
Final report 2020
Methods for identification of free
navigable space

Mitko Aleksandrov, Abdoulaye Diakité, Jinjin Yan, Wei Li and Sisi Zlatanova

Introduction
The research within this project is a part of four-year (2018-2022) international project named iNous
focusing on seamless indoor-outdoor navigation for emergency response. The project is funded by
South Korea government and leaded by Pusan University, South Korea. The overall idea of the
project is to develop a workflow for navigation for the purpose of disaster management system as
illustrated below (Figure1):

Figure 1. Workflow of the proposed Indoor disaster response system

In the third year of the project, the team of professor Zlatanova has concentrated on advancing the
fee space identification from point clouds using voxels. The general scope of the research and
developments have been defined as:

• Comparing algorithms for voxel space identification and subdivision
• Comparing algorithms for voxelisation of vector models
• Rounding-off the developments of IndoorGML and preparing examples
• Investigation of approaches to store voxels in a DBMS
• Developing algorithms to generate F-Spaces (functional).

The above objectives have been achieved by the following activities and developments:

• Literature review on voxelisation
• Preparing GML examples for IndoorGML
• Data schema and tests for storage of voxels.

Administrative information
In the specified period the following researchers were involved: Mitko Aleksandrov, Abdoulaye
Diakité, Jinjin Yan, Wei Li and Sisi Zlatanova. In this period no specific meetings were organised with
the other teams on this specific topic although a number of discussions were carried out regarding the
IndoorGML.

Scientific project information
This year the research continued developing a voxel-based workflow for indoor modelling. Two
major topics were considered 1) voxelization of geometric models and 2) management of voxel data.
As discussed in (Diakite and Zlatanova, 2019), BIM and B-reps 3D representations can become very
complex and lead to issues related to validity and intersections of solids or existence of tiny solids.
Voxelisation of B-reps can be a promising approach to avoid computational complexity and validity
issues. A series of algorithms were investigated and a journal papers is in process of preparation. As
often discussed in the literature high resolution voxel models can result in large volumes of data. We
have investigated several methods to for management of voxel spaces in PostGIS, using different
spatial schemas. Parallel to the voxel-based workflow, we have continued the work on finalising
IndoorGML 2.0

Algorithms for voxelisation
A literature review was completed on voxelisation approaches. Generally, voxelisation is a discrete
approximation of an object or space with embedded objects. Voxel-based approaches are used in
many domains, but most of the algorithms originate from computer graphics. The voxelisation can be
subdivided in three general group referring to points, curves, surfaces and solids. Currently, no
uniform approach exist that can be applied for all types of objects and therefor it is important to
identify which algorithms are most appropriate for geographic objects. Geographic objects are related
to each other and the relationship should be preserved in the voxelised space. This often relates as a
‘half-voxel’ problem, which can create all kind of issues from shift of objects, to reduction or increase
of objects and even disappearing of objects.

Storage of Voxels
To make use of voxel data in different scenarios, an efficient storage and retrieval system is
therefore needed. We investigate four data layouts for storing and managing the 3D raster data in
PostgreSQL/PostGIS, namely - (1) a flat ARRAY table; (2) a POINT geometry table; (3) a
MULTIPOINT geometry table, and (4) a PCPATCH table with the help of Pointcloud.

ARRAY Layout
The majority storage models can be adopted for voxel management is based upon the organisation
of voxels in the flat ARRAY table, where each voxel is stored separately in a single row using common
data types (INTEGER or NUMERIC). Each voxel attribute constitutes a separate field. The voxels are
populated in a table and indexed using a B-tree index in the X, Y, and Z coordinates respectively.

Figure 2 Example of a table created in PostgreSQL to store ARRAY

 POINT Layout
A spatial POINT represents a single location on the Earth. This point is represented by a single
coordinate (including either 2-, 3- or 4-dimensions). Points are used to represent objects when
the exact details, such as shape and size, are not important at the target scales. For POINT table, we

keep semantic information, and create one geometry column with 3D point in PostGIS. Regarding
to index, we create B-tree index on semantic columns, and GiST index on geom column.

Figure 3: Example of a table created in PostgreSQL to store POINT layout.

MULTIPOINT Layout
MULTIPOINT is another geometry that consists of a collection of POINT. In this kind of layout, we
consider regarding each object as one multipoint, that means, voxels in one MULTIPOINT geometry
have same objID.

When using the multipoint geometry type, we need to consider how to cut the voxel data, that is,
those Voxels stored in a multipoint object. We propose a semantic-based voxel data partitioning
strategy. Specifically, we want to store all voxels with the same semantic information in a multipoint
object, including object semantics and IFC semantics. Moreover, similar to POINT, two indexes (i.e.,
B-tree and GiST) are built on semantic columns and geom respectively.

Figure 4:. Example of a table created in PostgreSQL to store MULTIPOINT layout.

PCPATCH Layout
Pointcloud is a PostgreSQL extension for storing point cloud (LIDAR) data, where PcPatch can be
regarded a potential structure used for management of voxel model in PostgreSQL. In our case, we
collect a group of voxels with same semantic information into a PcPatch. Each patch should
hopefully contain voxels that are near together. That is the same partition strategy as MULTIPOINT.

Following the Pointcloud schema 3 (PostgreSQL Pointcloud deals with all this variability by using a
“schema document” to describe the contents of any particular LIDAR point.), we prepare a schema
document to describe the contents of any particular voxel. Each voxel contains three dimensions,
named X; Y; Z, and each dimension will be of INTEGER data type, with scaling 0:1. This schema
document is stored in the pointcloud formats table, along with a pcid (i.e.,“pointcloud identifier”).

Different from multipoint representation, GiST index is created based on 2D bounds of the patch
because it cannot be indexed directly on the PcPatch type. Fortunately, Pointcloud provides

PC EnvelopeGeometry(PCpatch) functions that can directly obtain bounding box as
a PostGIS Polygon 2D. Thus, we can index 2D Polygon.

Figure 5: Example of a table created in PostgreSQL to store PCPATCH layout.

The different data schemas influence the spatial queries that can be performed. The ARRAY Layout
is simple but the native PostGIS spatial operations can not be executed. Point and Multopint use the
native PostGIS spatial data types, and all spatial indexing and spatial operations can be used. PC-
Patch is a data type dedicated to point clouds and although a spatial data type, it cannot use the
geometric functions and opetation of PostGIS. It has several dedicated functions. If the purpose of
the data base is to maintain objects, the Miltipoint data type is most beneficial. However, if each
voxel carries information, Mulipoint and PC-Patch are not appropriate. Point data type can be
considered superior to Array because the spatial functions can be used. Semantic queries can be
executed in all data layouts. Mutipoint and PC-Patch are advantageous to Pints and Arrays because
the tables have less records and hence the queries are executed quicker. Figures below illustrate
sematic queries.

Figure 6: Query of all doors in a building: 2D (left) and 3D(right) view.

Figure 7: Sematic query of all Spaces, Windows, Doors and Slabs: 2D (left and 3D (right) view

IndoorGML 2.0
Several changes were brought compared to IndoorGML 1.x. Some classes and attributes were
renamed, modified, or added in the standard for the sake of simplicity, clarity and genericness. To
facilitate the comparison, Figure 1 illustrates the core module of IndoorGML1.x and IndoorGML2.0
that integrates the changes detailed in the following subsections.
Renamed Classes
PrimalSpaceLayer and DualSpaceLayer: The two principal classes of the core module are the
dedicated to the representation of the primal space (3D geometry) and the dual space (3D topology).
While they used to be referred to as PrimalSpaceFeatures and MultiLayeredGraph in IndoorGML1.x,
they are now renamed respectively as PrimalSpaceLayer and DualSpaceLayer. This choice is obviously
motivated by a clarification goal.

CellBoundary: According to the definition of IndoorGML, the primal space describes the indoor space
as an aggregation of space units called cells. Those 3D space cells, and their boundaries were
respectively called CellSpace and CellSpaceBoundary. In the IndoorGML2.0 proposal, the latter is
renamed as CellBoundary.

Node and Edge: One of the common confusions involved in the use of IndoorGML1.x is related to the
description of the topological network in the dual space. In fact, the network which is derived based
on the Poincare´ Duality is composed of nodes representing the cells of the primal space and edges
representing their adjacency and, under certain conditions, their connectivity. For the sake of
completeness, one should note that ’connectivity’ relationship, which is of importance for navigation
applications, is a type of neighborhood relationship that corresponds to the adjacency graph of
navigable spaces only. However, those graph components were called State for a node and Transition
for an edge in IndoorGML 1.x. While such naming has not been motivated in the standard definition,
it refers to navigation cases in which people are commonly staying in spaces, which gives their state.
While the movement from one space to another is short-term and represents their transition. These
notations then become confusing for non-navigation applications. Therefore, they are renamed into
Node and Edge in IndoorGML2.0.

Modified classes and attributes
Geometry of cells and external references: The UML diagram of IndoorGML1.x suggests that there
are dedicated classes for the geometric information related to the cell spaces and their boundaries,
as well as the network. The concept of keeping geometry in separate classes has its roots in topological
representations, i.e. common faces are to be maintained once in the model and they are ’reused’ by
the neighbouring solids. However, the indoor spaces used for navigation and other LBS applications
most commonly do not share faces, which results in storing all faces of solids. Hence, the
classes CellSpaceGeometry, CellSpaceBoundaryGeometry and Geometry (for the network) can be
simply considered as attributes of those features. This is therefore clarified in the UML of
IndoorGML2.0, where any CellSpace, CellBoundary, Node and Edge is provided with an
attribute CellSpaceGeom, CellBoundaryGeom and Geometry (for Node and Edge). Similar process is
done for the external references for which an attribute externalReference has been added
to CellSpace and CellBoundary classes.
InterLayerConnection: The InterLayerConnection class is dedicated to the description of the links
between different layers. While in IndoorGML1.x it was specifically dedicated to the connection
between network components (MultiLayeredGraph), it is extended in IndoorGML2.0 to also
account for interlayer connections between elements of the primal space. This is motivated by the
fact that the notion of layer is improved in IndoorGML2.0. A layer can be solely composed of primal
space features, dual space features or a combination of both. In the previous version of the standard,
only interconnection between dual spaces of different primal spaces was possible.

New class and attributes
The need to improve the information organisation in the standard and its support for indoor features
other than spaces led to the introduction of one new class and several attributes in the core module.

ThematicLayer: With IndoorGML1.x, a model is composed of one IndoorFeatures instance which
aggregates two lists: one instance of PrimalSpaceFeatures which aggregates all
the CellSpace elements existing in the model, and one instance
of MultiLayeredGraph aggregating SpaceLayer components as well
as InterLayerConnection instances. As mentioned previously, this enables the multi-layer mechanism
only for the dual space (the networks). To make it possible to efficiently store several layers of
geometry (CellSpace) and/or topology (Node and Edge), a reorganisation is needed.
The ThematicLayer is proposed for IndoorGML2.0, as an aggregation
of PrimalSpaceLayer and DualSpaceLayer instances to help defining layers separately with the ability
to contain fully or partly components of the core module. The class comes with two
attributes: semantic and Theme. The semantic is set as a boolean as it is simply an indication that
there is semantic information associated to the PrimalSpaceLayer. Because the navigation module is
currently the only semantic module available, a boolean is enough to indicate its presence for now.
This is however susceptible to evolve in the future (e.g. into a codeList). The Theme attributes
determines whether the layer is of type TOPOGRAPHIC, SENSOR, LOGICAL, TAGS or UNKNOWN.
This codeList is already in use to determine the class type of a SpaceLayer entity in
IndoorGML1.x. Therefore, it may also be subject to change in the future, once more relevant themes
will be identified (e.g. we could introduce a LEGAL theme considering related work in a land
administration standard (Alattas et al., 2017)).

PoI: The notion of PoI occupies a central place in LBS applications. As it name says, it corresponds to
locations of interest for a specific purpose on a map. A 3D indoor map such as IndoorGML should
therefore be able to represent such notion (Park et al., 2016). While recent works are investigating
potential additional IndoorGML modules for this purpose (Claridades et al., 2019), we present here a
preliminary approach that can directly fit to the current core module of the standard.

Because every space comes down to a CellSpace in indoorGML and any space can be a location of
interest, may it be empty or occupied by a physical object (see Section 3), we propose to append the
attribute PoI to the CellSpace class of the core module. For the moment, the attribute is just
a boolean allowing to tag a cell as a PoI and implement specific considerations with respect to it in the
corresponding application. Thanks to the relations between the primal and dual space in the standard,
one can use the information on a navigation network for example and put a higher weight of edges
leading to nodes associated with PoI cells.

Figure 8: UML Diagram of IndoorGML core model 1.0

Figure 9: UML diagram of IndoorGML core module

GML examples
We provide some case illustrations of IndoorGML2.0 to demonstrate the flexibility offered by the
new UML diagram. We explore different scenarios: (a) geometry only, (b) network only and (c)
geometry + network combined. This involves the use of other common standards as data source and
lead to specific use of the classes available. We use a BIM (IFC) model for the test (see Fig. 10),
focusing mainly on its components that are relevant to IndoorGML.

Figure 10: A BIM model (left) and its corresponding spaces and openings (right)

Geometry only
IndoorGML could be for the sole purpose of sharing the indoor spaces as CellSpace entities. Typically,
every IfcSpace entity coming from an IFC model is a direct correspondence to a CellSpace in
IndoorGML. The 3D geometry can be directly stored in the cellSpaceGeom attribute, and additionally,
CellBoundary entities can also be directly stored if available.

Figure 11: An indoorGML model with geometry only

Network only
Similarly to the previous example, an IndoorGML file could serve for the exchange of topological
(network) information of a building model.

Figure 12: IndoorGML with topology (network) only.

In a scenario where the geometry is not needed, this could be a convenient option to use,
guaranteeing lightweight files. Figure 12 shows an example of rooms and openings adjacency network
computed from the input BIM model. The Node entities are computed using the centroid of the
IfcSpace elements, while the Edge elements are obtained by connecting the nodes of adjacent spaces.
Similarly to space boundaries, the information of the connectivity between the Ifc entities may be
directly available in the model (e.g. using IfcRelSpaceBoundary relations). Note that for the case of the
topology only, all the classes of the core model are still required, but the CellSpace entities will carry
no geometric attribute.

Geometry, topology and semantic
Most of IndoorGML files are expected to carry those information (although semantic is currently not
included in the core module). The image below shows the structure of an IndoorGML2.0 file with
geometric description of CellSpace objects, as well as semantic information associated to the cells,
based on the navigation module (e.g. navi:GeneralSpace). The network part carries topological
information and the geometry of the network, with nodes and edges. This structure is similar for the
previous example, with only the relevant part being described in the corresponding files.

[…]

[…]

Other related topics
Within this project two other related topics were investigated. Substantial work was completed within
IndoorGML 2.0 as well as extending the space-based concept to outdoor. Two critical papers for
creating outdoor spaces where published.

Mapping UML schema to GML and SQL (Jinjin)
The UML diagram of IndoorGML 2.0 was automatically mapped to GML and SQL technical
implementation. For the automatic mapping Enterprise Architect was used.

o Mapping UML schema to GML
The Enterprise Architect offers interface to achieve this key step, which includes four steps:
Code -> Export an XML Schema (XSD) File -> Set configurations -> Generate.

The first two steps can be seen in Figure 10. Figure 11 shows the rest two steps. In
configurations setting, the Source Package of UML, encoding (default is Unicode (UTF-8)), the
filename of the exported GML XSD file, as well as other preference options, should be
specified. In this stage, we can preview and check the XSD to be exported by clicking the “View
Schema”. After clicking the bottom “Generate”, the generating processes are monitored in
the Progress box.

Figure 10: The interface of Enterprise Architect for mapping UML schema to GML

Figure 11: The interface of setting configures in Enterprise Architect

After finishing the whole process, we can find the exported XSD file. For instance, in the UML
model, there are three classes: PrimalSpaceLayer, CellSpace and CellBoundary, in which each
class has several attributes and the three classes have relationships. By following the four
steps mentioned above, the three classes and their relationships are correctly recorded in the
XSD file (Figure 13).

Figure 12: The UML diagram of three classes: PrimalSpaceLayer, CellSpace and CellBoundary

Figure 13: The XSD of the three classes: PrimalSpaceLayer, CellSpace and CellBoundary

Mapping UML schema to SQL
The Enterprise Architect also offers interface to map UML schema to SQL, which includes three steps:
(i) Open EA file and Go to Configure -> Setting -> Database Datatypes; (ii) Select your file and then go
to Design -> Transform -> Apply Transformation; and (iii) Select the DDL folder in the Project Browser
and then go to Code -> Export a Database Schema (DDL).

I. Open EA file and Go to Configure -> Setting -> Database Datatypes (Figure 14)

Figure 14: The interface of Enterprise Architect for mapping UML schema to SQL

In Database Datatypes select PostgreSQL and then make it as default choice (Figure 15).

Figure 15: Set configurations of Database Datatypes

II. Select your file and then go to Design -> Transform -> Apply Transformation (Figure 16).

Figure 16: Select Design, Transform, and Apply Transformation

In the Model Transformation Select the Transformation as DDL and then press Do Transform
(Figure 17).

Figure 17: Do Transform

As result, a new folder will appear in the project browser (DDL folder) (Figure 18).

Figure 18: Select DDL folder

III. Select the DDL folder in the Project Browser and then go to Code -> Export a Database
Schema (DDL) (Figure 19).

Figure 19: Select Code and Export a Database Schema (DDL)

Then select output file name and then press Generate (Figure 20 and 21).

Figure 20: Set filename and path and generate

Figure 21: The generated SQL scripts

Milestones
• Voxelisation: completed literature review.
• Management of voxels in DMS: investigated 4 approaches
• Completing IndoorGML 2.0:
• Space subdivision according to FSS using voxels: R-space (free navigable space) and O-spaces

completed. An investigation on the way to automatically identify F-space is ongoing.

Conclusions
The project continues according the planning. A summary of the completed developments is given
below:

• GML example for indoorGML 2.0
• SQL schema and SQL queries for voxels

Publications within this project
Diakité, A. A., Zlatanova, S., Alattas, A. F. M., and Li, K. J., 2020, Towards IndoorGML 2.0: Updates
and Case Studies illustrations, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B4-2020,
337–344

Nikoohemat, S. A.A. Diakité, V. Lehtola, S. Zlatanova, G. Vosselman, 2020, Consistency grammar for
3D indoor model checking, Transaction in GIS , on-line (doi)

W. Li, S. Zlatanova, and B. Gorte, 2020, Voxel data management and analysis in PostgreSQL/PostGIS
under different data layouts, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., VI-3/W1-2020,
35–42, https://doi.org/10.5194/isprs-annals-VI-3-W1-2020-35-2020, 2020

Zlatanova, S., J. Yan, Y. Wang, A. Diakité, U. Isikdag, G. Sithole and J. Barton, 2020, Spaces in Spatial
Science and Urban Applications—State of the Art Review, ISPRS Int. J. Geo-Inf. 2020, 9(1), 58;

https://doi.org/10.1111/tgis.12686

	Introduction
	Scientific project information
	Algorithms for voxelisation
	Storage of Voxels
	ARRAY Layout
	POINT Layout
	MULTIPOINT Layout
	PCPATCH Layout

	IndoorGML 2.0
	Renamed Classes
	Modified classes and attributes
	New class and attributes

	GML examples
	Geometry only
	Network only
	Geometry, topology and semantic

	Other related topics
	Mapping UML schema to GML and SQL (Jinjin)
	Mapping UML schema to SQL

	Milestones
	Conclusions
	Publications within this project

