
CSE Streams in the BE(Hons) Program

School of Computer Science and Engineering

Introduction

The School of Computer Science and Engineering offers three undergraduate engineering
degrees, available as specialisations (streams) within the general BE(Hons) framework:
BINFAH Bioinformatics Engineering, COMPBH Computer Engineering, and SENGAH Software
Engineering.

As the program is an Honours-level program (AQF level 8), each stream contains courses to
build a solid foundation is areas relevant to the stream (biology for BINF, electronics for
COMPBH, discrete maths for SENGAH). These are complemented by courses that cover
advanced disciplinary knowledge, professional skills (e.g. working in and managing team-
based engineering projects), and an introduction to research via the 4th-year thesis.
Graduates should be able to use their knowledge and skills to analyse problems critically,
design innovative solutions, and implement their solutions within a sound engineering
management regime.

Overview of Stream Aims

The aims of CSE!s three BE(Hons) programs include:

1. To provide a rigorous foundation in relevant basic science

• for BINFAH, this includes microbiology and genetics

• for COMPBH, this includes physics and electronics

• for SENGAH, this includes discrete mathematics and logic

2. To provide graduates with industrial-strength skills in software development

• software development via a range of programming languages, systems and

tools

• ability to apply those skills not only to coding known or specified algorithms,

but also to generating solutions to novel computational problems

• agile development practices (design, implement, test, repeat)

• capable of managing a team of software/hardware developers

• ability to adapt to changes in the IT environment (lifelong learning)

3. To ensure that our graduates have the communication skills to interact effectively with
those with whom they will be working, whether in a team or solo environment.

4. To inculcate students with professional attitudes with respect to practice and ethics.

5. To provide opportunities for students to acquire skills in:

• research/development through choice of an open-ended final-year project

• leadership through appropriate activities in courses involving group projects

The above aims align with the overall program objectives of the BE(Hons) program.

Overview of CSE Stream Plans

All CSE students take the same core computing courses:

• COMP1511 Programming Fundamentals

• COMP1521 Computer System Fundamentals

• COMP1531 Software Engineering Fundamentals

• COMP2511 Object-oriented Design and Programming

• COMP2521 Data Structures and Algorithms

Along with standard first-year Mathematics. Bioinformatics Engineering and Software
Engineering also take a Discrete Mathematics course, important for reasoning about
algorithms and software systems, which are core to both. Computer Engineering replaces

Discrete Mathematics with Electronics.

The first five COMP courses are designed to give students a broad view of computing as well
as specific skills that they will use in later courses.

• COMP1511 introduces students to the idea of problem-solving via computers
(reading a specification, designing a programmatic solution, implementing and
testing this solution). In addition, it introduces students to industry standard
practices such as source code control and unit testing.

• COMP1521 gives students a broad overview of computer systems, including
computer architecture, assembly language, the structure of operating systems and
computer-computer communication.

• COMP1531 introduces all students to the principles and practice of software
engineering. This involves working on a substantial project in a team for the entire
term, and being introduced to important ideas such as teamwork, software project
management, and reporting.

• COMP2511 focusses on the design of large-scale software via the industry-standard
object-oriented (OO) paradigm. Students are introduced to a range of OO design
patterns and taught how to apply them, culminating in a team-based project in the
latter part of the term.

• COMP2521 introduces important data structures, which are applicable to a wide
range of problems. It also discusses the algorithms behind these data structures and
introduces the notion of analysing/improving software performance.

The remainder of this document examines each of the streams in detail and shows how they
build towards students becoming industry-ready novice software/hardware engineers.

Notes on Curriculum and Other Maps

The curriculum maps use the codes for the Engineers Australia Stage 1 Competencies as
column headings:

Stream learning outcomes, when used as column headings, use the same numbering
scheme as the Stream Learning Outcomes list. For example, the second stream learning
outcome for Bioinformatics Engineering is “Apply statistics/data science methods suitable
for the size and complexity of the data”. This would appear in a column heading as SLO2.

More details on the curriculum mappings for all streams can be found in the CMap system:

https://webapps.cse.unsw.edu.au/cmap2/user/login.php

No login is required; use the “Go Straight In” button.

1.1 Comprehensive, theory based understanding of the underpinning natural and
physical sciences and the engineering fundamentals applicable to the engineering
discipline.

1.2 Conceptual understanding of the, mathematics, numerical analysis, statistics, and
computer and information sciences which underpin the engineering discipline.

1.3 In depth understanding of specialist bodies of knowledge within the engineering
discipline

1.4 Discernment of knowledge development and research directions within the
engineering discipline.

1.5 Knowledge of contextual factors impacting the engineering discipline

1.6 Understanding of the scope, principles, norms, accountabilities and bounds of
contemporary engineering practice in the engineering discipline.

2.1 Application of established engineering methods to complex engineering problem

 solving.

2.2 Fluent application of engineering techniques, tools and resources.

2.3 Application of systematic engineering synthesis and design processes.

2.4 Application of systematic approaches to the conduct and management of
engineering projects.

3.1 Ethical conduct and professional accountability

3.2 Effective oral and written communication in professional and lay domains.

3.3 Creative, innovative and pro-active demeanour.

3.4 Professional use and management of information.

3.5 Orderly management of self, and professional conduct.

3.6 Effective team membership and team leadership.

https://webapps.cse.unsw.edu.au/cmap2/user/login.php

The relevant information can be found in the Stream and Course descriptions. Curriculum
maps have been built for each BE(Hons) stream and relate Courses to Stream Learning
Outcomes and then to Engineers Australia Stage 1 Graduate Capabilities, using the Cognitive
Scale calculation suggested by Engineers Australia.

Program and Dual Award data was not updated for this exercise. Other data was derived
from ECLIPS, UNSW’s record system for academic items.

Notes on Assessment

The assessment types used in the mapping tables are the standard assessment types used in
the UNSW course proposal system (ECLIPS).

The classification of assessments can be problematic. Assignments may be classified as
projects and vice versa. Mid-term exams are often classified as tests. Regular small online
quizzes are also classified as tests. A presentation as part of e.g. a 4th-year thesis might be
classified as a performance. 4th-year theses are typically classified as projects, but the final
“thesis” might also be included as a report. The tables that map courses to assessment types
need to be considered in the context of the course outline to get a more accurate picture.

Exams are developed by each course convenor and reviewed by another member of
academic staff. For “practical exams” involving programming, each exam is subjected to a
“trial run” to determine that all systems are functioning correctly. Course results are
considered by the School Assessment Review Group. Anomalous mark distributions are
referred back to the convenor for explanation and possible adjustment 

Assi = Assignment Typically, a take home exercise involving programming or
building hardware, but may involve a set of analysis
exercises

Essa = Essay Long-form written work

Exam = Formal Examination A set of questions typically involving analysis, description,
programming, etc. answered under time constraints

Lab = Laboratory Work Exercises carried out in a laboratory, and typically
followed by a written report on the outcomes

Othe = Unspecified Unspecified assessment type

Perf = Performance Artistic performance (infrequent in Engineering degrees)

Port = Portfolio Collection of work, generally on a specific topic

Proj = Project A large-scale problem-solving exercise, often done as a
team

Repo = Report A written report on some completed work.

Test = Formal Test A set of questions typically involving analysis, description,
programming, etc. answered under time constraints

Tut = Tutorial Work Activities carried out in tutorial classes; could be
individual or group-based.

Bioinformatics Engineering (BINFAH)

(Director of Studies: Dr Bruno Gaeta)

Introduction

Bioinformatics Engineering is both a scientific and an engineering discipline. Engineering in
that graduates design and implement computer systems for managing and analyzing
biological information, and scientific in that graduates then use these systems to analyse
data towards making scientific discoveries. Bioinformatics Engineering is a relatively new
discipline that shares many of the engineering challenges of software engineering.

Aims

 The stream aims to integrate both knowledge of biological and computational sciences with
an engineering mindset to produce graduates capable of incorporating engineering
standards and practice into life sciences research. Engineering design is stressed in the
computing core of the program, which is shared with the other engineering programs in the
school, and reinforced in the design project courses in 3rd and 4th year. An ethics course and
several modules in the bioinformatics subjects reinforce the importance of standards,
quality management and ethics both in software engineering and in biotechnology and
biomedical sciences, the fields in which bioinformatics engineering graduates are likely to
work.

Stream Learning Outcomes

1.Work with multi-disciplinary colleagues to formulate research questions and design life-

science experiments that will generate data suitable for subsequent bioinformatics
analysis

2.Apply statistics/data science methods suitable for the size and complexity of the data

3.Manage own and others' data according to community standards and principles

4.Make appropriate use of bioinformatics tools and resources

5.Design and develop user-centric bioinformatics tools and resources

6.Make appropriate and efficient use of scripting and programming languages

7.Construct, manage and maintain bioinformatics computing infrastructure of varying

complexity

8.Comply with professional, ethical, legal and social standards and codes of conduct

relevant to computational biology

9.Communicate meaningfully with a range of audiences - within and beyond the profession

Stream Structure

The BINFAH stream has the following requirements:

Students must take:

• Level 1 Core

o COMP1511 Programming Fundamentals (6 UOC)

o COMP1521 Computer System Fundamentals (6 UOC)

o COMP1531 Software Engineering Fundamentals (6 UOC)

o DESN1000 Introduction to Engineering Design and Innovation (6 UOC)

o MATH1081 Discrete Mathematics (6 UOC)

o MATH1131 or MATH1141 (Higher) Mathematics 1A (6 UOC)

o MATH1231 or MATH1241 (Higher) Mathematics 1B (6 UOC)

o BABS1201 Molecules, Cells and Genes (6 UOC)

o CHEM1011 or CHEM1031 (Higher) Chemistry 1A (6 UOC)

o PHYS1121 or PHYS1131 (Higher) Physics 1A (6 UOC)

• Level 2 Core

o BINF2010 Introduction to Bioinformatics (6 UOC)

o COMP2041 Software Construction: Techniques and Tools (6 UOC)

o COMP2511 Object-oriented Design and Programming (6 UOC)

o COMP2521 Data Structures and Algorithms (6 UOC)

o DESN2000 Engineering Design and Professional Practice (6 UOC)

o BIOC2201 Principles of Molecular Biology (advanced) (6 UOC)

o One of the following

" BABS2202 Molecular Cell Biology 1 (6 UOC)

" BABS2204 Genetics (6 UOC)

" BABS2264 Genetics (advanced) (6 UOC)

" BIOC2101 Principles of Biochemsistry (6 UOC)

" MICR2011 Microbiology 1 (6 UOC)

• Level 3 Core

o COMP3121 Algorithms and Programming Techniques (6 UOC)

o COMP3311 Database Systems (6 UOC)

o BINF3010 Applied Bioinformatics (6 UOC)

o BINF3020 Computational Bioinformatics (6 UOC)

o BABS3121 Molecular Biology of Nucleic Acids (6 UOC)

• Level 4 Core

o COMP4920 Professional Issues and Ethics in IT (6 UOC)

o COMP4951 Research Thesis A (4 UOC)

o COMP4952 Research Thesis A (4 UOC)

o COMP4953 Research Thesis A (4 UOC)

Plus

• Discipline Electives (12 UOC), drawn from:

o Level 3,4,6,9 COMP courses (except intro-level courses e.g. COMP9021)

o ENG2600/3600/4600 Engineering Vertically Integrated Project

o Level 3 or 4 Courses from Biotechnology and Biomolecular Sciences

o Level 3 or 4 courses from Microbiology

o Level 3 or 4 courses from Biochemistry

• 60 days Industrial Training

A typical study plan for the Bioinformatics Engineering stream would consist of

Year 1

Term 1: COMP1511, MATH1131, BABS1201

Term 2: COMP1531, MATH1081

Term 3: COMP2521, MATH1231, DESN1000

Year 2

Term 1: COMP1521, CHEM1011

Term 2: DESN2000, COMP2041, COMP2511

Term 3: BINF2010, BIOC2201, BABS2204

Year 3

Term 1: COMP3121, COMP3311, BABS3121

Term 2: BINF3010, Elective

Term 3: BINF3020, Elective, Elective

Year 4

Term 1: COMP4951, Elective, Elective

Term2: COMP4952, Elective, Elective

Term3: COMP4953, COMP4920

“Electives” includes Discipline Electives, Free Electives and General Education. At least one
of the Electives comes from the COMP[3469]### Discipline Electives. Two more of the
Elective slots are General Education courses. 

Mapping of Courses to BINFAH Stream Learning Outcomes

The table shows that Bioinformatics Engineering students are encouraged from early on to work in
interdisciplinary scenarios (SLO1). Their critical statistical knowledge (SLO2) is acquired via multiple
Maths courses and data science techniques via bioinformatics and computing courses. The skills to
build bioinformatics applications (SLO4-SLO7) are covered mainly in computing and bioinformatics
courses. Students give presentations throughout their degree to acquire effective communication
skills (SLO9). One area that appears to be a little weak is appropriate management of data; we will
ensure that this is emphasised more in the BINF courses in future. 

Development of BINFAH Stream Learning Outcomes

The BINFAH stream learning outcomes were developed by the BINFAH Director of Studies in
conjunction with CSE’s Deputy Head of School (education), and considered/refined by both
the CSE Education Committee and the Industry Advisory Board. The suggestions from both
the Committee and Board were incorporated into the final statement of the outcomes.

On how the students develop the stream learning outcomes through the program:

As noted in the Introduction, the core computing and mathematics courses give students a
solid foundation on which to build subsequent study in the more advanced aspects of
designing and implementing software systems. Alongside their computing studies,
Bioinformatics Engineering students study a substantial number of biology courses; such
knowledge is clearly required in dealing with biological data. The two strands (computing
and biology) appear to coexist well, with the curriculum map showing a progression of
engineering competencies and scientific knowledge. Each strand has a progression of
courses, from foundational to more advanced. The Ethics and Professional Issues course in
fourth year is particularly important, given the kind of data that graduates will deal with.

After completing their core computing courses, Bioinformatics Engineering students
undertake a series of practical/project courses (DESN2000, BINF3010, BINF3020) which
strengthen their skills in software development and managing projects as a team. They also
complete computing courses (COMP2041, COMP3121 and COMP3311) which further extend
their skills in three areas critical to bioinformatics projects (scripting, databases and
algorithms).

The 4th-year thesis allows students to explore the application of computing to solving
biology problems in more depth. Many students undertake projects in the Graduate School
of Biomedical Engineering (co-supervised by CSE academics) which gives them very useful
exposure to real problems at the intersection of biology and computing.

Mapping of BINFAH Courses to Assessment Types

As can be seen in the table, there is heavy emphasis on assignment work and exams, to
ensure that students have developed solid foundations. During the four years, there are
also a number of team-based project work, to develop skills in solving larger problems in
collaboration with other people. While the 4th-year thesis is usually an individual project, it
requires close interaction with the supervisor as a mentor, and presentations to the
supervisor and their peers. DESN2000 is also a team-based project course (OTHE -> PROJ).

Mapping of BINFAH Courses to EngAust Stage 1 Competencies 

Strengths, Weaknesses and Future Actions

The Bioinformatics Engineering stream degree is one of very few such programs in Australia.
It spans a breadth of knowledge (both biological and computing) that is unique among
engineering programs. Graduates have a wide variety of job prospects, from working at the
discovery end of biological research to working as IT professionals.

The curriculum map shows that student’s engineering capabilities are strong (2.1-2.4), while
their knowledge of the biological sciences is also strong (1.3). It is a little surprising that 1.1
(underpinning natural and physical sciences) is light, given the amount of biology studied.
The reason for this needs to be investigated.

The breadth of the core content of the stream (many computing-focused courses and many
biology-focused courses) also leads to the problem of having few elective courses to allow
students to explore particular specialist areas in either biology or computing. There is little
scope for improving this within the framework of the BE(Hons) program.

While there is a strong Ethics component in fourth year, both accrediting bodies (EngAust
and ACS) have requested that Ethics be covered more throughout the degree. CSE has
recently hired a lecturer in Epistemics who delivered an ethics lecture in our first
programming course in 22T1, will roll out ethics lectures in subsequent core courses, and
will take over the teaching of the 4th-year Ethics course.

A substantial problem over the last two years is integrity of assessment, and especially final
exams. Exams have been taken online, with no invigilation and open access to the Web.
There is evidence of collusion between a small number of students (easily detectable with
standard plagiarism checking techniques). A more insidious problem is the use of online
“tutoring” sites during the exam. Many courses have aimed to mitigate the problem by
downgrading the weight of the final exam in overall assessment. Alternatively, courses have
used randomisation techniques (such as STACK questions, or choosing from a large pool of
questions) to reduce the scope for collusion. The real solution to this problem is a return to
on-campus, invigilated exams. CSE plans to return to this exam style

as soon as feasible.

Note that plagiarism on take-home assignments has been an issue for some time. We make
use of sophisticated plagiarism-checking systems (MOSS from Stanford) for checking copying
in programming assignments. More recently, though, “contract cheating”, where students
out-source the development of their assignment code to a third-party , has become an issue,
and is much harder to detect. Some research on this has been conducted at Deakin
University and we plan to extend their work to attempt to better detect such cheating.

 
Enrolments in the Bioinformatics Engineering stream remain small, but steady, and with a
small increase in 2022..

Computer Engineering (COMPBH)

(Director of Studies: A/Prof Oliver Diessel)

Introduction

Computer Engineering encompasses the structured design and integration of hardware and
software components as part of a larger system. Not only do normal computer systems fall
under this category but so do embedded systems such as those found in digital cameras, car
electronics, PDAs, smart phones and printers. The challenge to the engineer in this field is to
design these systems not just for functions but also for maximal impact and efficiency, and
to trade off competing factors through engineering, scientific and mathematical principles.

Aims

This stream aims to inculcate the underlying principles, and show the myriads of design
possibilities and tradeoffs necessary to achieve suitable systems. As with Bioinformatics
Engineering, engineering design is stressed in the computing core of the program, which is
shared with the other engineering programs in the school, and reinforced in the design
project courses in 3rd and 4th year. As #smart” devices proliferate, computer engineering will
become a critical enabling discipline, which will contribute significantly to the economy and
development of society.

Stream Learning Outcomes

1. Show mastery of the enabling sciences and technologies, such as mathematics, physics,
electronics and computing, that underpin computer engineering

2. Demonstrate expertise in the specialist technical sub-fields of computer engineering,
including digital design, computer architecture, operating systems, embedded and
application-specific hardware design

3. Critically evaluate and apply current research to the solution of complex problems in
computer engineering

4. Use appropriate analytical and computational tools, such as modelling, simulation and
prototyping, to analyse and solve complex problems in computer engineering

5. Design and implement innovative computer engineering solutions

6. Lead and manage computer engineering projects, individually or as part of a team,

systematically and professionally

7. Apply nuanced professional judgement that contributes to the ethical and sustainable

practice of computer engineering

8. Communicate professionally and effectively within and outside of the field of computer

engineering

9. Engage in the life-long study of computer engineering

Stream Structure

The COMPBH stream has the following requirements:

Students must take:

• Level 1 Core

o COMP1511 Programming Fundamentals (6 UOC)

o COMP1521 Computer System Fundamentals (6 UOC)

o COMP1531 Software Engineering Fundamentals (6 UOC)

o DESN1000 Introduction to Engineering Design and Innovation (6 UOC)

o ELEC1111 Electrical Circuit Fundamentals (6 UOC)

o MATH1131 or MATH1141 (Higher) Mathematics 1A (6 UOC)

o MATH1231 or MATH1241 (Higher) Mathematics 1B (6 UOC)

o PHYS1121 or PHYS1131 (Higher) Physics 1A (6 UOC)

o PHYS1221 or PHYS1231 (Higher) Physics 1B (6 UOC)

• Level 2 Core

o COMP2511 Object-oriented Design and Programming (6 UOC)

o COMP2521 Data Structures and Algorithms (6 UOC)

o DESN2000 Engineering Design and Professional Practice (6 UOC)

o ELEC2133 Analogue Electronics (6 UOC)

o ELEC2134 Circuits and Signals (6 UOC)

o MATH2069 Mathematics 2A (6 UOC)

o MATH2099 Mathematics 2B (6 UOC)

• Level 3 Core

o COMP3211 Computer Architecture (6 UOC)

o COMP3222 Digital Circuits and Systems (6 UOC)

o COMP3231 Operating Systems (6 UOC)

o COMP3601 Design Project A (6 UOC)

• Level 4 Core

o COMP4601 Design Project B (6 UOC)

o COMP4920 Professional Issues and Ethics in IT (6 UOC)

o COMP4951 Research Thesis A (4 UOC)

o COMP4952 Research Thesis A (4 UOC)

o COMP4953 Research Thesis A (4 UOC)

Plus

• Discipline Electives (12 UOC), drawn from:

o Level 3,4,6,9 COMP courses (except intro-level courses e.g. COMP9021)

o ENG2600/3600/4600 Engineering Vertically Integrated Project

• 60 days Industrial Training

A typical study plan for the Computer Engineering stream would consist of

Year 1

Term 1: COMP1511, MATH1131, ELEC1111

Term 2: COMP1521, PHYS1121

Term 3: COMP2521, MATH1231, DESN1000

Year 2

Term 1: COMP1531,PHYS1131. ELEC2134

Term 2: DESN2000, MATH2099,ELEC2133

Term 3: COMP2511, MATH2069

Year 3

Term 1:COMP3211, COMP3231, Elective

Term 2: Elective, Elective

Term 3: COMP3222, COMP3601, Elective

Year 4

Term 1: COMP4951, Elective, Elective

Term2: COMP4952, COMP4601, Elective

Term3: COMP4953, COMP4920

“Electives” includes Discipline Electives, Free Electives and General Education. Two courses
generally come from COMP[3469]### Discipline Electives. Two more of the Elective slots will
be General Education courses. 

Mapping of Courses to COMPBH Stream Learning Outcomes

The table shows that there is an emphasis on mastering the fundamentals (SLO1) through
the first two years of the degree. After the first two years, the emphasis shifts to applying
the fundamentals in solving engineering problems (SLO3-SLO5), and in developing a
professional outlook on large engineering projects (SLO6-SLO8). Throughout the degree,
there is a strong thread of developing expertise in a range of sub-fields (SLO2). 

Development of COMPBH Stream Learning Outcomes

The COMPBH stream learning outcomes were developed by the COMPBH Director of Studies
in conjunction with CSE’s Deputy Head of School (education), and considered/refined by
both the CSE Education Committee and the Industry Advisory Board. The suggestions from
both the Committee and Board were incorporated into the final statement of the outcomes.

On how the students develop the stream learning outcomes through the program:

As noted in the Introduction, the core computing and mathematics courses give students a
solid foundation on which to build subsequent study in the more advanced aspects of
designing and implementing software systems. Alongside their computing studies, Computer
Engineering students study a substantial number of physics and electronics courses; such
knowledge is clearly required in dealing with computers at the device level.

All of these disciplines (computing, electronics, physics) come together in a series of project
courses (DESN2000, COMP3601, COMP4601), where students do design work involving
processors and their interaction with real-world devices. These course are also project-
based, which develops students’ skills in teamwork and management of engineering
projects (admittedly small engineering projects). Professionalism is future developed in the
Ethics and Professional Issues course (COMP4920).

The 4th-year thesis allows students to explore the application of computing to solving
computer engineering problems in more depth. Students get to review literature and carry
out some design/implementation work, to further consolidate what they learned in the
previous three years.

Mapping of COMPBH Courses to Assessment Types

As can be seen in the table, early courses emphasise assignment work, lab work and exams,
to ensure that students have developed solid foundations. The later courses emphasise
team-based project work, to develop skills in solving larger problems in collaboration with
other people. While the 4th-year thesis is usually an individual project, it requires close
interaction with the supervisor as a mentor, and presentations to the supervisor and their
peers. DESN2000 is also a team-based project course (OTHE -> PROJ). 

Mapping of COMPBH Courses to EngAust Stage 1 Competencies 

Strengths, Weaknesses and Future Actions

The Computer Engineering stream was one of the pioneering Computer Engineering
programs in Australia when it was introduced in the mid-1990’s. Graduates have a variety of
job prospects, from working at the low-level chip design to constructing embedded systems
to working as software professionals.

The curriculum map shows that student’s engineering capabilities are strong (2.2-2.4), while
their knowledge of electronics and physics (foundation disciplines for computer engineers) is
very strong. One area which seems to be slightly weak is 2.1. Whether this is a problem with
the stream, or, based on the strength of 2.2-2.4, whether this is an issue with the mapping
needs to be investigated.

The fact that the stream combines courses from two disciplines (computing and electronics)
means that the core of the stream is large and there is not much choice for studying
specialist electives. Unfortunately, there is little scope for improving this within the
framework of the BE(Hons) program.

While there is a strong Ethics component in fourth year, both accrediting bodies (EngAust
and ACS) have requested that Ethics be covered more through the degree. CSE has recently
hired a lecturer in Epistemics who delivered an ethics lecture in our first programming
course in 22T1, will roll out ethics lectures in subsequent core courses, and will take over the
teaching of the 4th-year Ethics course.

A substantial problem over the last two years is integrity of assessment, and especially final
exams. Exams have been taken online, with no invigilation and open access to the Web.
There is evidence of collusion between a small number of students (easily detectable with
standard plagiarism checking techniques). A more insidious problem is the use of online
“tutoring” sites during the exam. Many courses have aimed to mitigate the problem by
downgrading the weight of the final exam in overall assessment. Alternatively, courses have
used randomisation techniques (such as STACK questions, or choosing from a large pool of
questions) to reduce the scope for collusion. The real solution to this problem is a return to
on-campus, invigilated exams. CSE plans to return to this exam style

as soon as feasible.

Note that plagiarism on take-home assignments has been an issue for some time. We make
use of sophisticated plagiarism-checking systems (MOSS from Stanford) for checking copying
in programming assignments. More recently, though, “contract cheating”, where students
out-source the development of their assignment code to a third-party , has become an issue,
and is much harder to detect. Some research on this has been conducted at Deakin
University and we plan to extend their work to attempt to better detect such cheating.

 

Software Engineering (SENGAH)

(Director of Studies: Prof Fethi Rabhi)

Introduction

Software Engineering aims to imbue students with an understanding that software system
design is an engineering activity. They are designing and producing systems that must meet
the standards expected of other engineering disciplines. Unfortunately, these standards are
often not achieved in current software development practice.

Aims

Our program aims to rectify the deficiencies is some current software engineering practice,
by producing students who are able to treat large-scale software engineering projects as
true engineering activities. Students are trained in solid engineering practice through a
series of workshop courses, spanning the first three years of the program. The ethical
dimension of producing correct, robust software systems is reinforced in the final year ethics
course. Since software engineers frequently work as managers of a team of software
developers, it is critical that they develop management skills over their degree, which is
achieved in the workshops and project management component of the ethics/management
course in 4th year. The ultimate goal is to produce software engineers who are technically
skilled, able to lead software development projects, and, ultimately, contribute to the
standards of this profession.

Stream Learning Outcomes

1. Demonstrate a solid understanding of the software engineering knowledge and skills,
necessary to begin practice as a software engineer

2. Appropriately define and apply relevant abstractions from algorithmics, computer
science, and mathematics to complex software system development

3. Design and build a system, component, or process to meet desired needs within realistic
constraints such as technical, economic, security and ethical constraints

4. Think at multiple levels of detail and abstraction encompassing an appreciation for the
structure of computer systems and the processes involved in their construction and
analysis

5. Design software systems from the perspective of the end user and to communicate
clearly and effectively with business stakeholders

6. Understand that software interacts with many different domains and the ability to be able
to communicate with, and learn from, practitioners from different domains

7. Be knowledgeable about current and emerging software engineering practices in the
workplace, collaborative software development and management processes and their
role in the development of quality software systems  

Stream Structure

The SENGAH stream has the following requirements:

Students must take:

• Level 1 Core

o COMP1511 Programming Fundamentals (6 UOC)

o COMP1521 Computer System Fundamentals (6 UOC)

o COMP1531 Software Engineering Fundamentals (6 UOC)

o ENGG1000 Introduction to Engineering Design and Innovation (6 UOC)

o MATH1081 Discrete Mathematics (6 UOC)

o MATH1131 or MATH1141 (Higher) Mathematics 1A (6 UOC)

o MATH1231 or MATH1241 (Higher) Mathematics 1B (6 UOC)

• Level 2 Core

o COMP2041 Software Construction: Techniques and Tools (6 UOC)

o COMP2511 Object-oriented Design and Programming (6 UOC)

o COMP2521 Data Structures and Algorithms (6 UOC)

o DESN2000 Engineering Design and Professional Practice (6 UOC)

o SENG2011 Workshop on Reasoning about Programs (6 UOC)

o SENG2021 Requirements and Design Workshop (6 UOC)

o MATH2400 Finite Mathematics (3 UOC)

o MATH2859 Probability, Statistics and Information (3 UOC)

• Level 3 Core

o COMP3141 Software System Design and Implementation (6 UOC)

o COMP3311 Database Systems (6 UOC)

o COMP3331 Computer Networks and Applications (6 UOC)

o SENG3011 Software Engineering Workshop 3

• Level 4 Core

o SENG4920 Ethics and Management (6 UOC)

o COMP4951 Research Thesis A (4 UOC)

o COMP4952 Research Thesis A (4 UOC)

o COMP4953 Research Thesis A (4 UOC)

Plus

• Discipline Electives (30 UOC), drawn from:

o Level 3,4,6,9 COMP courses (except intro-level courses e.g. COMP9021)

o ENG2600/3600/4600 Engineering Vertically Integrated Project

o Level 3 or 4 Courses from Information Systems

o Level 3 or 4 courses from Mathematics

o Level 3 or 4 courses from Telecommunications

o Level 3 or 4 courses from Electrical Engineering

• Free Electives (6 UOC)

• 60 days Industrial Training

A typical study plan for the Software Engineering stream would consist of

Year 1

Term 1: COMP1511, MATH1131

Term 2: COMP1521, COMP1531, MATH1081

Term 3: COMP2521, MATH1231, DESN1000

Year 2

Term 1: SENG2021,Elective

Term 2: DESN2000, COMP2041, MATH2400, MATH2859

Term 3: COMP2511, COMP3311, SENG2011

Year 3

Term 1: SENG3011, Elective, Elective

Term 2: COMP3141, Elective

Term 3: COMP3331, Elective, Elective

Year 4

Term 1: COMP4951, SENG4920, Elective

Term2: COMP4952, Elective, Elective

Term3: COMP4953, Elective

“Electives” includes Discipline Electives, Free Electives and General Education. Five courses
generally come from COMP[3469]### Discipline Electives. Two of the Elective slots will be
General Education courses. Note that MATH2400 and MATH2859 are each just 3UOC, so
Term 2 in Year 2 is not overloaded. 

Mapping of Courses to SENGAH Stream Learning Outcomes

The above table shows that coverage of the the stream learning outcomes is spread fairly
evenly across the four years of the degree. One area that is possibly a little weak, although
with coverage across the degree, is the area of designing software from the perspective of
the end user; this could be rectified by the inclusion of the HCI course (COMP3511) in the
core of the stream.

Development of SENGAH Stream Learning Outcomes

The SENGAH stream learning outcomes were developed by the SENGAH Director of Studies
in conjunction with CSE’s Deputy Head of School (education), and considered/refined by
both the CSE Education Committee and the Industry Advisory Board. The suggestions from
both the Committee and Board were incorporated into the final statement of the outcomes.

On how the students develop the stream learning outcomes through the program:

As noted in the Introduction, the core computing and mathematics courses give students a
solid foundation on which to build subsequent study in the more advanced aspects of
designing and implementing software systems.

After completing their core computing courses, Software Engineering students undertake a
series of team-based workshops (DESN2000, SENG2011,SENG2021) which strengthen their
skills in working on software development projects, both as a member and leader of the
project team. In these workshops, and indeed in some earlier course, they make use of
industry-standard platforms to help with the management of the project.

Outside the strict boundaries of software engineering, they also complete computing
courses (COMP2041, COMP3311, COMP3331) which extend their skills in areas critical to
today’s IT profession (databases, networks, scripting). They also take courses (COMP3121
and COMP3141) that enhance their ability to do formal reasoning about the software
systems they build.

SENG4920 Professional Issues and Ethics caps the technical content of the Software
Engineering stream with development of workplace-relevant skills and attitudes.

The 4th-year thesis allows students to undertake a large-scale individual project, which
allows them to employ the software engineering skills they developed over the previous
three years in carrying out an end-to-end software development project: requirements
analysis, design, implementation, testing.

Mapping of SENGAH Courses to Assessment Types

As can be seen in the table, there is heavy emphasis on assignment work and exams, to
ensure that students have developed solid foundations. During the four years, there are
also a number of team-based project work, to develop skills in solving larger problems in
collaboration with other people. For example, DESN2000 and the SENG workshops are also
team-based project courses, despite the classification of their assessments. While the 4th-
year thesis is usually an individual project, it requires close interaction with the supervisor as
a mentor, and presentations to the supervisor and their peers. 

Mapping of SENGAH Courses to EngAust Stage 1 Competencies 

Strengths, Weaknesses and Future Actions

The Software Engineering stream was one of the earliest Software Engineering programs in
Australia when it was introduced in the late-1990’s, and was unique in having a sequence of
worship courses where student could practice authentic software engineering tasks.
Graduates have a variety of job prospects, being able to work in and manage teams
anywhere that software development and maintenance takes place … which nowadays is
everywhere.

The curriculum map shows that student’s engineering capabilities are very strong (2.1-2.4).

Similarly, their knowledge of core computing concepts is extensive (1.1, 1.2). Their soft skills

(3.1 - 3.4) are adequate, but CSE could invest more time in developing these, especially in
the workshop courses.

The Software Engineering stream has more scope than either Bioinformatics Engineer or
Computer Engineering for students to take a range of technical electives. The two General
Education courses and one Free Elective course give some scope for study outside the
discipline. Students who want to study computing with some other discipline have two
options: the 3-year Computer Science degree, or a dual award e.g Software Engineering/
Commerce).

While there is a strong Ethics component in fourth year, both accrediting bodies (EngAust
and ACS) have requested that Ethics be covered more through the degree. CSE has recently
hired a lecturer in Epistemics who delivered an ethics lecture in our first programming
course in 22T1, will roll out ethics lectures in subsequent core courses, and will take over the
teaching of the 4th-year Ethics course.

A substantial problem over the last two years is integrity of assessment, and especially final
exams. Exams have been taken online, with no invigilation and open access to the Web.
There is evidence of collusion between a small number of students (easily detectable with
standard plagiarism checking techniques). A more insidious problem is the use of online
“tutoring” sites during the exam. Many courses have aimed to mitigate the problem by
downgrading the weight of the final exam in overall assessment. Alternatively, courses have
used randomisation techniques (such as STACK questions, or choosing from a large pool of
questions) to reduce the scope for collusion. The real solution to this problem is a return to
on-campus, invigilated exams. CSE plans to return to this exam style as soon as feasible.

Note that plagiarism on take-home assignments has been an issue for some time. We make
use of sophisticated plagiarism-checking systems (MOSS from Stanford) for checking copying
in programming assignments. More recently, though, “contract cheating”, where students
out-source the development of their assignment code to a third-party , has become an issue,
and is much harder to detect. Some research on this has been conducted at Deakin
University and we plan to extend their work to attempt to better detect such cheating.

 
Enrolments in the Software Engineering stream are relatively large (some 150 per year, but
still much smaller than the Computer Science enrolments) and are growing.

