

AUSTRALIAN DRUG TRENDS 2025

Key Findings from the National Ecstasy and Related Drugs Reporting System (EDRS)
Interviews

AUSTRALIAN DRUG TRENDS 2025: KEY FINDINGS FROM THE NATIONAL ECSTASY AND RELATED DRUGS REPORTING SYSTEM (EDRS) INTERVIEWS

Rachel Sutherland¹, Antonia Karlsson¹, Julia Uporova¹, Lily Palmer¹, Haniene Tayeb¹, Agata Chrzanowska¹, Udesha Chandrasena¹, Olivia Price¹, Raimondo Bruno^{1,2}, Paul Dietze^{1,3,4}, Simon Lenton^{1,3,4}, Caroline Salom^{1,5}, Sophie Radke², Mila Sumner³, Joanna Wilson³, Jodie Grigg⁴, Catherine Daly⁵, Natalie Thomas⁵, Louisa Degenhardt¹, Michael Farrell¹ & Amy Peacock^{1,2}

National Drug and Alcohol Research Centre, University of New South Wales Sydney
 School of Psychology, University of Tasmania
 Disease Elimination Program, Burnet
 National Drug Research Institute and enAble Institute, Curtin University
 Institute for Social Science Research, The University of Queensland

ISSN 2981-9318 ©NDARC 2025

This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. All other rights are reserved. Requests and enquiries concerning reproduction and rights should be addressed to the National Drug and Alcohol Research Centre, University of New South Wales Sydney, NSW 2052, Australia.

Suggested citation: Sutherland R, Karlsson A, Uporova J, Palmer L, Tayeb H, Chrzanowska A, Chandrasena U, Price O, Bruno R, Dietze P, Lenton S, Salom C, Radke S, Sumner M, Wilson J, Grigg J, Daly C, Thomas N, Degenhardt L, Farrell M, & Peacock A. Australian Drug Trends 2025: Key Findings from the National Ecstasy and Related Drugs Reporting System (EDRS) Interviews. Sydney: National Drug and Alcohol Research Centre, UNSW Sydney; 2025. Available from: https://doi.org/10.26190/unsworks/31587

Please note that, as with all statistical reports, the data in this report may be subject to minor revisions over time. For the most up-to-date information, please refer to the online version at <u>Drug Trends</u>.

This report was prepared by the National Drug and Alcohol Research Centre, UNSW Sydney. Please contact the following with any queries regarding this publication: rachels@unsw.edu.au or drugtrends@unsw.edu.au

Table of Contents

BACKGROUND AND METHODS	7
SAMPLE CHARACTERISTICS	11
NON-PRESCRIBED ECSTASY	19
METHAMPHETAMINE	36
NON-PRESCRIBED PHARMACEUTICAL STIMULANTS	51
COCAINE	56
CANNABIS AND/OR CANNABINOID-RELATED PRODUCTS	63
KETAMINE, LSD AND DMT	75
NEW PSYCHOACTIVE SUBSTANCES	90
OTHER DRUGS	95
DRUG-RELATED HARMS AND OTHER BEHAVIOURS	105

List of Tables

TABLE 1: GUIDE TO TABLE/FIGURE NOTES	10
TABLE 2: DEMOGRAPHIC CHARACTERISTICS OF THE SAMPLE, NATIONALLY, 2024-2025, AND BY CAPITAI	<u>_</u>
CITY, 2025	
TABLE 3: PAST SIX MONTH USE OF ANY NON-PRESCRIBED ECSTASY, BY CAPITAL CITY, 2003-2025	23
TABLE 4: PAST SIX MONTH USE OF NON-PRESCRIBED ECSTASY PILLS, BY CAPITAL CITY, 2003-2025	24
TABLE 5: PAST SIX MONTH USE OF NON-PRESCRIBED ECSTASY CAPSULES, BY CAPITAL CITY, 2008-2025.	25
TABLE 6: PAST SIX MONTH USE OF NON-PRESCRIBED ECSTASY CRYSTAL, BY CAPITAL CITY, 2013-2025	25
TABLE 7: PAST SIX MONTH USE OF NON-PRESCRIBED ECSTASY POWDER, BY CAPITAL CITY, 2005-2025	26
TABLE 8: PAST SIX MONTH USE OF ANY METHAMPHETAMINE, BY CAPITAL CITY, 2003-2025	40
TABLE 9: PAST SIX MONTH USE OF METHAMPHETAMINE POWDER, BY CAPITAL CITY, 2003-2025	41
TABLE 10: PAST SIX MONTH USE OF METHAMPHETAMINE CRYSTAL, BY CAPITAL CITY, 2003-2025	42
TABLE 11: PAST SIX MONTH USE OF NON-PRESCRIBED PHARMACEUTICAL STIMULANTS, BY CAPITAL CIT	ГΥ,
2007-2025	53
TABLE 12: PAST SIX MONTH USE OF COCAINE, BY CAPITAL CITY, 2003-2025	59
TABLE 13: PAST SIX MONTH NON-PRESCRIBED USE OF CANNABIS AND/OR CANNABINOID-RELATED	
PRODUCTS, BY CAPITAL CITY, 2003-2025	67
TABLE 14: PAST SIX MONTH USE OF NON-PRESCRIBED KETAMINE, BY CAPITAL CITY, 2003-2025	78
TABLE 15: PAST SIX MONTH USE OF LSD, BY CAPITAL CITY, 2003-2025	
TABLE 16: PAST SIX MONTH USE OF DMT, BY CAPITAL CITY, 2010-2025	89
TABLE 17: PAST SIX MONTH USE OF ANY NPS (EXCLUDING PLANT-BASED NPS), NATIONALLY, AND BY	
CAPITAL CITY, 2010-2025	92
TABLE 18: PAST SIX MONTH USE OF NPS BY DRUG TYPE, NATIONALLY, 2010-2025	93
TABLE 19: AUDIT TOTAL SCORES AND PER CENT OF PARTICIPANTS SCORING ABOVE RECOMMENDED	
LEVELS, NATIONALLY, 2010-2025	111
TABLE 20: TOTAL ECSTASY AND METHAMPHETAMINE SDS SCORES, AND PER CENT OF PARTICPANTS	
SCORING ABOVE CUT-OFF SCORES INDICATIVE OF DEPENDENCE, AMONG THOSE WHO REPORTED)
PAST SIX MONTH USE, NATIONALLY, 2015-2025	
TABLE 21: SEXUAL HEALTH BEHAVIOURS, NATIONALLY, 2021-2025	118
Table 22: Types of Health Services accessed for Alcohol and Other Drug Reasons and Fo	
ANY REASON IN THE PAST SIX MONTHS, NATIONALLY, 2022-2025	
TABLE 23: MEANS OF PURCHASING AND OBTAINING ILLICIT DRUGS IN THE PAST 12 MONTHS, NATION	ALLY,
2019-2025	131

List of Figures

FIGURE 1: DRUG OF CHOICE, NATIONALLY, 2003-2025	16
FIGURE 2: DRUG USED MOST OFTEN IN THE PAST MONTH, NATIONALLY, 2011-2025	17
FIGURE 3: WEEKLY OR MORE FREQUENT SUBSTANCE USE IN THE PAST SIX MONTHS, NATIONALLY, 200)3-
2025	18
FIGURE 4: PAST SIX MONTH USE OF ANY NON-PRESCRIBED ECSTASY, AND NON-PRESCRIBED ECSTASY	/ PILLS,
CAPSULES, CRYSTAL, AND POWDER, NATIONALLY, 2003-2025	21
FIGURE 5: MEDIAN DAYS OF ANY NON-PRESCRIBED ECSTASY USE, AND NON-PRESCRIBED ECSTASY PI	LLS,
POWDER, CAPSULES AND CRYSTAL USE, IN THE PAST SIX MONTHS, NATIONALLY, 2003-2025	22
FIGURE 6: MEDIAN PRICE OF NON-PRESCRIBED ECSTASY PILLS AND CAPSULES, NATIONALLY, 2003-202	25 31
FIGURE 7: MEDIAN PRICE OF NON-PRESCRIBED ECSTASY CRYSTAL (PER GRAM AND POINT) AND POWI	DER
(PER GRAM ONLY), NATIONALLY, 2013-2025	31
FIGURE 8: CURRENT PERCEIVED PURITY OF NON-PRESCRIBED ECSTASY PILLS, NATIONALLY, 2017-2025	32
FIGURE 9: CURRENT PERCEIVED PURITY OF NON-PRESCRIBED ECSTASY CAPSULES, NATIONALLY, 2017-	
FIGURE 10. CURRENT REDCEIVER BURITY OF MONI RESCRIPER ECCTACY CRYCTAL MATIONALLY 2017	
FIGURE 10: CURRENT PERCEIVED PURITY OF NON-PRESCRIBED ECSTASY CRYSTAL, NATIONALLY, 2017-	
FIGURE 11: CURRENT PERCEIVED PURITY OF NON-PRESCRIBED ECSTASY POWDER, NATIONALLY, 2017-	
FIGURE 12: CURRENT PERCEIVED AVAILABILITY OF NON-PRESCRIBED ECSTASY PILLS, NATIONALLY, 201	
2025	34
FIGURE 13: CURRENT PERCEIVED AVAILABILITY OF NON-PRESCRIBED ECSTASY CAPSULES, NATIONALLY	Υ,
2017-2025	34
FIGURE 14: CURRENT PERCEIVED AVAILABILITY OF NON-PRESCRIBED ECSTASY CRYSTAL, NATIONALLY,	2017-
2025	35
FIGURE 15: CURRENT PERCEIVED AVAILABILITY OF NON-PRESCRIBED ECSTASY POWDER, NATIONALLY,	
2025	
FIGURE 16: PAST SIX MONTH USE OF ANY METHAMPHETAMINE, AND METHAMPHETAMINE POWDER,	BASE,
AND CRYSTAL, NATIONALLY, 2003-2025	38
FIGURE 17: MEDIAN DAYS OF ANY METHAMPHETAMINE USE, AND METHAMPHETAMINE POWDER, BA	
AND CRYSTAL IN THE PAST SIX MONTHS, NATIONALLY, 2003-2025	39
FIGURE 18: MEDIAN PRICE OF METHAMPHETAMINE POWDER PER POINT AND GRAM, NATIONALLY, 20)03-
2025	
FIGURE 19: MEDIAN PRICE OF METHAMPHETAMINE CRYSTAL PER POINT AND GRAM, NATIONALLY, 20	
2025	
FIGURE 20: CURRENT PERCEIVED PURITY OF METHAMPHETAMINE POWDER, NATIONALLY, 2003-2025.	47
FIGURE 21: CURRENT PERCEIVED PURITY OF METHAMPHETAMINE CRYSTAL, NATIONALLY, 2003-2025	
FIGURE 22: CURRENT PERCEIVED AVAILABILITY OF METHAMPHETAMINE POWDER, NATIONALLY, 2003-	
FIGURE 23: CURRENT PERCEIVED AVAILABILITY OF METHAMPHETAMINE CRYSTAL, NATIONALLY, 2003-	
FIGURE 23. CORRENT PERCEIVED AVAILABILITY OF METHAMPHETAMINE CRYSTAL, NATIONALLY, 2003-	
FIGURE 24: PAST SIX MONTH USE AND FREQUENCY OF USE OF NON-PRESCRIBED PHARMACEUTICAL	
STIMULANTS, NATIONALLY, 2007-2025	53
FIGURE 25: CURRENT PERCEIVED AVAILABILITY OF NON-PRESCRIBED PHARMACEUTICAL STIMULANTS,	
NATIONALLY, 2022-2025	55
FIGURE 26: PAST SIX MONTH USE AND FREQUENCY OF USE OF COCAINE, NATIONALLY, 2003-2025	58

FIGURE 27: MEDIAN PRICE OF COCAINE PER GRAM, NATIONALLY, 2003-2025	60
FIGURE 28: CURRENT PERCEIVED PURITY OF COCAINE, NATIONALLY, 2003-2025	61
FIGURE 29: CURRENT PERCEIVED AVAILABILITY OF COCAINE, NATIONALLY, 2003-2025	62
FIGURE 30: PAST SIX MONTH USE AND FREQUENCY OF USE OF NON-PRESCRIBED CANNABIS AND/OR	
CANNABINOID-RELATED PRODUCTS, NATIONALLY, 2003-2025	66
FIGURE 31: PAST SIX MONTH USE OF DIFFERENT FORMS OF NON-PRESCRIBED CANNABIS AND/OR	
CANNABINOID-RELATED PRODUCTS, AMONG THOSE WHO REPORTED RECENT USE, NATIONALLY	,
2018-2025	68
FIGURE 32: MEDIAN PRICE OF NON-PRESCRIBED HYDROPONIC (A) AND BUSH (B) CANNABIS PER OUN	CE
AND GRAM, NATIONALLY, 2006-2025	70
FIGURE 33: CURRENT POTENCY OF NON-PRESCRIBED HYDROPONIC (A) AND BUSH (B) CANNABIS,	
NATIONALLY, 2006-2025	71
FIGURE 34: CURRENT PERCEIVED AVAILABILITY OF NON-PRESCRIBED HYDROPONIC (A) AND BUSH (B)	
CANNABIS, NATIONALLY, 2006-2025	
FIGURE 35: PAST SIX MONTH USE AND FREQUENCY OF USE OF NON-PRESCRIBED KETAMINE, NATIONA	
2003-2025	
FIGURE 36: MEDIAN PRICE OF NON-PRESCRIBED KETAMINE PER GRAM, NATIONALLY, 2003-2025	
FIGURE 37: CURRENT PERCEIVED PURITY OF NON-PRESCRIBED KETAMINE, NATIONALLY, 2003-2025	
FIGURE 38: CURRENT PERCEIVED AVAILABILITY OF NON-PRESCRIBED KETAMINE, NATIONALLY, 2003-20	
FIGURE 39: PAST SIX MONTH USE AND FREQUENCY OF USE OF LSD, NATIONALLY, 2003-2025	
FIGURE 40: MEDIAN PRICE OF LSD PER TAB, NATIONALLY, 2003-2025	
FIGURE 41: CURRENT PERCEIVED PURITY OF LSD, NATIONALLY, 2003-2025	
FIGURE 42: CURRENT PERCEIVED AVAILABILITY OF LSD, NATIONALLY, 2003-2025	
FIGURE 43: PAST SIX MONTH USE AND FREQUENCY OF USE OF DMT, NATIONALLY, 2010-2025	88
FIGURE 44: NON-PRESCRIBED USE OF PHARMACEUTICAL MEDICINES IN THE PAST SIX MONTHS,	
NATIONALLY, 2007-2025	
FIGURE 45: PAST SIX MONTH USE OF OTHER ILLICIT DRUGS, NATIONALLY, 2003-2025	
FIGURE 46: LICIT AND OTHER DRUGS USED IN THE PAST SIX MONTHS, NATIONALLY, 2003-2025	
FIGURE 47: USE OF DEPRESSANTS, STIMULANTS, CANNABIS, HALLUCINOGENS AND DISSOCIATIVES ON	
LAST OCCASION OF ECSTASY OR RELATED DRUG USE, NATIONALLY, 2025: MOST COMMON DRUG PATTERN PROFILES	
FIGURE 48: PAST SIX MONTH USE OF STIMULANTS FOR 48 HOURS OR MORE CONTINUOUSLY WITHOU	
SLEEP ('BINGE'), NATIONALLY, 2003-2025	
FIGURE 49: LIFETIME AND PAST YEAR ENGAGEMENT IN DRUG CHECKING, NATIONALLY, 2019-2025	
FIGURE 50: PAST 12 MONTH NON-FATAL STIMULANT AND DEPRESSANT OVERDOSE, NATIONALLY, 200	
2025	
FIGURE 51: LIFETIME AND PAST MONTH DRUG INJECTION, NATIONALLY, 2003-2025	
FIGURE 52: SELF-REPORTED MENTAL HEALTH PROBLEMS AND TREATMENT SEEKING IN THE PAST SIX	113
MONTHS, NATIONALLY, 2008-2025	120
FIGURE 53: K10 PSYCHOLOGICAL DISTRESS SCORES, NATIONALLY, 2006-2025, AND AMONG THE GENE	
POPULATION, 2022-2023	
FIGURE 54: HEALTH SERVICE ACCESS FOR ALCOHOL AND OTHER DRUG REASONS, AND FOR ANY REAS	
IN THE PAST SIX MONTHS, NATIONALLY, 2004-2025	•
FIGURE 55: SELF-REPORTED TESTING, AND DRIVING OVER THE (PERCEIVED) LEGAL LIMIT FOR ALCOHOL	
THREE HOURS FOLLOWING ILLICIT DRUG USE, AMONG THOSE WHO HAD DRIVEN IN THE PAST SI	
MONTHS, NATIONALLY, 2007-2025	
FIGURE 56: SELF-REPORTED CRIMINAL ACTIVITY IN THE PAST MONTH, NATIONALLY, 2003-2025	

FIGURE 57: VICTIM OF CRIME INVOLVING VIOLENCE IN THE PAST MONTH, NATIONALLY, 2019-2025	128
FIGURE 58: LIFETIME INCARCERATION, AND PAST 12 MONTH ARREST AND DRUG-RELATED ENCOUNTER	S
WITH POLICE THAT DID NOT RESULT IN ARREST, NATIONALLY, 2003-2025	129

Acknowledgements

Funding

In 2025, the Ecstasy and Related Drugs Reporting System (EDRS), falling within the Drug Trends program of work, was supported by funding from the Australian Government Department of Health, Disability and Ageing under the Drug and Alcohol Program.

Research Team

The National Drug and Alcohol Research Centre (NDARC), University of New South Wales (UNSW) Sydney, coordinated the EDRS. The following researchers and research institutions contributed to EDRS 2025:

- Dr Rachel Sutherland, Antonia Karlsson, Julia Uporova, Dr Olivia Price, Udesha Chandrasena, Haniene Tayeb, Lily Palmer, Agata Chrzanowska, Cate King, Professor Louisa Degenhardt, Professor Michael Farrell and Associate Professor Amy Peacock, National Drug and Alcohol Research Centre, University of New South Wales, New South Wales;
- Mila Sumner, Joanna Wilson and Professor Paul Dietze, Burnet, Victoria;
- Sophie Radke and Professor Raimondo Bruno, School of Psychology, University of Tasmania, Tasmania;
- Dr Jodie Grigg and Professor Simon Lenton, National Drug Research Institute and enAble Institute, Curtin University, Western Australia; and
- Catherine Daly, Dr Jennifer Juckel, Dr Natalie Thomas and Associate Professor Caroline Salom, Institute for Social Science Research, The University of Queensland, Queensland.

We would like to thank past and present members of the research team.

Participants

We would like to thank all the participants who were interviewed for the EDRS in the present and in previous years.

Contributors

We thank all the individuals who contributed to questionnaire development and assisted with the collection and input of data at a jurisdictional and national level. We would like to thank the Drug Trends Advisory Committee for their contribution to the EDRS.

We acknowledge the traditional custodians of the land on which the work for this report was undertaken. We pay respect to Elders past, present, and emerging.

Abbreviations

4-FA 4-Fluoroamphetamine

5-MeO-DMT 5-methoxy-N,N-dimethyltryptamine

ACT Australian Capital Territory

ADE Adelaide

ADHD Attention-Deficit Hyperactivity Disorder

Alpha PVPα-PyrrolidinopentiophenoneAlpha PHPα-PyrrolidinohexiophenoneAODAlcohol and Other Drug

AUDIT-C Alcohol Use Disorders Identification Test-Concise

BRI/GC Brisbane and the Gold Coast

CAN Canberra Cannabidiol

COVID-19 Coronavirus Disease 2019

DAR Darwin

DMT Dimethyltryptamine

DO-x 4-Substituted-2,5-dimethoxyamphetamines

DSM Diagnostic and Statistical Manual of Mental Disorders

EDRS Ecstasy and Related Drugs Reporting System

GBL/GHB/1,4-BD Gamma-butyrolactone/Gamma-hydroxybutyrate/1,4-Butanediol

GP General Practitioner

HIV Human Immunodeficiency Virus

HOB Hobart

IDRS Illicit Drug Reporting System

IQR Interquartile range
LSD d-lysergic acid

MDA 3,4-methylenedioxyamphetamineMDMA 3,4-methylenedioxymethamphetamine

MDPV Methylenedioxypyrovalerone

MELB Melbourne

N (or n) Number of participants

NBOME N- methoxybenzyl

NDARC National Drug and Alcohol Research Centre

NPS New Psychoactive Substances
NSP Needle Syringe Program

NSW New South Wales
NT Northern Territory
OTC Over-the-counter

PER Perth

PMMA Paramethoxyamphetamine
PMMA Polymethyl Methacrylate

QLD Queensland

REDCAP Research Electronic Data Capture

SA South Australia
SD Standard deviations

SDS Severity of Dependence Scale **SSDP** Students for Sensible Drug Policy

SYD Sydney

STI Sexually Transmitted Infection

TAS Tasmania

THC Tetrahydrocannabinol

UNSW University of New South Wales

VIC Victoria

WA Western Australia

WHO World Health Organization

Executive Summary

The EDRS comprises a sentinel sample of people who regularly use ecstasy and/or other illicit stimulants, recruited via social media and word-of-mouth across each capital city of Australia. The results are not representative of all people who use illicit drugs, nor of use in the general population. Data were collected in 2025 from April-July. Interviews from 2020 onwards were delivered face-to-face well as via telephone videoconference, to reduce risk of COVID-19 transmission; all interviews prior to 2020 were conducted face-to-face. This methodological change should be factored into all comparisons of data from the 2020-2025 samples relative to previous years.

Sample Characteristics

In 2025, the national EDRS sample (n=690) differed in some ways to the sample in 2024. Whilst gender identity remained stable (57% male), a significant increase was observed in the median age of the sample, from 23 years in 2024 to 26 years in 2025 (p=0.013). A significant change was observed in current accommodation (p=0.023), with less participants reporting living with their parents/in their family home (26%; 34% in 2024). Drug of choice significantly changed (p<0.001), with more participants nominating alcohol (14%; 4% in 2024) and fewer reporting cocaine (13%; 16% in 2024) as their drugs of choice in 2025. The drugs used most often in month preceding interview significantly changed in 2025 (p<0.001), with more participants reporting alcohol (29%; 13% in 2024) and fewer reporting cannabis (29%; 33% in 2024) and ecstasy (12%; 19% in 2024) as the drugs used most often.

Non-Prescribed Ecstasy

Recent use of any non-prescribed ecstasy remained stable in 2025 (93%; 92% in 2024), as did frequency of use (8 days; 8 days in 2024). Capsules remained the most commonly used form of non-prescribed ecstasy in 2025 (55%), closely followed by crystal (51%), both of which remained stable relative to 2024. Recent use of pills (40%) also remained stable, however recent use of powder, which has consistently remained the least commonly used form of non-prescribed ecstasy, significantly decreased from 30% in 2024 to 23% in 2025 (p=0.005). The median price for one pill of non-prescribed ecstasy was \$30, stable from 2024, while the median price for one capsule was \$25 (IQR=20-30; \$25 in 2024; IQR=25-30; p=0.008). The median price for one gram of non-prescribed ecstasy powder significantly decreased, from \$250 in 2024 to \$200 in 2025 (*p*=0.014). Perceived purity and perceived availability for all forms of non-prescribed ecstasy remained stable in 2025, relative to 2024.

Methamphetamine

Recent methamphetamine use among this sample has declined over time, though remained stable in 2025 (29%), relative to 2024 (25%). Recent use of methamphetamine crystal (20%; 16% in 2024), powder (12%; 12% in 2024) and base (1%; 2% in 2024) remained stable in 2025, as did frequency of use. The price, perceived purity and perceived availability of methamphetamine powder remained stable between 2024 and 2025. The perceived purity and perceived availability of methamphetamine crystal also remained stable between 2024 and 2025, though the price for one gram of methamphetamine crystal significantly decreased, from \$300 in 2024 to \$250 in 2025 (p=0.037).

Non-Prescribed Pharmaceutical Stimulants

Past six month use of non-prescribed pharmaceutical stimulants remained stable in 2025 (55%), relative to 2024 (54%), as did frequency of use (7 days; 6 days in 2024). Among those who reported recent use, the majority reported using dexamfetamine (84%), although there was a significant increase in those reporting recent use of non-prescribed lisdexamfetamine (30%; 22% in 2024; p=0.018). Perceived availability remained stable, with 86% reporting 'easy' or 'very easy' obtainment.

Cocaine

Past six month cocaine use remained high but stable in 2025 (79%; 80% in 2024), with median frequency of use also remaining stable (5 days in 2025 and 2024, respectively). The vast majority of participants who had recently consumed cocaine reported using powder cocaine (96%). Price, perceived availability and perceived purity of cocaine remained stable between 2024 and 2025.

Cannabis and/or Cannabinoid-Related Products

Recent use of non-prescribed cannabis and/or cannabinoid-related products remained stable in 2025 (72%) relative to 2024 (75%), as did frequency of use (median of 48 days in 2025 and 2024). Hydroponic cannabis was the most used form of non-prescribed cannabis in 2025 (65%), followed by bush cannabis (55%). The price, perceived purity and perceived availability of hydroponic and bush cannabis remained largely stable in 2025 relative to 2024, with most perceiving the availability of both forms of cannabis as 'easy' or 'very easy'.

Non-Prescribed Ketamine, LSD and DMT

Recent use of non-prescribed ketamine (52%; 53% in 2024), LSD (35%; 36% in 2024) and DMT (11%; 10% in 2024) remained stable in 2025

relative to 2024. Median frequency of use remained low for all three substances, ranging between two and five days in the six months preceding interview. Perceived purity and availability for non-prescribed ketamine and LSD remained stable between 2024 and 2025, although there were significant changes in the median price for one tab of LSD and one gram of non-prescribed ketamine.

New Psychoactive Substances (NPS)

Recent use of any NPS (excluding plant-based NPS) remained stable in 2025, relative to 2024. In 2025, a significant increase was observed in those reporting recent use of 'drugs that mimic the effects of cannabis' (2%; $n \le 5$; p < 0.001). In contrast, significant decreases were observed in those reporting recent use of 2-Fluorodeschloroketamine (2-FDCK) ($n \le 5$; 1% in 2024; p = 0.039), methoxetamine (0%; 1% in 2024; p = 0.031) and 'other drugs that mimic the effects of ecstasy' ($n \le 5$; 2% in 2024; p = 0.036).

Other Drugs

Recent use of non-prescribed benzodiazepines significantly decreased in 2025 (23%; 28% in 2024; p=0.037), as did recent use of substances with 'unknown content' (13%; 20% in 2024; p=0.001). In 2025, 92% reported recent alcohol use, a significant decrease relative to 2024 (95%; p=0.047), though frequency of use remained stable (40 days in 2025 and 2024). Recent use of any tobacco remained stable in 2025 (72%), although there was a significant increase in the per cent reporting recent use of smoked or non-smoked illicit tobacco products (46%; 27% in 2024; p<0.001). Frequency of use of any tobacco products also significantly increased (120 median days in 2025; 90 median days in 2024; p=0.041). Recent use of nitrous oxide (31%) and amyl nitrite (33%) both significantly decreased relative to 2024 (40%; p < 0.001 and 39%; p = 0.016, respectively).

Drug-Related Harms and Other Behaviours

Polysubstance use and bingeing

On the last occasion of ecstasy or related drug use, 86% of participants reported concurrent use of two or more drugs (excluding tobacco and e-cigarettes).

Nearly one third (32%) of participants reported using stimulants or related drugs for 48 hours or more continuously without sleep in the six months preceding interview.

Dependence, overdose and injecting

Three quarters (73%) of participants obtained an AUDIT score of ≥ 8 , indicative of hazardous alcohol use. Seventeen per cent of those who reported recent ecstasy use obtained an SDS score of ≥ 3 , while 32% of participants reporting recent methamphetamine use obtained a score of ≥ 4 , indicating possible dependence on these substances.

Past year non-fatal stimulant overdose remained stable in 2025 (18%), however, past year non-fatal depressant overdose significantly decreased (22%; 28% in 2024; p=0.012).

Past month injecting drug use remained low and stable (2%).

Drug checking and naloxone awareness

Thirty-nine per cent of participants reported that they or someone else had tested the content and/or purity of their illicit drugs in Australia in the past year, a significant increase from 27% in 2024 (p<0.001).

In 2025, 73% of the sample reported that they had ever heard of naloxone (63% in 2024; p<0.001), of which 27% reported that they had obtained naloxone in the year prior to interview (10% in 2024; p<0.001).

Sexual activity, mental health and health service access

Almost three quarters (73%) of the sample reported engaging in sexual activity in the past four weeks, of which 79% reported using alcohol and/or other drugs prior to or while engaging in sexual activity.

Three fifths (57%) of the sample self-reported that they had experienced a mental health problem in the preceding six months. One fifth (19%) reported a score of \geq 30 on the K10, indicating very high psychological distress.

Twenty-nine per cent of participants reported accessing any health service for alcohol and/or drug support in the six months preceding interview. Current drug treatment engagement remained low (4%).

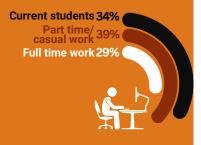
Driving, contact with police and modes of purchasing drugs

In 2025, the per cent of recent drivers who reported driving while over the perceived legal limit of alcohol (20%; 29% in 2024; p<0.001) or within three hours of consuming an illicit or non-prescribed drug (44%; 50% in 2024; p=0.033) both significantly decreased relative to 2024.

Eight per cent of participants reported past year arrest, while 15% reported a drug-related encounter with police which did not result in arrest (e.g., stopped and searched/questioned).

In 2025, the most popular means of arranging the purchase of illicit or non-prescribed drugs in the 12 months preceding interview was face-to-face (73%), closely followed by social networking or messaging applications (70%). Most participants continued to report obtaining illicit drugs face-to-face (97%) and from a friend/relative/partner/colleague (79%), although the latter decreased relative to 2024 (84%; p=0.042).

2025 SAMPLE CHARACTERISTICS

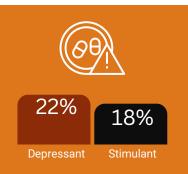

Between April-July, 690 participants, recruited from all capital cities across Australia, were interviewed.

26 years

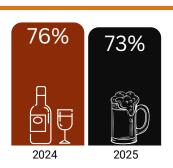
Male

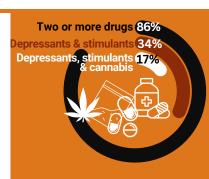
Median age and per cent who identified as male.

Current student and employment status.



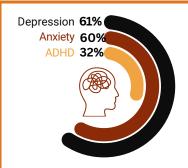
Participants were recruited on the basis that they had consumed ecstasy and/or other illicit stimulants on at least 6 days in the past 6 months.


DRUG-RELATED HARMS AND RISKS


Among recent drivers, 44% reported driving a vehicle within 3 hours of consuming illicit drugs and 20% while over the legal limit of alcohol.

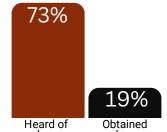
Percentage who reported past year non-fatal depressant and stimulant overdose.

Percentage who obtained an AUDIT score of 8 or more, indicative of past year hazardous alcohol use.



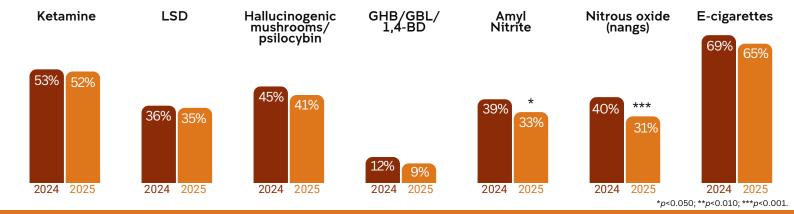
The per cent who reported using ≥2 drugs on their last occasion of ecstasy or related drug use, and the 2 most common polysubstance use profiles.

OTHER BEHAVIOURS


Percentage who self-reported mental health (MH) problems and treatment seeking in the 6 months preceding interview.

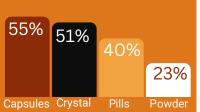
Among those who reported a mental health problem, the 3 most common mental health issues were depression, anxiety and ADHD.

Percentage who reported that they or someone else had tested the content and/or purity of their illicit drugs in Australia in the past year.

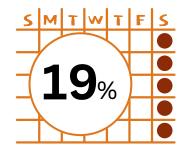


naloxone

Obtained naloxone


Per cent of participants who had heard of naloxone and who had obtained naloxone in the 12 months preceding interview.

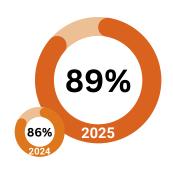
PAST 6 MONTH USE OF SELECT DRUGS



ECSTASY

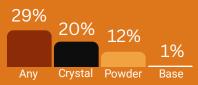
FORM of ecstasy

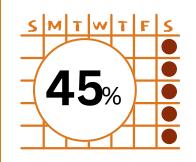
Past 6 month use of ecstasy capsules, crystal, pills, and powder in 2025.



Of those who had recently used any ecstasy, 19% reported weekly or more frequent use, stable from 2024 (17%).

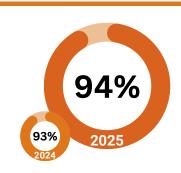
0.30 grams of powder


Median amounts of ecstasy consumed in a 'typical' session.

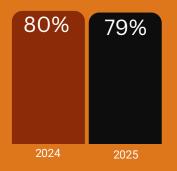

Percentage who perceived ecstasy capsules as being 'easy' or 'very easy' to obtain.

METHAMPHETAMINE

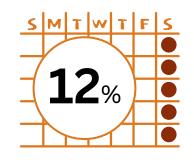
FORM of methamphetamine


Past 6 month use of any methamphetamine, crystal, powder and base in 2025.

Of those who had recently used any methamphetamine, 45% reported weekly or more frequent use, stable from 2024 (42%).

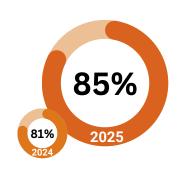


The median reported price for a point of methamphetamine crystal.

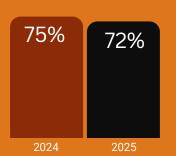


Percentage who perceived methamphetamine crystal as being 'easy' or 'very easy' to obtain.

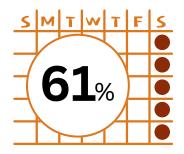
COCAINE


Past 6 month use of any cocaine remained stable between 2024 and 2025.

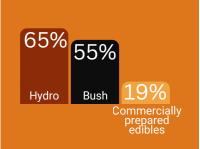
Of those who had recently consumed cocaine, 12% reported weekly or more frequent use, stable from 2024 (12%).

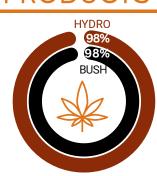


The median reported price for a gram of cocaine.



Percentage who perceived cocaine as being 'easy' or 'very easy' to obtain.


CANNABIS AND/OR CANNABINOID-RELATED PRODUCTS


Past 6 month use of non-prescribed cannabis and/or cannabinoidrelated products remained stable between 2024 and 2025.

Of those who had recently used nonprescribed cannabis, 61% reported weekly or more frequent use, stable from 2024 (62%).

Most commonly used forms of nonprescribed cannabis, among those who reported recent use.

Percentage who perceived cannabis/cannabinoid-related products as being 'easy' or 'very easy' to obtain.

1

Background and Methods

The Ecstasy and Related Drugs Reporting System (EDRS) interviews are conducted annually with a sentinel cross-sectional group of people who regularly use ecstasy and/or other stimulants, recruited from all capital cities of Australia (n=690 in 2025). The results from the EDRS interviews are not representative of all people who consume drugs, nor of illicit drug use in the general population, but this is not the aim of these data. Rather, these data are intended to provide evidence indicative of trends that warrant further monitoring. These findings should be interpreted alongside analyses of other data sources for a more complete profile of trends in illicit drug use, market features, and harms in Australia.

Background

The Ecstasy and Related Drugs Reporting System (EDRS) is an illicit drug monitoring system which has been conducted in all states and territories of Australia since 2003, and forms part of Drug Trends. The purpose is to provide a coordinated approach to monitoring the use, market features, and harms of ecstasy and related drugs. This includes drugs that are routinely used in the context of entertainment venues and other recreational locations, including ecstasy, methamphetamine, cocaine, new psychoactive substances, LSD (*d*-lysergic acid), and ketamine.

The EDRS is designed to be sensitive to emerging trends, providing data in a timely manner rather than describing issues in extensive detail. It does this by studying a range of data sources, including data from annual interviews with people who regularly use ecstasy and/or other illicit stimulants and from secondary analyses of routinely-collected indicator data. This report focuses on the key findings from the annual interview component of the EDRS.

Methods

EDRS 2003-2019

Full details of the methods for the annual interviews are available for download. To briefly summarise, since the commencement of monitoring up until 2019, participants were recruited primarily via internet postings, print advertisements, interviewer contacts, and snowballing (i.e., peer referral). Participants had to: i) be at least 17 years of age (due to ethical constraints) (16 years of age in Perth), ii) have used ecstasy and/or other illicit stimulants (including: MDA, methamphetamine, cocaine, non-prescribed pharmaceutical stimulants, mephedrone or other stimulant NPS) on at least six days during the preceding six months; and iii) have been a resident of the capital city in which the interview took place for ten of the past 12 months. Interviews took place in varied locations negotiated with participants (e.g., research institutions, coffee shops or parks), and in later years were conducted using REDCap (Research Electronic Data Capture), a software program to collect data on laptops or tablets. Following provision of written informed consent and completion of a structured interview, participants were reimbursed \$40 cash for their time and expenses incurred.

EDRS 2020-2025: COVID-19 Impacts on Recruitment and Data Collection

Given the emergence of COVID-19 and the resulting restrictions on travel and people's movement in Australia (which first came into effect in March 2020), face-to-face interviews were not always possible due to the risk of infection transmission for both interviewers and participants. For this reason, all methods in 2020 were similar to previous years as detailed above, with the exception of:

- 1. Means of data collection: Interviews were conducted via telephone or via videoconferencing across all capital cities in 2020;
- 2. Means of consenting participants: Participants consent to participate was collected verbally prior to beginning the interview;
- 3. Means of reimbursement: Once the interview was completed via REDCap, participants were given the option of receiving \$40 reimbursement via one of three methods, comprising bank transfer, PayID or gift voucher; and

4. Age eligibility criterion: Changed from 17 years old (16 years old in Perth) to 18 years old.

From 2021 onwards, a hybrid approach was used with interviews conducted either face-to-face (whereby participants were reimbursed with cash) or via telephone/videoconference (with participants reimbursed via bank transfer or other electronic means). Face-to-face interviews were the preferred methodology, however telephone interviews were conducted when required (i.e., in accordance with government directives) or when requested by participants. Consent was collected verbally for all participants.

2025 EDRS Sample

Between 1 April-15 July 2025, a total of 690 participants were recruited across capital cities nationally. The sample sizes recruited from each capital city were: Sydney, NSW, n=101; Melbourne, VIC, n=100; Adelaide, SA, n=100; Canberra, ACT, n=100; Hobart, TAS, n=68; Brisbane and Gold Coast, QLD, n=101; Darwin, NT, n=20; and Perth, WA, n=100. Seventy per cent of these interviews (n=484) were conducted via telephone/videoconference: Sydney, NSW, n=78; Melbourne, VIC, n=96; Adelaide, SA, n=64; Canberra, ACT, n=24; Hobart, TAS, n=62; Brisbane and Gold Coast, QLD, n=57; Darwin, NT, n=20; and Perth, WA, n=83.

One tenth (10%) of the 2025 national sample had taken part in the 2024 interview (7% of the 2024 sample had taken part in the 2023 interview; p=0.048). The majority of participants were recruited via the internet (e.g., Facebook and Instagram) (69%; 72% in 2024), and almost two thirds (30%) were recruited via word-of-mouth (23% in 2024).

Data Analysis

For normally distributed continuous variables, means and standard deviations (SD) are reported; for skewed data (i.e., skewness > ± 1 or kurtosis > ± 3), medians and interquartile ranges (IQR) are reported. Tests of statistical significance have been conducted between estimates for 2024 and 2025, noting that no corrections for multiple comparisons have been made and thus comparisons should be treated with caution. Values where cell sizes are ≤ 5 have been suppressed with corresponding notation (zero values are reported). References to 'recent' use and behaviours refers to the six months preceding interview. The response options 'Don't know' and 'Skip question', which were available to select throughout the interview, were excluded from analysis.

Between 2022 and 2025, there was considerable difficulty in recruiting participants from Darwin, Northern Territory (NT), despite extensive recruitment efforts and screening of interested people. Whilst it is difficult to provide a definitive reason for this, it seems that this was reflective of a sustained disruption to drug markets, and a subsequent reduction in the frequency of ecstasy and other illicit stimulant use. Data from the NT EDRS are included in the national estimates but are not presented individually in jurisdictional tables for 2022, 2023 and 2025 (and 2010-2012) due to small numbers (n≤50) reporting.

Guide to Table/Figure Notes

Table 1: Guide to Table/Figure Notes

Legend	
	Empty cell(s) indicates question not asked in respective year (for figures)
1	Question not asked in respective year (for tables)
-	Per cent suppressed due to small cell size (n≤5 but not 0) (for figures and tables)
*p<0.050; **p<0.010; ***p<0.001	Statistical significance between 2024 and 2025
Syd	Sydney
Can	Canberra
Mel	Melbourne
Hob	Hobart
Ade	Adelaide
Per	Perth
Dar	Darwin
Bri/GC	Brisbane and the Gold Coast (and the Sunshine Coast 2014-16)

Interpretation of Findings

Caveats to interpretation of findings are discussed more completely in the <u>methods for the annual interviews</u> but it should be noted that these data are from participants recruited in capital cities, and thus do not reflect trends in regional and remote areas. Further, the results are not representative of all people who consume illicit drugs, nor of illicit drug use in the general population, but rather are intended to provide evidence indicative of emerging issues that warrant further monitoring.

This report covers a subset of items asked of participants and does not include jurisdictional-level results beyond estimates of recent use of various substances (comprehensive jurisdictional findings are provided separately; see below), nor does it include implications of findings. These findings should be interpreted alongside analyses of other data sources for a more complete profile of emerging trends in illicit drug use, market features, and harms in Australia (see section on 'Additional Outputs' below for details of other outputs providing such profiles).

Additional Outputs

<u>Infographics</u> from this report are available for download. There are a range of outputs from the EDRS which triangulate key findings from the annual interviews and other data sources, including national reports, jurisdictional reports, bulletins, and other resources available via the <u>Drug Trends webpage</u>. There are also results from the <u>Illicit Drug Reporting System (IDRS)</u>, which focus more so on the use of illicit drugs via injection.

Please contact the research team at <u>drugtrends@unsw.edu.au</u> with any queries, to request additional analyses using these data, or to discuss the possibility of including items in future interviews.

2

Sample Characteristics

Participants were asked questions about select sociodemographic characteristics, as well as key drug use characteristics of interest.

Sample Characteristics

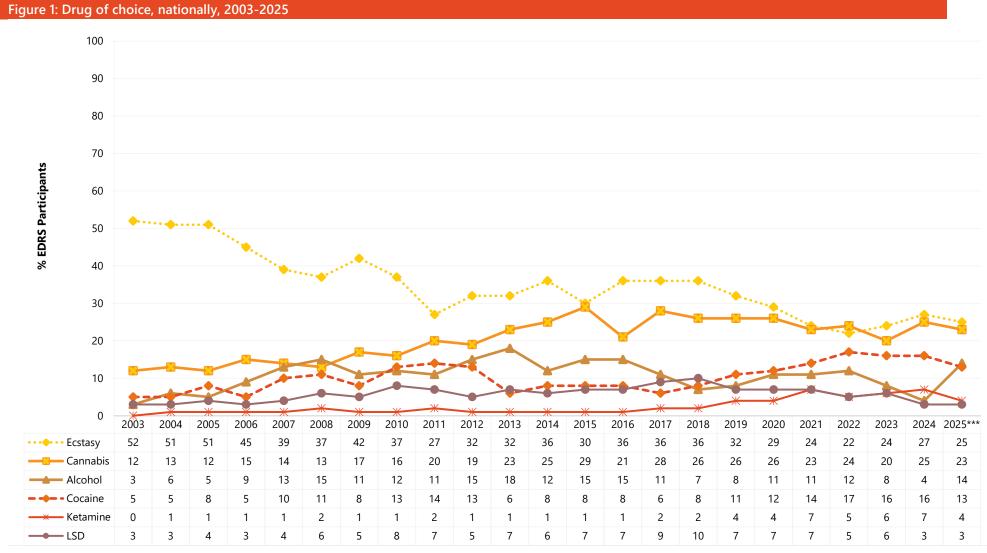
The median age of the 2025 national sample was 26 years (IQR=20-34), a significant increase from 23 years in 2024 (IQR=20-32; p=0.013) (Table 2). Gender remained stable (p=0.119), with 57% of the sample identifying as male (55% in 2024). There was a significant change in the current accommodation reported by participants between 2024 and 2025 (p=0.023); half (50%) of the sample reported living in a rented house/flat at the time of the interview (48% in 2024), and one quarter (26%) reported living with their parents/in their family home, a decrease from 34% in 2024.

Whilst the mean years of school completed remained stable in 2025, relative to 2024 (12 years; range=7-12; 12 years in 2024; range=7-12; p=0.343), the percentage of participants who reported having a post-school qualification(s) significantly increased from 56% in 2024 to 63% in 2025 (p=0.011).

Current employment status remained stable in 2025, relative to 2024 (p=0.270); 29% reported being employed full-time at the time of interview (30% in 2024), and almost two fifths (39%) reported being employed on a part time/casual basis (42% in 2024). Furthermore, 28% reported being unemployed at the time of interview (23% in 2024). The median weekly income in 2025 was \$700 (IQR=400-1350) which remained stable, relative to 2024 (\$700; IQR=400-1200; p=0.255).

Table 2: Demographic characteristics of the sample, nationally, 2024-2025, and by capital city, 2025

	Nat	ional	Syd	Can	Mel	Hob	Ade	Per	Dar	Bri/ GC
	N=740	N=690	N=101	N=100	N=100	N=68	N=100	N=100	N=20	N=101
	2024	2025	2025	2025	2025	2025	2025	2025	2025	2025
Median age (years; IQR)	23 (20-32)	26* (20-34)	31 (22-35)	21 (19-26)	28 (23-33)	28 (21-40)	28 (21-37)	23 (19-27)	~	27 (20-38)
% Gender									~	
Female	43	41	29	43	41	44	48	43	~	40
Male	55	57	70	56	55	56	51	56	~	60
Non-binary	3	1	-	-	-	0	-	-	~	0
% Aboriginal and/or Torres Strait Islander	9	8	6	10	-	24	8	-	~	-
% Born in Australia	84	85	78	88	79	97	92	83	~	83
% English primary language spoken at home	97	97	99	98	95	99	95	97	~	94
% Sexual identity									~	
Heterosexual	69	72	73	73	67	79	78	66	~	68
Homosexual	7	6	9	-	6	-	-	7	~	-
Bisexual	17	17	13	16	17	12	16	23	~	24
Queer	4	4	-	6	7	-	-	-	~	-
Other identity	3	2	-	0	-	-	0	-	~	-
Mean years of school education (range)	12 (7-12)	12 (7-12)	12 (9-12)	12 (8-12)	12 (9-12)	11 (10-12)	11 (8-12)	11 (8-12)	~	12 (9-12)
% Post-school qualification(s)^	56	63*	70	48	68	72	58	57	~	68
% Current students#	39	34	31	54	28	24	26	42	~	37
% Current employment status									~	
Employed full-time	30	29	38	14	36	21	32	27	~	30
Part time/casual	42	39	32	50	43	29	27	47	~	45
Self-employed	5	5	-	-	6	-	7	6	~	-
Unemployed	23	28	30	32	14	44	34	20	~	24
Current median weekly income \$ (IQR)	700 (400- 1200)	700 (400- 1350)	750 (400- 1673)	500 (313- 763)	1050 (550- 1500)	625 (375- 1088)	663 (400- 1425)	696 (411- 1213)	~	850 (500- 1300)
% Current accommodation		*							~	
Own house/flat	10	13	15	-	14	16	16	6	~	19
Rented house/flat	48	50	50	66	55	46	41	43	~	47


	National		Syd	Can	Mel	Hob	Ade	Per	Dar	Bri/ GC
Parents'/family home	34	26	21	17	26	22	30	46	~	26
Boarding house/hostel	1	1	0	-	-	-	-	-	~	-
Public Housing	3	5	14	-	-	-	10	-	~	-
No fixed address+	2	2	0	-	-	-	-	0	~	0
Other	1	2	-	-	-	-	-	-	~	-

Note. ^ Includes trade/technical and university qualifications. $^{\#}$ 'Current students' comprised participants who were currently studying for either trade/technical or university/college qualifications. $^{\#}$ 'Current students' comprised participants who were currently studying for either trade/technical or university/college qualifications. $^{\#}$ No fixed address included couch surfing and rough sleeping or squatting. $^{\#}$ Due to the particularly small samples (n<50) recruited in Darwin in 2010-2013, 2022-2023 and 2025, data from these years are not presented in this table; furthermore, data from Darwin in 2006, 2008 and 2024 should be interpreted with caution due to small samples (2006: n=51; 2008: n=55; 2024: n=51). Statistical significance for 2024 versus 2025 among the national sample presented in table (except for Darwin); *

Drug of choice significantly changed between 2024 and 2025 (p<0.001). The largest proportion of participants reported ecstasy as their drug of choice in 2025 (25%; 27% in 2024), closely followed by 23% of participants nominating cannabis as their drug of choice (25% in 2024). Fourteen per cent of participants nominated alcohol as their drug of choice, an increase from 4% in 2024, and 13% nominated cocaine (13%; 16% in 2024). Fewer participants nominated ketamine (4%; 7% in 2024), LSD (3%; 3% in 2024), hallucinogenic mushrooms/psilocybin (2%; 2% in 2024) and pharmaceutical stimulants (2%; 3% in 2024) as their drugs of choice (Figure 1).

A significant change was also observed for the drug used most often in the past month (p<0.001). Specifically, there was an increase in the percentage of participants who reported that alcohol was the drug used most often in the month preceding interview (29%; 13% in 2024), and a decrease in the percentage of participants who reported that ecstasy (12%; 19% in 2024) and cannabis (29%; 33% in 2024) were the drugs used most often in the month prior to interview (Figure 2).

Forty-four per cent of the sample reported weekly or more frequent use of non-prescribed cannabis in 2025, stable relative to 2024 (46%; p=0.342). Weekly or more frequent use of ecstasy also remained stable in 2025 (18%; 16% in 2024; p=0.297), as did weekly or more frequent use of methamphetamine (13%; 10% in 2024; p=0.143) and cocaine (9%; 10% in 2024; p=0.786) (Figure 3).

Note. Participants could only endorse one substance. Substances listed in this figure are the primary endorsed; smaller percentages have endorsed other substances (in 2025, 2% endorsed hallucinogenic mushrooms/psilocybin and 2% endorsed pharmaceutical stimulants). Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

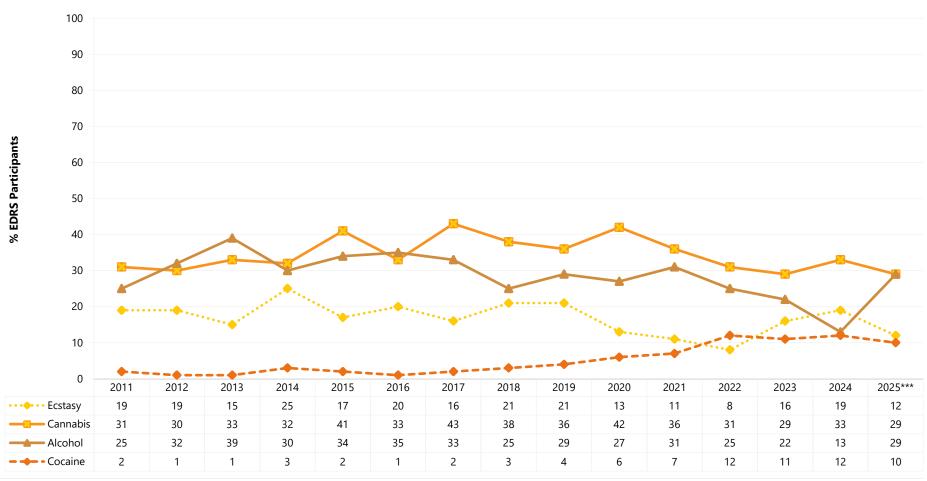


Figure 2: Drug used most often in the past month, nationally, 2011-2025

Note. Participants could only endorse one substance. Substances listed in this figure are the primary endorsed; smaller percentages have endorsed other substances (in 2025, 4% endorsed ketamine, 3% endorsed pharmaceutical stimulants, 1% endorsed LSD and 1% endorsed hallucinogenic mushrooms/psilocybin). Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; *p<0.010; *p<0.010. Please refer to Table 1 for a guide to table/figure notes.

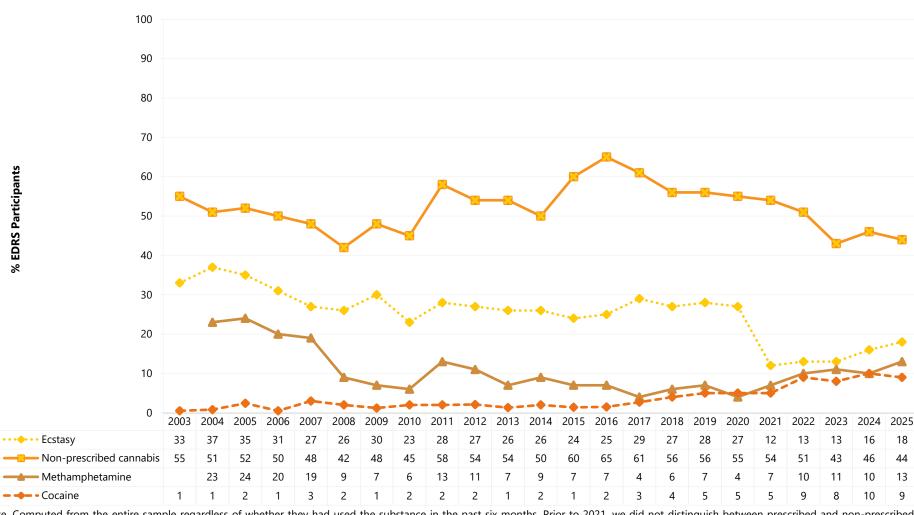


Figure 3: Weekly or more frequent substance use in the past six months, nationally, 2003-2025

Note. Computed from the entire sample regardless of whether they had used the substance in the past six months. Prior to 2021, we did not distinguish between prescribed and non-prescribed cannabis, and as such it is possible that 2017-2020 figures include some participants who were using prescribed cannabis only (with medicinal cannabis first legalised in Australia in November 2016), although we anticipate these numbers would be very low. Further, in 2022, we captured use of 'cannabis and/or cannabinoid-related products', while in previous years, questions referred only to 'cannabis'. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

3

Non-Prescribed Ecstasy

Participants were asked about their recent (past six month) use of various forms of non-prescribed ecstasy (3,4-methylenedoxymethamphetamine), including pills, powder, capsules, and crystal.

Patterns of Consumption (Any Ecstasy)

Recent Use (past 6 months)

The majority (93%) of participants reported any recent use of non-prescribed ecstasy in 2025, stable relative to 2024 (92%; p=0.541) (Figure 4). Similarly, non-prescribed ecstasy use remained stable in most capital cities, apart from a significant increase in the Canberra sample (98%; 90% in 2024; p=0.033) (Table 3).

Consistent with the previous few years, capsules (55%) and crystal (51%) were the most commonly used forms of non-prescribed ecstasy in the six months preceding interview, followed by pills (40%). Powder remained the least commonly used form of non-prescribed ecstasy (23%), consistent with the entirety of the reporting period (Figure 4).

Frequency of Use

In 2025, participants reported using non-prescribed ecstasy (in any form) on a median of eight days (IQR=4-16; n=643), stable from 2024 (8 days; IQR=4-16; n=682; p=0.903), but lower than what has historically been observed (12-15 days between 2003 and 2020) (Figure 5). Among those who had recently used any non-prescribed ecstasy and commented (n=643), weekly or more frequent use remained stable in 2025 (19%), relative to 2024 (17%; p=0.320).

Number of Forms Used

Among participants who had recently consumed non-prescribed ecstasy and commented (n=643), participants reported using a median of one form (IQR=1-2) in 2025, stable relative to 2024 (2 forms; IQR=1-3; p=0.074). This varied across capital cities, with participants in Canberra (IQR=1-3), Melbourne (IQR=1-2), Hobart (IQR-1-3) and Brisbane/Gold Coast (IQR=1-2) reporting use of a median of two forms of ecstasy in the six months preceding interview.

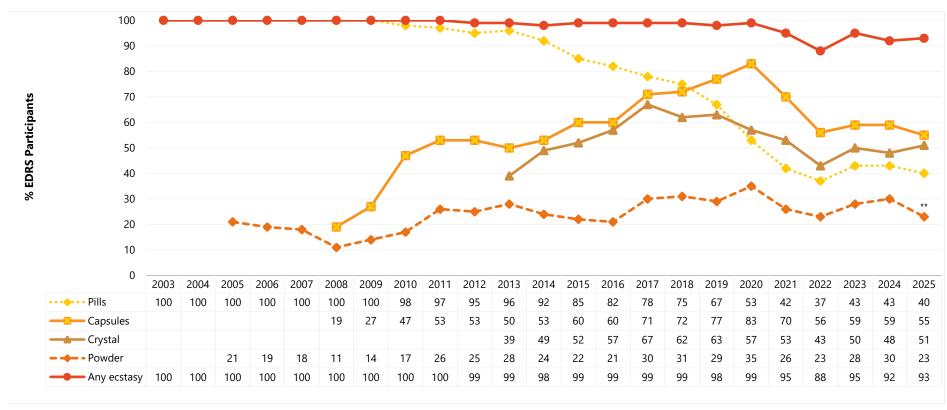
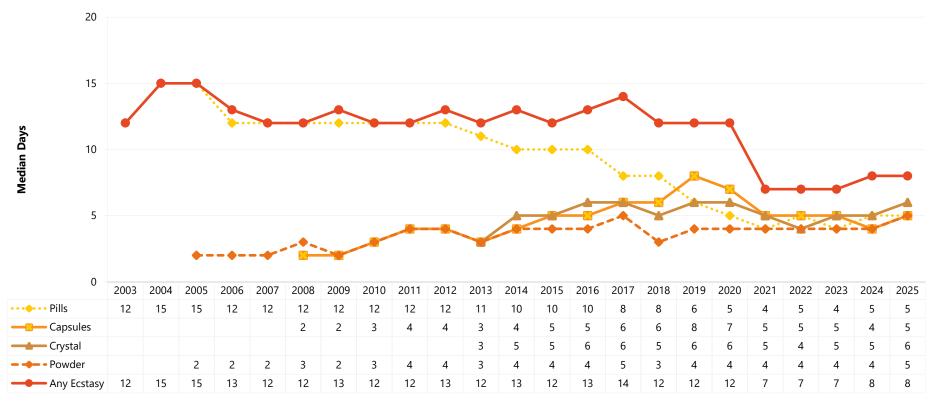



Figure 4: Past six month use of any non-prescribed ecstasy, and non-prescribed ecstasy pills, capsules, crystal, and powder, nationally, 2003-2025

Note. Up until 2012, participant eligibility was determined based on any recent ecstasy use; subsequently it has been expanded to broader illicit stimulant use. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Figure 5: Median days of any non-prescribed ecstasy use, and non-prescribed ecstasy pills, powder, capsules and crystal use, in the past six months, nationally, 2003-2025

Note. Up until 2012, participant eligibility was determined based on any recent ecstasy use; subsequently it has been expanded to broader illicit stimulant use. Median days computed among those who reported past 6-month use (maximum 180 days). Median days rounded to the nearest whole number. Y axis reduced to 20 days to improve visibility of trends. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Table 3: Past six month use of any non-prescribed ecstasy, by capital city, 2003-2025

%	Syd	Can	Mel	Hob	Ade	Per	Dar	Bri/GC
2003	100	100	100	100	100	100	100	100
2004	100	100	100	100	100	100	100	100
2005	100	100	100	100	100	100	100	100
2006	100	100	100	100	100	100	100	100
2007	100	100	100	100	100	100	100	100
2008	100	100	100	100	100	100	100	100
2009	100	100	100	100	100	100	100	100
2010	100	100	100	100	100	100	~	100
2011	100	100	100	100	100	100	~	100
2012	100	100	100	100	100	72	~	100
2013	100	97	95	100	100	100	~	100
2014	100	100	96	100	98	100	99	94
2015	99	98	98	100	98	100	98	98
2016	99	99	100	100	99	100	97	97
2017	100	100	98	100	99	100	99	98
2018	100	99	100	100	100	100	98	97
2019	99	99	98	95	97	99	99	99
2020	100	100	96	100	98	98	100	98
2021	96	98	95	99	87	97	99	92
2022	83	87	90	96	74	96	~	93
2023	99	96	99	91	84	98	~	95
2024	96	90	95	91	93	89	92	92
2025	92	98*	94	91	91	93	~	93

Note. ~Due to the particularly small samples (n<50) recruited in Darwin in 2010-2013, 2022-2023 and 2025, data from these years are not presented in this table; furthermore, data from Darwin in 2006, 2008 and 2024 should be interpreted with caution due to small samples (2006: n=51; 2008: n=55; 2024: n=51). Statistical significance for 2024 versus 2025 presented in table (except for Darwin); *p<0.050; *p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Table 4: Past six month use of non-prescribed ecstasy pills, by capital city, 2003-2025

%	Syd	Can	Mel	Hob	Ade	Per	Dar	Bri/GC
2003	100	100	100	100	100	100	100	100
2004	100	100	100	100	100	100	100	100
2005	100	100	100	100	100	100	100	100
2006	100	100	100	100	100	100	100	100
2007	100	100	100	100	100	99	100	100
2008	100	100	100	100	100	100	100	100
2009	100	100	100	100	99	100	100	100
2010	99	99	98	96	99	100	~	98
2011	99	100	90	95	100	100	~	99
2012	99	94	92	92	98	100	~	95
2013	99	96	86	93	98	99	~	99
2014	89	91	90	92	96	98	99	81
2015	69	56	84	99	94	99	98	86
2016	52	70	93	95	96	98	90	67
2017	42	79	83	93	71	93	86	78
2018	41	80	77	88	56	92	90	76
2019	40	70	74	74	62	68	92	56
2020	41	55	69	74	52	25	63	43
2021	17	36	47	55	54	37	56	27
2022	33	28	60	47	38	21	~	36
2023	49	38	51	48	52	33	~	32
2024	57	25	65	49	47	27	39	34
2025	43	37	52	60	43	21	~	31

Note. ~Due to the particularly small samples (n<50) recruited in Darwin in 2010-2013, 2022-2023 and 2025, data from these years are not presented in this table; furthermore, data from Darwin in 2006, 2008 and 2024 should be interpreted with caution due to small samples (2006: n=51; 2008: n=55; 2024: n=51). Statistical significance for 2024 versus 2025 presented in table (except for Darwin); *p<0.050; *p<0.010; **p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Table 5: Past six month use of non-prescribed ecstasy capsules, by capital city, 2008-2025

%	Syd	Can	Mel	Hob	Ade	Per	Dar	Bri/GC
2008	24	23	18	18	16	28	9	17
2009	33	6	48	48	10	15	31	27
2010	35	37	65	81	38	14	~	42
2011	55	39	64	80	34	11	~	57
2012	57	61	67	75	29	32	~	52
2013	59	43	69	53	26	48	~	67
2014	76	56	66	49	37	51	32	53
2015	64	69	76	50	49	65	44	62
2016	68	72	84	40	55	54	44	64
2017	76	67	90	60	81	61	57	72
2018	77	74	87	62	58	76	74	72
2019	82	81	90	62	64	84	76	78
2020	88	91	78	73	83	83	90	78
2021	82	76	70	67	53	67	82	64
2022	52	52	59	53	44	57	~	74
2023	69	63	67	46	53	59	~	55
2024	66	52	64	59	59	54	55	63
2025	61	58	56	43	63	45	~	56

Note. Data collection for capsules commenced in 2008. ~Due to the particularly small samples (n<50) recruited in Darwin in 2010-2013, 2022-2023 and 2025, data from these years are not presented in this table; furthermore, data from Darwin in 2008 and 2024 should be interpreted with caution due to small samples (2008: n=55; 2024: n=51). Statistical significance for 2024 versus 2025 presented in table (except for Darwin); *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Table 6: Past six month use of non-prescribed ecstasy crystal, by capital city, 2013-2025

%	Syd	Can	Mel	Hob	Ade	Per	Dar	Bri/GC
2013	28	71	51	48	25	34	~	23
2014	61	54	64	29	36	58	43	45
2015	68	57	54	36	41	51	65	42
2016	81	52	59	33	63	59	43	68
2017	75	75	43	47	69	78	71	78
2018	64	60	57	53	79	51	69	67
2019	68	72	52	48	78	64	54	65
2020	47	71	42	57	59	61	51	71
2021	62	36	47	66	49	63	38	63
2022	37	43	44	47	22	60	~	55
2023	47	48	49	55	39	57	~	56
2024	53	37	43	47	50	51	49	54
2025	42	59**	38	53	33*	68*	~	66

Note. Data collection for crystal commenced in 2013. ~Due to the particularly small samples (n<50) recruited in Darwin in 2013, 2022-2023 and 2025, data from these years are not presented in this table; furthermore, data from Darwin in 2024 should be interpreted with caution due to small samples (2024: n=51). Statistical significance for 2024 versus 2025 presented in table (except for Darwin); *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Table 7: Past six month use of non-prescribed ecstasy powder, by capital city, 2005-2025

%	Syd	Can	Mel	Hob	Ade	Per	Dar	Bri/GC
2005	15	24	27	11	31	27	14	20
2006	8	19	35	13	27	9	8	31
2007	20	8	38	5	28	11	11	18
2008	15	7	27	6	11	9	-	6
2009	11	14	24	12	9	10	20	17
2010	7	14	34	21	19	6	~	20
2011	21	23	30	26	29	7	~	32
2012	20	35	31	30	11	26	~	31
2013	29	20	51	20	16	25	~	36
2014	15	13	43	20	18	20	26	36
2015	19	22	46	15	14	18	15	22
2016	15	12	51	28	21	13	22	34
2017	21	32	34	24	44	36	20	28
2018	18	23	45	41	27	24	42	27
2019	18	30	20	28	41	30	42	22
2020	33	35	44	37	37	27	35	31
2021	25	26	21	40	22	17	38	19
2022	21	19	17	31	26	32	~	20
2023	27	32	26	26	28	29	~	25
2024	29	28	34	30	36	28	27	29
2025	17*	26	21	29	28	25	~	21

Note. Data collection for powder commenced in 2005. ~Due to the particularly small samples (n<50) recruited in Darwin in 2010-2013, 2022-2023 and 2025, data from these years are not presented in this table; furthermore, data from Darwin in 2006, 2008 and 2024 should be interpreted with caution due to small samples (2006: n=51; 2008: n=55; 2024: n=51). Statistical significance for 2024 versus 2025 presented in table (except for Darwin); *p<0.050; *p<0.010; *p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Patterns of Consumption (by form)

Non-Prescribed Ecstasy Pills

Recent Use (past 6 months): Recent use of non-prescribed ecstasy pills was reported by two fifths (40%) of participants, stable relative to 2024 (43%; p=0.263) (Figure 4). The proportion of participants reporting recent use of non-prescribed ecstasy pills remained stable across all capital city samples (Table 4) in 2025, relative to 2024.

Frequency of Use: Of those who had recently consumed non-prescribed ecstasy pills and commented (n=275), participants reported a median of five days (IQR=2-12) of use in the six months preceding interview, stable relative to 2024 (5 days; IQR=2-12; n=318; p=0.824) (Figure 5). Among those had recently used non-prescribed ecstasy pills and commented (n=275), the percentage reporting weekly or more frequent use also remained stable in 2025 (15%), relative to 2024 (12%; p=0.275).

Routes of Administration: Among participants who had recently consumed non-prescribed ecstasy pills and commented (n=276), the most common route of administration was swallowing (97%; 98% in 2024; p=0.610), followed by snorting (19%; 24% in 2024; p=0.235).

Quantity: Of those who reported recent non-prescribed use and responded (n=274), the median number of ecstasy pills used in a 'typical' session was two (IQR=1-2; 2 pills in 2024; IQR=1-3; p=0.223). Of those who reported recent use and responded (n=273), the median maximum number of pills used in a session was 2.5 (IQR=1.5-4.5; 3 pills in 2024; IQR=2-4; p=0.757).

Non-Prescribed Ecstasy Capsules

Recent Use (past 6 months): Capsules remained the most common form of non-prescribed ecstasy used in 2025, with 55% reporting recent use, stable relative to 2024 (59%; p=0.091) (Figure 4). Recent use of ecstasy capsules remained stable in all capital city samples, relative to 2024 (Table 5).

Frequency of Use: Of those who had recently consumed non-prescribed ecstasy capsules and commented (n=378), capsules were used on a median of five days (IQR=2-10), stable relative to 2024 (4 days; IQR=2-10; n=438; p=0.583) (Figure 5). Among those who had recently used non-prescribed ecstasy capsules and commented (n=378), one tenth (10%) reported weekly or more frequent use, a significant increase relative to 2024 (6%; p=0.043).

Routes of Administration: Among participants who had recently consumed non-prescribed ecstasy capsules and commented (n=378), swallowing remained the most common route of administration in 2025 (97%; 96% in 2024; p=0.338). Thirteen per cent reported snorting capsules, stable relative to 2024 (16%; p=0.175).

Quantity: Of those who reported recent non-prescribed use and responded (n=379), the median number of ecstasy capsules used in a 'typical' session in 2025 was two (IQR=1-3; 2 capsules in 2024; IQR=1-3; p=0.082). Of those who reported recent use and responded (n=377), the median maximum number of capsules used in a session was three (IQR=2-4; 3 capsules in 2024; IQR=2-5; p=0.086).

Non-Prescribed Ecstasy Crystal

Recent Use (past 6 months): Recent use of non-prescribed ecstasy crystal was reported by half (51%) of the national sample, stable from 48% in 2024 (p=0.367) (Figure 4). In 2025,

recent use of ecstasy crystal significantly increased in the Canberra (59%; 37% in 2024; p=0.003) and Perth (68%; 51% in 2024; p=0.021) samples, and significantly decreased in the Adelaide (33%; 50% in 2024; p=0.015) sample (Table 6).

Frequency of Use: Of those who had recently consumed non-prescribed ecstasy crystal and commented (n=349), participants reported use on a median of six days (IQR=3-12) in the six months preceding interview, stable from five days in 2024 (IQR=2-10; n=356; p=0.066) (Figure 5). Among those who had recently used non-prescribed ecstasy crystal and commented (n=349), 13% reported weekly or greater use, stable relative to 2024 (9%; p=0.147).

Routes of Administration: Among participants who had recently consumed non-prescribed ecstasy crystal and commented (n=349), swallowing was the most common route of administration (80%; 78% in 2024; p=0.460), followed by snorting (48%; 47% in 2024; p=0.708).

Quantity: Of those who reported recent non-prescribed use and responded (n=301), the median amount of ecstasy crystal used in a 'typical' session was 0.30 grams (IQR=0.20-0.50; 0.30 grams in 2024; IQR=0.20-0.50; p=0.159). Of those who reported recent use and responded (n=306), the median maximum amount used in a session was 0.50 grams (IQR=0.30-1.00; 0.50 grams in 2024; IQR=0.30-1.00; p=0.985).

Non-Prescribed Ecstasy Powder

Recent Use (past 6 months): Consistent with previous years, non-prescribed ecstasy powder was the least commonly used form of ecstasy in 2025. Almost one quarter (23%) of participants reported recent use, a significant decrease from 30% in 2024 (p=0.005) (Figure 4). Recent use remained stable across most

capital city samples, apart from a significant decrease in the NSW sample (17%; 29% in 2024; p=0.048) (Table 7).

Frequency of Use: Of those who had recently used non-prescribed ecstasy powder and commented (n=161), participants reported use on a median of five days (IQR=2-10) in the previous six months, stable relative to 2024 (4 days; IQR=2-8; n=224; p=0.159) (Figure 5). Among those who had recently used non-prescribed ecstasy powder and commented (n=161), 7% reported weekly or more frequent use, stable from 2024 (8%; p=0.847).

Routes of Administration: Among participants who had recently used non-prescribed ecstasy powder and commented (n=162), snorting was the most common route of administration, consistent with previous years, and stable from 2024 (72%; 76% in 2024; p=0.345). Fifty-four per cent of participants reported swallowing ecstasy powder, stable relative to 2024 (50%; p=0.531).

Quantity: Of those who reported recent non-prescribed use and responded (n=123), the median quantity of ecstasy powder used in a 'typical' session was 0.30 grams (IQR=0.20-0.50; 0.30 grams in 2024; IQR=0.20-0.50; p=0.894). Of those who reported recent use and responded (n=124), the median maximum amount used in a session was 0.50 grams (IQR=0.27-1.00; 0.50 grams in 2024; IQR=0.30-1.00; p=0.907).

Price, Perceived Purity and Perceived Availability

Non-Prescribed Ecstasy Pills

Price: The reported price of a non-prescribed ecstasy pill in 2025 was \$30 (IQR=25-35; n=184; \$30 in 2024; IQR=25-36; n=185; p=0.195) (Figure 6).

Perceived Purity: Among those who responded in 2025 (n=287), the perceived purity of non-prescribed ecstasy pills remained stable relative to 2024 (*p*=0.481). Two fifths of participants reported the perceived purity to be 'high' (41%; 35% in 2024). Twenty-eight per cent reported 'medium' purity (29% in 2024), followed by 21% reporting 'fluctuating' purity (22% in 2024). Eleven per cent reported 'low' purity (14% in 2024) (Figure 8).

Perceived Availability: Among those who responded in 2025 (n=289), the perceived availability of non-prescribed ecstasy pills remained stable, relative to 2024 (*p*=0.242). Two fifths (43%) of participants reported ecstasy pills to be 'very easy' to obtain (35% in 2024), and 34% reported that they were 'easy' to obtain (40% in 2024). Almost one fifth (19%) reported that ecstasy pills were 'difficult' to obtain (21% in 2024), while 4% reported that they were 'very difficult' to obtain (4% in 2024) (Figure 12).

Non-Prescribed Ecstasy Capsules

Price: The median price of a non-prescribed ecstasy capsule was \$25 (IQR=20-30; n=239) in 2025, a significant change from 2024 (\$25; IQR=25-30; n=239; p=0.008) (Figure 6).

Perceived Purity: Among those who responded in 2025 (n=374), the perceived purity of non-prescribed ecstasy capsules remained stable, relative to 2024 (*p*=0.136). Almost two fifths (38%) perceived purity to be 'medium' (31% in 2024) (Figure 9), with 34% reporting 'high' purity (36% in 2024) and 9% reporting 'low' purity (10% in 2024). A further 19% perceived purity to be 'fluctuating' (24% in 2024).

Perceived Availability: Among those who responded in 2025 (n=377), the perceived availability of non-prescribed ecstasy capsules remained stable, relative to 2024 (p=0.085).

The largest percentage (51%) perceived availability to be 'very easy' (42% in 2024), followed by almost two fifths (38%) reporting 'easy' obtainment (44% in 2024). In contrast, fewer participants reported ecstasy capsules as being 'difficult' (10%; 13% in 2024) or 'very difficult' ($n \le 5$; 5 $n \le 5$ in 2024) to obtain (Figure 13).

Non-Prescribed Ecstasy Crystal

Price: The median price per gram of non-prescribed ecstasy crystal remained stable at \$200 (IQR=150-250; n=202; \$220 in 2024; IQR=163-270; n=195; p=0.256). The median price per point of ecstasy crystal also remained stable, at \$30 (IQR=23-43; n=23; \$30 in 2024; IQR=30-80; n=9; p=0.194) (Figure 7).

Perceived Purity: Among those who responded in 2025 (n=332), the perceived purity of non-prescribed ecstasy crystal remained stable relative to 2024 (*p*=0.231). The largest percentage of participants reported perceived purity to be 'high' (55%; 49% in 2024). One quarter (26%) of participants perceived purity to be 'medium' (27% in 2024), and fewer participants perceived purity to be 'fluctuating' (13%; 18% in 2024) or 'low' (6%; 5% in 2024) (Figure 10).

Perceived Availability: Among those who responded in 2025 (n=330), the perceived availability of non-prescribed ecstasy crystal remained stable relative to 2024 (*p*=0.421). Forty-six per cent perceived ecstasy crystal as being 'very easy' to obtain in 2025 (42% in 2024), followed by 38% reporting 'easy' obtainment (40% in 2024). In contrast, fewer participants perceived availability to be 'difficult' (13%; 17% in 2024) or 'very difficult' (2%; n≤5 in 2024) to obtain (Figure 14).

Non-Prescribed Ecstasy Powder

Price: The reported median price per gram of non-prescribed ecstasy powder significantly decreased, from \$250 (IQR=175-300; n=80) in 2024 to \$200 (IQR=150-250; n=70; p=0.014) in 2025 (Figure 7).

Perceived Purity: Among those who responded in 2025 (n=121), the perceived purity of non-prescribed ecstasy powder remained stable, relative to 2024 (p=0.873). Almost two fifths (38%) perceived ecstasy powder to be of 'medium' purity (36% in 2024), 37% perceived it as 'high' (35% in 2024), 10%

perceived it as 'low' (13% in 2024), and 15% perceived purity to be 'fluctuating' (15% in 2024) (Figure 11).

Perceived Availability: Among those who responded in 2025 (n=123), the perceived availability of non-prescribed ecstasy powder remained stable, relative to 2024 (p=0.491). Two fifths (42%) reported availability to be 'easy' (40% in 2024), and a further 39% reported availability to be 'very easy' (34% in 2024). In contrast, 17% reported availability as being 'difficult' (24% in 2024) (Figure 15).



Figure 6: Median price of non-prescribed ecstasy pills and capsules, nationally, 2003-2025

Note. Among those who commented. The error bars represent the IQR. Statistical significance for 2024 versus 2025 presented in figure; *p < 0.050; **p < 0.010; ***p < 0.001. Please refer to Table 1 for a guide to table/figure notes.

Figure 7: Median price of non-prescribed ecstasy crystal (per gram and point) and powder (per gram only), nationally, 2013-2025

Note. Among those who commented. Data collection for price of ecstasy crystal (gram and point) and ecstasy powder (gram) commenced in 2013. The error bars represent the IQR. Statistical significance for 2024 versus 2025 presented in figure; *p < 0.050; **p < 0.010; ***p < 0.001. Please refer to Table 1 for a guide to table/figure notes.

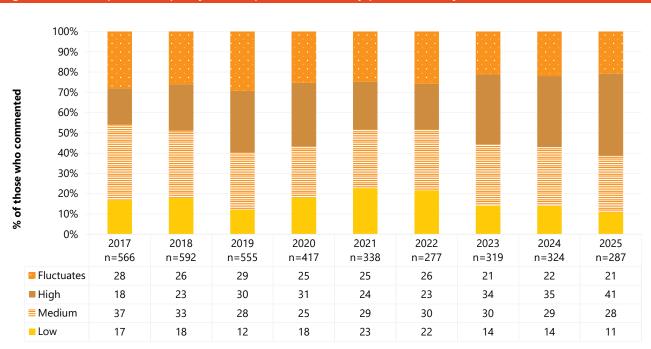


Figure 8: Current perceived purity of non-prescribed ecstasy pills, nationally, 2017-2025

Note. Market questions were only asked for all forms of ecstasy from 2017 onwards. Statistical significance for 2024 versus 2025 presented in figure; *p < 0.050; **p < 0.010; ***p < 0.010; ***p < 0.001. Please refer to Table 1 for a guide to table/figure notes.

Figure 9: Current perceived purity of non-prescribed ecstasy capsules, nationally, 2017-2025

Note. Market questions were only asked for all forms of ecstasy from 2017 onwards. Statistical significance for 2024 versus 2025 presented in figure; *p < 0.050; **p < 0.010; ***p < 0.001. Please refer to Table 1 for a guide to table/figure notes.

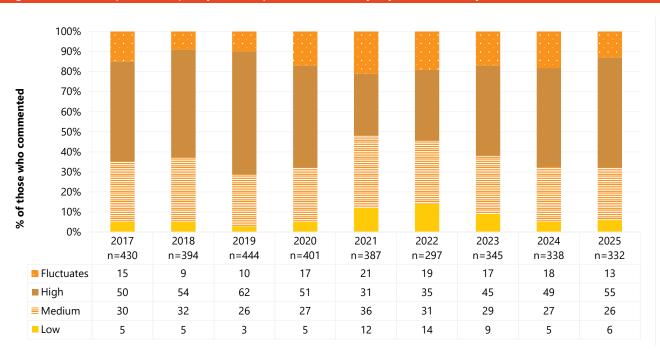


Figure 10: Current perceived purity of non-prescribed ecstasy crystal, nationally, 2017-2025

Note. Market questions were only asked for all forms of ecstasy from 2017 onwards. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

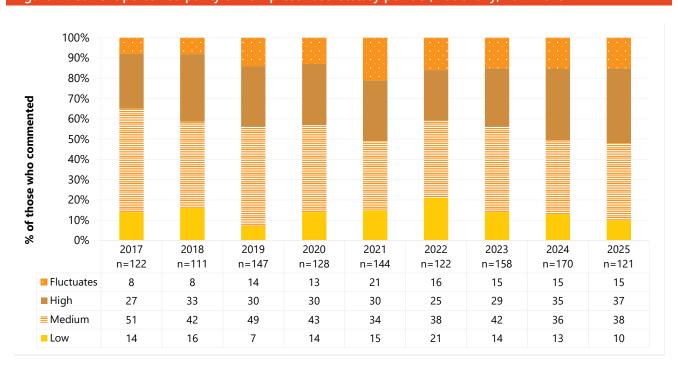


Figure 11: Current perceived purity of non-prescribed ecstasy powder, nationally, 2017-2025

Note. Market questions were only asked for all forms of ecstasy from 2017 onwards. Statistical significance for 2024 versus 2025 presented in figure; *p < 0.050; **p < 0.010; ***p < 0.001. Please refer to Table 1 for a guide to table/figure notes.

100% 90% 80% 70% % of those who commented 60% 50% 40% 30% 20% 10% 0% n=597 n=289 n=576 n=561 n=419 n=332 n=288 n=328 n=327 ■ Very difficult ■ Difficult **≡** Easy Very easy

Figure 12: Current perceived availability of non-prescribed ecstasy pills, nationally, 2017-2025

Note. Market questions were only asked for all forms of ecstasy from 2017 onwards. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

100% 90% 80% 70% % of those who commented 60% 50% 40% 30% 20% 10% 0% n=567 n=588 n=653 n=610 n=532 n=397 n=427 n=439 n=377 ■ Very difficult Difficult **≡** Easy Very easy

Figure 13: Current perceived availability of non-prescribed ecstasy capsules, nationally, 2017-2025

Note. Market questions were only asked for all forms of ecstasy from 2017 onwards. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

100% 90% 80% 70% % of those who commented 60% 50% 40% 30% 20% 10% 0% 2017 2018 2019 2020 2021 2022 2023 2024 2025 n=330 n=433 n=392 n=442 n=406 n=391 n=305 n=347 n=339 ■ Very difficult 2 4 6 17 4 2 2 ■ Difficult 20 23 18 18 27 17 13 34 24 **≡** Easy 40 44 44 41 43 30 39 40 38 Very easy 38 30 37 39 23 19 33 42 46

Figure 14: Current perceived availability of non-prescribed ecstasy crystal, nationally, 2017-2025

Note. Market questions were only asked for all forms of ecstasy from 2017 onwards. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

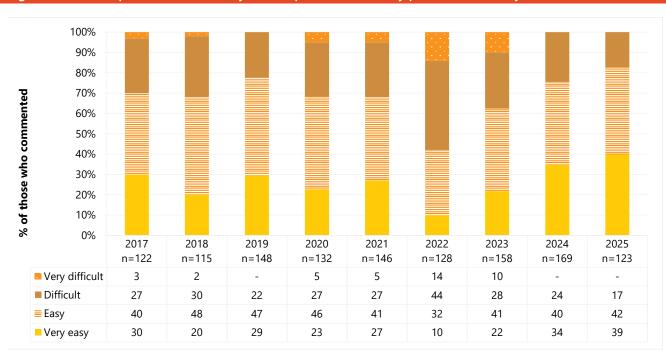


Figure 15: Current perceived availability of non-prescribed ecstasy powder, nationally, 2017-2025

Note. Market questions were only asked for all forms of ecstasy from 2017 onwards. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

4

Methamphetamine

Participants were asked about their recent (past six month) use of various forms of methamphetamine, including powder (white particles, described as 'speed'), base (wet, oily powder), and crystal (clear, ice-like crystals).

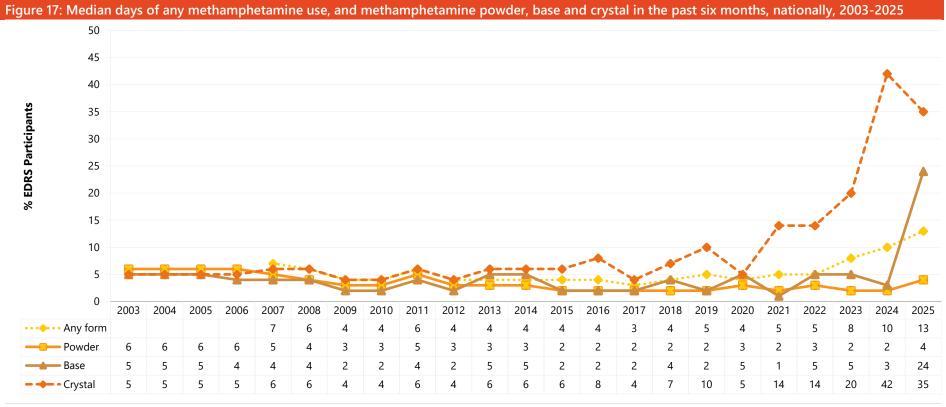
Patterns of Consumption (Any Methamphetamine)

Recent Use (past 6 months)

The per cent reporting any recent use of methamphetamine has been declining since monitoring commenced (Figure 16). Twenty-nine per cent reported recent use of any methamphetamine in 2025, stable relative to 2024 (25%; p=0.098) (Figure 16). Recent use of any methamphetamine remained stable in all capital city samples (Table 8).

In 2025, the per cent of participants reporting methamphetamine crystal (20%) and powder (12%) were broadly comparable, with few participants ($n \le 5$) reporting use of base; this has remained consistent over the past decade.

Frequency of Use


In 2025, participants reported use on a median of 13 days (IQR=3-72; n=198) in the six months preceding interview, stable relative to 2024 (10 days; IQR=2-74; n=183; p=0.605) (Figure 17). Among those who had recently used methamphetamine and commented (n=198), 45% reported weekly or more frequent use, stable from 42% in 2024 (p=0.602).

Number of Forms Used

Among participants who had recently consumed any methamphetamine and commented in 2025 (n=199), the median number of forms used was one (IQR=1-1), stable relative to 2024 (1 form; IQR=1-1; n=184; p=0.222). This was consistent across all capital cities.

Figure 16: Past six month use of any methamphetamine, and methamphetamine powder, base, and crystal, nationally, 2003-2025

Note. Median days computed among those who reported recent use (maximum 180 days). Median days rounded to the nearest whole number. Y axis reduced to 50 days to improve visibility of trends.

Table 8: Past six month use of any methamphetamine, by capital city, 2003-2025

%	Syd	Can	Mel	Hob	Ade	Per	Dar	Bri/GC
2003	87	79	98	82	92	91	82	66
2004	89	77	94	76	90	95	82	70
2005	83	75	86	78	94	92	76	84
2006	76	79	91	78	92	88	67	78
2007	66	60	91	70	90	62	67	58
2008	66	55	77	63	58	50	24	57
2009	49	54	72	52	53	44	64	47
2010	50	70	72	48	57	45	~	51
2011	49	51	75	52	67	64	~	60
2012	42	73	84	64	48	47	~	76
2013	36	65	71	57	46	31	~	48
2014	32	51	68	64	32	31	47	47
2015	33	35	55	45	33	20	49	31
2016	27	26	57	42	36	27	52	39
2017	30	33	46	40	37	12	35	14
2018	19	33	60	46	45	11	27	18
2019	26	33	46	45	34	11	44	24
2020	17	15	49	31	26	12	24	18
2021	15	29	44	31	33	13	14	30
2022	29	39	49	39	36	14	~	15
2023	21	23	29	40	46	29	~	27
2024	26	21	29	40	26	9	39	18
2025	30	18	29	52	35	15	~	25

Note. ~Due to the particularly small samples (n<50) recruited in Darwin in 2010-2013, 2022-2023 and 2025, data from these years are not presented in this table; furthermore, data from Darwin in 2006, 2008 and 2024 should be interpreted with caution due to small samples (2006: n=51; 2008: n=55; 2024: n=51). Statistical significance for 2024 versus 2025 presented in table (except for Darwin); *p<0.050; *p<0.010; **p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Table 9: Past six month use of methamphetamine powder, by capital city, 2003-2025

%	Syd	Can	Mel	Hob	Ade	Per	Dar	Bri/GC
2003	79	64	89	67	65	83	81	57
2004	81	64	92	68	62	78	72	42
2005	76	70	85	77	66	85	73	57
2006	55	66	91	62	51	65	59	58
2007	45	53	90	65	53	46	55	46
2008	48	42	75	59	30	38	24	34
2009	37	44	72	46	30	37	61	41
2010	29	66	70	40	38	38	~	47
2011	32	50	69	47	45	44	~	49
2012	31	63	77	61	24	27	~	58
2013	25	57	58	53	21	17	~	41
2014	21	48	56	58	13	19	39	34
2015	27	31	45	39	11	6	31	11
2016	18	21	50	32	12	18	27	25
2017	18	32	43	29	19	7	20	9
2018	14	25	56	30	15	-	14	10
2019	17	23	41	33	16	-	28	9
2020	8	12	39	25	6	-	14	8
2021	8	9	36	20	-	-	-	15
2022	13	10	45	20	14	-	~	10
2023	8	11	23	23	12	-	~	-
2024	10	16	20	18	8	-	14	8
2025	14	8	20	24	7	-	~	7

Note. ~Due to the particularly small samples (n<50) recruited in Darwin in 2010-2013, 2022-2023 and 2025, data from these years are not presented in this table; furthermore, data from Darwin in 2006, 2008 and 2024 should be interpreted with caution due to small samples (2006: n=51; 2008: n=55; 2024: n=51). Statistical significance for 2024 versus 2025 presented in table (except for Darwin); *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Table 10: Past six month use of methamphetamine crystal, by capital city, 2003-2025

%	Syd	Can	Mel	Hob	Ade	Per	Dar	Bri/GC
2003	48	56	64	52	48	77	40	38
2004	46	39	52	16	47	80	35	42
2005	40	26	42	10	41	69	32	50
2006	56	37	49	27	62	77	26	50
2007	42	20	39	7	49	52	24	23
2008	33	24	22	15	34	36	0	26
2009	9	8	13	7	32	20	15	17
2010	21	16	18	-	26	22	~	8
2011	19	9	38	-	43	46	~	32
2012	18	26	48	10	32	33	~	40
2013	11	14	45	17	28	22	~	21
2014	13	8	34	14	20	17	27	26
2015	12	7	19	13	26	16	36	20
2016	15	5	18	21	33	12	32	18
2017	12	8	10	14	26	6	24	7
2018	6	15	14	24	40	8	21	12
2019	13	15	12	20	26	8	31	16
2020	10	4	14	12	21	10	12	14
2021	-	21	13	15	32	10	12	16
2022	16	31	10	21	30	11	~	6
2023	14	14	13	22	39	28	~	23
2024	17	9	12	26	23	8	31	13
2025	18	14	10	37	31	13	~	20

Note. ~Due to the particularly small samples (n<50) recruited in Darwin in 2010-2013, 2022-2023 and 2025, data from these years are not presented in this table; furthermore, data from Darwin in 2006, 2008 and 2024 should be interpreted with caution due to small samples (2006: n=51; 2008: n=55; 2024: n=51). Statistical significance for 2024 versus 2025 presented in table (except for Darwin); *p<0.050; *p<0.010; *p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Patterns of Consumption (by form)

Methamphetamine Powder

Recent Use (past 6 months): Historically, powder was the most commonly used form of methamphetamine, however, has declined substantially since 2003 and was overtaken by crystal from 2021 onwards (Figure 16). In 2025, 12% of the national sample reported recent use, unchanged from 2024 (12%). Recent use remained stable across all capital cities, relative to 2024 (Table 9).

Frequency of Use: Of those who had recently consumed methamphetamine powder and commented in 2025 (n=79), median days of use remained low and stable at four days (IQR=1-7; 2 days in 2024; IQR=1-6; n=86; p=0.318) (Figure 17), with 15% reporting weekly or more frequent use (13% in 2024; p=0.817).

Routes of Administration: Among participants who had recently consumed methamphetamine powder and commented in 2025 (n=80), the most common route of administration was snorting (80%; 77% in 2024; p=0.694), followed by swallowing (28%; 23% in 2024; p=0.591). Fewer participants reported smoking as a route of administration (8%; 10% in 2024; p=0.591).

Quantity: Of those who reported recent use and responded (n=60), the median amount used in a 'typical' session was 0.25 grams (IQR=0.10-0.50), a significant decrease relative to 2024 (0.40 grams; IQR=0.20-0.50; p=0.032). Of those who reported recent use and responded (n=61), the median maximum amount used in a session was 0.33 grams (IQR=0.20-1.00; 0.50 grams in 2024; IQR=0.20-1.00; p=0.138).

Methamphetamine Crystal

Recent Use (past 6 months): As with all forms of methamphetamine, crystal use has generally decreased over time, albeit stabilising from about 2014 onwards (Figure 16). In 2025, one fifth (20%) of the national sample had recently consumed methamphetamine crystal, stable relative to 2024 (16%; p=0.057). Recent use remained stable across all capital cities, relative to 2024 (Table 10).

Frequency of Use: Of those who had recently consumed methamphetamine crystal and commented (n=140), participants reported use on a median of 35 days (IQR=6-97) (Figure 17), stable from 42 days in 2024 (IQR=10-96; n=120; p=0.851). Among those who had recently consumed methamphetamine crystal and commented (n=140), almost three fifths (59%) reported weekly or more frequent use in 2025 (60% in 2024; p=0.894).

Routes of Administration: Among those who had recently used methamphetamine crystal and commented (n=140), smoking remained the most common route of administration in 2025 (84%; 87% in 2024; p=0.484), with fewer participants reporting snorting (9%; 15% in 2024; p=0.186), swallowing (20%; 12% in 2024; p=0.096) or injecting (12%; 14% in 2024; p=0.718).

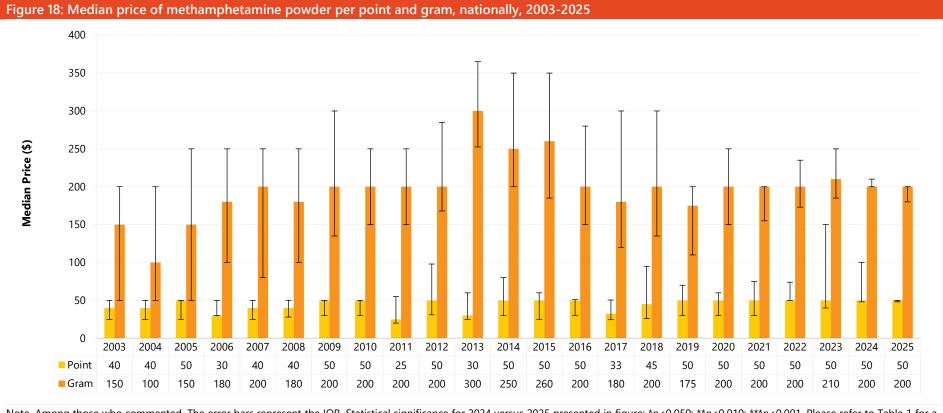
Quantity: Of those who reported recent use and responded (n=132), the median amount used in a 'typical' session was 0.25 grams (IQR=0.10-0.50; 0.20 grams in 2024; IQR=0.10-0.50; p=0.355). Of those who reported recent use and responded (n=131), the median maximum amount used in a session was 0.50 grams (IQR=0.25-1.00; 0.50 grams in 2024; IQR=0.20-1.00; p=0.341).

Price, Perceived Purity and Perceived Availability

Methamphetamine Powder

Price: Participants reported a median price of \$200 per gram of methamphetamine powder in 2025 (IQR=180-200; n=31; \$200 in 2024; IQR=200-210; n=25; p=0.381) and \$50 for one point (IQR=48-50; n=11; \$50 in 2024; IQR=48-100; n=12; p=0.312) (Figure 18).

Perceived Purity: Among those who responded in 2025 (n=67), the perceived purity of methamphetamine powder remained stable, relative to 2024 (p=0.754). Two fifths (40%) perceived powder to be of 'high' purity (40% in 2024), with a further 39% perceiving powder to be of 'medium' purity (32% in 2024) (Figure 20). Fewer participants perceived purity to be 'low' (12%; 17% in 2024) or 'fluctuating' (9%; 11% in 2024) (Figure 20).


Perceived Availability: Among those who responded in 2025 (n=68), the perceived availability of methamphetamine powder remained stable, relative to 2024 (*p*=0.237). The largest percentage (35%) perceived powder to be 'easy' to obtain (29% in 2024), while 29% perceived it to be 'very easy' to obtain (28% in 2024). In contrast, almost one fifth (18%) perceived powder to be 'difficult' (32% in 2024) or 'very difficult' (18%; 11% in 2024) to obtain (Figure 22).

Methamphetamine Crystal

Price: Participants reported a median price of \$250 per gram of methamphetamine crystal (IQR=200-300; n=37), a significant decrease relative to 2024 (\$300; IQR=250-450; n=27; p=0.037). The median price per point of crystal was \$50 (IQR=50-50; n=53), also a significant change relative to 2024 (\$50; IQR=50-80; n=43; p=0.013) (Figure 19).

Perceived Purity: Among those who responded in 2025 (n=136), the perceived purity of methamphetamine crystal remained stable, relative to 2024 (*p*=0.822). Two fifths (40%) perceived crystal to be of 'high' purity (43% in 2024), followed by almost one quarter (24%) perceiving it to be of 'medium' purity (25% in 2024) and almost one fifth (19%) perceiving it to be of 'fluctuating' purity (20% in 2024). Sixteen per cent perceived purity to be 'low' (12% in 2024) (Figure 21).

Perceived Availability: Among those who responded in 2025 (n=139), the perceived availability of methamphetamine crystal remained stable, relative to 2024 (p=0.131). Almost three quarters (72%) reported availability to be 'very easy' (65% in 2024), and a further 22% reported it to be 'easy' (28% in 2024). Fewer participants perceived availability to be 'difficult' (6%; n≤5 in 2024) (Figure 23).

Note. Among those who commented. The error bars represent the IQR. Statistical significance for 2024 versus 2025 presented in figure; *p < 0.050; **p < 0.010; ***p < 0.001. Please refer to Table 1 for a guide to table/figure notes.

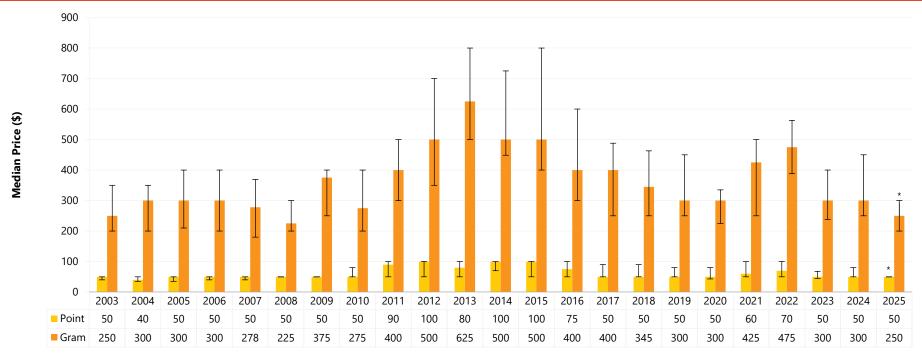


Figure 19: Median price of methamphetamine crystal per point and gram, nationally, 2003-2025

Note. Among those who commented. The error bars represent the IQR. Statistical significance for 2024 versus 2025 presented in figure; *p < 0.050; **p < 0.010; ***p < 0.001. Please refer to Table 1 for a guide to table/figure notes.

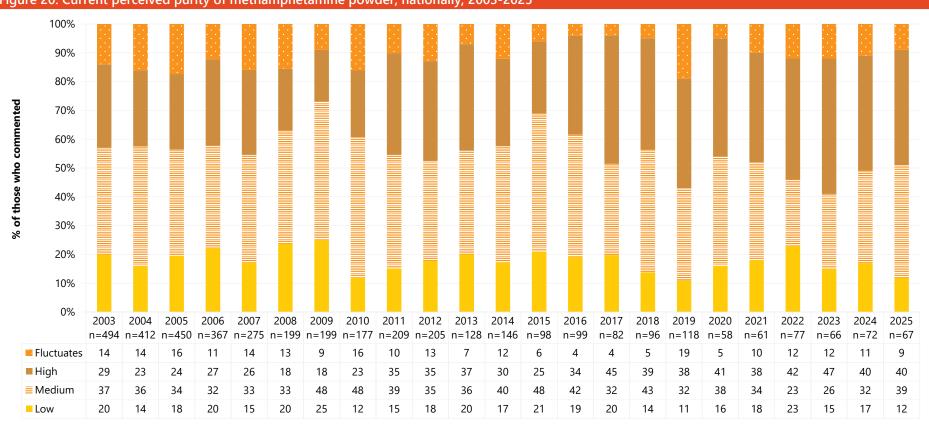
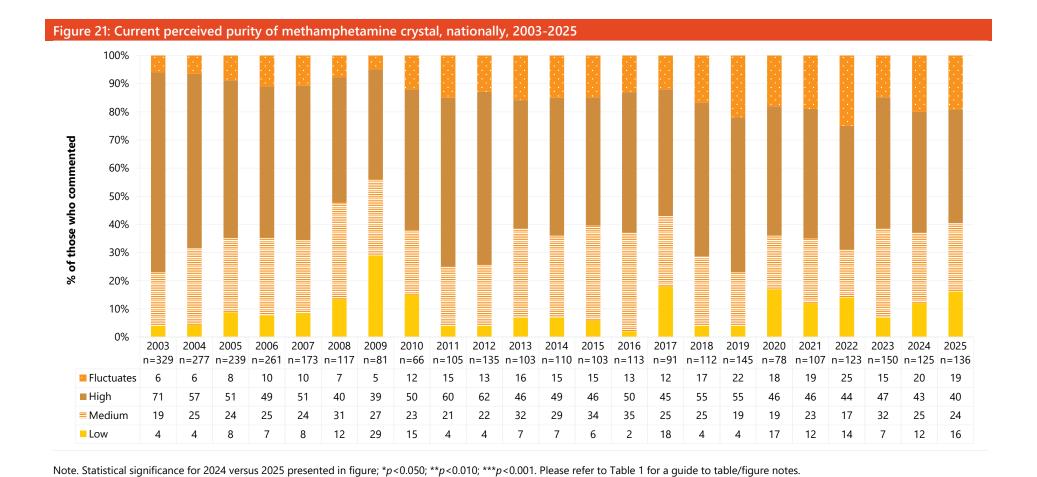
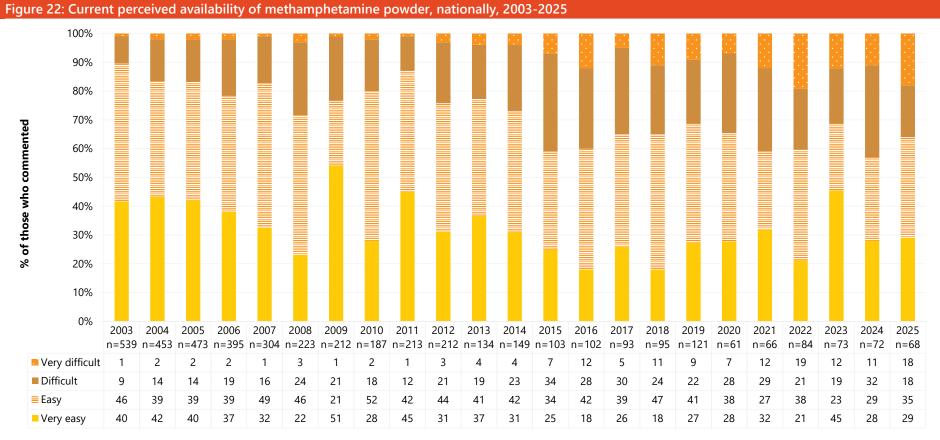
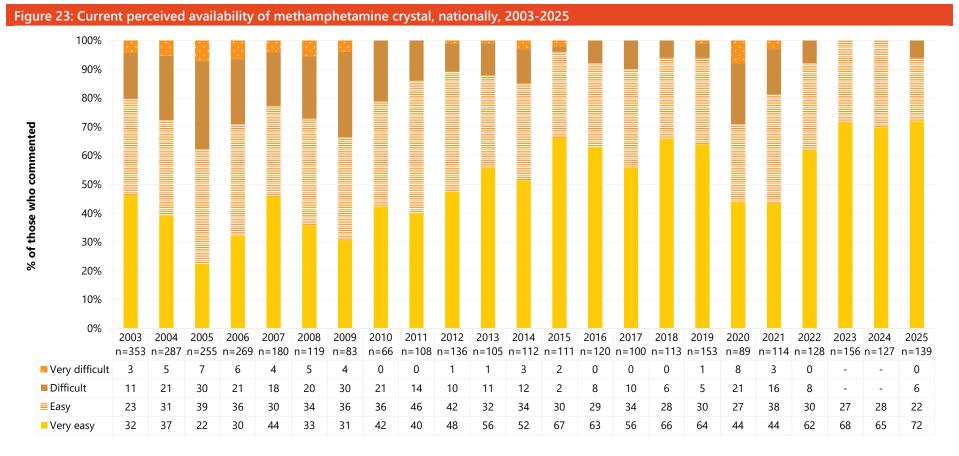





Figure 20: Current perceived purity of methamphetamine powder, nationally, 2003-2025

5

Non-Prescribed Pharmaceutical Stimulants

Participants were asked about their recent (past six month) use of non-prescribed pharmaceutical stimulants, such as dexamfetamine, lisdexamfetamine (Vyvanse®), or methylphenidate (Concerta®, Ritalin®, Ritalin LA®). These substances are commonly prescribed to treat attention deficit hyperactivity disorder and narcolepsy.

Patterns of Consumption

Recent Use (past 6 months)

The per cent of participants reporting any recent non-prescribed pharmaceutical stimulant (e.g., dexamphetamine, methylphenidate, modafinil) use has steadily increased since the commencement of monitoring, from 17% in 2007 to 52% in 2022. Recent use of non-prescribed pharmaceutical stimulants then declined in 2023 (47%), before increasing in 2024 (54%) and remaining stable in 2025 (55%; p=0.595) (Figure 24). Recent use of non-prescribed pharmaceutical stimulants remained stable in most capital city samples, apart from a significant decrease in the percentage reporting recent use in the Adelaide sample (31%; 50% in 2024; p=0.008) (Table 11).

Frequency of Use

Frequency of use remained stable in 2025 at a median of seven days in the six months prior to interview (IQR=3-15; n=382; 6 days in 2024; IQR=3-20; n=398; p=0.898) (Figure 24).

Routes of Administration

Among participants who had recently consumed non-prescribed pharmaceutical stimulants and commented (n=382), the vast majority reported swallowing as a route of administration (95%; 94% in 2024; p=0.761), with a significant decrease in the per cent who reported snorting as a route of administration (19%; 26% in 2024; p=0.014).

Quantity

Among those who reported recent use and responded (n=308), the median amount used in a 'typical' session was two pills/tablets (IQR=1-3), a significant change, relative to 2024 (2 pills/tablets; IQR=1-3; p=0.040). Of those who reported recent use and responded (n=307), the median maximum amount used in a session was three pills/tablets (IQR=2-5; 3 pills/tablets in 2024; IQR=2-5.5; p=0.301).

Forms Used

Among participants who had recently consumed non-prescribed pharmaceutical stimulants and commented (n=380), the majority reported using dexamfetamine (84%; 82% in 2024; p=0.560), with fewer participants reporting use of Ritalin® (36%; 39% in 2024; p=0.415). Almost one third (30%) reported using lisdexamfetamine, a significant increase relative to 2024 (22%; p=0.018), and 2% reported using modafinil, a significant decrease from 2024 (9%; p<0.001).

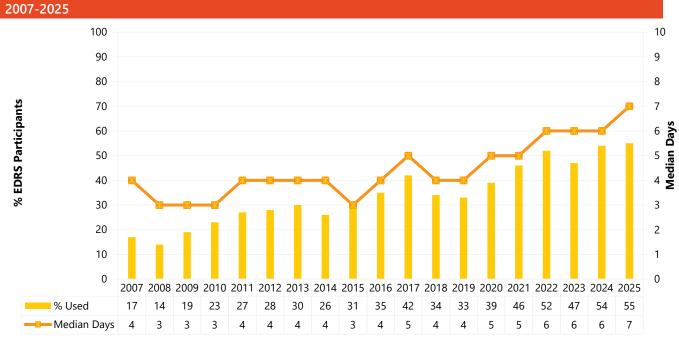


Figure 24: Past six month use and frequency of use of non-prescribed pharmaceutical stimulants, nationally, 2007-2025

Note. Monitoring of pharmaceutical stimulants commenced in 2007. Median days computed among those who reported recent use (maximum 180 days). Median days rounded to the nearest whole number. Secondary Y axis reduced to 10 days to improve visibility of trends. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Table 11: Past six month use of non-prescribed pharmaceutical stimulants, by capital city, 2007-2025

%	Syd	Can	Mel	Hob	Ade	Per	Dar	Bri/GC
2007	10	16	9	19	15	43	-	12
2008	9	22	9	16	-	50	-	8
2009	13	34	14	10	-	57	-	9
2010	16	36	24	9	10	58	~	12
2011	18	43	26	15	24	68	~	26
2012	24	33	19	20	19	64	~	19
2013	30	16	29	18	23	62	~	41
2014	23	6	30	18	15	77	13	22
2015	37	18	30	13	-	75	13	31
2016	44	26	34	20	27	65	14	50
2017	43	38	24	36	45	76	14	58
2018	41	34	37	30	12	62	15	42
2019	40	31	34	19	15	63	17	39
2020	38	45	55	22	27	66	29	30
2021	61	41	66	30	31	77	20	42
2022	39	50	64	40	41	81	~	53
2023	41	51	47	34	42	68	~	41
2024	46	56	60	36	50	73	39	61
2025	50	65	65	37	31**	84	~	55

Note. Monitoring of pharmaceutical stimulants commenced in 2007. ~Due to the particularly small samples (n<50) recruited in Darwin in 2010-2013, 2022-2023 and 2025, data from these years are not presented in this table; furthermore, data from Darwin in 2006, 2008 and 2024 should be interpreted with caution due to small samples (2006: n=51; 2008: n=55; 2024: n=51). Statistical significance for 2024 versus 2025 presented in table (except for Darwin); *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Price and Perceived Availability

Price and availability data for non-prescribed pharmaceutical stimulants have been collected from 2022 onwards.

Price

In 2025, participants reported a median price of \$5 per 5mg tablet (IQR=5-10; n=85; \$5 in 2024; IQR=5-9; n=95; p=0.183) and \$10 per 10mg tablet (IQR=3-10; n=18; \$5 in 2024; IQR=3-10; n=26; p=0.582).

Perceived Availability

Among those who responded in 2025 (n=248), the perceived availability of non-prescribed pharmaceutical stimulants remained stable, relative to 2024 (p=0.261). The largest percentage of participants perceived non-prescribed pharmaceutical stimulants as being 'very easy' to obtain (50%; 46% in 2024), followed by 36% perceiving it to be 'easy' to obtain (33% in 2024) and 12% perceiving it to be 'difficult' to obtain (17% in 2024) (Figure 25).

Figure 25: Current perceived availability of non-prescribed pharmaceutical stimulants, nationally, 2022-2025

6

Cocaine

Participants were asked about their recent (past six month) use of various forms of cocaine, including powder and crack/rock cocaine. Cocaine hydrochloride, a salt derived from the coca plant, is the most common form of cocaine available in Australia. 'Crack' cocaine is a form of freebase cocaine (hydrochloride removed), which is particularly pure. 'Crack' is most prevalent in North America and infrequently encountered in Australia.

Patterns of Consumption

Recent Use (past 6 months)

Recent cocaine use increased threefold between 2003 and 2021, however has remained stable from 2021 onwards. In 2025, almost four fifths (79%) of the national sample reported recent use, stable relative to 2024 (80%; p=0.696) (Figure 26). Consistent with the national data, recent cocaine use remained high and stable among all capital city samples (Table 12).

Frequency of Use

Of those who had recently consumed cocaine and commented in 2025 (n=545), participants reported a median of five days of use in the six months preceding interview (IQR=3-12; 5 days in 2024; IQR=2-11; n=592; p=0.651) (Figure 25), equivalent to less than monthly use. One tenth (12%) of those who had recently used cocaine reported weekly or more frequent use, stable relative to 2024 (12%; p=0.851).

Routes of Administration

Among participants who had recently consumed cocaine and commented (n=545), the vast majority reported snorting as a route of administration (97%; 98% in 2024; p=0.254), with fewer participants reporting swallowing (8%; 10% in 2024; p=0.156).

Quantity

Among those who reported recent use and responded (n=375), the median amount used in a 'typical' session was 0.50 grams (IQR=0.25-1.00; 0.50 grams in 2024; IQR=0.25-1.00; p=0.751). Of those who reported recent use and responded (n=388), the median maximum amount used in a session was 0.75 grams (IQR=0.50–1.20; 0.80 grams in 2024; IQR=0.40-1.50; p=0.975).

Forms Used

Among participants who had recently consumed cocaine and commented (n=544), the vast majority of participants reported using powder cocaine (96%; 95% in 2024; p=0.381), followed by crack/rock cocaine (9%; 9% in 2024; p=0.681).



Figure 26: Past six month use and frequency of use of cocaine, nationally, 2003-2025

Note. Median days computed among those who reported recent use (maximum 180 days). Median days rounded to the nearest whole number. Secondary Y axis reduced to 10 days to improve visibility of trends. Statistical significance for 2024 versus 2025 presented in figure; *p < 0.050; **p < 0.010; ***p < 0.001. Please refer to Table 1 for a guide to table/figure notes.

Table 12: Past six month use of cocaine, by capital city, 2003-2025

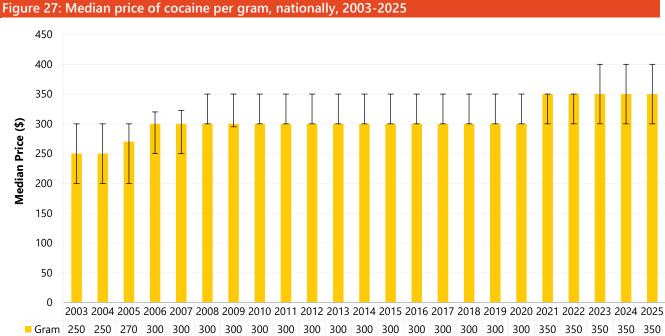
%	Syd	Can	Mel	Hob	Ade	Per	Dar	Bri/GC
2003	46	26	35	7	37	17	-	18
2004	46	34	48	10	26	16	16	21
2005	55	44	63	20	49	35	11	41
2006	45	44	55	33	31	29	-	36
2007	62	46	54	35	36	27	-	41
2008	51	45	51	35	20	40	-	30
2009	64	44	48	31	20	24	23	55
2010	59	58	54	49	42	26	~	51
2011	59	43	43	39	45	32	~	52
2012	57	37	54	26	37	31	~	34
2013	42	38	46	17	35	34	~	40
2014	67	51	58	22	45	30	39	42
2015	61	41	46	17	45	29	52	39
2016	70	44	56	24	57	38	42	41
2017	62	48	53	24	60	31	57	50
2018	71	75	84	42	55	47	40	60
2019	83	75	80	38	71	47	74	67
2020	84	89	76	61	69	48	59	61
2021	94	91	90	84	78	59	71	73
2022	86	76	91	78	78	66	~	80
2023	86	78	90	75	77	62	~	95
2024	87	81	80	77	77	71	78	87
2025	81	86	84	75	76	60	~	88

Note. ~Due to the particularly small samples (n<50) recruited in Darwin in 2010-2013, 2022-2023 and 2025, data from these years are not presented in this table; furthermore, data from Darwin in 2006, 2008 and 2024 should be interpreted with caution due to small samples (2006: n=51; 2008: n=55; 2024: n=51). Statistical significance for 2024 versus 2025 presented in table (except for Darwin); p<0.050; p<0.010; ***p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

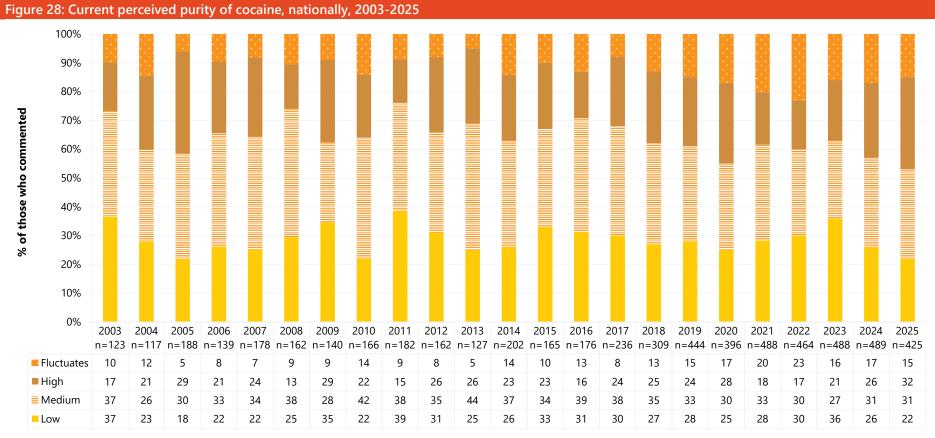
Price, Perceived Purity and Perceived Availability

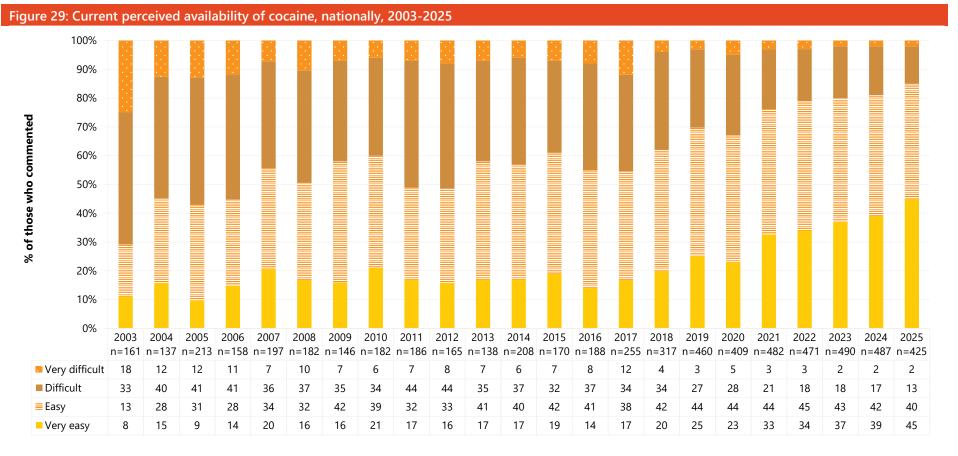
Price

Participants reported a median price of \$350 per gram of cocaine in 2025 (IQR=300-400; n=283), stable from 2024 (\$350; IQR=300-400; n=302; p=0.404), but remaining higher than the median price reported between 2003-2020 (Figure 27).


Perceived Purity

Among those able to comment in 2025 (n=425), the perceived purity of cocaine remained stable, relative to 2024 (p=0.212). Almost one third (32%) perceived purity to be 'high' (26% in 2024) and 31% perceived purity to be 'medium' (31% in 2024). In contrast, one fifth (22%) perceived purity to be 'low' (26% in 2024), and a further 15% perceived purity to be 'fluctuating' (17% in 2024) (Figure 28).


Perceived Availability


Among those able to comment in 2025 (n=425), the perceived availability of cocaine remained stable relative to 2024 (p=0.158). The largest percentage of participants perceived cocaine to be 'very easy' (45%; 39% in 2024) or 'easy' (40%; 42% in 2024) to obtain. In contrast, 13% of participants perceived

cocaine as being 'difficult' to obtain (17% in 2024), with few participants (2%) perceiving it as 'very difficult' to obtain (2% in 2024) (Figure 29).

Note. Among those who commented. The error bars represent the IQR. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

7

Cannabis and/or Cannabinoid-Related Products

Participants were asked about their recent (past six month) use of various forms of cannabis, including indoor-cultivated cannabis via a hydroponic system ('hydroponic'), outdoor-cultivated cannabis ('bush'), hashish, hash oil, commercially prepared edibles and CBD and THC extract.

Terminology throughout this chapter refers to **prescribed use:** use of cannabis and/or cannabinoid-related products obtained by a prescription in the person's name; **non-prescribed use:** use of cannabis and/or cannabinoid-related products which the person did not have a prescription for (i.e., illegally sourced or obtained from a prescription in someone else's name); and **any use:** use of cannabis and/or cannabinoid-related products obtained through either of the above means.

Patterns of Consumption

Participants were asked about their use of both prescribed and non-prescribed cannabis and/or cannabinoid-related products. Fifteen per cent of participants (n=102) reported prescribed use in the six months preceding interview, stable compared to 2024 (11%; p=0.062), although higher than reported in 2023 (6%) and 2022 (4%).

In the remainder of this chapter, data from 2021-2025, and between 2003-2016, refers to non-prescribed cannabis use only, while data between 2017-2020 refers to 'any' cannabis use (including hydroponic and bush cannabis, hashish and hash oil). While comparison between 2021-2025 and previous years should be treated with caution, the relatively recent legalisation of medicinal cannabis in Australia and the small percentage reporting prescribed use in 2022 and 2023 lends confidence that estimates are relatively comparable.

Recent Use (past 6 months)

In 2025, 72% of the national sample reported recent use of non-prescribed cannabis and/or cannabinoid-related products (75% in 2024; p=0.259) (Figure 30). Recent use remained stable in most capital cities, apart from a significant decrease observed in the Sydney sample (58%; 74% in 2024; p=0.028), representing the lowest percentage of use since monitoring began (Table 13).

Frequency of Use

Frequency of use has varied between weekly and several times a week over the course of monitoring. In 2025, participants who had recently consumed non-prescribed cannabis and/or cannabinoid-related products and commented (n=498) reported a median of 48 days of use (IQR=8-180) in the six months preceding interview (48 days in 2024; IQR=8-180; n=544; p=0.830) (Figure 30). Three fifths (61%) of those who had recently used non-prescribed cannabis and/or cannabinoid-related products reported weekly or more frequent use (62% in 2024; p=0.707), including one quarter (27%) who reported daily use (26% in 2024; p=0.732).

Routes of Administration

Among participants who had recently consumed non-prescribed cannabis and/or cannabinoid-related products and commented (n=498), the majority (91%) reported smoking as a route of administration (90% in 2024; p=0.754). One quarter of participants (26%) reported swallowing (31% in 2024; p=0.093) and 16% reported inhaling/vaporising non-prescribed cannabis and/or cannabinoid-related products, a significant decrease from 25% in 2024 (p<0.001).

Quantity

Of those who reported recent use of non-prescribed cannabis and/or cannabinoid-related products, the median 'typical' amount used on the last occasion of use was one gram (IQR=0.50-2.00; n=194; 1 gram in 2024; IQR=0.50-2.00; n=166; p=0.320), two cones (IQR=1-4; n=131; 2 cones in 2024; IQR=1-4; n=188; p=0.898) or one joint (IQR=0.5-1; n=99; 1 joint in 2024; IQR=0.5-1; n=118; p=0.416).

Forms Used

Among participants who had recently consumed non-prescribed cannabis and/or cannabinoid-related products and commented in 2025 (n=440), 65% reported recent use of hydroponic cannabis (69% in 2024; p=0.169) and 55% reported recent use of outdoor-grown 'bush' cannabis (53% in 2024;

p=0.418). Almost one fifth (19%) reported recent use of commercially prepared edibles (16% in 2024; p=0.220), with smaller percentages reporting use of hashish (9%; 10% in 2024; p=0.744) and hash oil (6%; 9% in 2024; p=0.107) in the preceding six months. Five per cent reported recent use of non-prescribed CBD extract, a significant decrease from 10% in 2024 (p=0.010), and 10% reported use of non-prescribed THC extract, also a significant decrease from 18% in 2024 (p<0.001) (Figure 31).

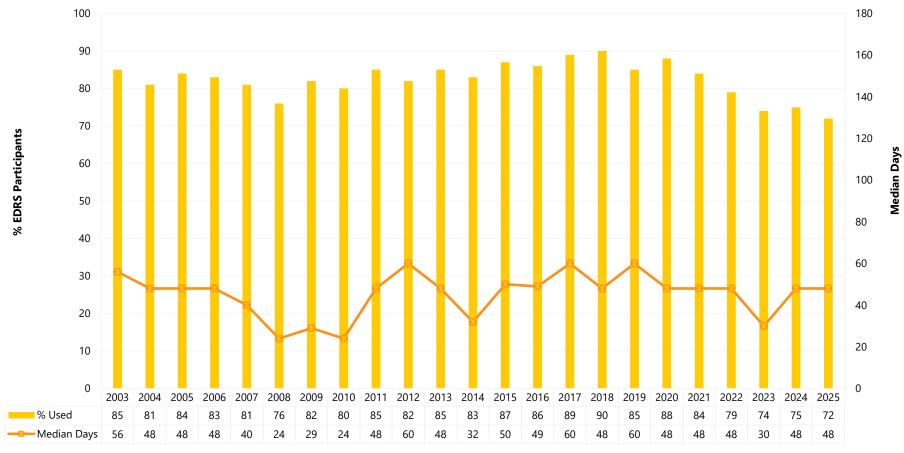


Figure 30: Past six month use and frequency of use of non-prescribed cannabis and/or cannabinoid-related products, nationally, 2003-2025

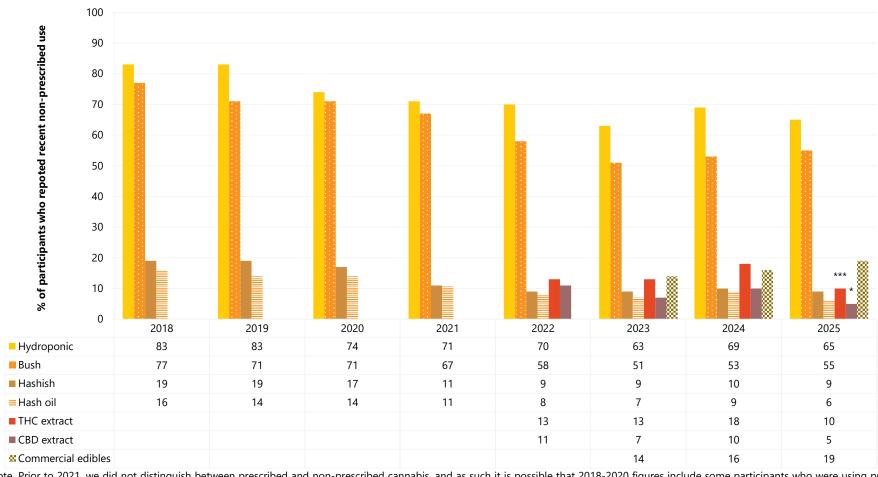

Note. Prior to 2021, we did not distinguish between prescribed and non-prescribed cannabis, and as such it is possible that 2017-2020 figures include some participants who were using prescribed cannabis only (with medicinal cannabis first legalised in Australia in November 2016), although we anticipate these numbers would be very low (e.g., in 2022, 10 participants reported use of prescribed cannabis only). Further, from 2022 onwards, we captured use of 'cannabis and/or cannabinoid-related products', while in previous years questions referred only to 'cannabis'. Median days computed among those who reported recent use (maximum 180 days). Median days rounded to the nearest whole number. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Table 13: Past six month non-prescribed use of cannabis and/or cannabinoid-related products, by capital city, 2003-2025

%	Syd	Can	Mel	Hob	Ade	Per	Dar	Bri/GC	
2003	82	82	82	90	88	91	95	73	
2004	85	83	78	91	81	84	87	70	
2005	82	81	88	89	87	83	79	83	
2006	73	83	79	82	83	85	84	92	
2007	74	85	82	68	80	80	96	87	
2008	71	86	84	74	74	85	40	81	
2009	83	89	85	76	86	85	60	84	
2010	78	89	89	72	84	81	~	72	
2011	83	89	86	67	92	86	~	93	
2012	86	92	85	69	88	77	~	81	
2013	90	87	87	78	85	92	~	84	
2014	85	74	81	76	87	86	84	87	
2015	91	82	90	80	92	86	82	93	
2016	85	85	86	77	97	87	82	86	
2017	93	95	88	84	89	82	88	93	
2018	91	88	84	94	85	86	93	95	
2019	81	81	86	88	82	86	83	92	
2020	91	85	89	84	90	87	91	90	
2021	88	86	84	75	84	82	83	89	
2022	71	81	82	81	75	84	~	76	
2023	66	80	67	78	70	85	~	75	
2024	74	80	72	69	73	77	69	81	
2025	58*	87	65	72	67	80	~	78	

Note. Prior to 2021, we did not distinguish between prescribed and non-prescribed cannabis, and as such it is possible that 2017-2020 figures include some participants who were using prescribed cannabis only (with medicinal cannabis first legalised in Australia in November 2016), although we anticipate these numbers would be very low. ~Due to the particularly small samples (n<50) recruited in Darwin in 2010-2013, 2022-2023 and 2025, data from these years are not presented in this table; furthermore, data from Darwin in 2006, 2008 and 2024 should be interpreted with caution due to small samples (2006: n=51; 2008: n=55; 2024: n=51). Statistical significance for 2024 versus 2025 presented in table (except for Darwin); *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes. \leq

Figure 31: Past six month use of different forms of non-prescribed cannabis and/or cannabinoid-related products, among those who reported recent use, nationally, 2018-2025

Note. Prior to 2021, we did not distinguish between prescribed and non-prescribed cannabis, and as such it is possible that 2018-2020 figures include some participants who were using prescribed forms of cannabis (with medicinal cannabis first legalised in Australia in November 2016), although we anticipate these numbers would be very low. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Price, Perceived Potency and Perceived Availability

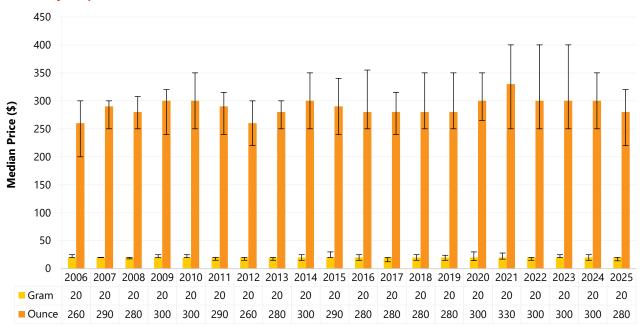
Hydroponic Cannabis

Price: In 2025, the median price per gram of non-prescribed hydroponic cannabis was \$20 (IQR=14-20; n=44; \$20 in 2024; IQR=15-25; n=50; p=0.105), and the median price per ounce was \$280 (IQR=220-320; n=37; \$300 in 2024; IQR=250-350; n=67; p=0.539) (Figure 32A).

Perceived Potency: Among those that were able to comment in 2025 (n=239), the perceived potency of non-prescribed hydroponic cannabis remained stable, relative to 2024 (p=0.838). The majority (61%) of participants reported potency to be 'high' (59% in 2024), 21% reported potency to be 'medium' (24% in 2024) and 15% reported that potency 'fluctuates' (14% in 2024) (Figure 33A).

Perceived Availability: Among those that were able to comment in 2025 (n=239), the perceived availability of non-prescribed hydroponic cannabis remained stable, relative to 2024 (*p*=0.059). The majority (76%) of participants reported non-prescribed hydroponic cannabis to be 'very easy' to obtain (66% in 2024), and 22% reported that it was 'easy' to obtain (31% in 2024) (Figure 34A).

Bush Cannabis


Price: In 2025, the median price per gram of non-prescribed bush cannabis was \$15 (IQR=10-20; n=41), a significant decrease from \$20 in 2024 (IQR=12-21; n=36; p=0.019). The median price for an ounce of non-prescribed bush cannabis was \$250 (IQR=195-285; n=24), stable relative to 2024 (\$250; IQR=200-300; n=58; p=0.604) (Figure 32B).

Perceived Potency: Among those that were able to comment in 2025 (n=187), the perceived potency of non-prescribed bush cannabis remained stable, relative to 2024 (p=0.264). Two fifths of participants reported potency as 'medium' (41%; 42% in 2024) and a further 30% reported 'high' potency (29% in 2024). Ten per cent reported potency to be 'fluctuating' (15% in 2024), and 19% reported it to be 'low' (14% in 2024) (Figure 33B).

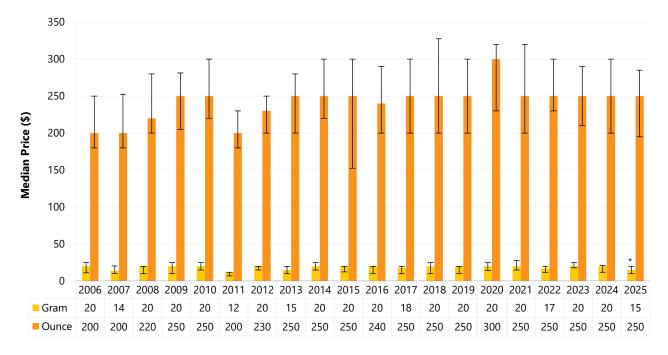
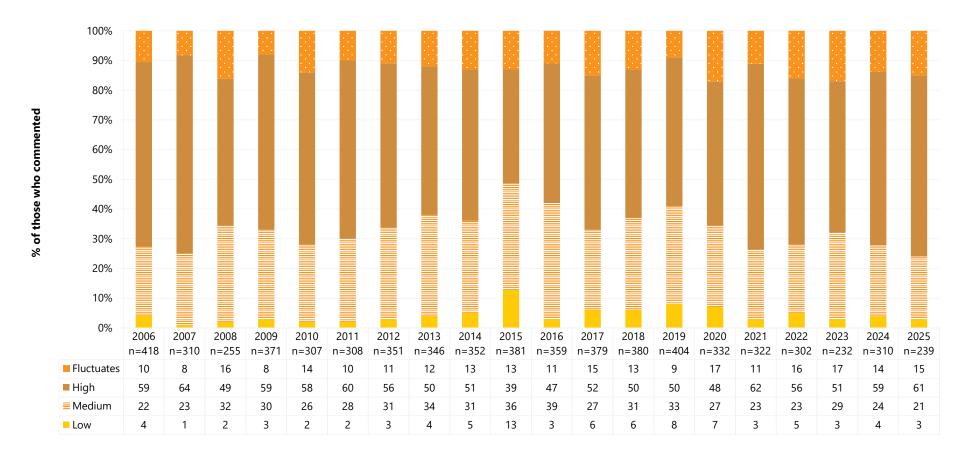

Perceived Availability: Among those that were able to comment in 2025 (n=188), the perceived availability of non-prescribed bush significantly changed, relative to 2024 (*p*<0.001). Most participants (79%) perceived non-prescribed bush cannabis as being 'very easy' to obtain, an increase from 63% in 2024, and 19% perceived it as being 'easy' to obtain, a decrease from 28% in 2024. Fewer participants perceived non-prescribed bush cannabis as being 'difficult' (n≤5; 7% in 2024) to obtain (Figure 34B).

Figure 32: Median price of non-prescribed hydroponic (A) and bush (B) cannabis per ounce and gram, nationally, 2006-2025


(B) Bush cannabis

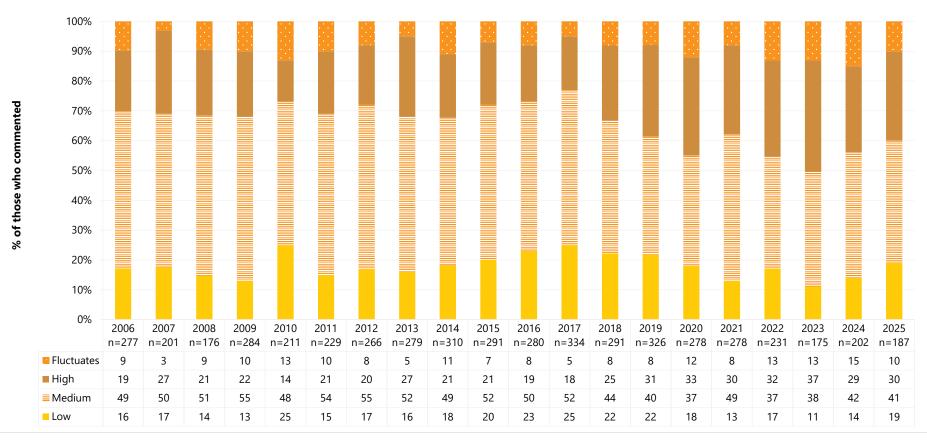

Note. From 2006 onwards hydroponic and bush cannabis data collected separately. The error bars represent the IQR. Data from 2022 onwards refers to non-prescribed cannabis only: prior to 2022, we did not distinguish between prescribed and non-prescribed cannabis, and as such it is possible that 2017-2021 figures include some participants who reported on the price of prescribed cannabis (with medicinal cannabis first legalised in Australia in November 2016), although we anticipate these numbers would be very low. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; *p<0.010; *p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Figure 33: Current potency of non-prescribed hydroponic (A) and bush (B) cannabis, nationally, 2006-2025

(A) Hydroponic cannabis

(B) Bush cannabis

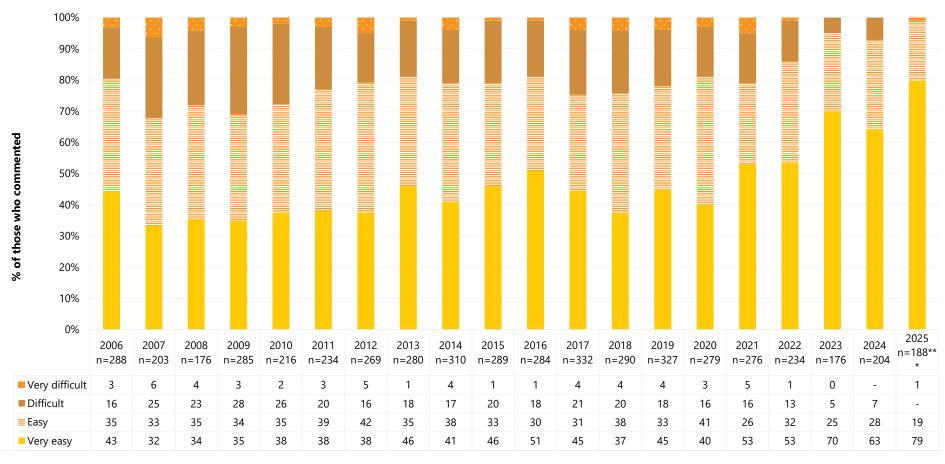

Note. From 2006 onwards hydroponic and bush cannabis data collected separately. Data from 2022 onwards refers to non-prescribed cannabis only: prior to 2022, we did not distinguish between prescribed and non-prescribed cannabis, and as such it is possible that 2017-2021 figures include some participants who are reporting on the potency of prescribed cannabis (with medicinal cannabis first legalised in Australia in November 2016), although we anticipate these numbers would be very low. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Figure 34: Current perceived availability of non-prescribed hydroponic (A) and bush (B) cannabis, nationally, 2006-2025

(A) Hydroponic cannabis

(B) Bush cannabis

Note. From 2006 onwards hydroponic and bush cannabis data collected separately. Data from 2022 onwards refers to non-prescribed cannabis only: prior to 2022, we did not distinguish between prescribed and non-prescribed cannabis, and as such it is possible that 2017-2021 figures include some participants who are reporting on the availability of prescribed cannabis (with medicinal cannabis first legalised in Australia in November 2016), although we anticipate these numbers would be very low. Statistical significance for 2024 versus 2025 presented in figure; *p < 0.050; **p < 0.010; ***p < 0.001. Please refer to Table 1 for a guide to table/figure notes.

8

Ketamine, LSD and DMT

Participants were asked about their recent (past six month) use of various forms of non-prescribed ketamine, lysergic acid diethylamide (LSD) and N,N-Dimethyltryptamine (DMT).

Non-Prescribed Ketamine

Patterns of Consumption

Recent Use (past 6 months): The per cent of the sample reporting recent use of non-prescribed ketamine declined from 2003-2009, followed by an overall increase from 2009-2021, after which the per cent reporting recent use largely stabilised. In 2025, 52% of the national sample reported recent use, stable relative to 2024 (53%; p=0.872) (Figure 35). Recent use remained stable across all capital cities (Table 14).

Frequency of Use: Participants who had recently consumed non-prescribed ketamine and commented in 2025 (n=361) reported a median of five days of use in the six months preceding interview (IQR=2-12), stable relative to 2024 (4 days; IQR=2-12; n=391; p=0.827) (Figure 35). One tenth (11%) of those who had recently used non-prescribed ketamine reported weekly or more frequent use (12% in 2024; p=0.905).

Routes of Administration: Among participants who had recently consumed non-prescribed ketamine and commented (n=361), the most common route of administration was snorting (96%; 94% in 2024; p=0.230), followed by swallowing (6%; 9% in 2024; p=0.140). Few participants (n≤5) reported smoking or injecting; therefore, these numbers are suppressed.

Quantity: Among those who reported recent use and responded (n=236), the median amount used in a 'typical' session was 0.25 grams (IQR=0.19-0.50; 0.25 grams in 2024; IQR=0.15-0.50; p=0.922). Among those who reported recent use and responded (n=241), the median maximum quantity used in a session was 0.50 grams (IQR=0.20-0.80; 0.50 grams in 2024; IQR=0.20-1.00; p=0.553).

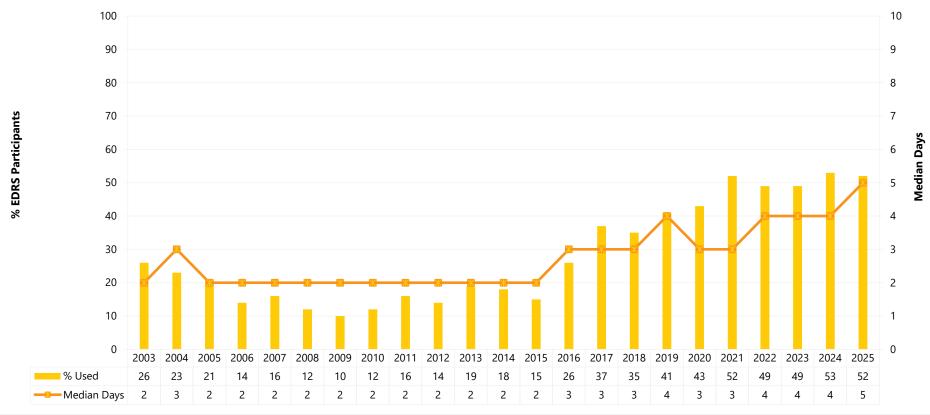
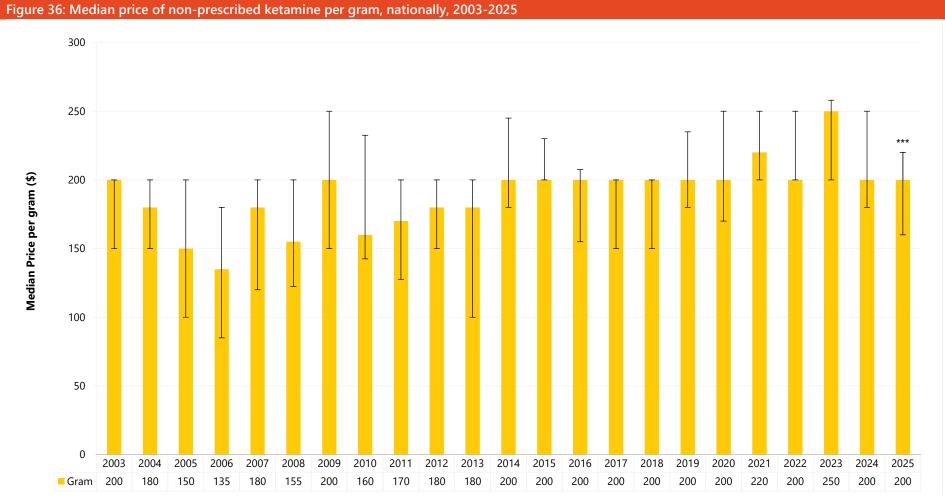


Figure 35: Past six month use and frequency of use of non-prescribed ketamine, nationally, 2003-2025

Note. Median days computed among those who reported recent use (maximum 180 days). Median days rounded to the nearest whole number. Secondary Y axis reduced to 10 days to improve visibility of trends. Data from 2023 onwards refers to non-prescribed ketamine only (noting that although ketamine has been used as an anaesthetic for many years, it only became available via prescription, for treatment resistant depression, in 2021). Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Table 14: Past six month use of non-prescribed ketamine, by capital city, 2003-2025

%	Syd	Can	Mel	Hob	Ade	Per	Dar	Bri/GC
2003	49	21	51	24	36	12	7	14
2004	39	15	45	-	39	10	18	16
2005	39	17	35	11	24	11	7	20
2006	27	15	29	6	11	-	-	12
2007	36	10	25	14	26	-	-	-
2008	30	6	20	6	20	-	0	-
2009	19	-	21	-	19	6	0	6
2010	24	6	23	6	13	-	~	8
2011	39	14	26	8	8	0	~	-
2012	24	14	35	-	10	-	~	7
2013	24	33	46	9	6	7	~	13
2014	23	6	63	14	-	11	15	-
2015	24	9	50	-	-	-	18	-
2016	50	20	72	-	15	18	11	22
2017	50	49	80	17	48	16	11	21
2018	54	29	90	23	24	22	11	28
2019	68	33	84	17	33	25	39	27
2020	53	47	78	52	32	31	24	28
2021	76	51	81	46	28	41	55	37
2022	56	39	88	38	29	39	~	51
2023	54	56	82	51	37	36	~	35
2024	61	46	80	30	49	55	41	52
2025	63	57	76	40	34	48	~	48


Note. Data from 2023 onwards refers to non-prescribed ketamine only (noting that although ketamine has been used as an anaesthetic for many years, it only become available via prescription, for treatment resistant depression, in 2021). ~Due to the particularly small samples (n<50) recruited in Darwin in 2010-2013, 2022-2023 and 2025, data from these years are not presented in this table; furthermore, data from Darwin in 2006, 2008 and 2024 should be interpreted with caution due to small samples (2006: n=51; 2008: n=55; 2024: n=51). Statistical significance for 2024 versus 2025 presented in table (except for Darwin); *p<0.050; **p<0.010; ***p<0.001 (except for Darwin). Please refer to Table 1 for a guide to table/figure notes.

Price, Perceived Purity and Perceived Availability

Price: In 2025, participants reported a median price of \$200 (IQR=160-220; n=161) per gram of non-prescribed ketamine, a significant change relative to 2024 (\$200; IQR=180-250; n=169; p<0.001) (Figure 36).

Perceived Purity: Among those able to comment in 2025 (n=250), the perceived purity of non-prescribed ketamine remained stable, relative to 2024 (p=0.138). Almost two thirds (65%) perceived purity as being 'high' (62% in 2024), and one fifth (22%) perceived purity as being 'medium' (20% in 2024) (Figure 37).

Perceived Availability: Among those able to comment in 2025 (n=255), the perceived availability of non-prescribed ketamine significantly changed, relative to 2024 (p=0.013). Forty-three per cent (43%) perceived non-prescribed ketamine to be 'easy' to obtain (40% in 2024), followed by 42% perceiving it to be 'very easy' to obtain, an increase from 33% in 2024. In contrast, 13% perceived ketamine to be 'difficult' to obtain in 2025, a decrease from 23% in 2024 (Figure 38).

Note. Among those who commented. The error bars represent the IQR. Data from 2023 onwards refers to non-prescribed ketamine only (noting that although ketamine has been used as an anaesthetic for many years, it only became available via prescription, for treatment resistant depression, in 2021). Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

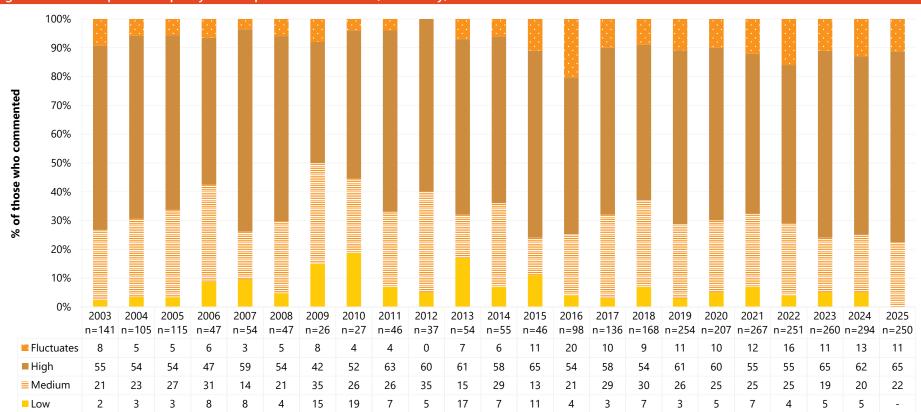
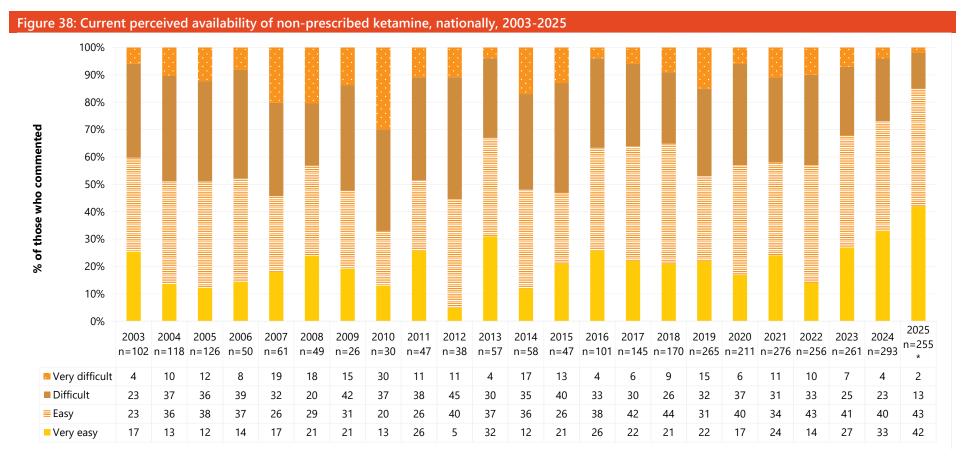



Figure 37: Current perceived purity of non-prescribed ketamine, nationally, 2003-2025

Note. Data from 2023 onwards refers to non-prescribed ketamine only (noting that although ketamine has been used as an anaesthetic for many years, it only became available via prescription, for treatment resistant depression, in 2021). Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Note. Data from 2023 onwards refers to non-prescribed ketamine only (noting that although ketamine has been used as an anaesthetic for many years, it only became available via prescription, for treatment resistant depression, in 2021). Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

LSD

Patterns of Consumption

Recent Use (past 6 months): The per cent reporting any recent use of LSD has fluctuated over time. Notwithstanding some year-to-year variation, recent use gradually increased between 2003 and 2017, stabilised between 2017 and 2021, and then gradually declined from 2021 onwards. In 2025, one third (35%) of the national sample reported recent use of LSD, stable relative to 2024 (36%; p=0.576) (Figure 39). In 2025, recent use remained stable across all capital cities, relative to 2024 (Table 15).

Frequency of Use: Of those who had recently consumed LSD and commented in 2025 (n=240), use was infrequent and stable, with participants reporting use on a median of two days (IQR=1-4) in the six month preceding interview (2 days in 2024; IQR=1-5; n=269; p=0.879) (Figure 39). Three per cent of those who had recently used LSD reported weekly or more frequent use (3% in 2024).

Routes of Administration: Among participants who had recently consumed LSD and commented (n=241), 100% of participants reported swallowing as a route of administration (99% in 2024). Few participants $(n \le 5)$ reported any other routes of administration.

Quantity: Among those who reported recent use and responded (n=150), the median amount used in a 'typical' session was one tab (IQR=1.00-2.00; 1 tab in 2024; IQR=1-2; p=0.759). Among those who reported recent use and responded (n=147), the median maximum amount used in a session was one tab (IQR=1.00-2.00; 1 tab in 2024; IQR=1.00-2.00; p=0.928).



Figure 39: Past six month use and frequency of use of LSD, nationally, 2003-2025

Note. Median days computed among those who reported recent use (maximum 180 days). Median days rounded to the nearest whole number. Secondary Y axis reduced to 10 days to improve visibility of trends. Statistical significance for 2024 versus 2025 presented in figure; *p < 0.050; *p < 0.010; *p < 0.010; *p < 0.010. Please refer to Table 1 for a guide to table/figure notes.

Table 15: Past six month use of LSD, by capital city, 2003-2025

%	Syd	Can	Mel	Hob	Ade	Per	Dar	Bri/GC
2003	27	44	48	24	30	22	25	18
2004	20	23	40	32	36	11	31	18
2005	33	30	38	31	48	35	15	23
2006	17	18	37	29	34	25	41	38
2007	22	24	39	20	33	23	33	28
2008	18	37	29	41	35	21	16	32
2009	37	35	46	34	37	31	11	30
2010	44	41	49	27	35	35	~	38
2011	46	39	57	43	30	36	~	52
2012	43	38	38	30	19	33	~	34
2013	51	53	52	38	25	41	~	41
2014	43	19	49	35	35	45	43	57
2015	60	37	46	41	37	24	32	41
2016	65	40	52	39	30	50	32	55
2017	73	64	52	39	36	33	47	52
2018	71	43	64	41	36	39	52	61
2019	48	42	55	44	43	43	52	53
2020	44	41	61	60	52	43	42	49
2021	57	45	53	63	35	55	59	60
2022	41	31	57	57	30	54	~	53
2023	37	42	55	38	33	36	~	42
2024	43	37	38	32	28	33	39	42
2025	37	28	38	40	28	30	~	49

Note. ~Due to the particularly small samples (n<50) recruited in Darwin in 2010-2013, 2022-2023 and 2025, data from these years are not presented in this table; furthermore, data from Darwin in 2006, 2008 and 2024 should be interpreted with caution due to small samples (2006: n=51; 2008: n=55; 2024: n=51). Statistical significance for 2024 versus 2025 presented in table (except for Darwin); *p<0.050; *p<0.010; *p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Price, Perceived Purity and Perceived Availability

Price: In 2025, participants reported a median price of \$25 per tab (IQR=20-25; n=124; \$25 in 2024; IQR=20-30; n=148; p=0.011), remaining higher than the median price reported between 2003 and 2020 (Figure 40).

Perceived Purity: Among those who commented in 2025 (n=217), the perceived purity of LSD remained stable, relative to 2024 (p=0.387). Specifically, 56% reported purity as 'high' (55% in 2024), and one quarter (27%) reported it as 'medium', unchanged from 27% in 2024 (Figure 41). Twelve per cent of participants reported that purity had 'fluctuated' in 2025 (10% in 2024).

Perceived Availability: Among those able to comment in 2025 (n=232), the perceived availability of LSD remained stable, relative to 2024 (p=0.966). Two fifths (40%) perceived LSD to be 'easy' to obtain (38% in 2024) and 29% reported that it was 'very easy' to obtain (29% in 2024). In contrast, 28% reported LSD to be 'difficult' to obtain (30% in 2024) (Figure 42).

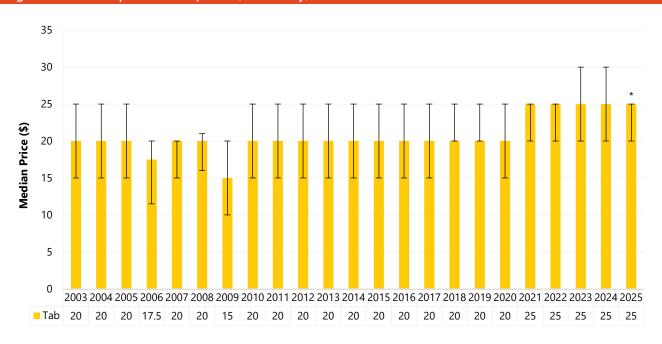


Figure 40: Median price of LSD per tab, nationally, 2003-2025

Note. Among those who commented. The error bars represent the IQR. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

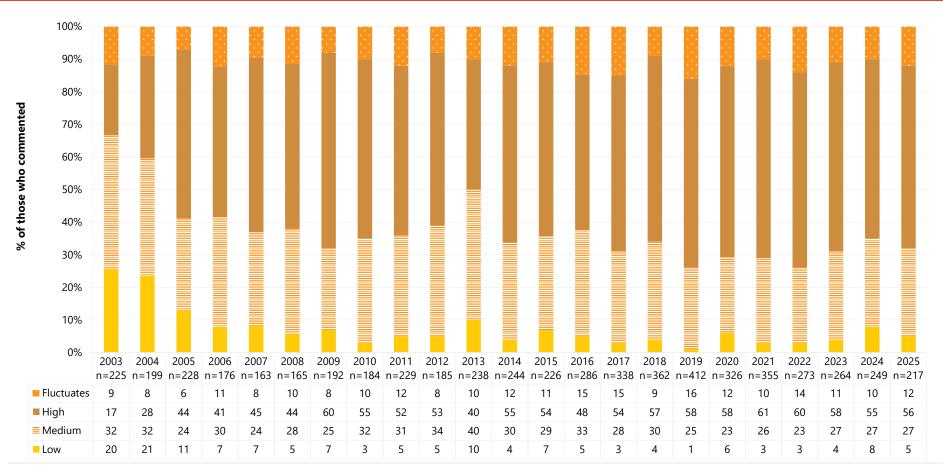


Figure 41: Current perceived purity of LSD, nationally, 2003-2025

Note. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

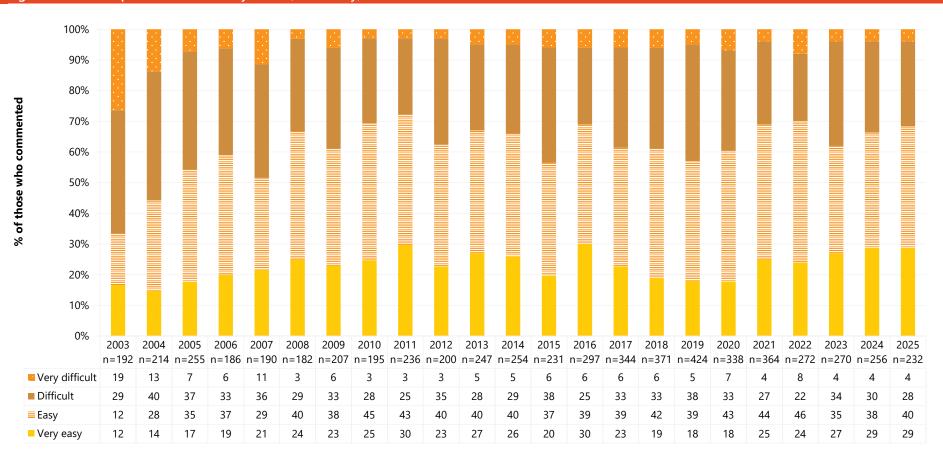


Figure 42: Current perceived availability of LSD, nationally, 2003-2025

Note. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

DMT

Patterns of Consumption

Recent Use (past 6 months): The per cent reporting recent DMT use has fluctuated over the reporting period, however, has consistently remained below 20%. In 2025, 11% of participants reported recent use, stable relative to 2024 (10%; p=0.495) (Figure 43). Recent use remained stable in all capital city samples (Table 16).

Frequency of Use: Use has remained infrequent and stable over the monitoring period, with a median of two days of use (IQR=1-3; n=78) reported by participants in 2025 (2 days in 2024; IQR=1-3; n=75; p=0.904) (Figure 43).

Routes of Administration: Among participants who had recently consumed DMT and commented in 2025 (n=78), the most common route of administration was smoking (97%; 92% in 2024; p=0.161). Few participants (n \leq 5) reported swallowing; therefore, these numbers are suppressed, and no other routes of administration were reported in 2025.

Quantity: Among those who reported recent use and responded (n=23), the median amount used in a 'typical' session was 25 mgs (IQR=15-100), a significant increase from 2024 (10 mgs; IQR=2-22.5; p=0.028). Of those who reported recent use and responded (n=24), the median maximum amount used in a session was 50 mgs (IQR=10-100; 10 mgs in 2024; IQR=2.5-42.5; p=0.070).

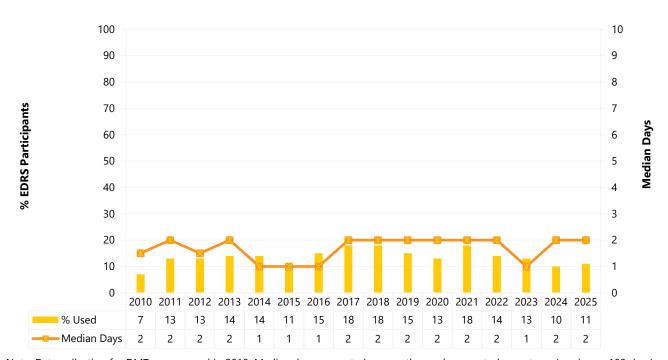


Figure 43: Past six month use and frequency of use of DMT, nationally, 2010-2025

Note. Data collection for DMT commenced in 2010. Median days computed among those who reported recent use (maximum 180 days). Median days rounded to the nearest whole number. Secondary Y axis reduced to 10 days to improve visibility of trends. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Table 16: Past six month use of DMT, by capital city, 2010-2025

%	Syd	Can	Mel	Hob	Ade	Per	Dar	Bri/GC
2010	7	-	15	7	-	8	~	-
2011	8	18	29	-	8	25	~	6
2012	15	14	14	6	-	22	~	15
2013	9	8	25	11	14	22	~	14
2014	11	7	30	9	10	19	8	18
2015	10	6	25	-	11	13	6	9
2016	15	12	23	-	10	18	16	23
2017	20	21	23	-	22	23	13	18
2018	17	16	29	9	23	17	12	16
2019	17	13	16	6	16	22	17	16
2020	18	7	10	13	13	20	7	16
2021	14	18	16	16	13	27	13	26
2022	15	9	18	10	6	29	~	12
2023	8	13	-	10	12	26	~	16
2024	-	10	10	13	10	11	-	15
2025	7	6	11	13	16	17	~	11

Note. Data collection for DMT commenced in 2010. ~Due to the particularly small samples (n<50) recruited in Darwin in 2010-2013, 2022-2023 and 2025, data from these years are not presented in this table; furthermore, data from Darwin in 2024 should be interpreted with caution due to small samples (2024: n=51). Statistical significance for 2024 versus 2025 presented in table (except for Darwin); *p<0.050; *p<0.010; *p<0.001. Please refer to Table 1 for a guide to table/figure notes.

9

New Psychoactive Substances

New psychoactive substances (NPS) are often defined as substances which do not fall under international drug control, but which may pose a public health threat. However, there is no universally accepted definition, and in practicality the term has come to include drugs which have previously not been well-established in recreational drug markets. Participants were asked about their recent (past six month) use of various NPS.

New Psychoactive Substances (NPS)

In previous (2010-2020) EDRS reports, DMT and paramethoxyamphetamine (PMA) were categorised as NPS. However, the classification of these substances as NPS is not universally accepted, and in 2021 onwards, the decision was made to exclude them from this category. This means that the figures presented below for recent use of any NPS will not align with those in our 2010-2020 reports.

Further, some organisations (e.g., the United Nations Office on Drugs and Crime) include plant-based substances in their definition of NPS, whilst other organisations exclude them. To allow comparability with both methods, historically we have presented figures for 'any' NPS use, both including and excluding plant-based NPS. However, in 2025, we did not specifically ask about the use of any specific plant-based NPS (e.g., mescaline, ayahuasca) and thus only present the per cent for 'any' NPS, excluding plant-based NPS.

Patterns of Consumption

Recent Use (past 6 months)

Any NPS use, excluding plant-based NPS, has fluctuated over time, peaking at 42% in 2013 and declining to 9% in 2022. In 2025, 13% reported recent use, stable relative to 2024 (14%; p=0.357) (Table 17).

Forms Used

Participants are asked about a range of NPS each year, updated to reflect key emerging substances of interest.

Historically, the 2C class was the most highly endorsed NPS class, peaking in 2013 (20%), however use of this substance has since declined considerably. In 2025, four per cent reported recent use of any 2C substance, stable relative to 2024 (5%; p=0.389).

Two per cent reported recent use of 'drugs that mimic the effects of cannabis' in 2025, a significant increase relative to 2024 ($n \le 5$; p < 0.001). Recent use of mephedrone (the most commonly reported NPS in 2010) has decreased considerably over the past decade, with two per cent reporting recent use in 2025 (1% in 2024; p = 0.253). In 2025, significant decreases were observed in participants reporting use of 2-Fluorodeschloroketamine (2-FDCK) ($n \le 5$; 1% in 2024; p = 0.039) and methoxetamine (0%; 1% in 2024; p = 0.031). A significant decrease was also observed for 'other drugs that mimic the effects of ecstasy' in 2025 ($n \le 5$; 2% in 2024; p = 0.036) (Table 18).

Table 17: Past six month use of any NPS (excluding plant-based NPS), nationally, and by capital city, 2010-2025

%	National	Syd	Can	Mel	Hob	Ade	Per	Dar	Bri/GC
2010	24	9	15	28	48	22	31	~	15
2011	33	31	26	37	33	47	50	~	21
2012	37	42	49	40	24	37	27	~	48
2013	42	52	44	45	33	36	43	~	44
2014	34	34	17	34	36	35	39	22	52
2015	34	36	32	33	18	44	32	38	39
2016	27	35	24	29	14	25	21	25	40
2017	24	29	24	27	17	25	21	24	25
2018	21	26	18	27	21	26	12	16	25
2019	19	16	28	16	18	24	6	19	22
2020	12	18	11	12	8	12	7	10	19
2021	14	16	17	21	10	8	9	14	14
2022	9	9	7	15	-	7	13	~	8
2023	11	2	18	15	-	12	7	~	10
2024	14	15	16	21	-	15	16	-	16
2025	13	12	16	17	10	11	_*	~	14

Note. Monitoring of NPS commenced in 2010. In 2021, the decision was made to remove DMT and PMA from the NPS category, with these substances now presented in Chapter 8 and Chapter 10, respectively. This has had a substantial impact on the percentage of the sample reporting 'any' NPS use in the past six months and means that the figures presented above will not align with those presented in previous (2010-2020) EDRS reports. ~Due to the particularly small samples (n<50) recruited in Darwin in 2010-2013, 2022-2023 and 2025, data from these years are not presented in this table; furthermore, data from Darwin in 2024 should be interpreted with caution due to small samples (2024: n=51). Statistical significance for 2024 versus 2025 presented in table (except for Darwin); *p<0.050; **p<0.001; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Table 18: Past six month use of NPS by drug type, nationally, 2010-2025

%	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Drugs that mimic the effects of ecstasy	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	3
Mephedrone	16	13	5	6	5	3	1	1	-	1	0	-	-	-	1	2
Methylone	/	5	5	3	3	4	2	4	3	3	0	0	-	0	-	-
N-ethylbutylone (eutylone)	/	/	/	/	/	/	/	/	/	/	/	0	-	-	0	-
N-ethylpentylone (ephylone)	/	/	/	/	/	/	/	/	/	0	0	0	-	-	0	-
Other drugs that mimic the effects of ecstasy	/	/	/	/	/	/	/	-	1	1	0	-	-	0	2	-*
Drugs that mimic the effects of amphetamine or cocaine	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	-
3-chloromethcathinone (e.g., 3-CMC; clophedrone)	/	/	/	/	/	/	/	/	/	/	/	/	0	0	0	0
3-Methylmethcathinone	/	/	/	/	/	/	/	/	/	/	/	/	-	-	-	-
4-Chloromethcathinone	/	/	/	/	/	/	/	/	/	/	/	/	/	0	0	-
4-FA	/	/	/	/	/	/	-	-	0	0	0	0	-	-	0	0
Alpha PHP	/	/	/	/	/	/	/	/	/	/	/	/	-	0	0	0
Alpha PVP	/	/	/	/	/	/	-	-	-	-	0	0	-	0	0	0
Dimethylpentylone	/	/	/	/	/	/	/	/	/	/	/	/	-	-	-	-
MDPV	-	2	3	1	1	1	0	-	0	-	0	0	-	0	0	0
Methcathinone	/	/	/	/	/	/	/	/	/	/	/	/	/	/	0	0
N-Ethylhexedrone	/	/	/	/	/	/	/	/	/	0	0	0	-	0	0	0
Other drugs that mimic the effects of amphetamine or cocaine	/	/	/	/	/	/	/	1	-	1	1	-	-	-	1	-
Drugs that mimic the effects of psychedelic drugs	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	6
Any 2C substance (e.g., 2C-I, 2C-B) ~	6	14	12	20	15	14	11	9	8	6	5	6	3	5	5	4
4-AcO-DMT	/	/	/	/	/	/	-	-	/	/	/	/	/	/	/	-
5-MeO-DMT	-	5	-	1	1	-	1	1	1	2	1	2	1	1	1	2
Dox (e.g., DOB, DOC, DOI, DOM)	1	1	0	-	-	/	/	1	-	-	-	-	-	-	0	0
NBOH (e.g., 25I, 25B)	/	/	/	/	/	/	/	/	/	/	/	/	0	0	0	0
NBOMe (e.g., 25I, 25B, 25C, others)	/	/	/	/	9	7	4	5	2	2	1	1	1	-	-	-
Other drugs that mimic the effects of psychedelic drugs	/	/	/	/	/	/	/	/	-	1	-	-	-	-	0	0
Drugs that mimic the effects of dissociatives	/	/	1	2	2	2	3	2	0	2	1	2	1	2	4	2*
2F-2-oxo PCE	/	/	/	/	/	/	/	/	/	/	/	/	/	/	1	-
2-Fluorodeschloroketamine (2-FDCK)	/	/	/	/	/	/	/	/	/	/	/	/	-	-	1	_*
3 CI-PCP/4CI-PCP	/	/	/	/	/	/	/	/	/	/	/	/	-	0	-	0
3F-2-oxo-PCE	/	/	/	/	/	/	/	/	/	/	/	/	/	/	0	-

3-HO-PCP/4-HO-PCP	/	/	/	/	/	/	/	/	/	/	/	/	-	0	0	-
3-MeO-PCP/4-MeO-PCP	/	/	/	/	/	/	/	/	/	/	/	/	-	-	-	-
Fluorexetamine	/	/	/	/	/	/	/	/	/	/	/	/	/	/	0	1
Methoxetamine	/	/	1	2	2	2	3	2	0	2	0	1	-	-	1	0*
Tiletamine	/	/	/	/	/	/	/	/	/	/	/	/	/	/	-	-
Other drugs that mimic the effects of dissociatives	/	/	-	/	/	/	/	/	/	/	-	1	-	2	1	1
Drugs that mimic the effects of cannabis	/	6	15	16	7	6	4	2	3	3	4	2	1	-	-	2***
Drugs that mimic the effects of benzodiazepines	/	/	/	/	/	/	1	1	1	2	1	2	1	0	1	2
8-Aminoclonazolam	/	/	/	/	/	/	/	/	/	/	/	/	-	0	0	0
Bromazolam	/	/	/	/	/	/	/	/	/	/	/	/	-	-	-	-
Clobromazolam	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	0
Clonazolam	/	/	/	/	/	/	/	/	/	/	/	/	1	1	-	1
Etizolam	/	/	/	/	/	/	1	1	1	1	0	1	-	-	-	-
Flualprazolam	/	/	/	/	/	/	/	/	/	/	/	/	-	-	-	0
Flubromazepam	/	/	/	/	/	/	/	/	/	/	/	/	/	/	-	-
Phenazolam	/	/	/	/	/	/	/	/	/	/	/	/	/	/	0	0
Other drugs that mimic the effects of benzodiazepines	/	/	/	/	/	/	/	/	-	1	-	-	-	-	0	0
Drugs that mimic the effects of opioids	/	/	/	/	/	/	/	-	-	-	0	0	-	0	-	-
Drugs that mimic the effect of any other NPS	/	/	/	/	/	/	/	/	1	-	-	-	1	-	-	1

Note. Monitoring of NPS commenced in 2010. Due to lower numbers reporting use in recent years, in 2025 participants were asked about broad categories of NPS (e.g., drugs that mimic the effects of ecstasy) and then if reported use, were asked to specify the substance. ~ In 2010 and between 2017-2019 three forms of 2C were asked about whereas between 2011-2016 four forms were asked about. From 2020 onwards, 'any' 2C use is captured. / Question not asked in respective year. Statistical significance for 2024 versus 2025 presented in table; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

10

Other Drugs

Participants were asked about their recent (past 6 month) use of various other drugs, including non-prescribed use of pharmaceutical drugs (i.e., use of a prescribed drug obtained from a prescription in someone else's name) and use of licit substances (e.g., alcohol, tobacco).

Non-Prescribed Pharmaceutical Drugs

Codeine

Before the 1 February 2018, people could access low-dose codeine products (<30mg, e.g., Nurofen Plus) over-the-counter (OTC), while high-dose codeine (≥30mg, e.g., Panadeine Forte) required a prescription from a doctor. On the 1 February 2018, legislation changed so that all codeine products, low- and high-dose, require a prescription from a doctor to access.

Up until 2017, participants were only asked about use of OTC codeine for non-pain purposes. Additional items on the use of prescription low-dose and prescription high-dose codeine were included in the 2018-2020 EDRS, however from 2021, participants were only asked about prescribed and non-prescribed codeine use, regardless of whether it was low- or high-dose.

Recent Use (past 6 months): In 2025, one tenth (11%) of the sample reported using non-prescribed codeine (e.g., Nurofen Plus, Panadeine, Panadeine Extra) in the past six months, stable relative to 2024 (11%; p=0.930) (Figure 44).

Frequency of Use: Participants who had recently used non-prescribed codeine and commented (n=75) reported use on a median of four days (IQR=2-9) in the six months preceding interview, stable from 2024 (3 days; IQR=1-7; n=83; p=0.244).

Pharmaceutical Opioids

Recent Use (past 6 months): The per cent of participants reporting any past six month use of non-prescribed pharmaceutical opioids, excluding codeine (e.g., methadone, buprenorphine, oxycodone, morphine, fentanyl), remained stable at 9% (10% in 2024; p=0.582) (Figure 44).

Frequency of Use: Frequency of use remained low and stable in 2025 at a median of four days (IQR=2-15; n=61) in the six months prior to interview (3 days in 2024; IQR=2-11; n=72; p=0.599).

Forms used: Among participants who had recently consumed non-prescribed pharmaceutical opioids and commented in 2025 (n=59), oxycodone (64%) was the most commonly used pharmaceutical opioid. Fewer participants reported using tapentadol (20%), other opioids (19%) and morphine (15%).

Benzodiazepines

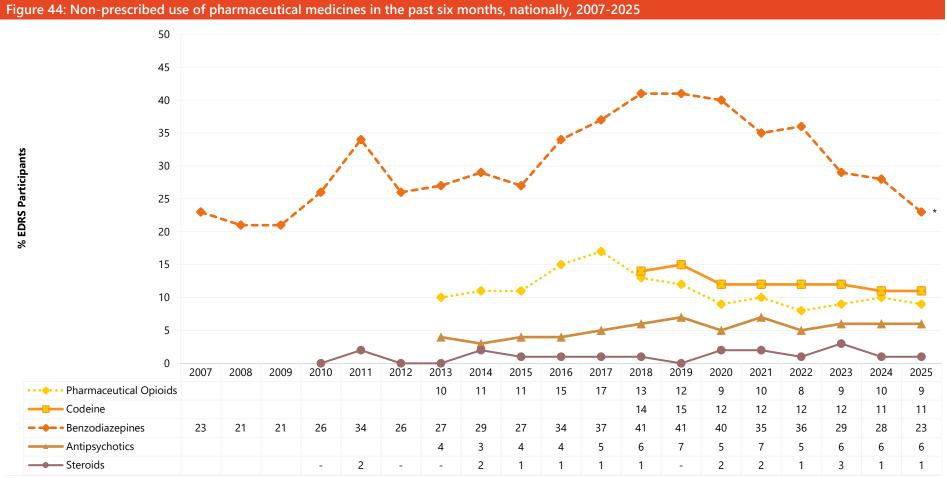
From 2019-2023, participants were asked about non-prescribed alprazolam use and non-prescribed use of 'other' benzodiazepines (e.g., diazepam). From 2024, the two forms were combined, such that participants were asked about non-prescribed use of any benzodiazepines.

Recent Use (past 6 months): Recent use of non-prescribed benzodiazepines (e.g., Valium, Diazepam, Xanax, Kalma) has fluctuated over time, peaking at 41% in 2018 and 2019, and declining shortly thereafter. In 2025, 23% of the sample reported recent use of non-prescribed benzodiazepines, a significant decrease relative to 2024 (28%; p=0.037) (Figure 44).

Frequency of Use: Participants who had recently used non-prescribed benzodiazepines (e.g., Valium, Diazepam, Xanax, Kalma) and commented (n=158) reported use on a median of five days in the six months preceding interview (IQR=2-16; 5 days in 2024; IQR=2-12; n=207; p=0.187).

Forms Used: Among those who reported non-prescribed benzodiazepine use and responded in 2025 (n=148), Valium (diazepam) (64%) was the most commonly used benzodiazepine, followed by Xanax (alprazolam) (34%), the generic form of clonazepam (16%) and the generic form of diazepam (15%).

Steroids


Recent Use (past 6 months): The per cent of the sample reporting recent steroid use has remained low and stable since monitoring commenced. In 2025, one per cent of the sample reported recent use, stable relative to 2024 (1% in 2024) (Figure 45).

Antipsychotics

Recent Use (past 6 months): Six per cent of the sample reported recent use of non-prescribed antipsychotics in 2025 (6% in 2024; p=0.745) (Figure 44).

Frequency of Use: Participants reported using non-prescribed antipsychotics on a median of seven days (IQR=2-95; n=43) in the six months preceding interview (4 days in 2024; IQR=2-10; n=42; p=0.898).

Forms Used: Among participants who had recently consumed non-prescribed antipsychotics and commented in 2025 (n=40), Quetiapine (85%) was the most commonly used antipsychotic.

Note. Non-prescribed use is reported for prescription medicines. Monitoring of over-the-counter (OTC) codeine (low-dose codeine) commenced in 2010, however, in February 2018, the scheduling for codeine changed such that low-dose codeine formerly available OTC was required to be obtained via a prescription. To allow for comparability of data, the time series here represents non-prescribed low- and high dose codeine (2018-2024), with high-dose codeine excluded from pharmaceutical opioids from 2018. Between 2019 and 2023, participants were asked about 'alprazolam' and 'other benzodiazepines'. In 2024, 'alprazolam' and 'other benzodiazepines' were combined. Y axis reduced to 50% to improve visibility of trends. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Other Illicit Drugs

Non-Prescribed Hallucinogenic Mushrooms/Psilocybin

Recent Use (past 6 months): The per cent reporting recent non-prescribed hallucinogenic mushrooms/psilocybin use has fluctuated over the reporting period, however, an overall increase in use was observed between 2008 and 2021, and has remained relatively stable since. In 2025, 41% of the sample had used non-prescribed hallucinogenic mushrooms/psilocybin in the six months preceding interview, stable relative to 2024 (45%; p=0.143) (Figure 45).

Frequency of Use: Use of non-prescribed hallucinogenic mushrooms/psilocybin remained infrequent in 2025, with participants reporting a median of two days of use (IQR=1-4; n=281), stable relative to 2024 (2 days; IQR=1-4; n=333; p=0.591).

MDA

Recent Use (past 6 months): Five per cent of the sample reported using MDA in the six months preceding interview, stable from 2024 (5%; p=0.901) (Figure 45).

Frequency of Use: Use remained infrequent and stable, with participants reporting a median of two days of use in the six months preceding interview (IQR=1-7; n=34; 2 days in 2024; IQR=1-4; n=38; p=0.800).

Substance with Unknown Contents

Recent Use (past 6 months): From 2019, we asked participants about their use of substances with 'unknown contents'. In 2025, 13% of participants reported use of any substance with 'unknown contents', a significant decrease from 20% in 2024 (p=0.001), although similar to what was observed in 2023 (Figure 45).

When broken down by form, 8% of the 2025 sample reported using powder with 'unknown contents' (11% in 2024; p=0.051), and 4% reported recent use of pills with 'unknown contents' (6% in 2024; p=0.098). Three per cent of the sample reported use of capsules with 'unknown contents', a significant decrease relative to 6% in 2024 (p=0.013), and 2% reported consuming crystal with 'unknown contents' (3% in 2024; p=0.221).

Frequency of Use: Of those who had recently consumed any 'unknown substance' and responded (n=92), participants reported a median of one day (IQR=1-2) of use in the six months preceding interview, stable relative to 2024 (1 day; IQR=1-3; n=146; p=0.513).

Quantity: From 2020, we asked participants about the average amount of pills and capsules with 'unknown contents' used in the six months preceding interview. In 2025, among those who reported recent use of pills with 'unknown contents' and responded (n=27), the median 'typical' amount used in a session was one pill (IQR=1-2; 1 pill in 2024; IQR=1-1; n=45; p=0.068). Of those who reported recent use of capsules with 'unknown contents' and responded (n=19), the median 'typical' amount used in a session was one capsule (IQR=1-2; 2 capsules in 2024; IQR=1-3; n=41; p=0.054).

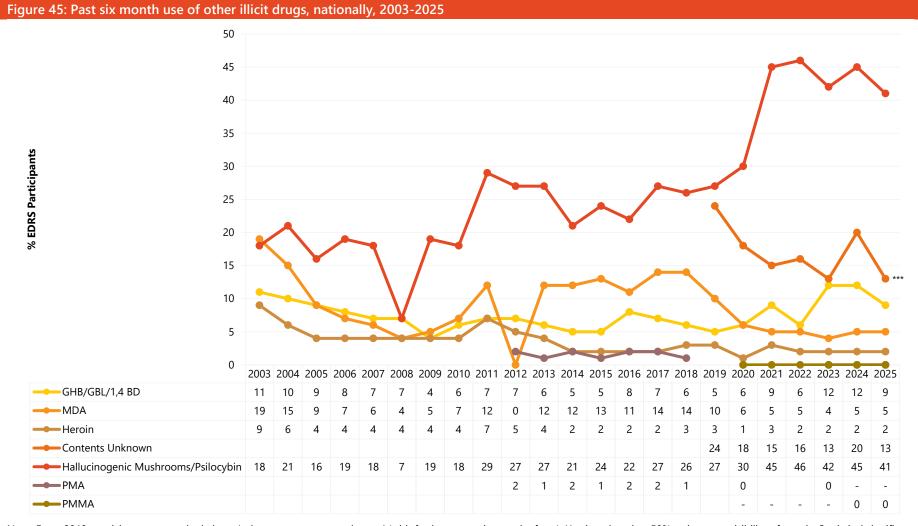
PMA

Few participants ($n \le 5$) reported recent use of PMA in 2025 ($n \le 5$ in 2024) (Figure 45).

PMMA

No participants reported recent use of PMMA in 2025 (0% in 2024) (Figure 45).

Heroin


Recent Use (past 6 months): Consistently small numbers have reported recent use of heroin (2% in 2025; 2% in 2024; p=0.700) over the reporting period (Figure 45).

Frequency of Use: Participants who had recently used heroin reported a median of four days of use (IQR=2-7; n=15) in the six months preceding interview, stable from 2024 (4 days; IQR=2-18; n=14; p=0.826).

GHB/GBL/1,4-BD (Liquid E)

Recent Use (past 6 months): Nine per cent of the sample reported recent use of GHB/GBL/1,4-BD in 2025, stable relative to 2024 (12%; p=0.146) (Figure 45).

Frequency of Use: Participants who had recently used GHB/GBL/1,4-BD reported use on a median of four days (IQR=1-14, n=62) in the six months preceding interview, stable relative to 2024 (3 days; IQR=1-12; n=85; p=0.984).

Note. From 2019, participants were asked about 'substances contents unknown' (with further ascertainment by form). Y axis reduced to 50% to improve visibility of trends. Statistical significance for 2024 versus 2025 presented in figure; *p < 0.050; **p < 0.010; ***p < 0.001. Please refer to Table 1 for a guide to table/figure notes.

Licit and Other Drugs

Alcohol

Recent Use (past 6 months): The majority of the sample have reported recent alcohol use in each year since monitoring commenced. In 2025, 92% reported recent use, the lowest per cent since monitoring commenced and a significant decrease relative to 2024 (95% in 2024; p=0.047) (Figure 46).

Frequency of Use: Participants who had recently used alcohol reported use on a median of 40 days (IQR=20-72; n=633; 40 days in 2024; IQR=18-72; n=700; p=0.949). Almost three quarters (72%) of those who had recently used alcohol reported weekly or more frequent use, stable relative to 2024 (72%; p=0.905). This percentage includes 3% who reported daily use (3% in 2024).

Tobacco

In 2024 and 2025, additional questions were included about illicit tobacco. This was defined as products sold illegally without the necessary taxes added to the price.

Recent Use (past 6 months): Almost three quarters (72%) of participants reported recent use of any tobacco in 2025, stable relative to 2024 (72%; p=0.855) (Figure 46). Forty-six per cent of participants reported recent use of smoked or non-smoked illicit tobacco products, a significant increase relative to 27% in 2024 (p<0.001).

Frequency of Use: Participants who had recently used any tobacco reported use on a median of 120 days (IQR=24-180; n=493), a significant increase from 90 days in 2024 (IQR=15-180; n=533; p=0.041), with two fifths (43%) reporting daily use (39% in 2024; p=0.259).

E-cigarettes/'Vapes'

Legislation regulating e-cigarettes (also known as vapes) has changed markedly in recent years. From October 2021, Australians were required to have a prescription to legally access nicotine containing e-cigarette products for any purpose, and from 1 July 2024, all e-cigarette products, regardless of whether they contained nicotine, could only legally be sold in a pharmacy. From 1 October 2024, people 18 years and older could buy e-cigarettes from participating pharmacies with a nicotine concentration of 20 mg/mL or less *without a prescription*, where state and territory laws allowed: products with a nicotine concentration of >20 mg/mL still required a prescription.

To capture these changes, in 2022, participants were asked for the first time about their use of both prescribed and non-prescribed e-cigarettes. In 2025, participants were asked about their use of e-cigarettes obtained from pharmacy (with or without a prescription) and 'non-pharmacy' locations.

In 2025, few participants ($n \le 5$) reported recent use of e-cigarettes that were obtained from a pharmacy. Between 2022 and 2024, few participants reported recent use of prescribed e-cigarettes (3%, n=21 in 2022; 3%, n=18 in 2023; 1%, n=11 in 2024). The 2025 data presented below refers only to use of e-cigarettes that were obtained from non-pharmacy locations, 2022-2024 data refers to non-prescribed e-cigarette use, while data from 2021 and earlier captures any e-cigarette use (collectively referred to as 'illicit use' from herein).

Recent Use (past 6 months): Sixty-five per cent of the sample reported illicit e-cigarette use in the six months preceding interview, stable relative to 2024 (69%; p=0.135) (Figure 46).

Frequency of Use: Median days of illicit use in the past six months remained stable, relative to 2024 (90 days; IQR=24-180; n=444; 120 days in 2024; IQR=24-180; n=509; p=0.307). Two fifths (40%) of those who had recently used illicit e-cigarettes reported daily use, stable relative to 2024 (44%; p=0.329).

Contents and Forms Used: Among participants who had recently used illicit e-cigarettes and responded in 2025 (n=439), participants most commonly reported using disposable devices (97%), followed by re-fillable devices (9%) and pods (6%).

Reason for Use: Of those who reported *any* e-cigarette use and responded (n=450), 25% reported that they used e-cigarettes as a smoking cessation tool in 2025, stable relative to 2024 (30%; p=0.086).

Nicotine Pouches

Recent Use (past 6 months): One fifth (20%) of the sample reported recent use of nicotine pouches (19% in 2024) (Figure 46).

Frequency of Use: Participants who had recently used nicotine pouches reported use on a median of four days (IQR=1-22; n=135; 3 days in 2024; IQR=1-20; n=144; p=0.381).

Nitrous Oxide

Recent Use (past 6 months): The per cent of the sample reporting any recent use of nitrous oxide significantly decreased from 40% in 2024 to 31% in 2025 (p<0.001) (Figure 46).

Frequency of Use: Frequency of use remained stable in 2025, with a median of three days (IQR=1-7; n=215) of use reported in the six months preceding interview (3 days in 2024; IQR=2-7; n=293; p=0.591), equivalent to less than monthly use.

Quantity: Amongst those who reported recent use and responded, the median 'typical' amount used per session in 2025 was five bulbs (IQR=3-10; n=169; 5 bulbs in 2024; IQR=3-12; n=255; p=0.667). Of those who reported recent use and responded (n=165), the median maximum amount used in a session was seven bulbs (IQR=4-16; 10 bulbs in 2024; IQR=3-20; p=0.264).

Amyl Nitrite

Following a review by the <u>Therapeutic Goods Administration</u>, amyl nitrite was listed as Schedule 3 (i.e., for purchase over-the-counter) from 1 February 2020 when sold "in preparations for human therapeutic use and packaged in containers with child-resistant closures". However, to our knowledge, the TGA has not yet approved any amyl nitrite products for supply in Australia.

Recent Use (past 6 months): Use of amyl nitrite fluctuated between 2003 and 2019, although remained relatively stable between 2019 and 2024 (Figure 46). In 2025, one third (33%) of the sample reported any recent use of amyl nitrite, a significant decrease relative to 2024 (39%; p=0.016). In 2025, few participants ($n \le 5$) reported that they had obtained amyl nitrite from a pharmacy in the past six months (not asked in 2024).

Frequency of Use: Frequency of amyl nitrite use remained stable (4 days; IQR=2-10; n=227) in 2025, relative to 2024 (4 days; IQR=2-10; n=391; p=0.642).

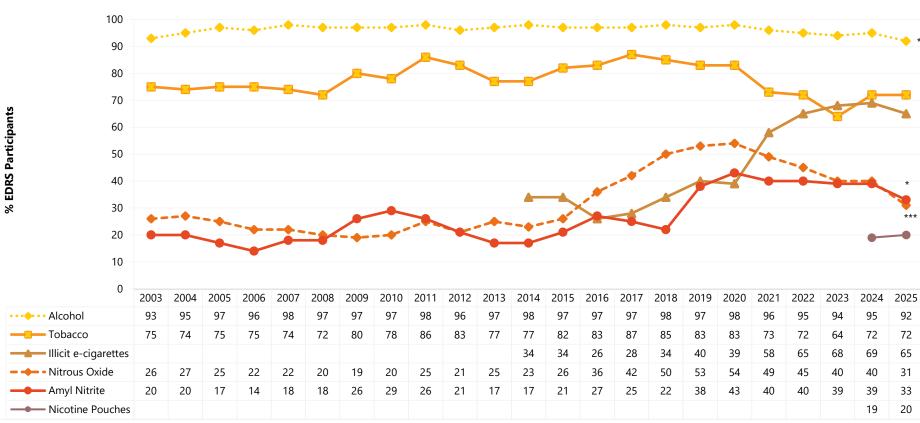
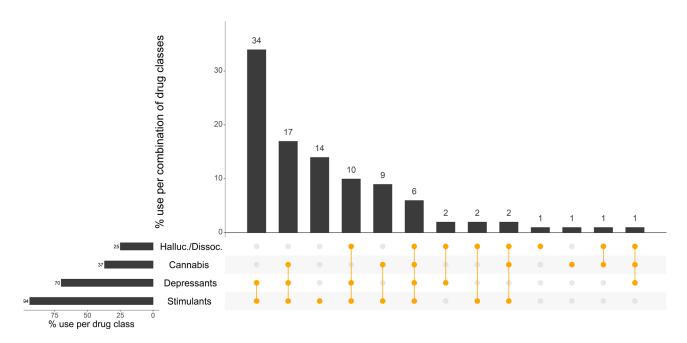


Figure 46: Licit and other drugs used in the past six months, nationally, 2003-2025

Note. Regarding e-cigarettes, on 1 October 2021, legislation came into effect requiring people to obtain a prescription to legally import nicotine vaping products. Data from 2022 onwards refers to illicit e-cigarettes only. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

11

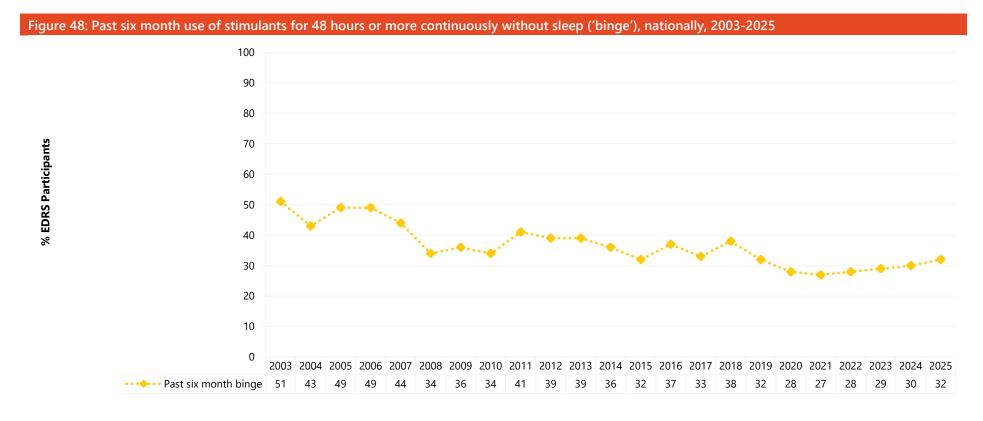
Drug-Related Harms and Other Behaviours


Participants were asked about various drug-related harms and other behaviours, including polysubstance use and bingeing, drug checking, hazardous alcohol use, non-fatal overdose following drug use, awareness of naloxone, injecting drug use, drug treatment, ecstasy and methamphetamine dependence, sexual health, mental health and psychological distress, health service access, driving under the influence of drugs, crime and modes of purchasing drugs. It should be noted that the following data refer to participants' understanding of these behaviours (e.g., may not necessarily represent medical diagnoses in the case of reporting on health conditions).

Polysubstance Use

On the last occasion of ecstasy or related drug use, among those who answered (n=687), the most commonly used substances were alcohol (68%) and ecstasy (52%), followed by tobacco (44%), ecigarettes (37%), cannabis (37%) and cocaine (35%).

The majority (86%; n=590) of the sample reported concurrent use of two or more drugs on the last occasion of ecstasy or related drug use (excluding tobacco and e-cigarettes). The most commonly used combinations of drug classes were depressants and stimulants (34%), followed by the use of cannabis, depressants and stimulants (17%). Ten per cent reported using hallucinogens/dissociatives, depressants and stimulants, 9% reported using cannabis and stimulants, and 6% reported using hallucinogens/dissociatives, cannabis, depressants and stimulants. Fourteen per cent reported using stimulants alone (Figure 47).


Figure 47: Use of depressants, stimulants, cannabis, hallucinogens and dissociatives on the last occasion of ecstasy or related drug use, nationally, 2025: Most common drug pattern profiles

Note. % calculated out of total EDRS 2025 sample. The horizontal bars represent the per cent of participants who reported use of each substance on their last occasion of ecstasy or related drug use; the vertical columns represent the per cent of participants who used the combination of drug classes represented by the orange circles. Drug use pattern profiles reported by ≤5 participants or which did not include any of the four drug classes depicted are not shown in the figure but are counted in the denominator. Halluc./Dissoc = hallucinogens/dissociatives (LSD, hallucinogenic mushrooms, amyl nitrite, DMT, ketamine and/or nitrous oxide); depressants (alcohol, GHB/GBL,1,4-BD, kava, opioids and/or benzodiazepines); stimulants (cocaine, MDA, ecstasy, methamphetamine and/or pharmaceutical stimulants). Use of benzodiazepines, opioids and stimulants could be prescribed or non-prescribed use. Note that participants may report use of multiple substances within a class. Secondary Y axis reduced to 35% to improve visibility of trends. Please refer to Table 1 for a guide to table/figure notes.

Binge Drug Use

Participants were asked whether they had used any stimulant for 48 hours or more continuously without sleep (i.e., binged) in the six months preceding interview. The per cent of the sample who have reported bingeing has generally declined between 2003 and 2020, before stabilising from 2020 onwards. In 2025, almost one third (32%) of the sample had binged on one or more drugs in the preceding six months, stable from 2024 (30%; p=0.602) (Figure 48).

Note. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Drug Checking

Drug checking is a common strategy used to test the purity and contents of illicit drugs. At the time interviewing commenced in 2025, the only government-sanctioned drug checking services that had operated in Australia were in the ACT, QLD, VIC and NSW. In Canberra, ACT, drug checking was provided at the Groovin the Moo festival in 2018 and 2019, and a fixed-site drug checking service (CanTEST) has been operational since 17 July 2022. Queensland's first fixed-site drug checking service, CheQpoint, opened in Brisbane on 20 April 2024, and a second service opened in the Gold Coast in July 2024. Drug checking services were also provided at 3 festivals in 2024 - Rabbits Eat Lettuce and Wildlands (by Pill Testing Australia) and Earth Frequency (by CheQpoint) - and as part of the 2024 Qld Gov Schoolies Response (CheQpoint). However, all government funded services ceased in April 2025. In Victoria, drug checking was provided at 'up to' 10 festivals throughout 2024-2025 during an 18-month implementation trial and in March 2025, NSW commenced a 12-month trial of mobile drug checking at 'up to' 12 festivals.

In 2025, nearly two fifths (39%) of participants reported that they or someone else had tested the content and/or purity of their illicit drugs in Australia in the past year, a significant increase from 27% in 2024 (*p*<0.001) (Figure 49). Of those who reported that they or someone else had tested their illicit drugs in the past year (n=258), 71% reported using a personal testing kit – most commonly colorimetric or reagent test kits (59%), with fewer participants (16%) using testing strips (e.g., BTNX fentanyl strips or other immunoassay testing strips). Of those who reported that they or someone else had tested their illicit drugs in the past year (n=258), 43% reported that they had submitted drugs for testing at a drug checking service, most commonly at a fixed-site face-to-face drug checking service (e.g., a drop-in service in a central location) (28%), followed by an event-based face-to-face testing service (e.g., festival pill-testing service) (17%), with few participants (n≤5) reporting submitting samples via a postal/online testing service (e.g., Energy Control, Ecstasy Data).

Figure 49: Lifetime and past year engagement in drug checking, nationally, 2019-2025

Note. Questions on drug checking commenced in 2019. In 2025, survey questions were separated into 'personal testing kits' and 'drug checking services' and focused on past year use only. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Alcohol Use Disorders Identification Test

The Alcohol Use Disorders Identification Test (AUDIT) was designed by the World Health Organization (WHO) as a brief screening scale to identify individuals with problematic alcohol use in the past 12 months.

In 2025, the mean score on the AUDIT for the total sample (including participants who had not consumed alcohol in the past 12 months) was 12.2 (SD 7.0), a significant decrease from 13.4 (SD 7.4) in 2024 (p<0.001). AUDIT scores are divided into four 'zones' which indicate risk level. Specifically, scores between 0-7 indicate low risk drinking or abstinence; scores between 8-15 indicate alcohol use in excess of low-risk guidelines; scores between 16-19 indicate harmful or hazardous drinking; and scores 20 or higher indicate possible alcohol dependence.

Among those who responded in 2025 (n=641), a significant difference was observed in the per cent of participants scoring in each of the four 'zones' between 2024 and 2025 (p=0.035). However, the per cent who obtained a score of eight or more, indicative of hazardous use, remained stable (73%; 76% in 2024; p=0.121) (Table 19).

Table 19: AUDIT total scores and per cent of participants scoring above recommended levels, nationally, 2010-2025

	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
	N=667	N=558	N=573	N=667	N=790	N=753	N=778	N=769	N=790	N=791	N=800	N=766	N=694	N=704	N=702	N=641
Mean AUDIT total score (SD)	14.9 (6.9)	17.4 (6.6)	15.3 (7)	13.9 (6.8)	14.7 (6.2)	13.3 (6.2)	12.5 (6.7)	12.6 (6.3)	12.8 (6.8)	13.5 (7.1)	13.1 (6.4)	12.9 (7)	12.9 (7.4)	12.7 (7.4)	13.4 (7.4)	12.2*** (7.0)
Score 8 or above (%)	85	95	85	81	89	80	75	79	75	79	81	77	74	72	76	73
AUDIT zones																*
Score 0-7:	15	5	15	19	11	20	25	21	25	21	19	23	26	28	24	27
Score 8-15:	39	38	38	46	44	46	44	49	43	45	51	43	39	39	40	44
Score 16-19:	20	20	20	15	25	18	15	14	15	17	15	17	14	15	17	14
Score 20 or higher:	26	37	37	20	20	17	16	15	17	18	16	16	20	19	20	15

Note. Monitoring of AUDIT commenced in 2010. Computed from the entire sample regardless of whether they had consumed alcohol in the past twelve months. Total AUDIT score range is 0-40, with higher scores indicating greater likelihood of hazardous and harmful drinking. Imputation used for missing scale scores. Statistical significance for 2024 versus 2025 presented in table; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Overdose Events

Non-Fatal Overdose

Previously, participants had been asked about their experience in the past 12 months of i) stimulant overdose, and ii) depressant overdose.

From 2019, changes were made to this module, with participants asked about alcohol, stimulant and other drug overdose, prompted by the following definitions:

- **Alcohol overdose:** experience of symptoms (e.g., reduced level of consciousness, and collapsing) where professional assistance would have been helpful.
- **Stimulant overdose:** experience of symptoms (e.g., nausea, vomiting, chest pain, tremors, increased body temperature, increased heart rate, seizure, extreme paranoia, extreme anxiety, panic, extreme agitation, hallucinations, excited delirium) where professional assistance would have been helpful.
- Other drug overdose (not including alcohol or stimulant drugs): similar definition to above. Note that in 2019, participants were prompted specifically for opioid overdose but this was removed in 2020 as few participants endorsed this behaviour.

It is important to note that events reported on for each drug type may not be unique given high rates of polysubstance use among the sample.

For the purpose of comparison with previous years, we computed the per cent reporting any depressant overdose, comprising any endorsement of alcohol overdose, or other drug overdose where a depressant (e.g., opioid, GHB/GBL/1,4 BD, benzodiazepines) was listed.

Non-Fatal Stimulant Overdose

Eighteen per cent of the sample reported experiencing a non-fatal stimulant overdose in the 12 months preceding interview in 2025, stable relative to 2024 (19%; p=0.888) (Figure 50).

The most common stimulants reported during the most recent non-fatal stimulant overdose in the past 12 months comprised any form of ecstasy (62%; capsules: 27%; crystal: 27%; pills: 9% and powder: 7%), cocaine (23%), any form of methamphetamine (17%; crystal: 16%; powder: $n \le 5$) and pharmaceutical stimulants (14%). Of those who reported a non-fatal stimulant overdose in the past year and responded (n=124), 82% reported that they had also consumed one or more additional drugs on the last occasion, most notably, any quantity of alcohol (56%; ≥ 5 standard drinks: 44%; ≤ 5 standard drinks: 12%), tobacco (26%), cannabis (25%), e-cigarettes (21%) and ketamine (10%). On the last occasion of experiencing a non-fatal stimulant overdose, 84% reported that they did not receive treatment. Of those who reported receiving treatment (n=20), most participants reported hospital emergency department attendance (60%; n=12) and ambulance attendance (50%; n=10).

Non-Fatal Depressant Overdose

Alcohol: One fifth (20%) of the sample reported a non-fatal alcohol overdose in the 12 months preceding interview (24% in 2024; p=0.066) on a median of two occasions (IQR=1-4). Of those who had experienced an alcohol overdose in the past year in 2025 (n=135), the majority (83%) reported not receiving treatment on the last occasion. Of those who reported receiving treatment and who

commented (n=18), 72% reported hospital emergency department attendance (n=13), followed by ambulance attendance (33%; n=6).

Any depressant (including alcohol): One fifth (22%) of the sample reported that they had experienced a non-fatal depressant overdose (including alcohol) in the past 12 months, a significant decrease from 28% in 2024 (p=0.012), but similar to the per cent reported in 2023 (Figure 50).

Of those who had experienced any depressant overdose in the past 12 months (n=151), the majority reported alcohol as the most common depressant drug (89%), with fewer participants reporting GHB/GBL/1,4-BD, benzodiazepines (including alprazolam) and opioids (including heroin and pharmaceutical opioids) (5%, respectively).

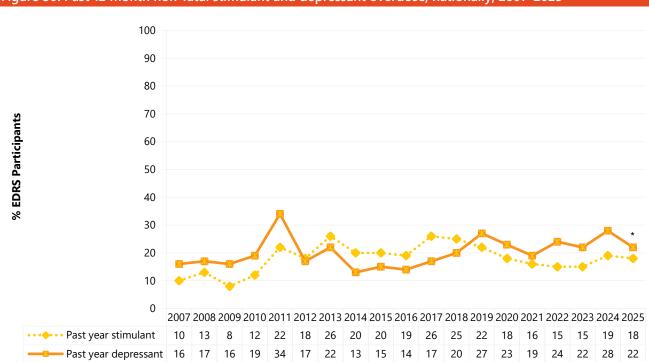


Figure 50: Past 12 month non-fatal stimulant and depressant overdose, nationally, 2007-2025

Note. Questions on past year stimulant and depressant overdose commenced in 2007. In 2019, items about overdose were revised, and changes relative to 2018 and earlier may be a function of greater nuance in capturing depressant events. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Awareness of Naloxone

In 2025, nearly three quarters (73%) of the sample reported that they had ever heard of naloxone, a significant increase from 63% in 2024 (p<0.001). Among those who had ever heard of naloxone and responded (n=491), 91% were able to correctly identify the purpose of naloxone, stable from 91% in 2024. Among participants who had ever heard of naloxone and responded (n=502), 32% reported obtaining naloxone in their lifetime (23% of entire sample), a significant increase relative to 14% in 2024 (p<0.001) and 27% reported obtaining naloxone in the twelve months prior to interview (19% of entire sample), also a significant increase relative to 2024 (10%; p<0.001).

Injecting Drug Use

For the past several years, approximately one in ten participants have reported ever injecting drugs (11% in 2025; 10% in 2024; p=0.929). The per cent who reported injecting drugs in the past month has remained low and stable, with 2% reporting past month injection in 2025 (1% in 2024; p=0.163) (Figure 51).

Figure 51: Lifetime and past month drug injection, nationally, 2003-2025

Note. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Drug Treatment

A nominal per cent reported currently receiving drug treatment in 2025 (4%), stable compared with 2024 (6%; p=0.111). Of those who had reported being in treatment in 2025 (n=31), the majority (58%) reported drug counselling as their main form of treatment (69% in 2024; p=0.348).

Ecstasy and Methamphetamine Dependence

From 2015, participants were asked questions from the Severity of Dependence Scale (SDS) adapted to investigate ecstasy and methamphetamine dependence. The SDS is a five-item questionnaire designed to measure the degree of dependence on a variety of drugs. The SDS focuses on the psychological aspects of dependence, including impaired control of drug use, and preoccupation with, and anxiety about use. A total score was created by summing responses to each of the five questions. Possible scores range from 0 to 15.

To assess ecstasy dependence in the past six months, a cut-off score of three or more was used, as this has been found to be a good balance between sensitivity and specificity for identifying problematic dependent ecstasy use. Among those who reported recent ecstasy use and commented (n=639), 17% recorded a score of three and above, stable relative to 2024 (16%; p=0.717). The median ecstasy SDS score was zero (IQR=0-2). In 2025, 57% of participants obtained a score of zero on the ecstasy SDS, indicating that the majority of respondents reported no symptoms of dependence in relation to ecstasy use (53% in 2024; p=0.194) (Table 20).

To assess methamphetamine dependence in the past six months, the <u>cut-off of four and above</u>, which is a more conservative estimate, has been used previously in the literature as a validated cut-off for methamphetamine dependence. Among those who reported recent methamphetamine use and commented (n=194), almost one third (32%) scored four or above, stable relative to 41% in 2024 (p=0.112). The median methamphetamine SDS score was one (IQR=0-5). In 2025, two fifths (40%) of participants obtained a score of zero on the methamphetamine SDS (40% in 2024; p=0.911), indicative of no symptoms of dependence in relation to methamphetamine use (Table 20).

Table 20: Total ecstasy and methamphetamine SDS scores, and per cent of participants scoring above cut-off scores indicative of dependence, among those who reported past six month use, nationally, 2015-2025

	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Ecstasy	n=753	n=778	n=775	n=787	n=778	/	n=717	n=611	n=664	n=674	n=639
Median total score (IQR)	1 (0-2)	1 (0-3)	1 (0-2)	1 (0-2)	1 (0-2)	/	0 (0-1)	0 (0-1)	0 (0-1)	0 (0-2)	0 (0-2)
% score = 0	41	42	46	42	48	/	60	65	63	53	57
% score ≥3	25	26	20	21	21	/	15	11	14	16	17
Methamphetamine	n=238	n=245	n=212	n=244	n=255	n=189	n=182	n=209	n=210	n=179	n=194
Median total score (IQR)	1 (0-3)	0 (0-4)	0 (0-3)	0 (0-2)	0 (0-4)	0 (0-1)	1 (0-5)	1 (0-4)	1 (0-6)	2 (0-5)	1 (0-5)
% score = 0	50	51	58	59	54	67	47	48	41	40	40
% score ≥4	23	29	22	21	28	18	33	32	40	41	32

Note. Severity of Dependence scores calculated out of those who used ecstasy/methamphetamine recently (past 6 months). A cut-off score of ≥ 3 and ≥ 4 is used to indicate screening positive for potential ecstasy and methamphetamine dependence, respectively. Imputed values used for missing scale scores. Statistical significance for 2024 versus 2025 presented in table; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Sexual Health Behaviours

In 2025, almost three quarters (73%) of the sample reported some form of sexual activity in the past four weeks (78% in 2024; p=0.055). Given the sensitive nature of these questions, participants were given the option of self-completing this section of the interview (if the interview was undertaken face-to-face).

Of those who had engaged in sexual activity in the past four weeks and responded (n=474), 79% (n=376) reported using alcohol and/or other drugs prior to or while engaging in sexual activity, stable relative to 2024 (81%; p=0.579). Of those who had engaged in sexual activity in the past four weeks and responded (n=475), 7% (n=32) reported that their use of alcohol and/or other drugs had impaired their ability to negotiate their wishes during sex, a significant decrease relative to 2024 (11%; p=0.038), while 32% (n=154) reported that they had used alcohol and/or other drugs to enhance sexual activity or pleasure with another person (36% in 2024; p=0.299). Two per cent (n=9) had engaged in sexual activity in exchange for money, drugs, or other goods or services (2% in 2024; p=0.672) (Table 21).

Of those who commented (n=660), 29% reported having a sexual health check-up in the six months prior to interview, a significant decrease relative to 2024 (35%; p=0.016), whilst 68% had done so in their lifetime (72% in 2024; p=0.104). Of the total sample who responded in 2025 (n=660), 4% reported that they had received a positive diagnosis for a sexually transmitted infection (STI) in the past six months, stable relative to 2024 (5%; p=0.421) and one fifth (20%) had received a positive diagnosis in their lifetime (22% in 2024; p=0.462). The most common STI reported amongst participants who commented (n=22) was chlamydia (55%), followed by gonorrhoea (27%).

Of those who commented (n=651), one fifth (21%) of the sample reported having a test for human immunodeficiency virus (HIV) in the six months prior to interview (26% in 2024; p=0.068), whilst 54% had done so in their lifetime (56% in 2024; p=0.545). In 2025, few participants (n≤5) had been diagnosed with HIV in the past six months (0% in 2024; p=0.432), though 2% had been diagnosed with HIV within their lifetime (n≤5 in 2024; p=0.129).

Table 21: Sexual health behaviours, nationally, 2021-2025

	2021	2022	2023	2024	2025
Of those who responded#:	N=749	N=677	N=682	N=722	N=656
% Any sexual activity in the past four weeks	82	78	79	78	73
Of those who responded# and reported any	n=612	n=526	n=538	n=558	n=474
sexual activity in the past four weeks:	11-012	11-320	11-330	11-330	11-474
% Drugs and/or alcohol used prior to or while	86	82	81	81	79
engaging in sexual activity	00	02	01	01	13
Of those who responded# and reported any	n=608	n=525	n=535	n=556	n=475
sexual activity in the past four weeks:	11-000	11-323	11-333	11-330	11-473
% Drugs and/or alcohol impaired their ability to	11	9	10	11	7*
negotiate their wishes during sexual activity	''	,	10	''	,
% Drugs and/or alcohol used to enhance sexual	/	,	/	36	32
activity or pleasure with another person	,	,	,	30	JE
Of those who responded# and reported any				n=560	n=478
sexual activity in the past four weeks:				11-300	11-470
% Engaged in sexual activity in exchange for	,	,	,	2	2
money, drugs or other goods or services	/	/	/	2	2

Of those who responded#:	n=759	n=678	n=680	n=727	n=660
% Had a sexual health check in the last six months	36	35	33	35	29*
% Had a sexual health check in their lifetime	76	78	75	72	68
Of those who responded#:	n=757	n=676	n=680	n=727	n=660
% Diagnosed with a sexually transmitted infection in the last six months	3	3	6	5	4
% Diagnosed with a sexually transmitted infection in their lifetime	22	29	26	22	20
Of those who responded#:	n=749	N=669	n=678	n=717	n=651
% Had a HIV test in the last six months	24	25	26	26	21
% Had a HIV test in their lifetime	57	60	65	56	54
Of those who responded#:	n=749	n=676	n=678	n=717	n=651
% Diagnosed with HIV in the last six months	-	0	-	0	-
% Diagnosed with HIV in their lifetime	-	0	-	-	2

Note. * Due to the sensitive nature of these items, there is missing data for some participants who chose not to respond. Statistical significance for 2024 versus 2025 presented in table; *p < 0.050; **p < 0.010; ***p < 0.001. Please refer to Table 1 for a guide to table/figure notes.

Mental Health and Psychological Distress (K10)

Mental Health

In 2025, almost three fifths (57%) of the sample self-reported that they had experienced a mental health problem in the preceding six months (other than drug dependence), stable relative to 2024 (58%; p=0.708) (Figure 52). Of those who reported a mental health problem and commented (n=380), the most common mental health problems reported were depression (61%; 62% in 2024; p=0.615) and anxiety (60%; 68% in 2024; p=0.030), followed by attention-deficit hyperactivity disorder (ADHD) (32%; 25% in 2024; p=0.072). Of those who reported experiencing a mental health problem (n=389), 57% (33% of the total sample) reported seeing a mental health professional during the past six months (62% in 2024; p=0.181). Of those who attended a mental health professional in 2025 (n=223), 57% reported being prescribed medication for their mental health problem, a significant decrease relative to 67% in 2024 (p=0.027).

Figure 52: Self-reported mental health problems and treatment seeking in the past six months, nationally, 2008-2025

Note. Questions about treatment seeking commenced in 2008. The combination of the per cent who report treatment seeking and no treatment is the per cent who reported experiencing a mental health problem in the past six months. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; *p<0.010; *p<0.001. Please refer to Table 1 for a quide to table/figure notes.

Psychological Distress (K10)

The <u>Kessler Psychological Distress Scale 10 (K10)</u> was administered to obtain a measure of psychological distress in the past four weeks. It is a 10-item standardised measure that has been found to have good psychometric properties and to identify clinical levels of psychological distress as measured by the Diagnostic and Statistical Manual of Mental Disorders, and the Structured Clinical Interview for DSM disorders.

The minimum score is 10 (indicating no psychological distress) and the maximum is 50 (indicating very high psychological distress). Scores can be coded into four categories to describe degrees of distress: scores from 10–15 are considered to indicate 'low' psychological distress; scores between 16–21 indicate 'moderate' psychological distress; scores between 22–29 indicate 'high' psychological distress; and scores between 30–50 indicate 'very high' psychological distress. Among the general population, scores of 30 or more have been demonstrated to indicate a high likelihood of having a mental health problem, and possibly requiring clinical assistance.

Among those who responded in 2025 (n=685), the per cent of participants scoring in each of the four K10 categories remained stable relative to 2024 (p=0.416). In 2025, almost one fifth (19%) of the EDRS sample had a score of 30 or more (22% in 2024) (Figure 53).

The <u>National Health Survey 2022-2023</u> provides Australian population data for adult (≥18 years) K10 scores. EDRS participants in 2025 reported greater levels of 'moderate', 'high' and 'very high' distress compared to the general population (Figure 53).

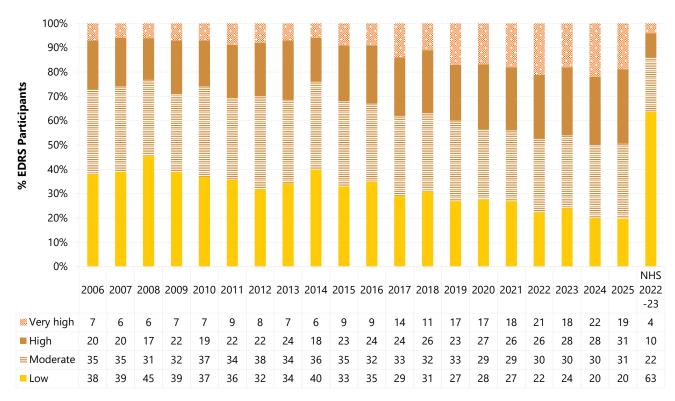


Figure 53: K10 psychological distress scores, nationally, 2006-2025, and among the general population, 2022-2023

Note. Questions on psychological distress commenced in 2006. Data from the National Health Survey are a national estimate from 2022-23 for adults 18 or older. Imputation used for missing scale scores (EDRS only). Statistical significance for 2024 versus 2025 presented in table; *p < 0.050; **p < 0.010; **p < 0.001. Please refer to Table 1 for a guide to table/figure notes.

Health Service Access

Twenty-nine per cent of participants reported accessing any health service for alcohol and/or drug support (AOD) in the six months preceding interview, stable relative to 2024 (30%; p=0.732). The most common services reported by participants in 2025 included a general practitioner (GP) (12%; 10% in 2024; p=0.352), followed by a drug and alcohol counsellor (7%; 8% in 2024; p=0.315) and a psychologist (6%; 8% in 2024; p=0.063) (Table 22).

Ninety-three per cent of participants reported accessing any health service for any reason in the six months preceding interview in 2025, stable relative to 2024 (92%; p=0.313). The most common service accessed by participants in 2025 was a GP (79%: 76% in person; 25% via telehealth), stable from 2024 (77%; p=0.405), followed by a pharmacy (59%; 52% in 2024; p=0.012), a dentist (36%; 33% in 2024; p=0.343) and a psychologist (24%; 28% in 2024; p=0.108) (Table 22).

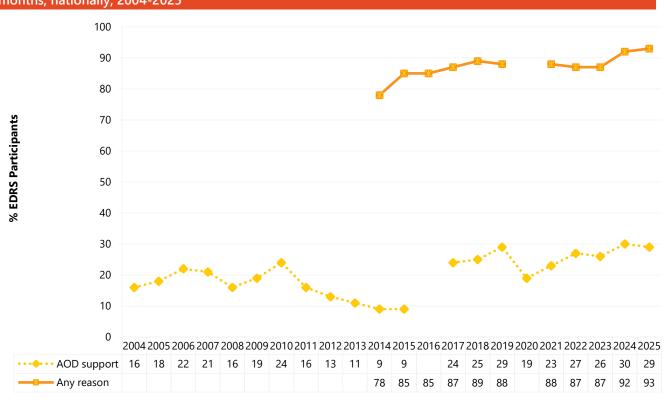


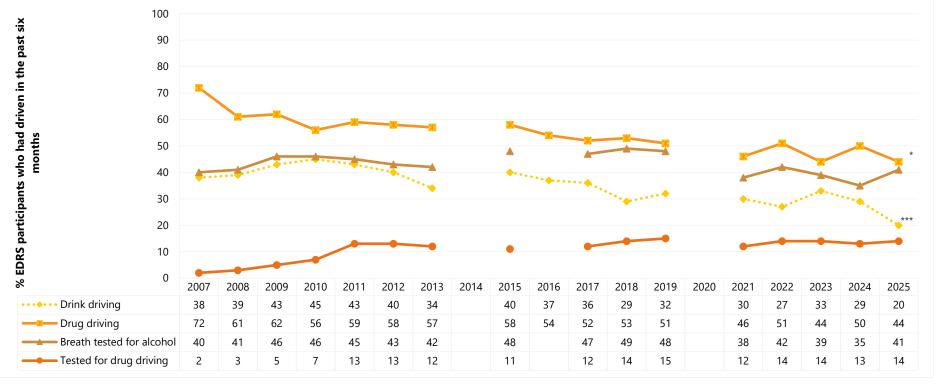
Figure 54: Health service access for alcohol and other drug reasons, and for any reason, in the past six months, nationally, 2004-2025

Note. Questions on health service access commenced in 2004. Statistical significance for 2024 versus 2025 presented in figure; *p < 0.050; **p < 0.010; ***p < 0.001. Please refer to Table 1 for a guide to table/figure notes.

Table 22: Types of health services accessed for alcohol and other drug reasons and for any reason in the past six months, nationally, 2022-2025

		AOD support			Any reason				
	2022	2023	2024	2025	2022	2023	2024	2025	
% accessing health services	N=698 27	N=708 26	N=740 30	N=689 29	N=698 87	N=708 87	N=740 92	N=642 93	
GP^	11	9	10	12	75	70	77	79	
In-person	/	/	/	11	/	/	/	76	
Telehealth	/	/	/	2	/	/	/	25	
Emergency department	4	6	6	4	17	21	22	19	
Hospital admission (inpatient)	4	4	3	2	12	13	13	12	
Medical tent (e.g., at a festival)	3	4	4	3	5	7	8	6	
Drug and Alcohol counsellor	7	8	8	7	7	8	8	7	
Hospital as an outpatient	1	1	2	-	6	9	8	6	
Specialist doctor (not including a psychiatrist)	1	1	1	-	13	15	13	13	
Dentist	-	1	1	-	34	37	33	36	
Ambulance attendance	2	3	4	3	6	7	8	5	
Pharmacy	/	/	4	3	/	/	52	59*	
Other health professional (e.g., physiotherapist)	-	2	1	-	18	18	17	17	
Psychiatrist	4	3	4	3	14	13	14	12	
Psychologist	11	7	8	6	31	29	28	24	
NSP	2	3	2	2	2	3	2	3	
Peer based harm reduction service	3	3	4	4	4	5	5	6	
Other harm reduction service	-	2	2	2	1	2	3	3	

Note. ^ In 2025, we separated 'GP' into 'GP in person' and 'GP via telehealth'. Statistical significance for 2024 versus 2025 presented in table; *p < 0.050; **p < 0.010; ***p < 0.001. Please refer to Table 1 for a guide to table/figure notes.


Driving

In 2025, 80% of the sample had driven a car, motorcycle or other vehicle in the last six months. Of those who had driven in the past six months and commented (n=525), one fifth (20%) reported driving while over the perceived legal limit of alcohol in the past six months, a significant decrease relative to 29% in 2024 (p<0.001). Among those who had driven and commented (n=547), 44% reported driving within three hours of consuming an illicit or non-prescribed drug in the last six months, a significant decrease relative to 2024 (50%; p=0.033) (Figure 55).

Of those who had driven within three hours of consuming an illicit or non-prescribed drug in the last six months and responded (n=238), participants most commonly reported using cannabis (55%) prior to driving, followed by cocaine (18%), methamphetamine crystal (18%) and pharmaceutical stimulants (16%). Additionally, 11% reported using ketamine three hours prior to driving in the six months preceding interview.

Of those who had recently driven and commented (n=548), 14% reported that they had been tested for drug driving by the police roadside drug testing service (13% in 2024; p=0.605), and 41% reported that they had been breath tested for alcohol by the police roadside testing service (35% in 2024; p=0.062) in the six months prior to interview (Figure 55). Among those who had had been tested for drug driving by the police roadside drug testing service (n=77), 23% reported that a drug/s had been detected, mostly commonly cannabis/THC (12%), followed by meth/amphetamine (11%) (not asked in 2024).

Figure 55: Self-reported testing, and driving over the (perceived) legal limit for alcohol or three hours following illicit drug use, among those who had driven in the past six months, nationally, 2007-2025

Note. Questions about driving behaviour commenced in 2007. Computed of those who had driven a vehicle in the past six months. Statistical significance for 2024 versus 2025 presented in figure; *p < 0.050; **p < 0.010; ***p < 0.001. Please refer to Table 1 for a guide to table/figure notes.

Experience of Crime and Engagement with the Criminal Justice System

Past month self-reported criminal activity has fluctuated over time, with 37% reporting 'any' crime in the past month in 2025, stable relative to 2024 (41%; p=0.162). Selling drugs for cash profit (21%) and property crime (23%) remained the two main forms of criminal activity in 2025 (24% in 2024; p=0.102 and 23% in 2024; p=0.894, respectively) (Figure 56). Nine per cent reported being the victim of a crime involving violence (e.g., assault) in the past month in 2025, which remained stable compared to 2024 (10%; p=0.576) (Figure 57).

Seven per cent of the sample reported a lifetime history of imprisonment in 2025, stable relative to 2024 (6%; p=0.290) (Figure 58).

Eight per cent of respondents in the 2025 sample reported having been arrested in the 12 months preceding interview, stable from 2024 (7%; p=0.685) (Figure 58). Of those who had been arrested in the prior 12 months and commented (n=51), the main reasons for arrest in 2025 were property crime (22%), violent crime (18%) and drugs and driving (18%). In 2025, few participants (n≤5) had been convicted of a drug-related offence in the past year (n≤5 in 2024; p=0.505), and few participants (n≤5) had been sentenced to a community corrections order (n≤5% in 2024; p=0.837).

Fifteen per cent of participants (14% in 2024; p=0.597) reported a drug-related encounter with police in the year preceding interview which did not result in charge or arrest (Figure 58). This predominantly comprised being stopped and searched (45%; 48% in 2024; p=0.782) and stopped and questioned (32%; 36% in 2024; p=0.662), followed by being stopped and issued a caution (16%; 18% in 2024; p=0.851) and being issued a court attendance notice (11%; not asked in 2024). Few participants (n≤5) reported being stopped and issued with a fine/infringement notice, a significant decrease relative to 15% in 2024 (p=0.020) and few participants (n≤5) reported being stopped and issued with a drug diversion (11% in 2024; p=0.105).

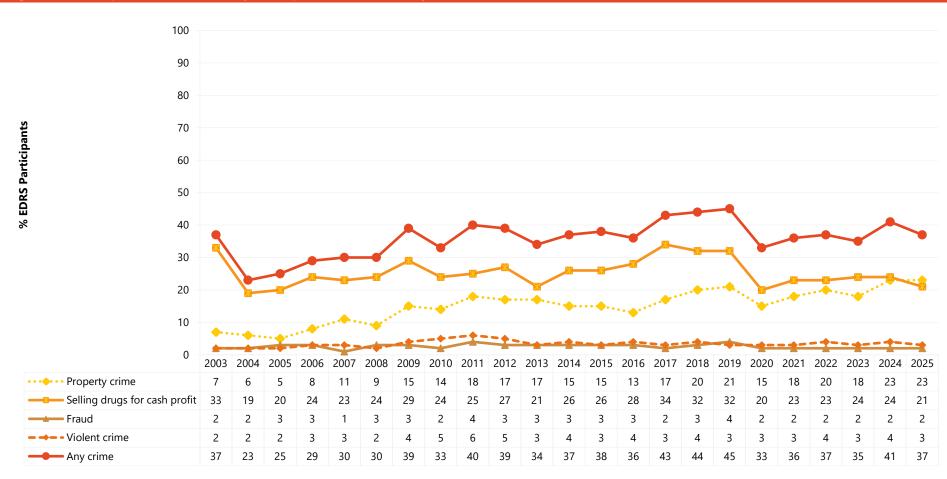
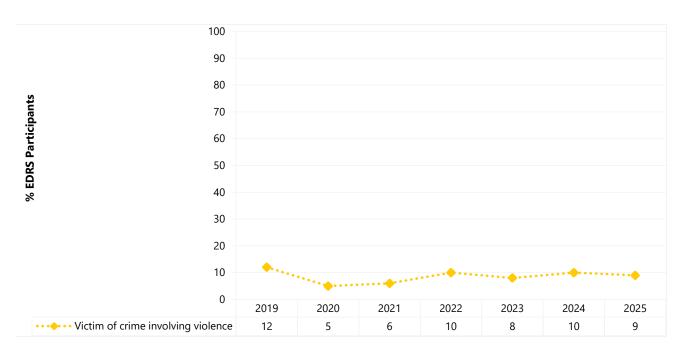



Figure 56: Self-reported criminal activity in the past month, nationally, 2003-2025

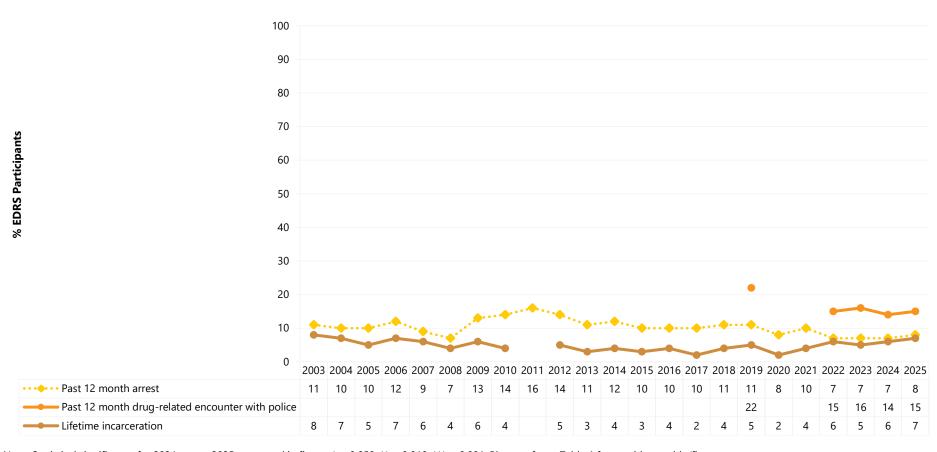

Note. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Figure 57: Victim of crime involving violence in the past month, nationally, 2019-2025

Note. Questions regarding being the victim of a crime involving violence commenced in 2019. Statistical significance for 2024 versus 2025 presented in figure; *p < 0.050; **p < 0.010; ***p < 0.001. Please refer to Table 1 for a guide to table/figure notes.

Figure 58: Lifetime incarceration, and past 12 month arrest and drug-related encounters with police that did not result in arrest, nationally, 2003-2025

Note. Statistical significance for 2024 versus 2025 presented in figure; *p<0.050; **p<0.010; ***p<0.001. Please refer to Table 1 for a guide to table/figure notes.

Modes of Purchasing Illicit or Non-Prescribed Drugs

In interviewing and reporting, 'online sources' were defined as either surface or darknet marketplaces.

Purchasing Approaches

In 2025, the most popular means of arranging the purchase of illicit or non-prescribed drugs in the 12 months preceding interview was face-to-face (73%; 74% in 2024; p=0.723) (Table 23), followed closely by social networking or messaging applications (e.g., Facebook, Wickr, WhatsApp, Snapchat, Grindr, Tinder) (70%; 70% in 2024; p=0.815). It is important to re-iterate that this refers to people *arranging the purchase* of illicit or non-prescribed drugs. This captures participants who messaged friends or known dealers on Facebook Messenger or WhatsApp, for example, to organise the purchase of illicit or non-prescribed drugs, which may have then been picked up in person. In 2025, the most common social networking or messaging apps used to arrange the purchase of illicit drugs was Snapchat (45%), followed by Signal (38%) and Telegram (37%), and these were mostly obtained from a known dealer/vendor (69%), followed by a friend/relative/partner/colleague (66%).

Two fifths (40%) reported arranging the purchase of illicit or non-prescribed drugs via text messaging, stable from 42% in 2024 (p=0.476), followed by phone call (27%; 27% in 2024; p=0.955) (Table 23).

Buying and Selling Drugs Online

Six per cent reported obtaining drugs via the surface web or darknet market in the past year, most commonly ecstasy crystal and cannabis (2%, respectively). Almost two fifths (37%) reported that they had ever obtained illicit drugs through someone who had purchased them on the surface web or darknet market, with 25% doing so in the 12 months prior to interview (26% in 2024; p=0.640).

In 2025, 3% of participants reporting selling illicit drugs on the surface web or darknet market in the 12 months preceding interview (3% in 2024; p=0.527).

Source and Means of Obtaining Drugs

The majority of participants in 2025 reported obtaining illicit drugs from a friend/relative/partner/colleague (79%), a significant decrease from 84% in 2024 (p=0.042). This was followed by a known dealer/vendor (66%; 64% in 2024; p=0.404) and an unknown dealer/vendor (32%; 33% in 2024; p=0.692) (Table 23).

When asked about how they had received illicit drugs on any occasion in the last 12 months, the majority of participants reported face-to-face (97%), stable relative to 2024 (96%; p=0.298). Almost one fifth (18%) of participants reported a collection point as a means of receiving illicit drugs in the 12 months preceding interview, a significant decrease relative to 2024 (23%; p=0.013) (collection point defined as a predetermined location where a drug will be left for later collection), followed by post (10%; 10% in 2024; p=0.728) (Table 23).

Table 23: Means of purchasing and obtaining illicit drugs in the past 12 months, nationally, 2019-2025

	2019	2020	2021	2022	2023	2024	2025
	N=792	N=799	N=774	N=700	N=708	N=740	N=690
% Purchasing approaches in the last 12 months^#	n=792	n=799	n=764	n=683	n=701	n=735	n=685
Face-to-face	82	67	72	69	72	74	73
Surface web	4	7	4	4	4	3	4
Darknet market	10	7	7	7	4	6	4
Social networking or messaging applications	73	75	71	73	71	70	70
Text messaging	53	48	39	42	42	42	40
Phone call	39	35	28	26	27	27	27
Grew/made my own	-	4	4	3	4	5	2
Other	0	1	0	1	-	1	-
% Means of obtaining drugs in the last 12 months^~	n=797	n=800	n=761	n=685	n=699	n=731	n=683
Face-to-face	97	96	92	96	96	96	97
Collection point	10	20	10	16	17	23	18*
Post	12	12	8	12	10	10	10
% Source of drugs in the last 12 months^	n=797	n=805	n=763	n=687	n=697	n=732	n=684
Friend/relative/ partner/colleague	88	83	83	82	79	84	79*
Known dealer/vendor	70	67	66	68	65	64	66
Unknown dealer/vendor	38	37	30	37	30	33	32

Note. ^ participants could endorse multiple responses. *This refers to people arranging the purchase of illicit or non-prescribed drugs. `This captures participants who messaged friends or known dealers on Facebook Messenger or WhatsApp, for example, to organise the purchase of illicit or non-prescribed drugs, which may have then been picked up in person. ~ The face-to-face response option in 2021 was combined by those responding, 'I went and picked up the drugs', 'The drugs were dropped off to my house by someone' and/or 'Was opportunistic – I arranged and collected at the same time (e.g., at an event/club).' Statistical significance for 2024 versus 2025 presented in table; *p < 0.050; **p < 0.010; ***p < 0.001. Please refer to Table 1 for a guide to table/figure notes.