
a priori standard deviation and then squaring gives the contribution of that 
parameter to the degrees of freedom. If either Pxa or QX or both contain large 
correlations then it may be necessary to calculate tr{PxaQX}. 
 
It can be shown, from (5) that 
 

σei  ≤  σai  
 
so  0  ≤  σei

2/σai
2  ≤  1 

  



Harvey: Degrees of freedom 
 

65 
 

If the a priori variance is small the a priori weight will be large. This means the 
observations will not contribute very much to the final parameter estimate. Thus 
σei will be approximately equal to σai and so (σei/σai)2 will be close to 1. In this 
case the parameter can be considered significantly weighted. (Remember, the 
degrees of freedom equals number of observations minus the number of 
unweighted parameters). 
 
Conversely, if a parameter has a small weight then the observations will 
contribute substantially to the parameter estimate. Thus σe will be considerably 
smaller than σa and (σe/σa)2 will be very small, approaching zero as σa tends to 
infinity. 
 
Consider the case where parameters are given either very large or very small 
weights. This is analogous to least squares without a priori weights on 
parameters where such parameters are either held fixed or 'solved for' with no 
constraints. Then (σei/σai)2 will equal either 0 or 1. The fixed parameters have 
(σei/σai)2 = 1 and the free parameters have (σei/σai)2 = 0. Then Σ(σei/σai)2 = number 
of fixed parameters, the number of free parameters is m - Σ(σei/σai)2 = u' and the 
degrees of freedom is n - u' = r as obtained in a standard least squares 
adjustment. 
 
Another satisfying feature confirming the illustrative nature of (17) is that as the 
number of weighted parameters increases the degrees of freedom increase.  
That is, if more independent a priori information is available the solution is more 
reliable, as should be expected. Examining the individual (σei/σai)2 terms informs 
the analyst of the significance of the a priori constraints placed on each 
parameter. 
 
 
4. NUMERICAL EXAMPLE 
 
Theil's (1963) procedure was applied to the analysis of the data obtained in the 
1982 Australian VLBI experiment (Harvey, 1985). The Tidbinbilla-Parkes solution 
involved 33 source coordinates with a priori standard deviations of ±0.03", 12 
source coordinates with zero a priori weight, and 14 other parameters with zero a 
priori weight. There were a total of 59 parameters and 290 observations. Theil's 
procedure was followed and it was found that the number of unweighted 
parameters was 33.457, thus showing that a standard deviation of ±0.03" is a 
significant weight in this experiment (degrees of freedom = 256.543). 
 
It was also found that the share of VF due to the variances of the observations 
was 57% and the share due to the weights of the parameters was 43%. Thus the 
a priori weights of the parameters do have a significant effect on the estimated 
variance factor. 
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Table 1 
 

Example of simplified calculations for degrees of freedom 
 
    Parameter          σai                σei           (σei / σai)2 
 

17 0.002 0.0020 0.99 
18 0.030 0.0295 0.97 
19 0.002 0.0019 0.87 
20 0.030 0.0243 0.66 
21 0.002 0.0019 0.91 
22 0.030 0.0224 0.56 
23 0.002 0.0019 0.89 
24 0.030 0.0240 0.64 
25 0.002 0.0019 0.88 
26 0.030 0.0229 0.58 
31 0.002 0.0020 0.99 
32 0.030 0.0282 0.89 
33 0.002 0.0019 0.89 
34 0.030 0.0236 0.62 
35 0.002 0.0018 0.84 
36 0.030 0.0210 0.49 
37 0.030 0.0222 0.55 
38 0.002 0.0019 0.92 
39 0.030 0.0262 0.76 
40 0.002 0.0019 0.94 
41 0.030 0.0260 0.75 
42 0.002 0.0019 0.94 
43 0.030 0.0281 0.88 
46 0.002 0.0018 0.82 
47 0.030 0.0206 0.47 
48 0.002 0.0018 0.85 
49 0.030 0.0199 0.44 
52 0.002 0.0019 0.86 
53 0.030 0.0221 0.54 
54 0.002 0.0020 1.00 
55 0.030 0.0290 0.93 
58 0.002 0.0018 0.83 
59 0.030 0.0193 0.41 

 
TOTAL = 25.549  
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The procedure recommended in this paper (17) was also carried out, and the 
results are shown in Table 1. The value of σa for those parameters not listed is 
infinite, i.e. the corresponding weight is zero. Thus their value of (σei/σai)2 is zero. 
Note that in these calculations it is not necessary to use the internal units of the 
program (e.g. radians or kilometres); any convenient unit (e.g. seconds of arc, 
seconds of time, centimetres; etc.) can be used, provided the same units are 
used for corresponding σei and σai. 
 
In this example the number of weighted parameters is 25.549 and the degrees of 
freedom (r') of the solution is 290 - 59 + 25.549 = 256.549. Considering that r' is 
normally rounded to the nearest integer this is not significantly different from the 
value obtained from the rigorous calculation. 
 
When considering this example it must be noted that Pxa was diagonal, thus 
making (17) more accurate in this case. It is also necessary to consider the off 
diagonal terms in QX. In this example the correlations between those parameters 
where 1/σai ≠ 0 were considered. Note that if 1/σai = 0 then the correlations 
between the ith parameter and any other parameter will not affect the result 
because all the terms in the ith row and the ith column of Pxa will equal zero. 
 
The largest correlations between parameters with 1/σai ≠ 0 was 0.18. This is 
because they were weighted, and therefore the observations did not have much 
effect on the estimates of these parameters, and thus did not introduce large 
correlations. 
 
 
4.1 A Similar Method 
 
Another simple way to calculate the degrees of freedom is to calculate the 
redundancy numbers of the observations (e.g. Caspary, 1987). In this case: 
 

∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≈

n

i li

viq
r

1
2σ

  (18) 

 
where qv is the diagonal term of the cofactor matrix of residuals (Qv) and σl

2 is the 
corresponding a priori variance of the observations. Caspary (1987) applies this 
equation to the case Pxa = 0. Equation (18) is surprisingly similar to (17) proposed 
in this paper, but it uses observation variances instead of parameter variances. 
However, (18) has two disadvantages. Firstly, there are usually many more 
observations than parameters, thus leading to many more terms in (18) than in 
(17). Secondly, and most important, many least squares computer programs do 
not write out the necessary cofactor matrix of the residuals. Even if the program 
can be modified it is usually found that considerable extra computer time and 
space are required to compute Qv. 
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5. CONCLUSIONS  
 
Analysts may have been reluctant to implement the equations and procedure 
recommended by Theil (1963) and Bossler (1972) because of their complexity or 
the need to modify programs. However, this problem is overcome with the simpler 
equations presented here. Moreover, (17) intuitively makes sense, is easy to 
understand, and may help some analysts understand what is happening in what 
they view as the “black box” least squares program package. An examination of 
the individual (σei/σai)2 terms reveals the significance of the a priori constraints 
placed on each parameter.  
 
For most applications slight errors in r' are not important, especially if r' is large. 
However, if correlations between those parameters with significant a priori 
weights are considerable, then (16) should be used. It will give the correct answer 
for r' and is computationally better than (14). 
 
Moreover (17), and often also (16), can be applied even when it is not possible to 
modify the least squares program. 
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