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Overview 
 
A robust city modelling framework is essential if local, state and national governments are to 
move towards sustainable built environments and work together across complex multi-
sectoral problems to drive impact on urban liveability and climate adaptability. This project 
addresses the lack of a publicly available, broadscale 3D digital representation of the impact 
of the urban landscape and building design on urban heat islands, street shading and 
walkability. It develops a demonstration Digital Twin which embeds analytics within a 3D city 
modelling framework to address critical challenges within the built environment. The project 
is a the first of three stages on Digital Twin: 

• Stage 1: Precinct Pilot: analytics-aided and standards-based 3D/4D Digital Twin 
applied to an urban liveability and climate adaptability use case for a precinct in 
Western Sydney, NSW. 

• Stage 2: State Demonstrator: extended, application-broad Digital Twin, exemplar 

using existing government spatial data frameworks to embed current solutions and 

data portals, including data security and licensing. 

• Stage 3: National Framework: Bridge between critical spatial data portals such as 

AURIN Data and Data61 data.  

 

The broad aims of the full Stage 1 are to: 

• Demonstrate the application of Digital Twins (DT) as 3D City Models and real time data 

for decision-making; 

• Prototype procedures for maintenance and update of DT content; 

• Demonstrate 3D analysis; 

• Clarify gaps and issues in data interoperability between national DT portals, 

proprietary systems and stakeholders’ demand/vision; 

• Create an open 3D data set that can be used for demonstration of DT and associated 

analysis tools. 

 
  



1 Problem statement and goals  

Conceptually Digital Twins have the potential to transform the design, management and 
performance of the built environment. Recently many institutions demonstrated a variety of 
DTs aimed to support exploration, visualisation and analysis of multi-dimensional data. 
Algorithms and tools demonstrating the analytical power of DTs and specifically 3D and real-
time data streams within an integrated analytical treatment for situational awareness, are 
still lacking. Three generic information levels can be distinguished: data management, sense 
making and decision making (Figure 1).  

 
Figure 1: The information value chain: showing the connection between data and better decisions that lead to better 

outcomes Source: Bowers et al. 2017, cit. in Bolton et al. 2018 

This project aims at the middle level, i.e.  developing ‘sense-making’ analytics and appropriate 
interfaces to demonstrate 3D/4D spatial analysis and augment decision-making capacity using 
emerging 3D technology. The Precinct pilot stage concentrates on 3D analytics to urban 
micro-climate and more specifically shadowing and its effect on mobility and walkability. The 
goals of this project can largely be grouped as follows: 

• Designing a generic data model and a spatial schema for storage of information, which 
utilises international standards 

• Establishing procedures and methods to create the Digital Twin from heterogeneous 
data sets obtained from different data repositories (e.g. NSW Spatial Services, AURIN, 
Transport for NSW, Data.NSW, BoM, UNSW) 

• Providing interfaces to querying DTs and visualising the information in different front-
ends (e.g. CESIUM and QGIS) 

• Preparing a set of operational algorithms, corresponding functions and operations to 
enable 3D and real-time data streams within an integrated analytical treatment for 
situational awareness.     



• Developing shadowing algorithms, which will allow the analysis on shaded areas, 
which can support the decision-making and urban planning.  

• Developing procedure for update of the information in the DT.  

The project aims to illustrate benefits and reveal challenges in using Digital twins for decision 
making and sustainable development. Having well-structured information, supported by 
appropriate management and visualisation tools is expected to further demonstrate the 
potential of Digital Twins:       

• Client applications can be substantially streamlined and maintained up-to-date with 
essential criteria autogenerated.  

• A better understanding of the assets and the ability for the owner to assess risk 
objectively and in detail – resulting in lower premiums for compliant applications. 

• A better evidence-base in the event of litigation or dispute. 

The project has been completed through four Work Packages (WP) namely: Building DT, Use 
of DT, Update of DT and Industry stakeholder review. The following sections provide details 
on the work completed within Building DT, Use of DT and Update of DT packages.   
 
The project test area is the Central Business District (CBD) of Liverpool city, Sydney. Data sets 
have been provided by NSW Spatial Services, AURIN, Geoccience Australia and Liverpool 
Council.    
  



2 Building Digital Twin   
 
The first step involves the collection and integration of the data sets in a standardised way, 
their storage and access management, as well as their visualization in several interfaces. We 
have followed an open software approach, which brings significant benefits when low cost 
solutions are envisaged (Li et al 2020). The core of the system architecture is a common spatial 
schema and a database management system (DBMS), which provides numerous benefits to 
the robust management of data (Li et al 2019). Figure 2 illustrates the system architecture 
that has been adopted for implementation, which is the basis of the whole project. 
 

 
Figure 2: System architecture. 

At the core of the system architecture is a 3D City Database (3DCityDB) that was chosen as a 
geo database to store, represent, and manage the data using a standard spatial relational 
database approach (Yao et al 2018). Its database schema implements the CityGML 2.0 
standard (Figure 3) with semantically rich and multi-scale urban objects (Kolbe et al 2005). 
The 3DCityDB platform is under 3rd party development and serves as a proof of concept to 
demonstrate that all project information may be stored in a standardised format and attached 
to 3D city objects.  
 
3DCityDB has been implemented with PostgreSQL/PostGIS, which is a freeware an 
opensource relational database. This approach facilitates powerful queries and analysis tools 
directly on the stored data at a database level and hence independently on the visualisation 
or editing front-end using applications, such as Cesium, QGIS or ArcGIS. It is also well 
supported and documented and offers convenient tools to import and export data in different 
formats.  
 
QGIS and Cesium were chosen for visualisation and GIS software for complementary reasons. 
The choice of QGIS is motivated by its direct compatibility with Postgres/PostGIS data along 
with its wide range of powerful tools allowing manipulation and analysis. However, the 3D 
visualisation capabilities of QGIS are still very limited, which is the reason why Cesium was 
selected for more advanced visualisation and frontend interactions. As Cesium cannot directly 



communicate with the database, an API was established to connect with PostgreSQL using 
the Flask python library. 
 

 
Figure 3: Overview of CityGML modules (Yao et al 2017) 

 

2.1 Data sets and their import into the database 
 
Several spatial datasets have been obtained for the test area of City of Liverpool, which 
correspond to four classes of CityGML: Building, Transportation, Relief and WaterBody (see 
Table 1). As these all have different sources, data structures, objects, and descriptions, a 
critical task for their integration and storage was mapping classes and attributes to CityGML 
and importing them into 3DCityDB. Through this course of work, a number of new data sets 
were discovered and added. 
 

Building Relief Transportation WaterBody 

Buildings3D 
(Spatial Services) 

DEM (grid) 
(Spatial Services) 

Railway3D 
RoadSegment3D 
(Spatial Services) 
 
PMS (2D) 
Road Cadastre (2D) 
(Liverpool City Council & AURIN) 

Hydrolines3D 
(Spatial Services) 
 
Polygons (2D) 
(Geoscience Australia) 

Table 1: Initial input data used for the project. 

As mentioned above, 3DCityDB faithfully relies on CityGML classes and attributes. For its 
establishment and efficiency with a relational database, a few differences need to be 
introduced. In the following sections, we will discuss the mapping of the obtained datasets to 
classes of 3DCityDB. 



 

2.1.1 Building   
 
Attributes matching 
The Buildings3D dataset describes 3D geometries of buildings throughout the city of Liverpool 
(see Figure 4) that are represented in a way that is comparable to the Level of Detail (LoD) 2 
of the CityGML standard. Features of the dataset contain 51 attributes in total, plus their 
geometric information, geometry. While many of these can fit into CityGML’s Building class, 
the latter is only characterised by 34 attributes, including geometry.  
 

 
Figure 4: Example of a building from the dataset. 

 
Direct matching between attributes of the dataset and CityGML is pretty limited however, 
with, only three CityGML attributes identified as being a direct match (four if we consider id): 
 

Buildings3D attribute CityGML attribute 

ROOFFROM roofType 

BLDGHEIGHT measuredHeight 

Geometry Lod2MultiSurface 

 
The small number of direct matches must be considered with the following:  

• about 20 of the matching CityGML building attributes are dedicated to  other LoD 
representations 

• attributes that do not match can still be stored within CityGML via use of the generic  
table, _GENERICATTRIB. 

Semantic enrichment 
The input dataset does not provide semantic information related to the building components. 
The lack of such information would result in a poor CityGML model, as one of the main 
strengths of the standard lies on its support of semantics. Therefore, we reconstructed the 
semantic information that should be associated with the 3D building dataset. As the 
Buildings3D dataset is a LoD2 model, the faces of the buildings need to be classified into 3 
main semantic classes: RoofSurface, GroundSurface and WallSurface. The classification is 
performed using a face orientation approach in which vertical faces are considered as walls 
and the rest are considered as roof if they lie above the centre of gravity of the building and 



ground otherwise. This gives us a richer dataset where components, such as roof, can be 
specifically queried, which could be useful for applications such as solar exposure estimation. 
 
Insertion to 3DCityDB tables 
For a model like ours, 5 tables of 3DCityDB need to be filled:  

• CITYOBJECT 

• BUILDING 

• CITYOBJECT_GENERICATTRIB 

• THEMATIC_SURFACE 

• SURFACE_GEOMETRY 

The CITYOBJECT table is the main table of 3DCityDB and every feature of the model needs to 
be registered in it. For the rest, the building table is the one specific to the building classes 
and that will take the matched attributes (id, roofType and measuredHeight) but not the 
geometry.  The latter goes to the SURFACE_GEOMETRY table where each face is stored as a 
separate entry (polygon) along with its specificities. The THEMATIC_SURFACE is the table that 
links the classified surfaces and their corresponding buildings. Finally, the 
CITYOBJECT_GENERICATTRIB table is where all the attributes that did not find a direct match 
go, while maintaining a reference to the building that they belong to (through building_id). 
Additional tables would have been considered if the Buildings3D dataset contained texture 
information (e.g.  SURFACE_DATA, APPEARANCE, etc.) 
 

2.1.2 Transportation  
 
Attributes matching: 
Both the roads and railways datasets correspond to the transportation model of 
CityGML/3DCityDB. In the standard, the transportation schema is defined by a superclass 
_TransformationObject which can aggregate three other classes:  

• TransportationComplex, 

• TrafficArea, and 

• AuxiliaryTrafficArea. 



 
Figure 5: Representation of a TransportationComplex in LOD2 in CityGML: a road, which is the aggregation of TrafficAreas 

and AuxiliaryTrafficAreas (source: OGC CityGML 2.0 specifications). 

TransportationComplex is the main class to represent roads, tracks, railways, squares, etc. It 
is composed of the parts TrafficArea and AuxiliaryTrafficArea, as illustrated in Figure 5. In our 
case, the roads and railway features are represented by line geometries, which means they 
do not provide enough details to be classified into TrafficArea and AuxiliaryTrafficArea. 
Therefore, we only consider the class TransportationComplex and its attributes.  
 
A review of the input data showed that TransportationComplex has 10 attributes (13 in 
3DCityDB), while both our road and railway datasets contain 35 attributes in total. Apart from 
the geometry and potentially the IDs, no direct matches can be identified with CityGML and 
we will need to rely on the use of generic attributes so as to not lose any information. 
 
Insertion to 3DCityDB tables: 
Unlike the 3D buildings, no further processing or enrichment of the data is necessary here. 
The information is inserted in the database as is with the following three tables altered:  

• CITYOBJECT, 

• TRANSPORTATION_COMPLEX and 

• CITYOBJECT_GENERICATTRIB. 

The CITYOBJECT table takes entries for the same reason as explained above. Value entries to 
the TRANSPORTATION_COMPLEX table are dedicated to the columns id, objectclass_id (which 
is 44 for roads and 45 for railways) and lod0_network for the geometry data. 
 
Additional consideration was taken with respect to the road dataset and its attributes such as 
functionhierarchy, classsubtype, etc.  which allows to distinguish between the types of road 
(e.g. pathway, local road, etc.). We could thereby categorise pathways as tracks in 
CityGML/3DCityDB (objectclass_id = 43). The complete list of values for the objectclass_id 
attribute is provided in the documentation of 3DCityDB. 



As done earlier with Buildings, all other attributes that did not have a direct match are stored 
in the CITYOBJECT_GENERICATTRIB table. 
 

 
Figure 6: WaterBody according to CityGML (CityGML 2.0) 

 

2.1.3 WaterBody 
 
Attributes matching: 
Another dataset of Liverpool provided to us describes the hydrolines traversing the city. Such 
kind of data corresponds best to the WaterBody class of CityGML. Water bodies can be 
described with a lot of detail thanks to other classes for surface information, such as 
WaterSurface, WaterClosureSurface or WaterGroundSurface. However, similarly to the 
transportation datasets, the hydrolines are only represented using the basic geometriy 
(LineString) of the water bodies in question. Therefore, the class Waterbody is the only one 
that can handle them as it provides possibilities to store MultiCurve geometries.  
 
In terms of attributes, this scenario is similar to transportation discussed above, with 12 
attributes of WaterBody not directly match with the 23 attributes of our dataset, except for 
geometry.   
 
Insertion to 3DCityDB tables: 
Here again, no further processing or enrichment of the data is necessary. The information is 
inserted into the database using the three default tables:  

• CITYOBJECT, 

• WATERBODY and 

• CITYOBJECT_GENERICATTRIB. 

Every water entity is registered in the CITYOBJECT table, like any other feature of the model. 
Then the id, objectclass_id and lod0_multi_curve columns of the WATERBODY table are 
updated accordingly. Again, all the attributes that did not find a direct match are stored in the  
CITYOBJECT_GENERICATTRIB table. 
 

2.1.1 Relief 
 



The datasets provided to us at the beginning of the project included the DEM of LCC, which is 
represented in a 1m x 1m raster grid obtained from the ELVIS platform 1linked from the 
ANZLIC Foundation Spatial Data Framework 2(FSDF - Elevation and Depth). However, such 
raster data is not suitable for a polygon-based algorithm such as our 3D shadow estimation. 
Therefore, we generated a first TIN version directly from the raw DEM, as illustrated in Figure 
7.  
 

      
Figure 7: Coloured DEM (left - blue is the lowest elevation and red the highest), derived TIN (right). 

 
The TIN in Figure 7 (right) considered the footprints of the buildings only. The other features 
that can be distinguished are due to their contrast in elevation with the rest of the terrain 
(e.g. between the ground and the waterbodies), but they were not explicitly considered. 
Despite a higher accuracy, this TIN contains approximately 5.8 million triangles and is not 
efficient to work with and most applications. Therefore, we decided to generate a simpler TIN 
that would minimise the number of polygons while including all the features of importance 
(buildings, roads, railways, and waterbodies). All these features are available and already 
stored in the DBMS of the DT. But as discussed in the next subsections, not all of them are in 
a ready-to-use (polygonal) form for generating the TIN. 
 

2.1.2 IoT Sensor data 
A wide range of sensors are already deployed and functional in the test site of the project 
(CBD of Liverpool city). As mentioned above, we were granted access to the sensor’s data 
through the Liverpool City Council IoT and Open Data Platform API. A catalogue of 14 datasets 
is available, covering different themes. Two themes are of interest for this project:  

• Environmental Protection and  

• Roads, Parking and Transport. 

The Environmental Protection theme contains datasets about air quality and other 
environmental information (heat stress index, ozone, brightness, etc.). The Roads, Parking 
and Transport theme contains datasets about people and vehicle counting, car park maps (in 
the CBD) and car sharing sites.  
 

 
1 https://elevation.fsdf.org.au/ 
2 https://www.anzlic.gov.au/resources/foundation-spatial-data-framework 



Additionally, the trajectories of people, bicycles and cars extracted from several CCTV, 
mounted at crossroads, were made available for the project.  
 

 
 

Figure 8: Screenshot of the 'IoT devices register'  table from the Liverpool City Council IoT and Open Data platform. 

While all those datasets may be of interest at some point during the project, only another 
dataset provided under City Planning and Amenities theme and named IoT devices register - 
Liverpool was considered at this stage. It provides an exhaustive list of all the IoT sensors 
installed on the test site, along with their relevant metadata (id, description, device name, 
location, etc.), see Figure 8. 
 
While the sensed data do not need to be explicitly stored in the 3DCityDB  until necessary as 
this is very resource consuming), only descriptive information about the sensors and their 
metadata need to be integrated in our city model. This will enable management of explicit 
information about the sensor devices, their properties and spatial location, which will ensure 
direct and efficient spatial analysis with the sensed data.  
 
Unfortunately, there is no class that provides direct compatibility with IoT sensors as features 
in the current version of CityGML (this is expected to change in the coming version 3.0). While 
they might be considered City Furniture, they are not included now. Meanwhile, one 
workaround that we adopted is to use the GenericCityObject class (generic city object 
concept), which like generic attributes, the concept allows for the storage and exchange of 
3D objects that are not covered by any explicitly modelled thematic class or which require 
attributes not represented in CityGML. 
 
Insertion to 3DCityDB tables: 
In 3DCityDB, the sensors’ information is inserted in the three following tables:  

• CITYOBJECT, 

• GENERIC_CITYOBJECT and 



• CITYOBJECT_GENERICATTRIB. 

Every sensor device gets registered in the CITYOBJECT table and is provided with a unique 
cityobject_id. The same value is used as id in the GENERIC_CITYOBJECT table, where an 
objectclass_id is also recorded with  a Point geometry created in lod0_other_geom using the 
longitude and latitude values of the sensor. Because the height values of the sensors were 
missing in the datasets, an value of zero is temporarily used as the Z dimension. Finally, all the 
other metadata of the sensors are stored in the CITYOBJECT_GENERICATTRIB table.  
 
The final set of 3DCityDB tables and data sets is listed in Figure 9. 
 

       
Figure 9: List of 3DCityDB Tables (left) and final list of data (right) 

 
Note: Since the only currently available way to import spatial data into 3DCityDB is to import 
a CityGML model using the dedicated Importer tool. Given that none of the datasets are 
provided in such format, we needed to programmatically insert all the data  into the database. 
For this purpose, we used the PyQGIS plugin, which is a Python interpreter for QGIS and simply 
loaded all the datasets into QGIS and ran a Python script that accessed the data and connected 
to an instance of 3DCityDB in a PostgreSQL (with PostGIS extension installed) for data writing. 
The process is easily reproducible and only requires QGIS (v3 or higher) to be installed and run 
the script with PyQGIS, assuming the database components are already set 
(PostgreSQL/PostGIS and 3DCityDB).  
 

2.2 Integration of objects and terrain into constrained TIN 
 
It is well-know that data from different sources might not fit well with each other due to 
various issues. This is specifically true for integrating individually created data sets with the 
terrain (Yan et al 2019), where common issues include objects either sink ing or hovering over 
the terrain surface. To avoid this effect, transportation and Building objects were integrated 
in the triangulated surface and the text below describes the step taken.  
 



2.2.1 Data preparation for Building footprints, Transportation and WaterBody polygons  

 

Building footprints 
The dataset describing the 3D buildings of LCC is in the form of polyhedral mesh, making it 
directly suitable for the TIN generation. We performed this task by simply querying the 
CityGML database (3DCityDB) specifying the parts of the buildings that we need. This is 
illustrated by the SQL query below: 
 
SELECT id, geometry FROM surface_geometry WHERE parent_id IN (  
  SELECT lod2_multi_surface_id FROM thematic_surface WHERE objectclass_id = 35 
) 

 
Here a sub-query is first invoked to generate a list of lod2_multi_surface_id (which 
correspond to the ids of the surface in the SURFACE_GEOMETRY table) from the 
THEMATIC_SURFACE table, while specifying only features with the objectclass_id 35 
(corresponding to the GroundSurface class of CityGML). The geometry of the selected 
features is then extracted from the SURFACE_GEOMETRY table based on their id values 
(Figure 10). 
  

 
Figure 10: Few selected building footprints (elevated for visualisation purpose). 

 
Similar queries are used to access to the other features stored in the DBMS, taking care of 
selecting the proper geometry tables and object classes (see report on WP1). 
 

Road polygons 
The first road dataset provided to the project was in the form of 3D lines with attributes. 
While this could have been included in the TIN generation, this would not have resulted in 
valuable information as the road surfaces, which are critical for transportation and pedestrian 
motions related analysis, would still be missing. We therefore looked for any polygonal 
dataset that would depict the roads that the LCC GIS team already had. Hence, two additional 
datasets were provided to the project representing the road cadastre and polygons, which 
were extracted from a Pavement Management System (PMS). Figure 11 illustrates these 
datasets and their differences. 
 



       
(a)                                                                                        (b) 

 

       
(c)                                                                                        (d) 

Figure 11: Different Road datasets. (a) Satellite image of a selected area in LCC. (b) 3D road line dataset (white). (c) PMS 
road dataset (yellow). (d) Road cadastre dataset (purple). 

 
While the 3D line dataset covers the actual roads within the LCC more completely (Figure 
11(b)), the cadastre also provides a generalised representation (Figure 11(d))with the PMS 
data offering more advanced details (e.g. road polygons with complex shapes and excluding 
the pavements on the sides and in-between lanes, see Figure 11(c)).It is important to note 
that the latter covers only areas with pavements however, missing thereby important 
information, such as pedestrian lanes like the Liverpool Mall located at the living heart of the 
city (see Figure 11 (c) and (d)). Furthermore, for the purpose of generating the TIN, details 
within the PMS dataset are not of great relevance and the road cadastre provides the the best 
trade-off as it is a polygonal representation that  covers  features that would need to be 
considered in the TIN (e.g. pavements).  
 
Note: In the final version of the TIN, we ended up opting for the PMS dataset instead of the 
road cadastre because we needed to label polygons of the TIN according to their 
corresponding feature class (e.g., ground, road, building, etc.) and use the ground polygons 
for pedestrian related analysis. By using the cadastral roads, what we thought was an 
advantage (i.e., the inclusion of the pavements in the provided polygons) becomes a weakness 
since the pavements would also be considered as part of the road, excluding it from pedestrian 



accessible areas. The PMS polygons went however through the exact same process than what 
is described below for the cadastral data. 
 
Further pre-processing was identified necessary on the road cadastre as the data was 
represented in 2D and the polygons it contained carried much more vertices than they really 
required, as well as overlapping with the other datasets in some places. These  aspects do not 
favour  proper TIN generation because they would lead to geometric over-complexification 
on one hand and topological issue on the other.  
 
To address this we started off simplifying polygons by reducing the number of points that 
describes them. This is a common GIS operation on lines and polygons known as simplification 
(or generalisation) with the Douglas-Peucker algorithm (Douglas, 1973) being the most used 
one. It consists of simplifying points based on a given minimum distance threshold between 
each point. As this approach is not adapted to our problem because our polygons are of 
different sizes and setting a wrong threshold could lead to heavily distorted polygons, we 
developed our own algorithm that simplifies points solely based on the angle that they form 
with their surrounding neighbours and implemented it in QGIS (python). This allowed us to 
remove only those points that are not bringing relevant details to the polygons’ shape (e.g. 
multiple point on a straight line), as illustrated in Figure 12. A threshold of 5o allowed us to 
obtain  a 98.4% reduction, with a final 4724 points (Figure 12 - right) from an initial sample of 
287087 points (Figure 12 - left).  
 

        
Figure 12: Road polygons simplification before (left) and after (right). 

One limitation that could result from such simplification is the loss of precision in terms of 
height on a long road section when the 3D elevation will be recovered (z coordinate). 
However, this is mitigated by the high level of subdivision of the dataset which includes 
polygons for every road intersection. 
 
Another pre-processing step is the removal of parts of the roads that are intersecting with 
other datasets. This is simply done using the ‘Difference’ Boolean operation in QGIS against 
the intersecting polygons, while on the case of the railways, the intersecting polygons were 
removed and considered as bridges for later enhancing the DT’s database (see Figure 13).  
 
 



     
Figure 13: Intersection removal. From left to right: intersection between building footprints and road polygons; result of the 

difference operation; polygons crossing railways were removed. 

Finally, all the polygons of the road dataset were converted to 3D by a DEM-based sampling 
to recover their elevation. For this again, we developed an in-house python script for QGIS as 
the original sampling function provided by the software can only handle point inputs rather 
than polygons. 
 

Railway polygons 
Similarly to the road dataset, the railways came to us in the form of 2D line geometry. 
However, unlike the roads, it is not necessary to seek a polygonal version as this can be fairly 
derived from the line since one can assume a regular width for the feature. We therefore 
produced polygons using the buffering tool of QGIS with a standard width of a 1435mm (4 ft 
81/2 in), as specified by the Australian Bureau of Infrastructure and Transport Research 
Economics (BITRE, 2019).  
 

          
Figure 14: Buffering of the railway dataset to form polygons. 

Figure 14 shows the resulting polygons, noting further pre-processing was applied to the 
polygons (point simplification and elevation sampling) in a way similar to the road dataset, 
excluding the intersection check with building footprints.  
  

Waterbody polygons 
Here again, the original data described 3D hydro-lines rather than polygons of waterbodies. 
The dataset describes lakes, rivers and creeks as illustrated in Figure 15, however like the 
roads and unlike the railways, the width of the corresponding surfaces cannot be reasonably 
guessed and uniformly apply to the curves.  
 



           
Figure 15: 3D Hydro lines dataset describe lakes (left) and creeks (middle). But the creeks may be dry (right). 

 
After some investigations, we found through AURIN an accurate hydrology polygon dataset 
of the region provided by Geoscience Australia (GA) (see Figure 16). But unlike the 3D hydro 
lines data, creeks and other temporary waterbodies were not represented in the data. 
 

    
Figure 16: Accurate polygons of the waterbodies found in AURIN and provided by GA. 

 
We therefore decided to exclude the creeks and dealt only with parts described as polygons. 
Here again, the pre-processing applied to the road and railway datasets was applied. 
 

2.2.2 Generation of the integrated TIN 
 
With all the polygons of the building footprints, roads, railways, and waterbodies ready, we 
proceeded to generate a TIN that integrates them all using the 3D constrained Delaunay 
triangulation implementation of PostGIS. For this we used the 3D boundary lines of the 
features as constraints for the triangulation. The input and the resulting TIN can be seen in 
Figure 17 and Figure 18. 
 

       
Figure 17: All the features in the selected sample area (left). The extracted 3D boundary lines of the features (middle). 

Generated TIN (right). 



    
Figure 18: 3D view of the 3D boundary constraints for the TIN computation (left) and the produced TIN (right). 

 
The resulting TIN count of 28K polygons makes it suitable for an efficient use in spatial 
analysis, while preserving good elevation information for all the features. Figure 19 shows 
two example views within the full 3D model with all features integrated together, including 
the new terrain.  

    
Figure 19: Views of all the features (buildings, roads, water, terrain)  in QGIS. 

 

2.3 Visualisation of data in QGIS and Cesium (D2)  
The format adopted for our DT storage in PostGIS/3DCityDB enables direct access and 
visualisation of the data in several open-source or commercial software packages. One of 
them is QGIS, from which the database can be directly connected to, and features (geometry 
and attributes) directly read and visualized. Figure 19 illustrates the visualisation of buildings 
(with roofs and walls coloured according to the semantics), roads, terrain (constrained TIN) 
and water bodies.     
 
Another tool that communicates with 3DCityDB is a CityGML importer/exporter tool that 
validates data recorded in 3DCityDB against the CityGML standard as well as importing to or 
exporting from the database in CityGML format. We used that tool to validate and export the 
recorded data, noting the GML file can also be visualised with any available CityGML viewer 
(a list of solutions is available here). Visualisation of the same features with FZK Viewer3 is 
shown in Figure 20. 
 
Another option to access the 3DCityDB is from a virtual platform such as Cesium. Cesium  is 
an open source 3D visualisation platform that allows a wide range of spatial data (GIS, BIM, 
photogrammetry, etc.) in various formats, including CityGML, to be imported and visualised 

 
3 https://www.iai.kit.edu/english/1648.php 

https://nervous-ptolemy-d29bcd.netlify.app/software/#viewers


in one environment. The 3D file formats are all converted to 3D Tiles, an open specification 
format that optimises the streaming of large 3D data through the Cesium viewer. To access 
to such format, one must use the dedicated web app by creating a Cesium ion account (which 
is the proprietary version of Cesium, not to be confused with CesiumJS, the open-source 
version) and uploading the data for them to be converted to 3D Tiles and become accessible 
through a REST API. Once the tiles are created, they can be streamed to CesiumJS. This is a 
commonly used approach, which was also adopted for the deployment of the NSW Digital 
Twin4.  
 

 
 

Figure 20: Liverpool CityGML digital twin extracted from 3DCityDB and visualized with the FZK Viewer. 

 
The issue with such file-based approach is that, under the use of a database, export of dump 
files is always required before sending to Cesium ion for conversion to 3D Tiles. This is not 
convenient for dynamic databases where information is often updated, as one would expect 
for the database of city’s digital twin. We therefore decided to investigate a way to directly 
visualize geospatial data in CesiumJS. Besides 3D Tiles, CesiumJS supports several other 
formats (KML, GeoJSON, OBJ, etc.) but they are all file-based once again and there is no official 
support of Web Feature Service (WFS). However, as a web interface based on Javascript, 
Cesium can send and receive HTTP requests to servers. Therefore, with the support of 
GeoJSON files, an ad-hoc workaround to the file issue was identified that sends the results of 
database queries formatted as JSON through an API to Cesium. We adopted this approach 
and used the Flask python library to setup a server API. Figure 21 illustrates the 
communication established between the client (CesiumJS) and server side containing the 
database (3DCityDB) and the API (Flask).   
 
 

 
4 https://www.spatial.nsw.gov.au/what_we_do/projects/digital_twin 



 
Figure 21: Diagram of the API requests established between Cesium and 3DCityDB through Flask. 

 
The main issue to this approach is the management of the query results in terms of size. The 
GeoJSON support of Cesium is not optimised and files as small as 10MB can take several 
minutes to load. Therefore, the size of the request needs to be carefully managed to allow a 
smooth visualization in Cesium.   
 

2.3.1 Implementation 
 
Server side: 
With the database already established, only the Flask API needs to be configured on the server 
side. The Python library (Flask) needs to be configured to connect to the database and 
predefined routes need to be set for specific queries. Those routes will later be the HTTP links 
through which the client will perform API requests to the server.  
 

 
 
Figure 22: Command prompt of a configured Flask API server. 

Once configured, Flask provides a command line window that describes the address from 
which the server data is accessible from (see Figure 22). For now, we run it only on a local 
server for test purposes with plans for it to be deployed on a web server at a later stage. 
 
The queries sent to 3DCityDB through Flask should return valid GeoJSON data to be readable 
by Cesium. To produce such outputs, we rely on the PostGIS ST_AsGeoJSON function that 
formats the results of the queries. A new and handy feature of PostGIS (from v3.0.0) allows 
to create GeoJSON from a full database record, meaning a row containing geometry and other 
attributes. We thereby defined all the API routes needed to connect the UI (Cesium) to the 
back-end (3DCityDB) through Flask. A typical API request looks as follows:  
 
http:localhost:5000/getFeatureIDs?type=Building&number=20&&bbox=150.9219,-

33.9222,150.9256,-33.9208&filterAttribute=measured_height 

&filterOperator=ge&filterValue=10 



 
This examples returns a list of 20 (number=20) cityobject_id of buildings (type=Building) 
stored in 3DCityDB, such that those buildings that intersect with a defined bounding box 
(bbox=150.9219,-33.9222,150.9256,-33.9208) with a height greater or equal to 10 
(filterAttribute=measured_height&filterOperator=ge &filterValue=10). Note that 
localhost shall be replaced by the web server’s address once established unless the server is 
being run on a local machine. While better ways might exist to stream bigger outputs to 
Cesium for a smooth visualisation still require further investigation, we adapted the queries 
to produce feature collections with a limited number of features (around 100 max per query), 
limiting their size and allowing interactive loading times.  
 
Client side: 
From the Cesium’s side, a simple call to the API request needs to be performed to obtain 
GeoJSON data. The latter is then injected in the viewer using the GeoJsonDataSource 
function. The result is visualised in Figure 23 below.  
 

 
Figure 23: Digital twin of Liverpool (selected area) loaded in CesiumJS from 3DCityDB. 

Every feature returned is the result of a direct query to 3DCityDB through the Flask API. 
Furthermore, all attributes associated to the original data are maintained and displayed when 
a feature is clicked on, as illustrated in Figure 24.  



 

       
Figure 24: Attributes of the features loaded in CesiumJS (buildings attribute at left and road attributes at right). 

  



2.3.2 User Interface (UI) 

 

 
Figure 25: UI developed for the Cesium front-end. 

A custom UI was developed to allow users to interact smoothly with the DT. The main 
interface with the menu buttons in shown in Figure 25, noting the menu is subdivided in 3 
main sections, related to the different components of the DT:  

- The Features tab contains the options related to queries of the features of the DT. This 
includes the import of stored data (buildings, roads, etc.) based on selected filters (e.g, 
building height, road types, etc.). It also contains some other layers related to Urban 
Heat Islands (UHI) and shadow analysis, that will be used and discussed in Section 3. 

- The Shadows tab (discussed in Section 3) collects all the options related to the query 
and visualisation of shadow polygons.  

- The IoT tab (also discussed in Section 3 ), as its name suggests, gathers options related 
to the queries and visualisation of sensor related feeds. 

Figure 26 illustrates the result of a filtered query for building features.  



 
Figure 26: Filtered query of the DT buildings (red for building with less than 10m of height, and dark grey for the rest) 

 

3 Using the Digital Twin 
This section illustrates the features of the built DT database created to perform various 
queries, demonstrates the visualisation and analysis of the IoT sensor feeds installed in the 
city of Liverpool, and explores the analysis related to shadow coverage. 
 

3.1 Algorithms to access and link sensor data to 3D geometries of DT from a DBMS  
To access the sensor data, we needed to establish a link between the spatial features of the 
DT and the sensor feeds from the LCC IoT & Open Data Portal5 to enable their association in 
visualisation and analysis. As discussed in above in Section 2.1.2, only the sensor locations 
and related attributes have been recorded in 3DCityDB, while the data from the sensor need 
to be queried directly through the API provided by LCC. Therefore, our goal here was to create 
new records in the DB that will help us identify all the DT features that are related to a given 
sensor feature. This way, when the data of a sensor is queried through the API, another query 
to the DB will provide the list of features that are affected by the received data.  
 

3.1.1 DB table to link the features 
 
To enable the linking, we needed to create a table that gives correspondence between the 
sensors and the spatial features. A spreadsheet of all available devices can be obtained 

 
5 Liverpool City Council IoT & Open Data Platform, https://liverpool-city-council-
westernparklands.opendatasoft.com/ 



through the LCC data portal (see Figure 27), which was used initially to record the sensor 
locations and attributes. 
 

 
Figure 27: IoT Device list of LCC (for counting related sensors). 

 
We initially focussed on the sensors categorised by LCC as ‘Devices, people and vehicles 
counting’, which are directly related to the transportation features of the DT (namely the 
roads). A closer look at the ‘Device name’ and ‘Description’ columns provided the hints to 
how roads may be related to a device, while ‘Address’ was found to only have information 
recorded for few sensors. On the other hand, with the road dataset that we have in the DT, 
only a few attributes, such as roadnamebase and roadnametype, can be used to relate to the 
places described in the sensor’s attributes (example shown in Figure 28),. 
 

 
Figure 28: Attribute of road features that can be used for the linking. 

 
With a total of 34 sensors, one could think of making the entries of the links manually. 
However, this can quickly become a tedious task as road features can be split into several 
portions (e.g. long avenues can be split where they intersect other roads), requiring checking. 
 
Furthermore, we have deliberately discarded the approach that consists in creating a buffer 
around the sensor location and consider only those features that fall within this. Indeed, while 
one could argue that the data provided by the sensors is local (people, cars and bicycles are 
counted only around a sensor’s location), it provides important insights on what might likely 
occur in other portions of the same road for reasons of contiguity and network flow. 
Additionally, another consideration was the fact that several CCTV counter, despite being 



located at crossing of several roads, would be pointed towards only one road among them. 
We have therefore decided mine the sensor descriptions and keep all road portions identified 
into them, with a special consideration for keywords such as ‘towards’, ‘facing’ or ‘Cnr’ (for 
corner).  
 

 
Figure 29: Database table describing links between sensors and other city features. 

A python script was developed to perform the task semi-automatically (as some missing cases 
would require tweaking the parameters accordingly). Since there is no adapted native 
3DCityDB table for our purpose, we opted for creating a simple new table with a trivial 
structure describing on one hand the cityobject_id of the sensors and on the other, those of 
the spatial features (Figure 29). This structure was inspired from other similar linking table of 
3DCityDB (e.g. ADDRESS_TO_BUILDING, etc.) to remain coherent with standard. 
 

3.1.2 Accessing the IoT Sensor data 
The access to the IoT data goes through the API of the LCC open data platform. Based on the 
device ID of a sensor, let’s say ‘mac-00-04-4b-a5-98-41’ for example (a CCTV), we can send an 
HTTP request to the LCC server using the following link:  

- https://data.liverpool.nsw.gov.au/api/records/1.0/search/?dataset=ncounter&q
=&rows=1&sort=datetime&refine.dev_id=mac-00-04-4b-a5-98-41 

 
Figure 30: JSON output of an API query to the LCC IoT & Open Data Portal. 

https://data.liverpool.nsw.gov.au/api/records/1.0/search/?dataset=ncounter&q=&rows=1&sort=datetime&refine.dev_id=mac-00-04-4b-a5-98-41
https://data.liverpool.nsw.gov.au/api/records/1.0/search/?dataset=ncounter&q=&rows=1&sort=datetime&refine.dev_id=mac-00-04-4b-a5-98-41


This is a web request to query the most recent record available for the given sensor and 
returns as a result a JSON data (Figure 30) that can then be parsed and exploited. In Figure 
30, the record named ‘new’ provides the number of pedestrians counted by the CCTV.  
 
SELECT lod0_network FROM citydb.transportation_complex WHERE id IN( 
    SELECT feature_cityobject_id FROM public.sensor_to_feature  
    WHERE sensor_cityobject_id IN ( 
        SELECT cityobject_id FROM citydb.cityobject_genericattrib  
        WHERE attrname = 'device_id' AND strval = 'mac-00-04-4b-a5-98-41' 
    ) 
); 

 

 
Figure 31: Road features (red) related to the queried sensor (blue) and its attributes. 

The script snapshot above and Figure 31 illustrate an example query of the DT to get the 
features related to the selected sensor. In the next phases we will see how to enhance the 
visualisation of the sensor data through the available viewers.  
 

3.2 Algorithm for 3D shadowing Estimation 
 
The next step developing the 3D model to estimate the shadowing of the 3D features and 
combine this with temperature distribution data for analysis. Unfortunately, there were not 
enough temperature sensors throughout LCC to allow such process with only two weather 
stations available nearby). We will discuss more about the changes that were brought to the 
targeted use of the DT and the related WP in the next section. In the rest of this section, we 
provide more details on the 3D shadow estimation process and the data preparation that was 
necessary to perform it. 
 

3.2.1 Principle of the 3D shadow estimation 
Shadow estimation is a common task in several urban applications (urban planning, solar 
exposure, building application, etc.) with common methods and tools drawn from the 
Computer Graphics industry that are mostly tailored to screen rendering (see Figure 32). 
 



    
Figure 32: Shadow rendering on Cesium (left) and SketchUp (right). 

While such rendering may be suitable for visual applications, it is inadequate for the types of 
spatial analysis that we are aiming to perform. As such estimation is based on screen 
rendering that is dependent of the scene’s viewpoint, we developed a specific algorithm that 
allows the computation of 3D shadow polygons induced by city objects. As this is highly 
computationally intensive, a limited effort has been dedicated to approaches known as 
shadow volumes in the literature, which are approaches operating on the object space, i.e 
dealing with shadow as an actual 2D or 3D object (see Figure 33).  
 

     
Figure 33: Shadow in the pixel space (left) vs in the object space (right). 

We have adopted the unordered Shadow Volume Binary Space Partitioning (uSVBSP) method 
of (Chrysanthou and Slater, 1995) and improved it to mitigate the performance limitations 
that comes with dealing with a high number of 3D features and the implied 3D intersections. 
Thanks to that algorithm, we can generate the shadow as objects of the model and spatially 
determine its extent on the features of the Digital Twin, independently of the viewpoint of 
the scene. Furthermore, we can compute shadow area, which is important for a variety of 
spatial analysis such as estimating areas that need sun projection structures, computing paths 
in shaded areas in specific parts of the day or investigating causes for urban heath islands. 
 
Figure 33 (right) shows an illustration of the approach implemented and considering a flat 
ground. However, if we want to fully exploit the 3D DT, we need to perform the shadow 
estimation while considering the actual terrain of model. Therefore, to complete the shadow 
estimation, we had to generate a reasonably accurate Triangular Irregular Network (TIN) of 
LCC based on the data that we had. Hence the process described in Section Error! Reference s
ource not found..  
 

3.2.2 3D shadows on integrated TIN 
 



With the TIN generated, we can use it as a feature in the shadow computation. This process 
involve 3 main steps: (1) an area of interest is determined and all the features falling under 
that area are identified, (2) the geometries of the identified features are queried in the DB, 
collected, and sent to the shadow computation process and (3) the shadow is computed and 
a file (geoJSON) of the result is generated. Figure 34 illustrates an example of the process. 
 

      
(a)                                                                                                                (b) 

 

 
(c) 

Figure 34: (a) Example of selected area for shadow computation in Cesium. (b) The computed shadow (dark blue) does not 
fit to the terrain approximation of Cesium and thereby not to Cesium’s shadow. (c) When a flat terrain is used, the 

generated shadow appears fully.   

In Figure 34, few selected buildings are displayed in Cesium JS along with the native shadow 
casting of Cesium. As it can be seen in Figure 34 (b), there are discrepancies between our 
generated shadow and the one of Cesium. The main reason for those differences is the native 
terrain layer of Cesium6 provides a lower resolution (approximate resolution of 5m) than our 
DEM data (1m). Furthermore, a terrain exaggeration of 0.4 has been heuristically used to 
ensure (visually) that the features of our DT are not floating. For all those reasons, the shadow 
casting Cesium is less reliable. But the main advantage of our object-oriented shadow 
generation, beside the ability to use a better terrain estimation, is that we can manipulate the 
resulting shadows on any tool supporting geoJSON, such as QGIS (Figure 35: Shadow polygons 
imported on QGIS (left) and visualised with the building footprints (right).). This opens doors 
to powerful spatial analysis and visualisation as shown below (Figure 35, Figure 36, Figure 37).   
 

 
6 https://cesium.com/platform/cesium-ion/content/cesium-world-terrain/ 



      
Figure 35: Shadow polygons imported on QGIS (left) and visualised with the building footprints (right). 

 
Figure 36: Spatial difference between the footprints and the shadows allowing to segregate polygons that are pure shadow. 

  
Figure 37: 3D Shadow visualised with the other features on QGIS. 

 

3.3 3D Shadowing analysis of LCC and mitigation strategies for events and canopy 
planning (D5) 

the goal of this use case is to perform shadow analysis on selected areas to determine their 
potential exposure to sun during a planned event and see how this can be mitigated (e.g., by 
planting new trees). To achieve this, several improvements were brought to the shadow 
computation algorithm and the CesiumJS user interface, through the Shadows tab and its 
corresponding options. 
 



 
Figure 38: Place selection for shadow analysis. 

 

The ‘Place selection’ part allows the user to pick a specific location around which shadow will 

be computed (see Figure 38).  Finally, the user defines a specific date and time or a range of 

time or days on which the analysis will be run through. In the considered scenario, a shadow 

coverage between 3PM and 5PM is computed for the selected place on March 15th, and based 

on it, the algorithm computes, for every hour within that range 3 outputs (see Figure 39):  

• the non-ground shadowed polygons (not displayed),  

• the shadowed polygons on the ground (dark),  

• and the sun-exposed polygons on the ground (orange). 

 

Figure 39: Ground shadow polygons (dark) and lit ground polygons (orange) for a selected date and time range. 



       

Figure 40: Shadow polygons visualised on QGIS.  (Left) Shadowed and sun-exposed ground polygons. (Right) Building 
features causing the shadows. 

This distinction in different types of outputs is made to facilitate further analysis relying on 

them. Furthermore, the outputs are currently saved as GeoJSON files to allow their storage, 

sharing and import in common GIS tools such as QGIS, as shown in Figure 40. It is visible that 

the road polygons are excluded from the scene for the specific analysis being run. This is made 

possible by the categorisation of the TIN based on the labels from the features, which helped 

improve the shadow analysis by allowing focus on specific features. Thereby, the shadow 

polygons considered specifically correspond to areas accessible to pedestrians. It remains 

possible to control this and include other features, when necessary. Based on the same 

generated data, but with additional functionalities, this use case can be extended with 

pedestrian routing that allows the use of the shadowed parts of the streets. 

 

Figure 41: Unshadow areas (orange) vs. Tree coverage (green). 

For the second use case, we checked the unshaded areas against the canopy/vegetation data 

available to us. Unfortunately, the data is just a point layer describing tree locations and with 

their height and elevation. Since this is not enough to guess the amount of shadow that they 

cast, we applied a heat map of the trees assuming an approximate area around the trees that 

we consider as shadowed (see Figure 41). It is visible that the studied area is under-covered 

in terms of trees and would benefit from more trees that would bring more shadow. Although 



most of the exposed zones are open parking areas and private gardens, the main streets are 

still not covered enough. The block at the bottom right side of the image reflects an area 

where no 3D building data were available. 

In addition to the previous use cases, we implemented few more analysis capabilities to the 

DT. The first one integrates a static Urban Heat Island layer obtained from CSIRO7. It leverages 

the Landsat8 data and provides land surface temperature and urban heat island estimates for 

Australian capital cities. The dataset is meant to compare temperatures of the urban areas 

against non-urban baseline temperatures, and the colour range spanning from blue to red 

means a difference of temperature from 0oC to 10oC (see Figure 42, left). 

   

Figure 42: (Left) UHI Layer viewed in Cesium (red means +10oC and blue means +0oC). (Right) Querying buildings per roof 
type to analyse eventual impact on UHI (tile roofs in purple, metal roofs in red and unclassified roof material in orange). 

Combining the UHI layer with the custom feature queries enable new insight on what may be 

a factor of the UHI red areas. Figure 42, right illustrates the different roof materials covering 

an UHI-prone area of LCC. Metal roofs (in red) are predominant, which may suggest that they 

contribute to increasing the temperature compared to other materials. 

Finally, we have implemented what we called the Shadow Picture of the city. It is computed 

by subdividing the scene in 256 tiles and checking for each tile how much ground area it 

contains and how much of it is covered by shadow. This allows to produce a ratio that is then 

used to darken the area and give a visual insight of the level of shadow coverage. Figure 43 

provides an illustration of what such shadow picture looks like for the whole area of study at 

6PM on March 15th, 2022.   

 

 
7 Devereux, Drew; Caccetta, Peter (2019): Land surface temperature and urban heat island estimates for 
Australian capital cities, summer 2018-19. v1. CSIRO. Data Collection. https://doi.org/10.25919/5d8adf30f001e 



 

Figure 43: Shadow picture of the city on March 15th, 2022, at 6PM. 

 

3.4 Interfaces for visualisation of sensor feeds and analytics (D6) 
 
We developed a visualisation interface for the IoT sensors available in area of study as a third 
use case. The IoT tab of the UI is dedicated to those functionalities. While the data and some 
dashboards can be found on the LCC data portal, visualising the feed on a 3D map gives a 
better spatial context to the information.  
 

 
Figure 44: Visualisation of the feed from the people (green) counting devices. 

Figure 44 shows the feed of few counting devices running at the time of the visualisation. 



The user can select the type of counting device to visualise (people, bicycle, vehicle, or all of 
them simultaneously) and the latest feeds available will be queried and the scene updated 
accordingly. Options to hide or display the feed are also proposed, as well as the possibility 
to enable/disable the live updating (which occurs every 10 min, according to the pace of the 
sensors). We have chosen to use cylinders of the same radius since the sensors’ roles are 
localised and provide only 1-dimensional value. The colour opacity and height of the cylinder 
are used to express the quantity counted (more opaque colours and higher means more 
counted entities). Finally, the records obtained from the API queries are collected and 
displayed as attributes of the visualised feeds (see Figure 45).  
 

 
Figure 45: Simulated camera view of a selected CCTV device with the road and pavement coloured according to people 

(green) and vehicle (orange) feeds. 

 
Furthermore, to leverage the 3D capabilities of the DT, we also implemented a simulated 
camera view of selected CCTV to offer a contextual view of the pedestrian, bicycle and vehicle 
flows at a street level (see Figure 45). Grounds (green) and road polygons (orange) are thereby 
coloured respectively according to the received pedestrian and vehicle feeds. A real picture 
from the simulated CCTVs along with corresponding feed values is also provided for 
reference.  

4 Updating the Digital Twin 
 
In Section 2 we explained the proper adaptation and storage and visualisation of initially 

collected spatial data in a database (DB), forming the digital twin of the city of Liverpool. 

Section 3 comprised the implementation of several use cases leveraging the stored spatial 

data.  This Section concentrates on the semantic labelling and update of attributes.  

4.1 A procedure for improving semantic labelling on selected DT 
The intention is to allow authorised users to directly edit semantic and attribute information 

of the digital twin through the viewer / user interface (UI). The established connection 



between the UI and the DB allows live interaction with the model, ensuring real-time 

information update. This has the advantage to allow the correction of detected error directly 

through the front-end side of the tool, with visual support, rather than having to do it from 

the back-end side. 

 

 

Figure 46: The ‘Edit Values’ button attached to the attribute table of a selected building (top) and the connection request it 
prompts (bottom). 

The implemented functionalities are accessible through a button attached to the attribute 

table of the any selected feature (Figure 46, top). Clicking on the ‘Edit Values’ button will 

prompt a connection request, if no successful log in has been performed before, during the 

session (Figure 46, bottom). Obviously, as the UI is supposed to be widely accessible, this is 

to constraint and ensure some security on the possibility to edit the data.  

When the login fails, an error message is prompted to let the user know (Figure 47, top). After 

a successful login, it becomes possible for the user to edit the values of the attributes. Figure 

47 (bottom) shows the update of the ‘roofform’ attribute that was changed from Gable to Flat 

(for illustration purpose). Other attributes can also be modified, and the Update button will 

send the new values to the DB. The process can also be cancelled, and no change will be 

flowed to the DB.  



  

 

Figure 47: Error message prompted when login fails (top) and new options enabled when successful (bottom). 

 

 

Figure 48: If all the conditions are met, the update if propagated to the DB. 

Few extra constraints are set on the process to ensure validity of the data. Firstly, the user 

cannot edit the property names because this may affect the schema of the original data. 

Furthermore, some critical values, such as the cityobject_id property, cannot be edited as 

well, since they are primary keys to the features in the DB. Finally, the user has to make sure 

that the data types of the edited properties are respected otherwise the changes will fail (e.g., 

a property expecting a number should not be provided with a text, etc.). On the validation of 

the updates by the user, those additional checks are performed and if successful, the changes 

are propagated to the DB (Figure 48). 

4.2 Visualization of the updated attributes via the interface (D8) 
The newly changed properties of the DT features need to be reflected in the UI. While 

reloading the model could be the most straightforward way to do this, (since the newly 

updated DB would then be queried again), this would not be an efficient solution as the 

ongoing scene of the user would be lost and they would have to restart from scratch. Instead, 

we update the properties of the entities loaded in the scene in parallel to the DB update 

process.  

Figure 49 shows the displayed attributes of the updated feature. This has the advantage to 

seamlessly affect only the entities that are changed without requiring any scene reload. 

However, among the users with running DT instances at the time of the update, only the one 

who performed the changes will be able to see it through the UI. The other current users will 



only get access to the changes when instantiating a new session, while any newly joining user 

will be able to see it directly as well. 

 

Figure 49: Visualisation of the updated attribute on the UI. 

 

5 Discussion on Transferability, Reusability, and Maintainability 
 
A successful DT should be able to support the main characteristics of software quality, which 
includes the transferability, reusability, and maintainability. Transferability generally 
responds to the question of transferring the provided logic to other environments with 
different settings and whether this can be supported. Reusability of the product evaluates if 
different components of the product work as modules and can be modified, built upon, or re-
applied elsewhere. It is one of the core concepts in FAIR Principles for Research Software and 
should be considered to ensure the quality of deliverables. Eventually, maintainability ensures 
that the final platform can be extended faster while reducing the costs and efforts of 
maintenance. These characteristics matter specifically in the DT domain as it allows each 
project to be the cornerstone of the other, letting the experiences flow and grow over the 
stack of projects and helping the projects to save time and budget significantly. 
 
To respond, several approaches can be employed. A possible workaround is to create 
abstraction between the physical model, the logic, and the data. In this project, we employed 
Object-Relational Mapping (ORM) to realize this abstraction. In what follows, first the logic 
and benefits of ORM are discussed and then, technical details of the implementation of the 
approach are presented. 
 

5.1 Object-Relational Mapping as a Solution 
 
ORM is a mechanism that makes it possible to address, access, and manipulate objects from 
databases with a layer of abstraction. This means that the logic can employ the database 
objects without having to consider how those objects interact with the data sources (Figure 
50).  
 
 



 
Figure 50: Object Relation Mappers acts as a mediator to give a level of abstraction betwen database and the code logic. 

 
One of the key benefits of employing ORM is that it lets programmers maintain a consistent 
view of objects over time, even as the sources that deliver them change, together with the 
sinks that receive them and the applications that access them. Based on the abstraction, ORM 
manages the mapping details between a set of objects and underlying relational databases, 
XML repositories, or other data sources and sinks, while simultaneously hiding the often-
changing details of related interfaces from developers and the code they create. 
ORM can also hide and encapsulate changes in the data source itself, so that when data 
sources or their APIs change, only ORM needs to change to keep up—not the logic that uses 
ORM to insulate themselves from this kind of effort. This capacity helps developers take 
advantage of new classes as they become available and makes it easy to extend ORM-based 
applications. In many cases, ORM changes can incorporate new technology and capability 
without requiring changes to the code for related applications. This project uses SQLAlchemy 
as an open-source and prominent toolkit and ORM in the Python environment.  
 

5.2 Using ORM in the Backend Stack 
 
This project employs the following backend stacks to support the requirements of the project 
while ensuring the quality characteristics: 
 

Compartment Technology + Version 

Web framework Flask (2.1.2) 

ORM SQLAlchemy (1.4.37 + package Flask-SQLAlchemy 2.5.1) 

Programming language Python 3.8.10 
 

Database Postgres (12.11) + PostGIS (3.2) 

Deploying server HTTP Web Server: Apache/2.4.41 
- Port 80: for UI 
- Port 443: for Flask server 

 

OS: Ubuntu 20.04.4 LTS 

Table 2: The backend stacks in LCDT. 

 
This means that the ORM is at the interaction level between the flask server and RDBMS 
(Figure 51). 



 
Figure 51: The database and service layer architecture. 

 

5.3 Employing SQLAlchemy 
 
SQLAlchemy provides a generalized interface for creating and executing database-agnostic 
code without needing to write SQL statements. The abstraction capability allows the usage of 
various RDBMSs in the background – e.g., Postgres, Oracle, or SQLite – while the logic stays 
independent from the database layer.  This facilitates the transferability of the logic to other 
contexts. This also helps tackles maintainability issues using traditional inline SQL queries that 
bring readability difficulties are hard to debug. Figure 52 shows how a sample inline SQL 
command can be translated into a maintainable and easy to read python method. The 
capability also allows the automation of any SQL commands, specifically the commonly used 
create, read, update, and delete operations.  
 
 

 

 

 
Figure 52: Translation of SQL inline commands to pythonic methods. 

 
 

5.4 Defining the Objects 
 
The first step in employing the ORM is the definition of the objects. With the implementation 
of the 3DCityDB schema, we follow the Database-First approach that allows us to use a legacy 
database in the ORM application. Thus, we first need to define each of the database entities 
as objects within the code to enable further manipulation/analysis on top of them. To do this 

PostgreSQL + PostGIS + 3DCityDB 

Flask 

ORM (SQLAlchemy) 

Service 
Layer 

surfaceGeometries AS ( 
                    SELECT * 
                    FROM citydb.surface_geometry INNER JOIN thematicSurfaces 
                    ON thematicSurfaces.lod2_multi_surface_id = surface_geometry.parent_id 
                    WHERE geometry IS NOT NULL 
                ), 

def createSurfaceGeometries(): 
result = SubQuery.join(SurfaceGeometry, ThematicSurfaces, 'parent_id', 'lod2_multi_surface_id', \  

'surfaceGeometries', 'SurfaceGeometry.geometry != None’) 
    return result 



the following objects were defined considering the features, their corresponding hierarchal 
structure and data types:  

- Building 
- ThematicSurface 
- SurfaceGeometry 
- TransportationComplex 
- Road 
- CityObject 
- CityObjectGenericAttribute 
- GenericCityObjec 
- Sensor 
- Tin34kWLabel 
- WaterBody 

These objects were then used in the processes and analytical operations, such as those 
described in Section 2.1. 
 

5.5 Basic Operations and Helper Methods over ORM 
 
To facilitate and support effective queries on database objects, we implemented a range of 
operations over SQLAlchemy. This included basic SQL operations, from insert/delete and 
updates, to ordering features, joining and filtering results, bounding box intersections, JSON 
aggregations and crosstab queries. All spatial operations, such as collection, transformation, 
intersection and GeoJSON generation, are supported (Figure 53).  
 

 
Figure 53: Various type of operations and helper methods supported by LCDT ORM realization. 

As these methods are based on basic SQLAlchemy methods and properties, they are 
independent from the physical model, allowing the abstraction of the logic from the actual 
database technology. This allows the implemented methods to be used in the code logic to 
support the analytical requirements of the LCDT. 
 

6 Conclusions 
 

Basic Operations

• order

• getattributes

• jsonify

• ...

General methods

• join

• update

• filter

• ....

Spatial methods

• st_intersects

• st_collect

• st_transform

• ...



This project is a part of the research and development agenda of leading geospatial 
institutions such as FrontierSI, AURIN, Data61, UNSW and Spatial Services towards maturing 
the concept of spatial Digital Twins to support urban decision-making. This project 
concentrated on three important aspects of Digital Twin, i.e. integration of data, 3D analytics 
and maintenance/update.  The project also demonstrated the use of the 3D international 
standard CityGML and specifically its Postgress/PostGIS implementation 3DCityDB. The Digital 
twin covered the central part of the City of Liverpool, but it was sufficient to obtain a glimpse 
of all challenges. It is an excellent first step in building extended, application-broader Digital 
Twin, at a second stage, help to clarify critical spatial data portals, standards, software and 
interfaces.  
 
This project demonstrated the challenges in building spatial Digital Twins for large scale urban 
applications. It is also an illustration of a functioning digital twin using existing data and open-
source technologies.  Such an implementation can represent the contemporary environment 
across a range of detail and provide access to IoT data feeds directly via API, approaching a 
real-time representation.  
 
The information is structured according to an international open standard CityGML and its 
database schema implementation 3DCityDB for the free ware database management 
Postgres/PostGIS. As mentioned previously, the use of spatial DBMS allows to 1) organise all 
data in a standardised way, 2) perform many spatial queries at a database level using the 
DBMS functionality and 3) access and query the data from a different software. We have 
shown examples with QGIS and Cesium. In a similar way the data can be accessed from 
ArcGIS, Revit and so forth for a range of tasks, such as urban planning and  architeture.  
 
Specifically interesting for a large group of users is the visualisation and interaction in an 3D 
immersive environment via accessible web-based tools, i.e. Cesium. This means that local 
governments and citizens are not exposed to great technical hurdles, nether they need to 
follow specialised training when the system is deployed. Notably, the formats employed in 
this demonstration are congruent with W3C and OGC standards, such as XMLbased CityGML, 
GeoJSON and REST API. Having constructed this extensible foundation using web-enabled 
open-source resources, the potential for access, intuitive operation, sharing and update is 
maximised, while extended facilities are also available for implementation, such as facilitating 
secure/authorised access. 
 
During the data procurement process, however, collecting all needed data  was difficult, even 
with formal data sharing agreements. For instance, any existing BIM data was usually kept 
with 3rd parties and unavailable. Similarly, pedestrian counters on video surveillance cameras 
was reduced to a simple number/count and visualised on an image covering the vield of view 
of the video camera. This placed many burdens on further analysis into identifying pedestrian 
direction and linking it to other parameters such as weather conditions. In the future, 
interoperability with proprietary models will require multipartite agreement on, and 
compliance with exchange standards to best ensure downstream value add when public data 
is feeding commercial implementations. 
 
The project also clearly revealed that efficiency, accuracy and detail need to be considered in 
order to create a convincing and trustworthy analogue of the original environment that is as 



easy to use as possible. In terms of scalability, levels of details is critical and increasing levels 
of detail must be accommodated. The Digital twin needs to work with incomplete data inputs 
as well and allow to re-create and fill gaps. The ability to develop more complex datasets from 
known source data such as street and rail centerlines, building footprints and derived 
pedestrian walkways is an efficient way to employ proxy data if needed, and presents to 
opportunity to ingest higher quality data as they become available.  
 
The topologically correctness and validity of data cannot be avoided and will always require 
several additional steps. Data are maintained by different institutions for different purposes 
and the procedures for digitalisation will result in a range of differences in feature delineation, 
accuracy, detail and precision. A typical example is the integration of above ground features 
such as Buildings, Ttansportation, WaterBodies, Vegetation with terrain. In this project we 
applied a constrained triangulation assuming the features have a higher accuracy compared 
to the obtained digital terrain.  As discussed, a number of cleaning operations had to be 
performed to achieve topologically correct fusion of data.  
 
This project has also developed a shadow casting algorithm, which allows to compute shaded 
areas for certain time intervals, which were also stored in the database. The 3D terrain is 
important for impactful 3D analysis like modelling shadow-fall from one building to another, 
the coverage of tree canopy shading. When combined with dynamic pedestrian data, the 
interactions between several factors taking into account slope, shade, time of day, season 
and the general built environmental context can provide a powerful tool for decision-making.  
 
This project provided many tools for automatic processing, modelling and analysis.  The 
automated approach for deriving integrated and managing 3D environments plays a critical 
role in supporting higher quality analysis in the subsequent phases of user-defined workflows, 
especially when users are not expects in 3D geospatial applications. 
 
An important feature of this DT is the ability to ingest many diverse types of urban data into 
a coherent environment around government management and in turn, output a variety of 
’views’ appropriate for the aims of the end-users. In a next phase, the results of this project 
should be tested with both expert and non-expert users to elicit user feedback regarding ease 
of use and suggestions for future development. 
 
Regardless of the purpose of a DT, it is important that organisations producing or collecting 
data ensure their durability and interoperability as much as possible. While this is a significant 
research topic on its own, we believe that open standards are the right way to go for future-
proofing today’s data for the DTs of tomorrow. They also remain the current best practice in 
terms of interoperability through avoidance of unharmonized data schemas and 
commercial/proprietary lock-ins, while remaining compatible with new technological 
advances (e.g., API, web support, etc.). 

This project provided first practical insight to building spatial Digital Twins. In future research 
we will concentrate to connecting to new national programs such Digital Atlas and ANZLIC 
principles for DTs, the mechanisms and the value of connecting to other DTs in an ecosystem 
or Digital treads, examine and recommend technologies, standards and procedures to 
support urban planning and decision making. 
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