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Abstract 
 
     The survey of the connection of VLBI telescopes to conventional survey control marks is 
discussed.  Both the practical field measurement procedures and rigorous least squares 
analysis of the results are described.  The telescopes are not assumed to have: axes which 
intersect; axes which are in perfect alignment; or axes which are metal rods whose centre 
lines can be determined by direct measurement.  The 3D orientations of the centrelines of 
the axes are determined.  The equations for the coordinates of the 'reference point' of the 
VLBI telescope are given.  An equation for the shortest distance between the two axes is 
also given.  The techniques discussed in this paper have other 3D monitoring applications, 
particularly monitoring structures with axes or centrelines. 
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1.  Introduction 
 
     Why survey the axes of radio telescopes?  One reason for a survey connection from 
nearby control marks to radio telescopes is to monitor movements in the reference point of 
radio telescopes.  Another reason is to connect VLBI observations to other types of survey 
measurements such as GPS. 
 
     If a telescope's axes are assumed to have been constructed perfectly, for example that 
vertical axes are truly vertical, then the survey is much simpler.  However this paper will not 
make the assumption of perfect construction.  The survey and analysis solves for the 
orientation of the axes.  If the axes are then found to be truly constructed the subsequent 
work is simplified.  However it is recommended that at some stage a survey should 
determine the true orientation of the axes.   
 
     This paper also investigates the propagation of errors so that not only the coordinates of 
the reference point (or vectors to nearby survey control marks) are determined but also some 
estimates of the quality of the coordinates (eg their error ellipses).   
 
     This paper is only one part of the total effort required to combine VLBI and other survey 
data.  Harvey & Stolz (1985), Harvey (1985) and Harvey (1986) have investigated some 
other aspects.  For high accuracy geodynamic studies all these aspects and more have to be 
considered.  Surveyors in this type of work should be cautious before claiming they can use 
VLBI to monitor, for example, tide gauges at the centimetre level.  On its own VLBI is a 
very good measuring tool for accurate geodynamic studies where the telescope sites are 
considered as large geodetic control ('trig.') stations.  Note that it is the connection of VLBI 
to conventional surveys or GPS that yields problems. 
 
 
2.  VLBI Background 
 
     There are three types of VLBI antennas: those with a fixed vertical axis (AZEL); those 
with a fixed axis pointing to the celestial pole (HADEC); and those with a fixed horizontal 
axis (X-Y).  Whilst antennas are of various types their collecting areas (dish) are all 
approximately symmetric around an axis.  On this axis is a point (X in fig. 1) which may be 
called the electrical centre and it is the point to which the VLBI observations (delay and 
rate) refer. The electrical centre is not suitable as a reference point because the dish axis 
moves as an antenna points in different directions. 
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Figure 1. Axis Offset Diagrams. 

 
     Any point on the fixed axis would be suitable as the reference point.  The difference 
between the pivot of the dish axis (Y in fig. 1) and the electrical centre will be constant 
provided instrumental delays are independent of antenna orientation.  This difference is 
absorbed in the adjustment of the VLBI data.   
 
     If the dish axis and the fixed axis intersect then the reference point is the point of 
intersection.  In this case no axis offset corrections need to be applied to the VLBI 
observations.  If the axes do not intersect, the reference point (Z in fig. 1) is defined by 
convention to be the intersection of the fixed axis with the plane perpendicular to the fixed 
axis which contains the moving (dish) axis.  Some antennas have axis offsets as large as 
15m, though offsets larger than about 7m are rare.  It is possible to solve for the axis offset 
in a VLBI adjustment.  However ground measurements of D are usually adopted.  The VLBI 
adjustment yields 3D vector baselines which refer to the reference points of each telescope. 
 
     Since VLBI telescopes can be used as control stations for geodynamics they need to be 
stable or their movements monitored.  One cause of movement is that a telescope may 
deform due to the force of the wind or deform as it points in different directions due its large 
weight.  Also, the sun may heat one side of telescope and cause that side to expand more 
than the other side.  Hung et al (1976) estimated that a 40°C temperature change would 
produce about 9mm movement of the reference point of one VLBI site that has a 64m 
diameter dish.  The effect is predominantly to raise or lower the reference point.  McGinness 
et al (1979) estimated the displacements of the reference point of another VLBI site with a 
26m diameter dish, due to bearing 'runout', temperature change, and wind loading, to be less 
than a few millimetres.  Therefore VLBI sites should be surrounded by a ground network of 
several control marks.  Repeated observations should be made, both to locate the reference 
point and to monitor local geophysical and structural motions.   
 
 
3.  Survey Measurement Techniques   
 
     The VLBI reference point needs to be connected to the ground survey network for the 
reasons mentioned earlier.  Clearly, the connection should be at least as reliable as any other 
line in the survey network. The connection can be surveyed with an accuracy of a few 
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millimetres provided instrument calibration, observation procedure, and modelling 
corrections are to a high standard.  However gross errors in the measurements, such as that 
reported by Thomas et al (1976), need to be eliminated.  A misidentification of the VLBI 
reference point will not be detected in a ground adjustment.  But it will cause errors in a 
combined adjustment using the VLBI vectors and ground surveys.  Orientation, scale and 
reference coordinate systems for the connection are discussed by Harvey & Stolz (1985). 
 
     To determine the position of the reference point, observations have to be made to 
determine the centrelines of the antenna axes.  These observations should be made with the 
antenna pointing in different directions to discover whether the reference point is 
independent of the direction of antenna pointing.  No axis should be assumed to be in correct 
alignment, and the axes should not be assumed to intersect.  
 
3.1 Difficulties 
 
     There are several practical difficulties in the survey.  Among these are -  
 
1) There is not necessarily any physical component at the reference point.  
 
2) The VLBI reference point is located in the midst of the structural components of the 
telescope that obstruct many survey observations.  The reference point of those telescopes 
surrounded by radomes will be difficult to observe because of the physical obstruction.  
Radomes are large metallic domes (shaped like golf balls) that surround and cover the whole 
radio telescope.  To make theodolite or EDM observations through a radome requires holes 
to be bored for each line of site. 
 
3) Usually the reference point, or any nearby point, cannot be conveniently occupied by 
surveying instruments.  
 
4)  It is not possible to observe astronomic latitude, longitude or azimuth at a mark below 
the reference point because the view of the stars is obstructed by the telescope.  
 
5) Many VLBI sites use very large radio telescopes where the reference point can be tens of 
metres above the ground.  If control marks are close to the telescope then steep observations, 
which are more severely affected by dislevelment of the theodolite, are required.  If control 
marks are further from the telescope then the longer lines of sight imply less precise 
coordinates for the reference point.    
 
3.2 Survey methods 
 
     Some methods of surveying the reference point will now be discussed.  
 
1) One method is to establish a mark near ground level and directly beneath the reference 
point.  The position of the reference point is usually determined by accepting that the 
constructed VLBI telescope perfectly agrees with the engineering design.  Lines of sight 
through doorways or through holes bored in the structure, or both, connect the ground mark 
to the exterior site(s).  A few exterior sites should be used to provide redundancy.  The 
horizontal position of the ground mark and the height difference to the reference point are 
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then measured.  The measurement of height difference is not necessarily simple or error free, 
especially for large antennas.  The desired measurements can be obtained by levelling from 
nearby stable towers or by observing zenith angles from exterior sites to the reference point.  
It is usually impossible to measure the height difference reliably by hanging a tape (or by 
vertical EDM) from the "engineers' guess" of the position of the reference point to a ground 
mark because of obstruction by parts of the telescope.  If zenith angles are observed care 
must be taken to reduce refraction and theodolite errors.  Thus for many VLBI sites the use 
of a ground mark directly beneath the reference point may not be a practical or effective 
method.  
 
2) Another method is to build a temporary tower over the antenna so that a survey 
instrument could be set up directly above the reference point.  Astronomic observations 
could be made to determine deflections of the vertical and the height measurements would 
be less obstructed.  Clearly, the tower would need to be stable.  
 
3) A better approach may be to determine the coordinates of the reference point by 
observing a 3D ground network surrounding the telescope.  A target should be placed on 
each end of the moving axis and of the fixed axis.  The targets should then be observed as 
the telescope is rotated about this axis. Note that the axis itself should not move.  If a target 
does not move then it is truly on the centreline of the axis.  However it is not usually 
possible to rotate the telescope through 360° about each axis, especially with equatorial 
mount telescopes.  Moreover there may not be any structure on the axis!  Some telescopes 
rotate on a circular arc track of several metres radius with no physical structure at the centre. 
 
     If targets can be placed on the centreline of an axis then horizontal directions, zenith 
angles, and perhaps distances can be observed to each target or, the targets could be 
observed by photogrammetry.  Repeat the measurements for a variety of positions of the 
axes and from a few control marks in the immediate surrounds of the telescope.  Each site 
should observe simultaneously, if possible, to minimize errors due to movement of the 
telescope.  Unfortunately, due to obstructions, the targets may not be visible from many 
control marks.  Measurements could be made under different sun and wind exposure 
conditions.  Then compute the axis offset, the inclination of each axis, and the position of 
the reference point with respect to the local geodetic network, from an adjustment of these 
observations, which would include many redundancies.  If the axis offset can be determined 
by direct measurement it would strengthen the solution for the position of the reference 
point.  This method is suitable for locating the reference point of all types of telescope 
including a transportable antenna, provided targets can be placed on the centrelines of axes 
and that these targets can be seen from control marks.  
 
     The observation times should be scheduled to minimize the effects of time-dependent 
atmospheric anomalies.  Variations in the refraction effect on horizontal direction, zenith 
angle and EDM distance measurement during the observation period can be monitored by 
placing a fixed target beside the telescope and at a similar height to the reference point.  This 
fixed target should be observed regularly during the total observation period to monitor 
changes in direction, zenith angle and distance.  The height difference could be monitored 
by precise levelling.  Then use the variations in the observations to determine the magnitude 
of refraction effects and correct the observations to other targets.   
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     The direction of the local vertical for all sites within a few hundred metres of the 
telescope is, generally, adequately determined by interpolation.  However this assumption 
could be checked by making a detailed geoid map of the area by gravimetry.  
 
 
4) This method uses similar measurements to those in (3) above.  If targets cannot be placed 
on the centrelines of axes or these targets cannot be seen from control marks then the 
following procedure might be required. Mount targets on the telescope structure at some 
distance from an axis, for example on the track mentioned above (see figures 2 and 3).  Then 
rotate the radio telescope about this one axis.  The target scribes a circle if there is no 
wobble in the axis.  Rotate the telescope more than 360° if possible then calculate position 
and orientation of the axis and investigate for wobble errors.  If there is wobble then it can 
be studied from these same measurements.  
 
     If there is more than one target then the distances between the targets stay the same even 
though the coordinates of the targets change.   Frequently the amount of rotation about an 
axis is restricted to less than 200°.  In this case it is especially important to use more than 
one target. 
 

 
 

Figure 2.  Rotation of a target about an axis. 
 

     If theodolite/EDM measurements are used instead of photogrammetry then generally the 
target prisms cannot be pointed to the instrument, so distances have to be corrected for the 
misalignment.  Misalignment may also seriously affect the strength of the returned EDM 
signal, so locate the instrument carefully.  Misalignment corrections are also needed if 
prisms are used as targets for sighting of directions and zenith angles.   
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Figure 3.  Possible survey method. 
 
 
4.  Solution for Target Coordinates. 
 
     The coordinates of the positions of the targets can be determined by standard least 
squares programs for determining 3D coordinates of survey networks from survey 
measurements or by common close range photogrammetry bundle adjustment software.  The 
adjusted coordinates and, importantly, their covariance matrix can then be input to 
subsequent least squares programs to solve for the position and orientation of each axis.  
Then a third set of calculations can be applied, using propagation of variance laws and the 
equations below to determine the coordinates of the reference point and its error statistics.  
Since programs to determine the 3D coordinates are readily available this procedure appears 
to be more practical than writing a larger special computer program that takes all 
measurements, and does each of the above three steps within the one program to produce the 
coordinates of the reference point. 
 
 
5.  Equations 
 
5.1  Revision of basic model equations 
 
     The equation of a line in 3D space can be expressed in several forms, some are: 
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or  x = a1 + λv1    y = a2 + λv2  z = a3 + λv3 
 
or in vector notation x = a + λ v 
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where  v1   is the direction cosine with respect to the x axis, that is the cosine of the 
     angle between the line and the x axis; 
  v2   is the direction cosine with respect to the y axis; 
  v3   is the direction cosine with respect to the z axis; 
  x, y, z   is any point on the line; 
  a1, a2, a3   is one particular point on the line, and  
  λ   is the distance between x, y, z, and a1, a2, a3. 
 
     The vectors a and v are shown in figure 2.  In this paper the x axis is north, y axis is east, 
and z axis is height and plane coordinates are assumed sufficient for the local network.  The 
coordinates of the targets are assumed to be in the same local x y z system. 
 
     Now  v1

2 + v2
2 + v3

2 = 1  so the direction cosines are not independent (given two the third 
can be calculated). Instead of v1, v2, v3 the orientation of a line can be defined by two 
independent parameters.  They are, in familiar surveying terms, bearing (B) and zenith angle 
(Z) of the line:  
 

V1 = sinZ sinB   v2 = sinZ cosB   v3 = cosZ 
 
The equation for points on a cylinder, i.e. rotating about an axis with radius r constant is: 
 

{v1(x-a1) + v2(y-a2) + v3(z-a3)}2 = r2  
 
 
 
5.2  Zenith Angle and Bearing Model 
 
     This section gives the equations and matrices required for the least squares adjustment of 
points rotating about an axis, thus forming a cylinder in 3D coordinates. The adjustment 
solves for the equation of the axis (a point on the axis plus the bearing and zenith angle of 
the axis) and the radius of the circle formed by each target. 
 
     The model equation (F) for point i to target J is: 
 

0 = (xi-a1) 2+(yi-a2) 2+(zi-a3) 2 - {sinZsinB(xi-a1) + sinZcosB(yi-a2) + cosZ(zi-a3)}2 – rJ
2 

 
     Since the model equation includes parameters and more than one observation the 
combined (also called general) least squares method is used (Harvey, 1991).   
 
     If the order of the parameters is:   a1 a2 a3 Z B r1 r2 r3 .  .  .  
Then the A matrix (partial derivatives:   ∂F / ∂parameters) for observed point i and target J:    
 

A(i,1)  = PsinZsinB - 2(xi - a1)            
A(i,2)  = PsinZcosB - 2(yi - a2)         
A(i,3) = PcosZ - 2(zi - a3)       
A(i,4)  = -P{cosZsinB(xi-a1)+cosZcosB(yi-a2)-sinZ(zi-a3)}  
A(i,5)  = -P{sinZcosB(xi - a1) - sinZsinB(yi - a2)} 
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A(i,5+J)  = -2rJ 
 

where P =  2{sinZsinB(xi - a1) + sinZcosB(yi - a2) + cosZ(zi - a3) } 
 
     All other terms in the ith row of A equal zero.  The number of rows in the A matrix is the 
number of observed points and the number of columns is the number of parameters (= 5 + 
number of targets).  I recommend that one of the components of a (i.e. a1 or a2 or a3) be held 
fixed to overcome datum deficiency problems. In that case A(i,1) equals zero if a1 is fixed, 
A(i,2) equals zero if a2 is fixed, and A(i,3) equals zero if a3 is fixed. 
 
 B(i,3i-2)    = 2(xi - a1) - PsinZsinB 
 B(i,3i-1)    = 2(yi – a2) - PsinZcosB  
 B(i,3i)        = 2(zi – a3) - PcosZ  
 
     All other terms in the ith row of B equal zero.  The size of the B matrix is the number of 
points by three times the number of points. 
        
     In the first iteration calculate the correction term (sometimes called OMC term) by 
inserting the observed coordinates and the approximate values of the parameters in the 
model equation F above.  That is  
 
   fi = (xi-a1) 2+(yi-a2) 2+(zi-a3) 2 - {P/2}2 – rJ

2 
 
However in subsequent iterations there is an additional term because, in combined least 
squares, corrected observations are used in subsequent iterations.  For an example of this 
practice see the book by CIS (1983 p. 141).  The value for each fi is the row of B times the 
residual vector v. (Do not confuse the residual vector v with the direction cosines v1, v2 and 
v3).  Now most of the row of B is zero; there are only three non zero values so: 
 

fi = (xi-a1) 2+(yi-a2) 2+(zi-a3) 2 - {P/2}2 – rJ
2 + {2(xi - a1) - PsinZsinB} v(3i-2) +  

   {2(yi – a2) - PsinZcosB} v(3i-1) + {2(zi – a3) - PcosZ} v(3i) 
 
Note that in the first iteration all terms in the residual vector equal zero so this equation is 
the same as fi above, i.e. there is no correction. 
 
 
5.3  Direction cosine (v1 and v2) model 
 
     This model is similar to the previous one but solves for v1 and v2 instead of Z and B.  
[Other pairs of the three direction cosines could be chosen.] 
 
     In this model a program should check that       -1≤ v1 ≤ 1,      -1≤ v2 ≤ 1,   and that  
(1 - v1

2 – v2
2) ≥ 0.  The other direction cosine v3  = √(1-v1

2-v2
2). 

 
 
     The model equation (F) for point i to target J is: 
 

0 = (xi-a1) 2+(yi-a2) 2+(zi-a3) 2 - {v1(xi - a1) + v2(yi – a2) + [√(1-v1
2-v2

2)] (zi – a3)}2 - rJ
2 
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     If the order of the parameters is:   a1 a2 a3 v1 v2 r1 r2 r3  . . .  
 
Then the A matrix for point i and target J:    
 

A(i,1)  = Pv1 - 2(xi - a1)           or = 0 if a1 fixed 
A(i,2)  = Pv2 - 2(yi - a2)        or = 0 if a2 fixed 
A(i,3)  = Pv3 - 2(zi - a3)      or = 0 if a3 fixed 
A(i,4)  = -P{(xi - a1) - v1 (zi-a3)/v3}  
A(i,5)  = -P{(yi - a2) - v2 (zi-a3)/v3} 
A(i,5+j)  = -2rJ 

 
where P =  2{v1 (xi - a1) + v2 (yi - a2) + v3 (zi - a3) } 

 
All other terms in the ith row of A equal zero.   
      
 B(i,3i-2)    = 2(xi – a1) - Pv1 
 B(i,3i-1)    = 2(yi - a2) - Pv2  
 B(i,3i)        = 2(zi - a3) - Pv3  
 
All other terms in the ith row of B equal zero.        
 
     Calculate the correction term fi by inserting the observed coordinates and the 
approximate values of the parameters in the model equation F above.  That is  
 

fi = (xi-a1) 2+(yi-a2) 2+(zi-a3) 2 - {P/2}2 – rJ
2 + {2(xi - a1) - Pv1} v(3i-2) +  

   {2(yi – a2) – Pv2} v(3i-1) + {2(zi – a3) – Pv3} v(3i) 
 
     Note that in the first iteration all terms in the residual vector (v) equal zero so this 
equation is simpler in the first iteration. 
 
     Sometimes direction cosines (v1, v2 or v3) are very close to 0 or 1.  Care should be taken 
with numerical accuracies in any calculations where this occurs. 
 
 
5.4  Misalignment models 
 
     If an axis is constructed close to a cardinal direction (eg horizontal, vertical, north-south) 
then it is possible to solve for the slight misalignments as small angles.  For example, 
consider an axis that is close (within 60" say) to horizontal and is close to being north-south 
(i.e. 0° azimuth), then an approximate model is: 
 

0 = (xi-a1) 2+(yi-a2) 2+(zi-a3) 2 - {α(xi - a1) + (yi – a2) + t(zi – a3)}2 - rJ
2 

 
where α is the azimuth in radians and t is the tilt of the axis from horizontal.   

This type of model uses the small angle approximations, that is sinα ≈ α and cosα ≈ 1.   
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5.5  Constraints 
 
     Each target lies at a different radius from an axis and lies in a different plane (normal to 
the axis).  As well as solving for the parameters mentioned above (i.e. axis orientation and 
target radius from the axis), it is possible to add constraint equations to the least squares 
adjustment.  It is possible to constrain the positions for a target to lie on a plane normal to 
the axis.  Then the distance between any position of a target and the point on the axis (a1, a2, 
a3) is constant.  Constraint equations could be added to any of the previous models.  The 
following equations show the one way of implementing the constraint in the zenith angle 
and bearing model. 
 
     There are two model equations (F) for point i to target J: 
 

0 = (xi-a1) 2+(yi-a2) 2+(zi-a3) 2 - {sinZsinB(xi-a1) + sinZcosB(yi-a2) + cosZ(zi-a3)}2 – rJ
2 

  
 and 
 

0 = {sinZsinB(xi-a1) + sinZcosB(yi-a2) + cosZ(zi-a3)}2 – mJ
2 

 
where m is the distance from point a1, a2, a3 to the pedal point of the target plane (the 
intersection of the plane containing the target positions and the axis). 
 
     If the order of the parameters is:  a1 a2 a3 Z B r1 m1 r2 m2 r3 m3  . . .  
Then the A matrix has two rows for point i (i=1,N) target j:    
 

A(2i-1,1)  = PsinZsinB - 2(xi - a1)            or = 0 if a1 fixed 
A(2i-1,2)  = PsinZcosB - 2(yi - a2)         or = 0 if a2 fixed 
A(2i-1,3)  = PcosZ - 2(zi - a3)       or = 0 if a3 fixed 
A(2i-1,4)  = -P{cosZsinB(xi - a1) + cosZcosB(yi - a2) - sinZ(zi - a3)}  
A(2i-1,5) = -P{sinZcosB(xi - a1) - sinZsinB(yi - a2)} 
A(2i-1,4+2j) = -2rJ 
A(2i-1,5+2j) = -2mJ 
A(2i,1)  = -PsinZsinB               or = 0 if a1 fixed 
A(2i,2)  = -PsinZcosB            or = 0 if a2 fixed 
A(2i,3)  = -PcosZ          or = 0 if a3 fixed 
A(2i,4)  = P{cosZsinB(xi - a1) + cosZcosB(yi - a2) - sinZ(zi - a3)}  
A(2i,5)  = P{sinZcosB(xi - a1) - sinZsinB(yi - a2)} 
A(2i,4+2j)  = 0 
A(2i,5+2j)  = -2mJ 

 
where P =  2{sinZsinB(xi - a1) + sinZcosB(yi - a2) + cosZ(zi - a3) } 

 
     All other terms in the (2i) and (2i-1) row of A are zero.  The size of the A matrix is 
number of points by number of parameters (= 5 + 2 * number of targets). 
 
 B(2i-1,3i-2)  = 2(xi - a1) - PsinZsinB 
 B(2i-1,3i-1)  = 2(yi - a2) - PsinZcosB  
 B(2i-1,3i)    = 2(zi - a3) - PcosZ  
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 B(2i,3i-2)     = PsinZsinB 
 B(2i,3i-1)     = PsinZcosB  
 B(2i,3i)          = PcosZ  
 
All other terms in these rows of B equal zero.  The size of the B matrix is number of points 
by three times the number of points. 
        
     In the first iteration calculate the correction term by inserting the observed coordinates 
and the approximate values of the parameters in the model equation F above.  That is:  
 

f2i-1 = (xi-a1) 2+(yi-a2) 2+(zi-a3) 2 - {P/2}2 – rJ
2 

 
f2i = {P/2}2 – mJ

2 
 
In subsequent iterations there are additional terms similar to those discussed previously. 
 
     Further research is needed to answer the following questions.  Should the constraint 
equation be implemented?  Are there better ways to implement constraints?  Should we 
implement the constraint that the distance between any two targets rotating about the same 
axis is constant? 
 
 
6.  Intersection of Axes 
 
     After the position and orientation of each axis has been determined it is possible to 
calculate the coordinates of the reference point.  Many basic algebra text books give the 
equation for the shortest distance between two lines.  This is useful to calculate the axis 
offset distance (D in Figure 1).  However many texts do not give the equation for the 
coordinates of the points on the ends of the shortest line which connects the two axis 
centrelines.  The reference point is at the end of the shortest connection that is on the fixed 
axis. 
 
     If one line (axis) passes through a parallel to v and the other axis passes through b 
parallel to u then the 3D coordinates of the reference point on the first line (given by a and 
v) is c where:  
 

c = a +    ((b-a) • ((v•u)u - v)/(v•u)2-1) v 
 

where the vectors a = (a1 a2 a3), b = (b1 b2 b3), c = (xc yc zc), v = (v1 v2 v3), and 
 u = (u1 u2 u3).  The • indicates the dot product of two vectors. 
 
     Often the two axes are designed to be mutually perpendicular.  When they are 
perpendicular v•u =0.  So if they are perpendicular then: 
 

c = a + ((b-a)•v) v 
 
     Now if a1 a2 a3 are the coordinates of the pedal point on the first (fixed) axis with cosines 
v1 v2 v3, and if b1 b2 b3 are the coordinates of the pedal point on the second (moving) axis 
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with cosines u1 u2 u3, then the coordinates of the reference point xc (east), yc (north), and zc 
(height) are: 
 
 xc = a1 + Lv1  yc = a2 + Lv2  zc = a3 + Lv3 
 

3322112
333322221111 uvuvuv      where   
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     If the zenith angle and bearing of each axis have been determined then the direction 
cosines are calculated from: 
 
 v1 = sinZ1 sinB1  u1 = sinZ2 sinB2 
 v2 = sinZ1 cosB1  u2 = sinZ2 cosB2 
 v3 = cosZ1    u3 = cosZ2  
 
     The axis offset, D, that is the shortest distance between the two axes, is: 
 
Axis Offset:  

2
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     Once the parameters of the axes have been estimated, and their VCV matrix determined 
the coordinates of the reference point are calculated as above.  However the coordinates 
alone are not enough.  The precision of these coordinates should also be calculated.  The 
equations for xc, yc and zc above and the propagation law of variances can be used to find 
the standard deviations of the coordinates of the reference point and any correlations.  
Similarly, the precision of the calculated axis offset distance can be found from the 
propagation of variances. 
 
     These calculations require the equations for xc, yc and zc to be differentiated.  Some 
partial derivatives require a lot of calculation and there are many terms in the derivation.  
The derivatives of x, y, z, and axis offset with respect to a1, a2, a3, b1, b2, b3 are 
straightforward and can be calculated directly.  The derivatives with respect to zenith angle 
and bearing are more complicated.  Since standard deviations, correlations and error ellipse 
parameters are only required to one or two significant figures, approximate values of the 
partial derivatives are suitable.  It is quite efficient, in terms of computer computation, to 
calculate 

ZA

x

Δ
Δ  as an approximation to 

ZA

x

∂
∂ .  Use  

sZA

(x'‐x)
= 

ZA

x

Δ
Δ where sZA is the standard 

deviation of ZA and x' is the value of the x coordinate of the reference point calculated from 
ZA + sZA instead of ZA.  In a computer program x' can be simply calculated by a call to a 
function or subroutine in the same way x is calculated. 
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7.  Summary 
 
     There are several problems when measuring the connection between survey control 
marks and VLBI telescopes.  These problems include non intersecting axes, axes not 
correctly aligned (eg not vertical), no physical mark at the reference point, sometimes no 
mechanical axis for physical determination of centreline, large structures and obstructions to 
lines of sight, steep lines of sight, and reciprocal observations to remove refraction are not 
possible.  A survey method has been proposed to overcome most of these problems.  The 
proposed method involves observing to targets which are rotated about the telescope axes 
(by pointing the VLBI telescope in different directions).   
 
     The equations and some matrices for the least squares adjustment to solve for the 
orientation of the axes and position of the reference point have been presented.  The 
proposed method yields the precision of the results as well as the coordinates and does not 
assume the telescope has been perfectly constructed. 
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