



# SOUTH AUSTRALIAN DRUG TRENDS 2025

**Key Findings from the South Australian Ecstasy and  
Related Drugs Reporting System (EDRS) Interviews**



# **SOUTH AUSTRALIAN DRUG TRENDS 2025: KEY FINDINGS FROM THE ECSTASY AND RELATED DRUGS REPORTING SYSTEM (EDRS) INTERVIEWS**

**Antonia Karlsson<sup>1</sup>, Amy Peacock<sup>1,2</sup> & Rachel Sutherland<sup>1</sup>**

<sup>1</sup> National Drug and Alcohol Research Centre, UNSW Sydney

<sup>2</sup> School of Psychology, University of Tasmania



**UNSW  
NDARC**  
National Drug &  
Alcohol Research Centre

**NDRI**  
National Drug Research Institute

**Curtin University**

**Burnet**  
Institute for the Study of Infection and Immunity

**THE UNIVERSITY  
OF QUEENSLAND**  
Cairns

**UNIVERSITY of  
TASMANIA**  
Hobart

ISSN 2981-9571 ©NDARC 2025

This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. All other rights are reserved. Requests and enquiries concerning reproduction and rights should be addressed to the National Drug and Alcohol Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.

**Suggested citation:** Karlsson A, Peacock A, & Sutherland R. South Australian Drug Trends 2025: Key Findings from the Ecstasy and Related Drugs Reporting System (EDRS) Interviews. Sydney: National Drug and Alcohol Research Centre, UNSW Sydney; 2025. Available from: <https://doi.org/10.26190/unswworks/31806>

Please note that as with all statistical reports there is the potential for minor revisions to data in this report over its life. Please refer to the online version at [Drug Trends](#).

This report was prepared by the National Drug and Alcohol Research Centre, UNSW Sydney. Please contact the following with any queries regarding this publication: [a.karlsson@unsw.edu.au](mailto:a.karlsson@unsw.edu.au) or [drugtrends@unsw.edu.au](mailto:drugtrends@unsw.edu.au)

## Table of Contents

|                                              |    |
|----------------------------------------------|----|
| BACKGROUND AND METHODS                       | 6  |
| SAMPLE CHARACTERISTICS                       | 9  |
| NON-PRESCRIBED ECSTASY                       | 13 |
| METHAMPHETAMINE                              | 24 |
| NON-PRESCRIBED PHARMACEUTICAL STIMULANTS     | 31 |
| COCAINE                                      | 34 |
| CANNABIS AND/OR CANNABINOID-RELATED PRODUCTS | 38 |
| KETAMINE, LSD AND DMT                        | 45 |
| NEW PSYCHOACTIVE SUBSTANCES                  | 53 |
| OTHER DRUGS                                  | 57 |
| DRUG-RELATED HARMS AND OTHER BEHAVIOURS      | 64 |

## List of Tables

|                                                                                                                                                                                                                       |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| TABLE 1: GUIDE TO TABLE/FIGURE NOTES .....                                                                                                                                                                            | 7  |
| TABLE 2: DEMOGRAPHIC CHARACTERISTICS OF THE SAMPLE, NATIONALLY, 2025, AND ADELAIDE, SA, 2021-2025 .....                                                                                                               | 10 |
| TABLE 3: PAST SIX MONTH USE OF NPS (EXCLUDING PLANT-BASED NPS), ADELAIDE, SA, 2010-2025 .....                                                                                                                         | 54 |
| TABLE 4: PAST SIX MONTH USE OF NPS BY DRUG TYPE, ADELAIDE, SA, 2010-2025.....                                                                                                                                         | 55 |
| TABLE 5: AUDIT TOTAL SCORES AND PER CENT OF PARTICIPANTS SCORING ABOVE RECOMMENDED LEVELS, ADELAIDE, SA, 2010-2025 .....                                                                                              | 68 |
| TABLE 6: TOTAL ECSTASY AND METHAMPHETAMINE SDS SCORES, AND PER CENT OF PARTICIPANTS SCORING ABOVE CUT-OFF SCORES INDICATIVE OF DEPENDENCE, AMONG THOSE WHO REPORTED PAST SIX MONTH USE, ADELAIDE, SA, 2015-2025 ..... | 73 |
| TABLE 7: SEXUAL HEALTH BEHAVIOURS, ADELAIDE, SA, 2021-2025 .....                                                                                                                                                      | 75 |
| TABLE 8: TYPES OF HEALTH SERVICES ACCESSED FOR ALCOHOL AND OTHER DRUG REASONS AND FOR ANY REASON IN THE PAST SIX MONTHS, ADELAIDE, SA, 2022-2025 .....                                                                | 79 |
| TABLE 10: MEANS OF PURCHASING AND OBTAINING ILLICIT DRUGS IN THE PAST 12 MONTHS, ADELAIDE, SA, 2019-2025.....                                                                                                         | 84 |

## List of Figures

|                                                                                                                                                                                    |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| FIGURE 1: DRUG OF CHOICE, ADELAIDE, SA, 2003-2025 .....                                                                                                                            | 11 |
| FIGURE 2: DRUG USED MOST OFTEN IN THE PAST MONTH, ADELAIDE, SA, 2011-2025 .....                                                                                                    | 12 |
| FIGURE 3: WEEKLY OR MORE FREQUENT SUBSTANCE USE IN THE PAST SIX MONTHS, ADELAIDE, SA, 2003-2025 .....                                                                              | 12 |
| FIGURE 4: PAST SIX MONTH USE OF ANY NON-PRESCRIBED ECSTASY, AND NON-PRESCRIBED ECSTASY PILLS, POWDER, CAPSULES, AND CRYSTAL, ADELAIDE, SA, 2003-2025 .....                         | 14 |
| FIGURE 5: MEDIAN DAYS OF ANY NON-PRESCRIBED ECSTASY USE, AND NON-PRESCRIBED ECSTASY PILLS, POWDER, CAPSULES, AND CRYSTAL USE IN THE PAST SIX MONTHS, ADELAIDE, SA, 2003-2025 ..... | 14 |
| FIGURE 6: MEDIAN PRICE OF NON-PRESCRIBED ECSTASY PILLS AND CAPSULES, ADELAIDE, SA, 2003-2025 .....                                                                                 | 18 |
| FIGURE 7: MEDIAN PRICE OF NON-PRESCRIBED ECSTASY CRYSTAL (PER POINT AND GRAM) AND POWDER (PER GRAM ONLY), ADELAIDE, SA, 2013-2025 .....                                            | 19 |
| FIGURE 8: CURRENT PERCEIVED PURITY OF NON-PRESCRIBED ECSTASY PILLS, ADELAIDE, SA, 2017-2025 .....                                                                                  | 19 |
| FIGURE 9: CURRENT PERCEIVED PURITY OF NON-PRESCRIBED ECSTASY CAPSULES, ADELAIDE, SA, 2017-2025 .....                                                                               | 20 |
| FIGURE 10: CURRENT PERCEIVED PURITY OF NON-PRESCRIBED ECSTASY CRYSTAL, ADELAIDE, SA, 2017-2025 .....                                                                               | 20 |
| FIGURE 11: CURRENT PERCEIVED PURITY OF NON-PRESCRIBED ECSTASY POWDER, ADELAIDE, SA, 2017-2025 .....                                                                                | 21 |
| FIGURE 12: CURRENT PERCEIVED AVAILABILITY OF NON-PRESCRIBED ECSTASY PILLS, ADELAIDE, SA, 2017-2025 .....                                                                           | 21 |
| FIGURE 13: CURRENT PERCEIVED AVAILABILITY OF NON-PRESCRIBED ECSTASY CAPSULES, ADELAIDE, SA, 2017-2025 .....                                                                        | 22 |
| FIGURE 14: CURRENT PERCEIVED AVAILABILITY OF NON-PRESCRIBED ECSTASY CRYSTAL, ADELAIDE, SA, 2017-2025 .....                                                                         | 22 |
| FIGURE 15: CURRENT PERCEIVED AVAILABILITY OF NON-PRESCRIBED ECSTASY POWDER, ADELAIDE, SA, 2017-2025 .....                                                                          | 23 |
| FIGURE 16: PAST SIX MONTH USE OF ANY METHAMPHETAMINE, AND METHAMPHETAMINE POWDER, BASE, AND CRYSTAL, ADELAIDE, SA, 2003-2025 .....                                                 | 25 |
| FIGURE 17: MEDIAN DAYS OF ANY METHAMPHETAMINE USE, AND METHAMPHETAMINE POWDER, BASE, AND CRYSTAL USE IN THE PAST SIX MONTHS, ADELAIDE, SA, 2003-2025 .....                         | 25 |
| FIGURE 18: MEDIAN PRICE OF METHAMPHETAMINE POWDER PER POINT AND GRAM, ADELAIDE, SA, 2003-2025 .....                                                                                | 28 |
| FIGURE 19: MEDIAN PRICE OF METHAMPHETAMINE CRYSTAL PER POINT AND GRAM, ADELAIDE, SA, 2003-2025 .....                                                                               | 28 |
| FIGURE 20: CURRENT PERCEIVED PURITY OF METHAMPHETAMINE POWDER, ADELAIDE, SA, 2003-2025 .....                                                                                       | 29 |
| FIGURE 21: CURRENT PERCEIVED PURITY OF METHAMPHETAMINE CRYSTAL, ADELAIDE, SA, 2003-2025 .....                                                                                      | 29 |
| FIGURE 22: CURRENT PERCEIVED AVAILABILITY OF METHAMPHETAMINE POWDER, ADELAIDE, SA, 2003-2025 .....                                                                                 | 30 |
| FIGURE 23: CURRENT PERCEIVED AVAILABILITY OF METHAMPHETAMINE CRYSTAL, ADELAIDE, SA, 2003-2025 .....                                                                                | 30 |
| FIGURE 24: PAST SIX MONTH USE AND FREQUENCY OF USE OF NON-PRESCRIBED PHARMACEUTICAL STIMULANTS, ADELAIDE, SA, 2007-2025 .....                                                      | 32 |
| FIGURE 25: CURRENT PERCEIVED AVAILABILITY OF NON-PRESCRIBED PHARMACEUTICAL STIMULANTS, ADELAIDE, SA, 2022-2025 .....                                                               | 33 |
| FIGURE 26: PAST SIX MONTH USE AND FREQUENCY OF USE OF COCAINE, ADELAIDE, SA, 2003-2025 .....                                                                                       | 35 |
| FIGURE 27: MEDIAN PRICE OF COCAINE PER GRAM, ADELAIDE, SA, 2003-2025 .....                                                                                                         | 36 |

|                                                                                                                                                                                                                        |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| FIGURE 28: CURRENT PERCEIVED PURITY OF COCAINE, ADELAIDE, SA, 2003-2025 .....                                                                                                                                          | 36 |
| FIGURE 29: CURRENT PERCEIVED AVAILABILITY OF COCAINE, ADELAIDE, SA, 2003-2025 .....                                                                                                                                    | 37 |
| FIGURE 30: PAST SIX MONTH USE AND FREQUENCY OF USE OF NON-PRESCRIBED CANNABIS AND/OR CANNABINOID-RELATED PRODUCTS, ADELAIDE, SA, 2003-2025 .....                                                                       | 40 |
| FIGURE 31: PAST SIX MONTH USE OF DIFFERENT FORMS OF NON-PRESCRIBED CANNABIS AND/OR CANNABINOID-RELATED PRODUCTS, AMONG THOSE WHO REPORTED RECENT NON-PRESCRIBED USE, ADELAIDE, SA, 2018-2025 .....                     | 40 |
| FIGURE 32: MEDIAN PRICE OF NON-PRESCRIBED HYDROPONIC (A) AND BUSH (B) CANNABIS PER OUNCE AND GRAM, ADELAIDE, SA, 2006-2025.....                                                                                        | 42 |
| FIGURE 33: CURRENT PERCEIVED POTENCY OF NON-PRESCRIBED HYDROPONIC (A) AND BUSH (B) CANNABIS, ADELAIDE, SA, 2006-2025.....                                                                                              | 43 |
| FIGURE 34: CURRENT PERCEIVED AVAILABILITY OF NON-PRESCRIBED HYDROPONIC (A) AND BUSH (B) CANNABIS, ADELAIDE, SA, 2006-2025.....                                                                                         | 44 |
| FIGURE 35: PAST SIX MONTH USE AND FREQUENCY OF USE OF NON-PRESCRIBED KETAMINE, ADELAIDE, SA, 2003-2025.....                                                                                                            | 46 |
| FIGURE 36: MEDIAN PRICE OF NON-PRESCRIBED KETAMINE PER GRAM, ADELAIDE, SA, 2003-2025.....                                                                                                                              | 47 |
| FIGURE 37: CURRENT PERCEIVED PURITY OF NON-PRESCRIBED KETAMINE, ADELAIDE, SA, 2003-2025.....                                                                                                                           | 47 |
| FIGURE 38: CURRENT PERCEIVED AVAILABILITY OF NON-PRESCRIBED KETAMINE, ADELAIDE, SA, 2003-2025                                                                                                                          | 48 |
| FIGURE 39: PAST SIX MONTH USE AND FREQUENCY OF USE OF LSD, ADELAIDE, SA, 2003-2025.....                                                                                                                                | 49 |
| FIGURE 40: MEDIAN PRICE OF LSD PER TAB, ADELAIDE, SA, 2003-2025 .....                                                                                                                                                  | 50 |
| FIGURE 41: CURRENT PERCEIVED PURITY OF LSD, ADELAIDE, SA, 2003-2025 .....                                                                                                                                              | 50 |
| FIGURE 42: CURRENT PERCEIVED AVAILABILITY OF LSD, ADELAIDE, SA, 2003-2025.....                                                                                                                                         | 51 |
| FIGURE 43: PAST SIX MONTH USE AND FREQUENCY OF USE OF DMT, ADELAIDE, SA, 2010-2025 .....                                                                                                                               | 52 |
| FIGURE 44: NON-PRESCRIBED USE OF PHARMACEUTICAL MEDICINES IN THE PAST SIX MONTHS, ADELAIDE, SA, 2007-2025.....                                                                                                         | 59 |
| FIGURE 45: PAST SIX MONTH USE OF OTHER ILLICIT DRUGS, ADELAIDE, SA, 2003-2025.....                                                                                                                                     | 61 |
| FIGURE 46: LICIT AND OTHER DRUGS USED IN THE PAST SIX MONTHS, ADELAIDE, SA, 2003-2025 .....                                                                                                                            | 63 |
| FIGURE 47: USE OF DEPRESSANTS, STIMULANTS, CANNABIS, HALLUCINOGENS AND DISSOCIATIVES ON THE LAST OCCASION OF ECSTASY OR RELATED DRUG USE, ADELAIDE, SA, 2025: MOST COMMON DRUG PATTERN PROFILES.....                   | 64 |
| FIGURE 48: PAST SIX MONTH USE OF STIMULANTS FOR 48 HOURS OR MORE CONTINUOUSLY WITHOUT SLEEP ('BINGE'), ADELAIDE, SA, 2003-2025.....                                                                                    | 65 |
| FIGURE 49: LIFETIME AND PAST YEAR ENGAGEMENT IN DRUG CHECKING, ADELAIDE, SA, 2019-2025.....                                                                                                                            | 66 |
| FIGURE 50: PAST 12 MONTH NON-FATAL STIMULANT AND DEPRESSANT OVERDOSE, ADELAIDE, SA, 2007-2025 .....                                                                                                                    | 70 |
| FIGURE 51: LIFETIME AND PAST MONTH DRUG INJECTION, ADELAIDE, SA, 2003-2025 .....                                                                                                                                       | 71 |
| FIGURE 52: SELF-REPORTED MENTAL HEALTH PROBLEMS AND TREATMENT SEEKING IN THE PAST SIX MONTHS, ADELAIDE, SA, 2008-2025 .....                                                                                            | 76 |
| FIGURE 53: K10 PSYCHOLOGICAL DISTRESS SCORES, ADELAIDE, SA, 2006-2025 AND AMONG THE GENERAL POPULATION, 2022-2023.....                                                                                                 | 77 |
| FIGURE 54: HEALTH SERVICE ACCESS FOR ALCOHOL AND OTHER DRUG REASONS, AND FOR ANY REASON, IN THE PAST SIX MONTHS, ADELAIDE, SA, 2004-2025.....                                                                          | 78 |
| FIGURE 55: SELF-REPORTED TESTING, AND DRIVING OVER THE (PERCEIVED) LEGAL LIMIT FOR ALCOHOL OR THREE HOURS FOLLOWING ILLICIT DRUG USE, AMONG THOSE WHO HAD DRIVEN IN THE PAST SIX MONTHS, ADELAIDE, SA, 2007-2025 ..... | 80 |
| FIGURE 56: SELF-REPORTED CRIMINAL ACTIVITY IN THE PAST MONTH, ADELAIDE, SA, 2003-2025 .....                                                                                                                            | 81 |
| FIGURE 57: VICTIM OF CRIME INVOLVING VIOLENCE IN THE PAST MONTH, ADELAIDE, SA, 2019-2025 .....                                                                                                                         | 82 |

FIGURE 58: LIFETIME INCARCERATION, AND PAST 12 MONTH ARREST AND DRUG-RELATED ENCOUNTERS  
WITH POLICE THAT DID NOT RESULT IN ARREST, ADELAIDE, SA, 2003-2025.....82

## Acknowledgements

### Funding

In 2025, the Ecstasy and Related Drugs Reporting System (EDRS), falling within the Drug Trends program of work, was supported by funding from the Australian Government Department of Health, Disability and Ageing under the Drug and Alcohol Program.

### Research Team

The National Drug and Alcohol Research Centre (NDARC), University of New South Wales (UNSW) Sydney, coordinated the EDRS. The following researchers and research institutions contributed to the EDRS in 2025:

- Dr Rachel Sutherland, Antonia Karlsson, Julia Uporova, Olivia Price, Udesha Chandrasena, Haniene Tayeb, Lily Palmer, Agata Chrzanowska, Cate King, Professor Louisa Degenhardt, Professor Michael Farrell and Associate Professor Amy Peacock, National Drug and Alcohol Research Centre, University of New South Wales, New South Wales;
- Mila Sumner, Joanna Wilson and Professor Paul Dietze, Burnet, Victoria;
- Sophie Radke and Professor Raimondo Bruno, School of Psychology, University of Tasmania, Tasmania;
- Dr Jodie Grigg and Professor Simon Lenton, National Drug Research Institute and enAble Institute, Curtin University, Western Australia; and
- Catherine Daly, Dr Jennifer Juckel, Dr Natalie Thomas and Associate Professor Caroline Salom, Institute for Social Science Research, The University of Queensland, Queensland.

We would like to thank past and present members of the research team.

### Participants

We would like to thank all the participants who were interviewed for the EDRS in the present and in previous years.

### Contributors

We thank all the individuals who contributed to questionnaire development and assisted with the collection and input of data at a jurisdictional and national level. In particular, we would like to thank Luke Macauley, Tina Makris, Henry Thiele-Swift, Eleanor Lontos, Lara Craig-Follese and Joshua Niles for conducting the Adelaide, South Australia EDRS interviews in 2025. We would also like to thank the Drug Trends Advisory Committee for their contribution to the EDRS.

We acknowledge the traditional custodians of the land on which the work for this report was undertaken. We pay respect to Elders past, present, and emerging.

## Abbreviations

|                       |                                                          |
|-----------------------|----------------------------------------------------------|
| <b>4-FA</b>           | 4-Fluoroamphetamine                                      |
| <b>5-MeO-DMT</b>      | 5-methoxy-N,N-dimethyltryptamine                         |
| <b>ACT</b>            | Australian Capital Territory                             |
| <b>ADHD</b>           | Attention-Deficit/Hyperactivity Disorder                 |
| <b>Alpha PHP</b>      | α-Pyrrolidinohexiophenone                                |
| <b>Alpha PVP</b>      | α-Pyrrolidinopentiophenone                               |
| <b>AOD</b>            | Alcohol and Other Drug                                   |
| <b>AUDIT</b>          | Alcohol Use Disorders Identification Test                |
| <b>CBD</b>            | Cannabidiol                                              |
| <b>COVID-19</b>       | Coronavirus Disease 2019                                 |
| <b>DMT</b>            | Dimethyltryptamine                                       |
| <b>DO-x</b>           | 4-Substituted-2,5-dimethoxyamphetamines                  |
| <b>DSM</b>            | Diagnostic and Statistical Manual of Mental Disorders    |
| <b>EDRS</b>           | Ecstasy and Related Drugs Reporting System               |
| <b>GHB/GBL/1,5-BD</b> | Gamma-butyrolactone/Gamma-hydroxybutyrate/1,4-Butanediol |
| <b>GP</b>             | General Practitioner                                     |
| <b>HIV</b>            | Human immunodeficiency virus                             |
| <b>IDRS</b>           | Illicit Drug Reporting System                            |
| <b>IQR</b>            | Interquartile range                                      |
| <b>LSD</b>            | d-lysergic acid                                          |
| <b>MDA</b>            | 3,4-methylenedioxymethamphetamine                        |
| <b>MDMA</b>           | 3,4-methylenedioxymethamphetamine                        |
| <b>MDPV</b>           | Methylenedioxypyrovalerone                               |
| <b>MXE</b>            | Methoxetamine                                            |
| <b>N (or n)</b>       | Number of participants                                   |
| <b>NBOME</b>          | N-methoxybenzyl                                          |
| <b>NDARC</b>          | National Drug and Alcohol Research Centre                |
| <b>NPS</b>            | New psychoactive substances                              |
| <b>NSP</b>            | Needle Syringe Program                                   |
| <b>NSW</b>            | New South Wales                                          |
| <b>OTC</b>            | Over-the-counter                                         |
| <b>PMA</b>            | Paramethoxyamphetamine                                   |
| <b>PMMA</b>           | Polymethyl methacrylate                                  |
| <b>PTSD</b>           | Post-traumatic Stress Disorder                           |
| <b>QLD</b>            | Queensland                                               |
| <b>REDCAP</b>         | Research Electronic Data Capture                         |
| <b>SA</b>             | South Australia                                          |
| <b>SD</b>             | Standard deviation                                       |
| <b>SDS</b>            | Severity of Dependence Scale                             |

|             |                                  |
|-------------|----------------------------------|
| <b>STI</b>  | Sexually Transmitted Infection   |
| <b>TGA</b>  | Therapeutic Goods Administration |
| <b>THC</b>  | Tetrahydrocannabinol             |
| <b>UNSW</b> | University of New South Wales    |
| <b>VIC</b>  | Victoria                         |
| <b>WA</b>   | Western Australia                |
| <b>WHO</b>  | World Health Organization        |

## Executive Summary

The Adelaide, South Australia (SA) EDRS comprises a sentinel sample of people who regularly use ecstasy and/or other illicit stimulants, recruited via social media and word-of mouth in Adelaide, SA. The results are not representative of all people who use illicit drugs, nor of use in the general population.

**Data were collected in 2025 from April-May. Interviews from 2020 onwards were delivered face-to-face as well as via telephone, to reduce the risk of COVID-19 transmission; all interviews prior to 2020 were conducted face-to-face. This methodological change should be factored into all comparisons of data from the 2020-2025 samples, relative to previous years.**

## Sample Characteristics

The 2025 EDRS sample (N=100) recruited from Adelaide, South Australia (SA) was similar to the sample in 2024 and in previous years. Gender remained stable between 2024 and 2025, with 51% identifying as male (44% in 2024), and participants had a median age of 28 years (23 years in 2024). Participants reported having completed a mean of 11 years of school in 2025 (range: 8-12), stable relative to 2024 (12 years; range: 8-12). One third (32%) of the sample reported full-time employment (34% in 2024) and one quarter (27%) reported part time/casual employment (39% in 2024). Accommodation remained stable, with two fifths (41%) residing in a rental house/flat (37% in 2024) and almost one third (30%) living with their parents/in their family house (39% in 2024) at the time of interview. Drug of choice and drug used most often remained stable between 2024 and 2025, with almost one quarter (23%) nominating cannabis as their drug of choice (22% in 2024), and 27% nominating alcohol as the drug used most

often in the month preceding interview (22% in 2024).

## Non-Prescribed Ecstasy

Recent use of any non-prescribed ecstasy remained stable in 2025 (91%), relative to 2024 (93%), as did frequency of use (9 days in 2025; 7 days in 2024). Ecstasy capsules remained the most commonly used form of non-prescribed ecstasy (63%), followed by pills (43%). Recent use of ecstasy crystal significantly decreased from 50% in 2024 to 33% in 2025 ( $p=0.015$ ), though median frequency of use significantly increased from four days in 2024 to six days in 2025 ( $p=0.022$ ). Consistent with previous years, ecstasy powder continued to be the least commonly used form (28%). The price, perceived purity and perceived availability of non-prescribed ecstasy pills, capsules, crystal and powder remained stable in 2025, relative to 2024.

## Methamphetamine

One third (35%) of the Adelaide sample reported recent use of any methamphetamine in 2025, stable relative to 2024 (26%). Recent use of all forms of methamphetamine remained stable, with crystal remaining the most commonly used form in 2025 (31%; 23% in 2024), followed by powder (7%; 8% in 2024) and base ( $n \leq 5$ ; 6% in 2024). The price, perceived purity and perceived availability of methamphetamine powder and crystal remained stable in 2025, relative to 2024.

## Non-Prescribed Stimulants

The per cent of participants reporting any recent non-prescribed pharmaceutical stimulant (e.g., dexamphetamine, methylphenidate, modafinil) use has steadily increased since the commencement of monitoring, from 15% in 2007 to 50% in 2024, although a significant decrease was observed

in 2025 (31%;  $p=0.008$ ). Frequency of use remained stable, as did the price and perceived availability of non-prescribed pharmaceutical stimulants.

## Cocaine

Recent use of cocaine has doubled over the years of monitoring, although has stabilised in more recent years. In 2025, three quarters (76%) of the Adelaide sample reported any recent use (77% in 2024). Frequency of use remained stable at a median of 5 days (6 days in 2024), and few participants ( $n\leq 5$ ) reported weekly or more frequent use (13% in 2024). Price, perceived purity and perceived availability for cocaine remained stable between 2024 and 2025.

## Cannabis and/or Cannabinoid-Related Products

Recent use of non-prescribed cannabis and/or cannabinoid-related products remained stable in 2025 (67%), relative to 2024 (73%). Among those who had recently used non-prescribed cannabis and/or cannabinoid-related products, 55% reported weekly use (61% in 2024) and one fifth (21%) reported daily use (18% in 2024). Hydroponic cannabis was the most commonly used form of non-prescribed cannabis in 2025 (69%; 63% in 2024), followed by bush cannabis (48%; 64% in 2024). The price, perceived potency and perceived availability of hydroponic and bush cannabis remained stable in 2025 relative to 2024.

## Non-Prescribed Ketamine, LSD and DMT

Whilst recent use of LSD (28% in 2025 and 2024, respectively) and DMT (16%; 10% in 2024) remained stable in 2025, recent use of non-prescribed ketamine significantly decreased, relative to 2024 (34%; 49% in 2024;  $p=0.048$ ). Median frequency of use remained low and stable for all three substances, ranging

between one and three days in the six months preceding interview. Price, perceived purity and perceived availability for ketamine and LSD remained stable between 2024 and 2025.

## New Psychoactive Substances (NPS)

Eleven per cent of the sample reported recent use of any NPS, excluding plant-based NPS, stable relative to 2024 (15%). In 2025, drugs that 'mimic' psychedelic drugs were the most commonly used NPS class (6% in 2024), although few participants ( $n\leq 5$ ) reported use of any individual NPS.

## Other Drugs

Whilst recent use of most other drugs remained stable between 2024 and 2025, use of nitrous oxide significantly decreased, from 36% in 2024 to 19% in 2025 ( $p=0.013$ ). Recent use of amyl nitrite also significantly decreased, from 43% in 2024 to 26% in 2025 ( $p=0.020$ ). Alcohol use remained high and stable (92%; 94% in 2024), as did tobacco use (65%; 75% in 2024). One quarter (25%) reported recent use of smoked or non-smoked illicit tobacco products (31% in 2024). Seventy-one percent reported using illicit e-cigarettes in 2025 (78% in 2024), the second highest percentage observed since the commencement of monitoring.

## Drug-Related Harms and Other Behaviours

### Polysubstance use and bingeing

Almost four fifths (77%) of the Adelaide sample reported concurrent use of two or more drugs on the last occasion of ecstasy or related drug use (excluding tobacco and e-cigarettes).

Two fifths (39%) of participants reported bingeing on one or more drugs in the preceding six months (40% in 2024).

### ***Dependence, overdose and injecting***

Two thirds (67%) of the sample obtained a score of eight or more on the AUDIT (70% in 2024), indicative of hazardous use. Nineteen per cent of those who reported recent ecstasy use obtained an SDS score of  $\geq 3$ , while almost half (48%) of participants reporting recent methamphetamine use obtained a score of  $\geq 4$ , indicating possible dependence on these substances.

Past year non-fatal stimulant overdose remained stable in 2025 (13%; 19% in 2024), though past year non-fatal depressant overdose significantly decreased (13%; 32% in 2024;  $p=0.003$ ).

Few participants ( $n\leq 5$ ) reported past month injecting drug use ( $n\leq 5$  in 2024).

### ***Drug checking and naloxone awareness***

In 2025, one fifth (21%) of participants reported that they or someone else had tested the content and/or purity of their illicit drugs in Australia in the past year (32% in 2024).

In 2025, three fifths (62%) reported that they had ever heard of naloxone (54% in 2024), of which one quarter (24%) reported obtaining naloxone in their lifetime, a significant increase from 2024 ( $n\leq 5$ ;  $p=0.001$ ).

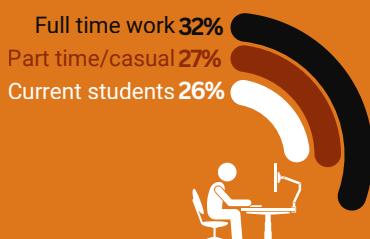
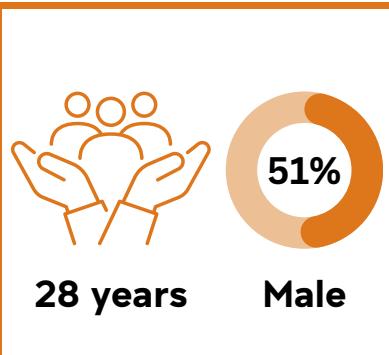
### ***Sexual activity, mental health and health service access***

Three quarters (75%) of the Adelaide sample reported engaging in sexual activity in the past four weeks (85% in 2024), of which 85% reported using alcohol and/or other drugs prior to or while engaging in sexual activity (86% in 2024). Seventeen per cent of the sample reported having a HIV test in the six months preceding interview, a significant decrease from 32% in 2024 ( $p=0.023$ ), and 28% reported a sexual health check-up (41% in 2024).

Mental health remained stable in 2025, with 57% self-reporting a mental health problem in the six months preceding interview (56% in 2024), of which anxiety (71%) and depression (59%) were the most commonly reported problems. Twenty-eight per cent of the sample reported a score of  $\geq 30$  on the K10, indicating very high psychological distress (12% in 2024).

One third (35%) of participants reported accessing any health service for alcohol and/or drug support in the six months preceding interview (29% in 2024), most commonly from a drug and alcohol counsellor. Six per cent of the Adelaide sample reported current drug treatment engagement (10% in 2024).

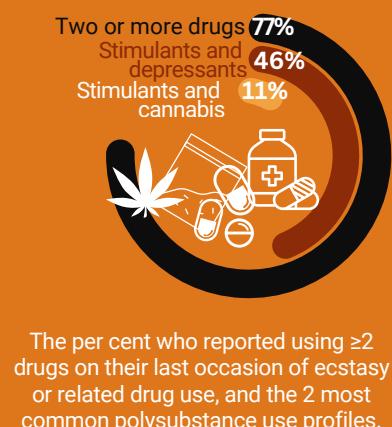
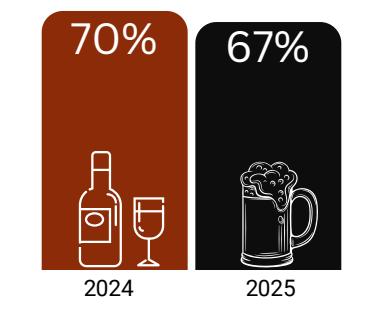
### ***Driving, contact with police and modes of purchasing drugs***



Among recent drivers, 15% reported driving while over the perceived legal limit of alcohol (26% in 2024), and 35% reported driving within three hours of consuming an illicit or non-prescribed drug (50% in 2024) in the six months preceding interview.

One quarter (27%) of the Adelaide sample reported any past month crime (37% in 2024), with selling drugs for cash profit and property crime being the two main forms of criminal activity in 2025 (15% and 13%, respectively). Fifteen per cent reported a drug-related encounter with police which did not result in charge or arrest (13% in 2024).

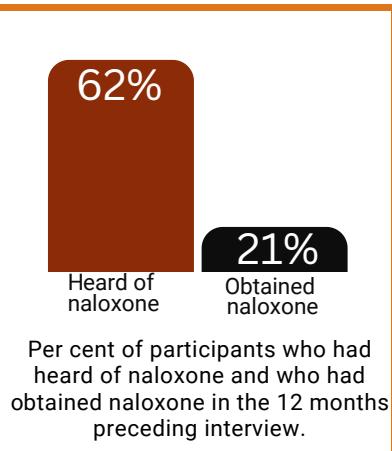
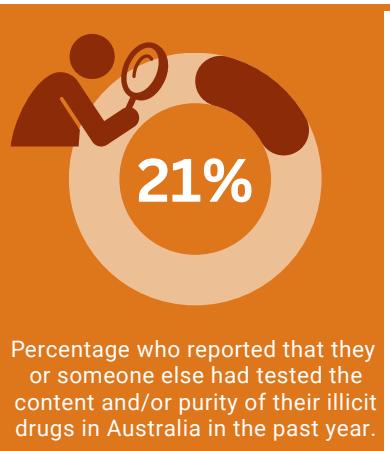
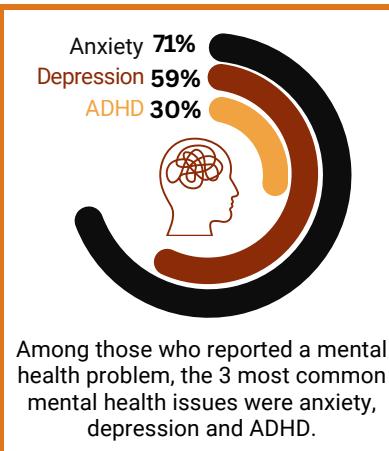
In 2025, the most popular means of arranging the purchase of illicit or non-prescribed drugs in the 12 months preceding interview was face-to-face (77%; 79% in 2024), followed by social networking or messaging applications (58%), a significant decrease from 73% in 2024 ( $p=0.041$ ). The majority (75%) continued to report obtaining illicit drugs from a friend/relative/partner/colleague, although this was a significant decrease from 90% in 2024 ( $p=0.012$ ).



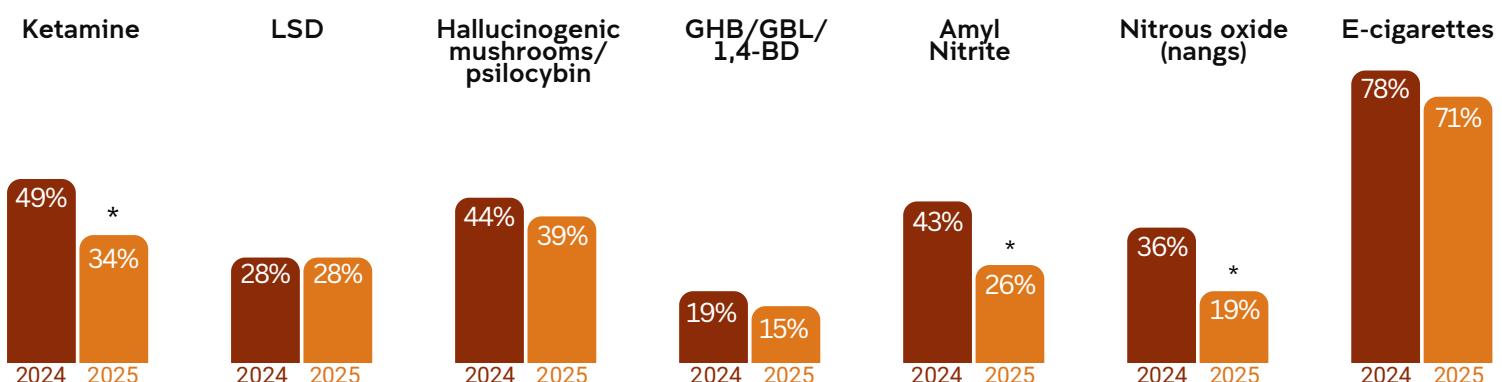



Between April and May, 100 participants, recruited from Adelaide, SA, were interviewed.






 **Ecstasy**  
 **Cocaine**  
 **Other stimulants**

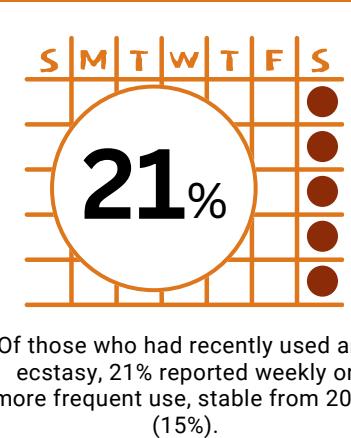
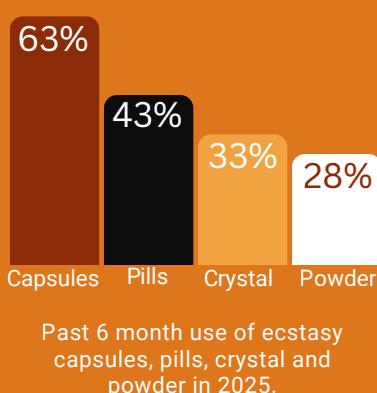
Participants were recruited on the basis that they had consumed ecstasy and/or other illicit stimulants on at least six days in the past 6 months.


## DRUG-RELATED HARMS AND RISKS



## OTHER BEHAVIOURS





## PAST 6 MONTH USE OF SELECT DRUGS



\*p<0.050; \*\*p<0.010; \*\*\*p<0.001.

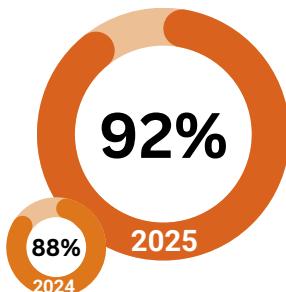
# ECSTASY

## FORM of ecstasy



2 Capsules

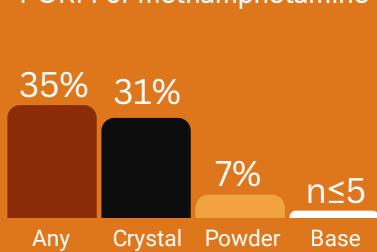



2 Pills

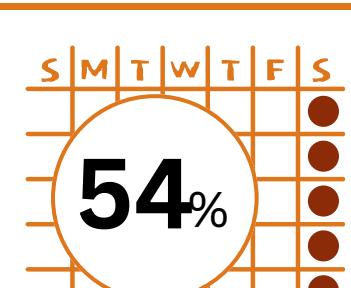


0.25 grams of crystal




0.50 grams of powder



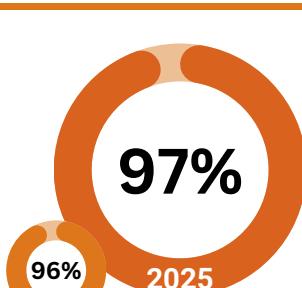

Percentage who perceived ecstasy capsules as being 'easy' or 'very easy' to obtain.

# METHAMPHETAMINE

## FORM of methamphetamine

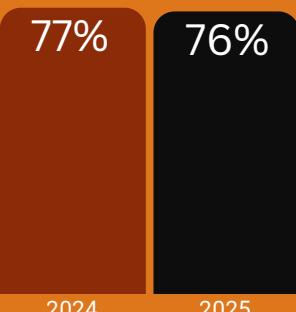


Past 6 month use of any methamphetamine, crystal, powder and base in 2025.

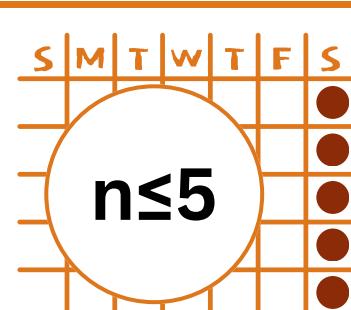



Of those who had recently used any methamphetamine, 54% reported weekly or more frequent use, stable from 2024 (77%).




n≤5 2024 \$50 2025

The median reported price for a point of methamphetamine crystal.

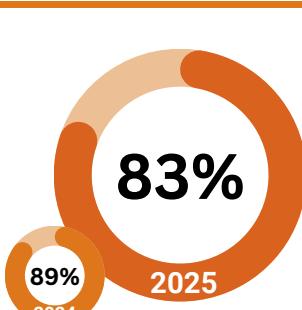



Percentage who perceived methamphetamine crystal as being 'easy' or 'very easy' to obtain.

# COCAINE

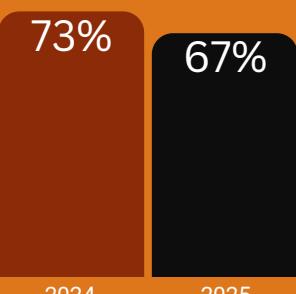


Past 6 month use of any cocaine remained stable between 2024 and 2025.

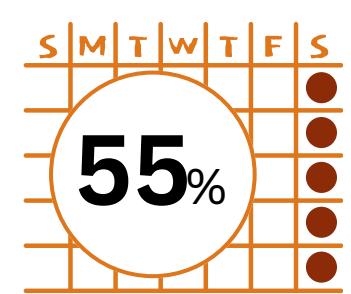



Of those who had recently consumed cocaine, few (n≤5) reported weekly or more frequent use, stable from 2024 (13%).

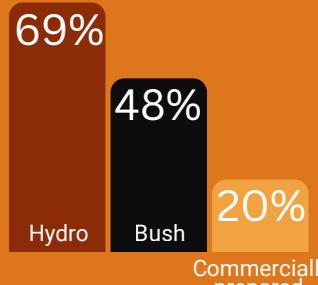



\$350 2024 \$350 2025

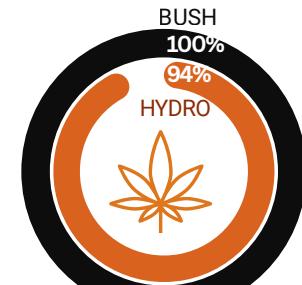
The median reported price for a gram of cocaine.




Percentage who perceived cocaine as being 'easy' or 'very easy' to obtain.


# CANNABIS AND/OR CANNABINOID-RELATED PRODUCTS




Past 6 month use of non-prescribed cannabis and/or cannabinoid-related products remained stable between 2024 and 2025.



Of those who had recently used non-prescribed cannabis, 55% reported weekly or more frequent use, stable from 2024 (61%).



Most commonly used forms of non-prescribed cannabis, among those who reported recent use.



Percentage who perceived cannabis and/or cannabinoid-related products as being 'easy' or 'very easy' to obtain.

## Background

The [Ecstasy and Related Drugs Reporting System \(EDRS\)](#) is an illicit drug monitoring system which has been conducted in all states and territories of Australia since 2003, and forms part of [Drug Trends](#). The purpose is to provide a coordinated approach to monitoring the use, market features, and harms of ecstasy and related drugs. This includes drugs that are routinely used in the context of entertainment venues and other recreational locations, including ecstasy, methamphetamine, cocaine, new psychoactive substances, LSD (*d*-lysergic acid), and ketamine.

The EDRS is designed to be sensitive to emerging trends, providing data in a timely manner rather than describing issues in extensive detail. It does this by studying a range of data sources, including data from annual interviews with people who regularly use ecstasy and/or other illicit stimulants and from secondary analyses of routinely-collected indicator data. This report focuses on the key findings from the annual interview component of the EDRS.

## Methods

### ***EDRS 2003-2019***

Full details of the [methods for the annual interviews](#) are available for download. To briefly summarise, since the commencement of monitoring up until 2019, participants were recruited primarily via internet postings, print advertisements, interviewer contacts, and snowballing (i.e., peer referral). Participants had to: i) be at least 17 years of age (due to ethical constraints) (16 years of age in Perth, Western Australia (WA)), ii) have used ecstasy and/or other illicit stimulants (including: MDA, methamphetamine, cocaine, non-prescribed pharmaceutical stimulants, mephedrone or other stimulant NPS) on at least six days during the preceding six months; and iii) have been a resident of the capital city in which the interview took place for ten of the past 12 months. Interviews took place in varied locations negotiated with participants (e.g., research institutions, coffee shops or parks), and in later years were conducted using REDCap (Research Electronic Data Capture), a software program used to collect data on laptops or tablets. Following provision of written informed consent and completion of a structured interview, participants were reimbursed \$40 cash for their time and expenses incurred.

### ***EDRS 2020-2025: COVID-19 Impacts on Recruitment and Data Collection***

Given the emergence of COVID-19 and the resulting restrictions on travel and people's movement in Australia (which first came into effect in March 2020), face-to-face interviews were not always possible due to the risk of infection transmission for both interviewers and participants. For this reason, all methods in 2020 were similar to previous years as detailed above, with the exception of:

1. Means of data collection: Interviews were conducted via telephone or via videoconferencing across all capital cities in 2020;
2. Means of consenting participants: Participants consent to participate was collected verbally prior to beginning the interview;
3. Means of reimbursement: Once the interview was completed via REDCap, participants were given the option of receiving \$40 reimbursement via one of three methods, comprising bank transfer, PayID or gift voucher; and
4. Age eligibility criterion: Changed from 17 years old (16 years old in Perth, WA) to 18 years old.

From 2021 onwards, a hybrid approach was used with interviews conducted either face-to-face (whereby participants were reimbursed with cash) or via telephone/videoconference (with participants reimbursed via bank transfer or other electronic means). Face-to-face interviews were the preferred methodology, however telephone interviews were conducted when required (i.e., in accordance with government directives) or when requested by participants. Consent was collected verbally for all participants.

### 2025 EDRS Sample

Between 1 April-15 July 2025, a total of 690 participants were recruited across capital cities nationally, with 100 participants interviewed in Adelaide, SA between 8 April and 10 May 2025 (n=101 in 2024). A total of 64 interviews (64%) were conducted via telephone (n=42 in 2024; 42%), the remainder were conducted face-to-face.

Thirteen per cent of the 2025 Adelaide sample completed the interview in 2024, and 10% of the 2024 Adelaide sample completed the interview in 2023 ( $p=0.507$ ). The majority of participants were recruited via the internet (e.g., Facebook and Instagram) (59%; 67% in 2024), and two fifths (42%) were recruited via word-of-mouth (29% in 2024). Few participants (n≤5) reported 'other' recruitment methods (n≤5 in 2024).

### Data Analysis

For normally distributed continuous variables, means and standard deviations (SD) are reported; for skewed data (i.e., skewness  $> \pm 1$  or kurtosis  $> \pm 3$ ), medians and interquartile ranges (IQR) are reported. Tests of statistical significance have been conducted between estimates for 2024 and 2025, noting that no corrections for multiple comparisons have been made and thus comparisons should be treated with caution. References to significant differences throughout the report are where statistical testing has been conducted and where the  $p$ -value is less than 0.050. Values where cell sizes are  $\leq 5$  have been suppressed with corresponding notation (zero values are reported). References to 'recent' use and behaviours refers to the six months preceding interview. The response options 'Don't know' and 'Skip question', which were available to select throughout the interview, were excluded from analysis.

### Guide to Table/Figure Notes

Table 1: Guide to Table/Figure Notes

| Legend                                     |                                                                                                               |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| /                                          | Question not asked in respective year (for tables)                                                            |
| -                                          | Per cent suppressed due to small cell size (n≤5 but not 0) (for tables)                                       |
|                                            | Missing data points indicate question not asked in respective year or n≤5 answered the question (for figures) |
| * $p<0.050$ ; ** $p<0.010$ ; *** $p<0.001$ | Statistical significance between 2024 and 2025                                                                |

## Interpretation of Findings

Caveats to interpretation of findings are discussed more completely in the [methods for the annual interviews](#) but it should be noted that these data are from participants recruited in Adelaide, South Australia, and thus do not reflect trends in regional and remote areas. Further, the results are not representative of all people who consume illicit drugs, nor of illicit drug use in the general population, but rather are intended to provide evidence indicative of emerging issues that warrant further monitoring.

This report covers a subset of items asked of participants and does not include implications of findings. These findings should be interpreted alongside analyses of other data sources for a more complete profile of emerging trends in illicit drug use, market features, and harms in Adelaide, SA (see section on 'Additional Outputs' below for details of other outputs providing such profiles).

## Additional Outputs

[Infographics](#) and the [executive summary](#) from this report are available for download. There are a range of outputs from the EDRS which triangulate key findings from the annual interviews and other data sources, including national reports, jurisdictional reports, bulletins, and other resources available via the [Drug Trends webpage](#). This includes results from the [Illicit Drug Reporting System \(IDRS\)](#), which focuses more so on the use of illicit drugs via injection.

Please contact the research team at [drugtrends@unsw.edu.au](mailto:drugtrends@unsw.edu.au) with any queries; to request additional analyses using these data; or to discuss the possibility of including items in future interviews.

# 1

## Sample Characteristics

In 2025, the Adelaide EDRS sample was mostly similar to the sample in 2024 and in previous years (Table 2).

Gender remained stable between 2024 and 2025 ( $p=0.685$ ), with 51% of the sample identifying as male (44% in 2024). The median age of the sample was 28 years (IQR=21-37), stable relative to 2024 (23 years; IQR=19-35;  $p=0.129$ ).

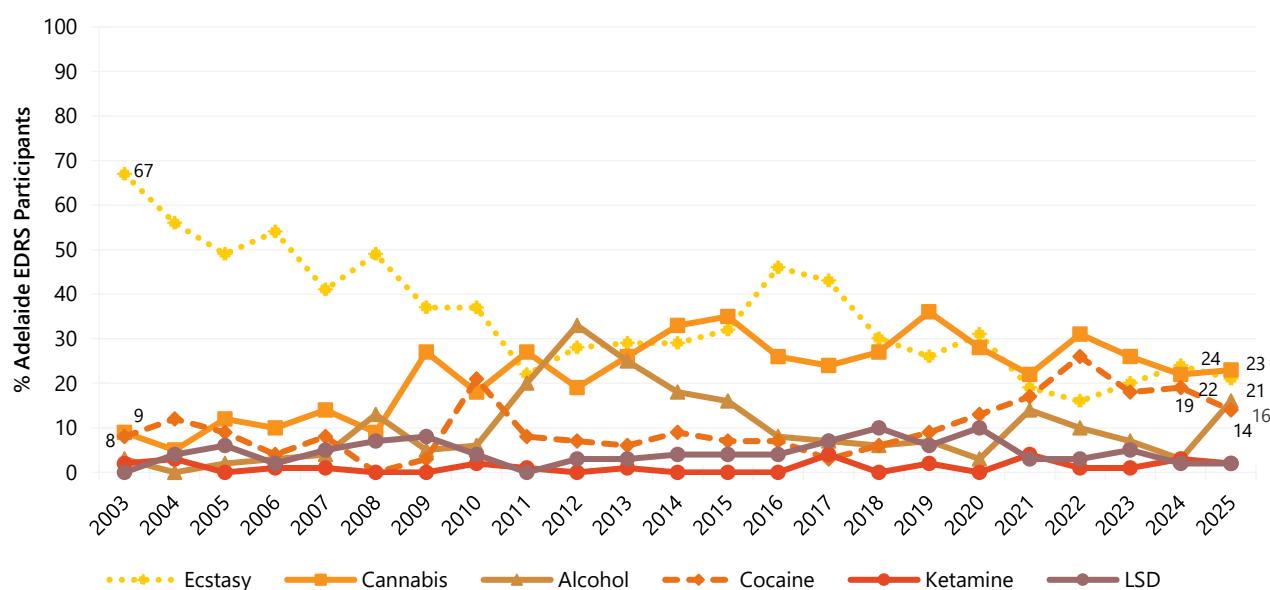
Accommodation status remained stable in 2025, relative to 2024 ( $p=0.194$ ). Two fifths (41%) reported that they resided in a rented house/flat (37% in 2024), and almost one third (30%) reported living with their parents/in their family house (39% in 2024). Sixteen per cent reported living in their own house/flat, unchanged from 2024 (16%), and one tenth (10%) reported residing in public housing ( $n\leq 5$  in 2024).

Participants reported a mean of 11 years of school in 2025 (range: 8-12), stable relative to 12 years in 2024 (range: 8-12;  $p=0.168$ ). One quarter (26%) of participants were current students, stable relative to 2024 (36%;  $p=0.177$ ), and almost three fifths (58%) had obtained a post-school qualification(s) (65% in 2024;  $p=0.316$ ).

Current employment status remained stable between 2024 and 2025 ( $p=0.182$ ). Specifically, almost one third (32%) reported being employed full-time (34% in 2024), one quarter (27%) reported being employed on a part time/casual basis (39% in 2024), and one third (34%) reported being unemployed at the time of interview (23% in 2024).

Table 2: Demographic characteristics of the sample, nationally, 2025, and Adelaide, SA, 2021-2025

|                                                   | Adelaide, SA       |                    |                     |                     |                             | National            |
|---------------------------------------------------|--------------------|--------------------|---------------------|---------------------|-----------------------------|---------------------|
|                                                   | 2021<br>(N=100)    | 2022<br>(N=104)    | 2023<br>(N=101)     | 2024<br>(N=101)     | 2025<br>(N=100)             | 2025<br>(N=690)     |
|                                                   |                    |                    |                     |                     |                             |                     |
| <b>Median age (years; IQR)</b>                    | 25 (21-32)         | 26 (22-31)         | 26 (22-35)          | 23 (19-35)          | <b>28 (21-37)</b>           | 26 (20-34)          |
| <b>% Gender</b>                                   |                    |                    |                     |                     |                             |                     |
| Female                                            | 42                 | 50                 | 44                  | 55                  | <b>48</b>                   | 41                  |
| Male                                              | 57                 | 50                 | 52                  | 44                  | <b>51</b>                   | 57                  |
| Non-binary                                        | -                  | 0                  | -                   | -                   | -                           | 1                   |
| <b>% Aboriginal and/or Torres Strait Islander</b> | -                  | 7                  | 6                   | -                   | <b>8</b>                    | 8                   |
| <b>% Born in Australia</b>                        | /                  | /                  | 89                  | 89                  | <b>92</b>                   | 85                  |
| <b>% English primary language spoken at home</b>  | /                  | /                  | 92                  | 96                  | <b>95</b>                   | 97                  |
| <b>% Sexual identity</b>                          |                    |                    |                     |                     |                             |                     |
| Heterosexual                                      | 70                 | 74                 | 70                  | 72                  | <b>78</b>                   | 72                  |
| Homosexual                                        | -                  | -                  | 7                   | -                   | -                           | 6                   |
| Bisexual                                          | 23                 | 17                 | 16                  | 16                  | <b>16</b>                   | 17                  |
| Queer                                             | -                  | -                  | -                   | -                   | -                           | 4                   |
| Other identity                                    | -                  | -                  | -                   | -                   | <b>0</b>                    | 2                   |
| <b>Mean years of school education (range)</b>     | 12 (6-12)          | 11 (9-12)          | 11 (7-12)           | 12 (8-12)           | <b>11 (8-12)</b>            | 12 (7-12)           |
| <b>% Post-school qualification(s)^\b</b>          | 62                 | 69                 | 62                  | 65                  | <b>58</b>                   | 63                  |
| <b>% Current students"</b>                        | 41                 | 44                 | 29                  | 36                  | <b>26</b>                   | 34                  |
| <b>% Current employment status</b>                |                    |                    |                     |                     |                             |                     |
| Employed full-time                                | 20                 | 21                 | 27                  | 34                  | <b>32</b>                   | 29                  |
| Part time/casual                                  | 47                 | 42                 | 37                  | 39                  | <b>27</b>                   | 39                  |
| Self-employed                                     | -                  | 10                 | 6                   | -                   | <b>7</b>                    | 5                   |
| Unemployed                                        | 29                 | 27                 | 31                  | 23                  | <b>34</b>                   | 28                  |
| <b>Current median weekly income \$ (IQR)</b>      | \$500<br>(332-850) | \$550<br>(350-900) | \$600<br>(400-1000) | \$750<br>(445-1269) | <b>\$663<br/>(400-1425)</b> | \$700<br>(400-1350) |
| <b>% Current accommodation</b>                    |                    |                    |                     |                     |                             |                     |
| Own house/flat                                    | -                  | 16                 | -                   | 16                  | <b>16</b>                   | 13                  |
| Rented house/flat                                 | 49                 | 50                 | 52                  | 37                  | <b>41</b>                   | 50                  |
| Parents'/family home                              | 40                 | 28                 | 32                  | 39                  | <b>30</b>                   | 26                  |
| Boarding house/hostel                             | -                  | -                  | -                   | -                   | -                           | 1                   |
| Public housing                                    | -                  | -                  | -                   | -                   | <b>10</b>                   | 5                   |
| No fixed address+                                 | -                  | -                  | -                   | -                   | -                           | 2                   |
| Other                                             | 0                  | 0                  | -                   | 0                   | -                           | 2                   |


Note. ^ Includes trade/technical and university qualifications. "Current students' comprised participants who were currently studying for either trade/technical or university/college qualifications. + No fixed address included couch surfing and rough sleeping or squatting. Statistical significance for 2024 versus 2025 (Adelaide) presented in table; \* $p<0.050$ ; \*\* $p<0.010$ ; \*\*\* $p<0.001$ . Please refer to Table 1 for a guide to table/figure notes.

Drug of choice remained stable between 2024 and 2025 ( $p=0.083$ ), with almost one quarter (23%) nominating cannabis as their drug of choice in 2025 (22% in 2024), followed by one fifth (21%) nominating ecstasy as their drug of choice (24% in 2024), and 16% nominating alcohol ( $n\leq 5$  in 2024). Fourteen per cent of participants nominated cocaine as their drug of choice in 2025 (19% in 2024) (Figure 1).

The drug used most often in the past month also remained stable between 2024 and 2025 ( $p=0.932$ ), with one quarter (27%) reporting alcohol (22% in 2024) and another one quarter (26%) reporting cannabis (25% in 2024) as the drugs used most often. Fifteen per cent reported ecstasy as the drug used most often (14% in 2024) and 9% nominated cocaine as the drug used most often (9% in 2024) (Figure 2).

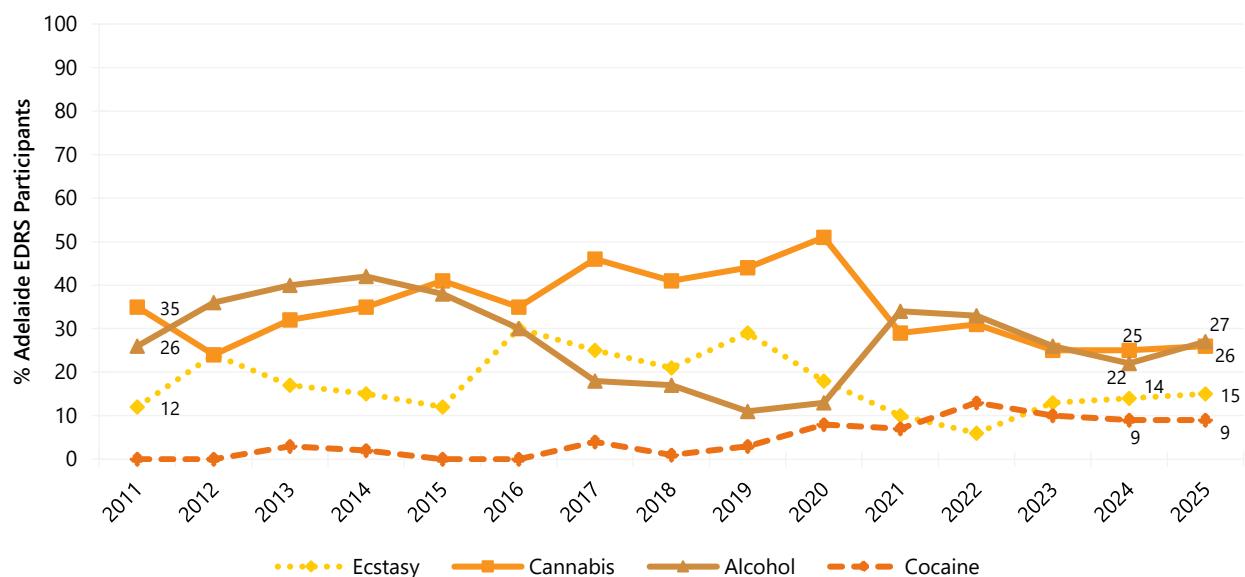

Weekly or more frequent use of various drugs remained stable between 2024 and 2025. Specifically, almost two fifths (37%) of the Adelaide sample reported weekly or more frequent cannabis use (45% in 2024;  $p=0.320$ ) and almost one fifth (19%) reported weekly or more frequent methamphetamine use (20% in 2024;  $p=0.503$ ) as well as ecstasy use (19%; 14% in 2024;  $p=0.348$ ). Few participants ( $n\leq 5$ ) reported weekly or more frequent use of cocaine (10% in 2024;  $p=0.164$ ) (Figure 3).

Figure 1: Drug of choice, Adelaide, SA, 2003-2025



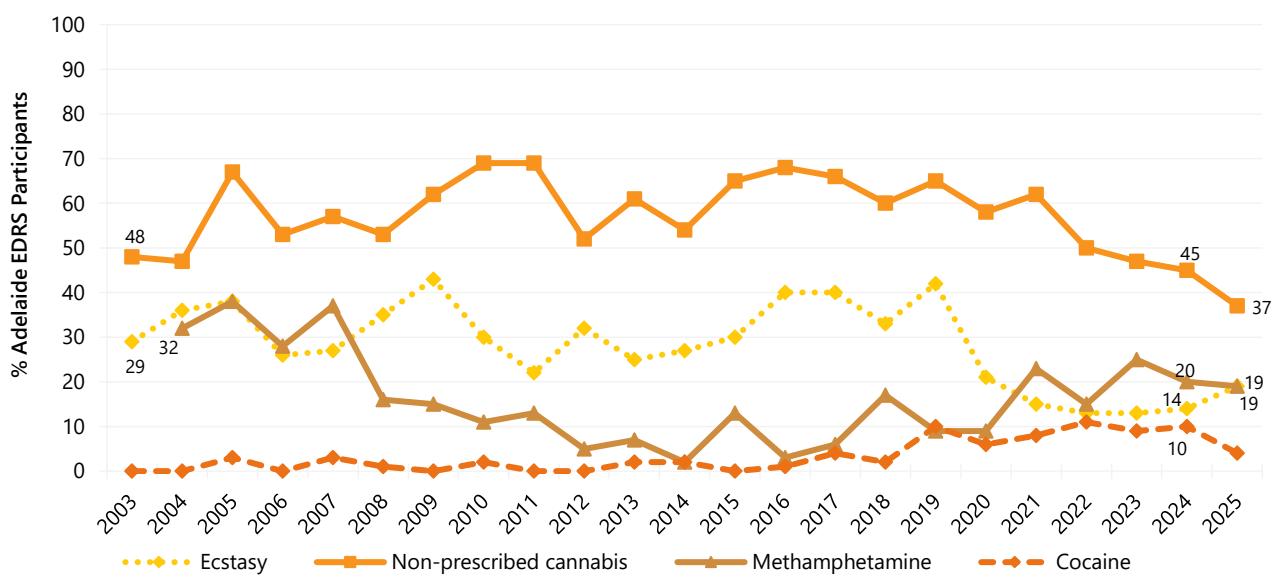

Note. Participants could only endorse one substance. Substances listed in this figure are the primary endorsed; smaller percentages have endorsed other substances. Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e.,  $n\leq 5$  but not 0). Statistical significance for 2024 versus 2025 presented in figure; \* $p<0.050$ ; \*\* $p<0.010$ ; \*\*\* $p<0.001$ . Please refer to Table 1 for a guide to table/figure notes.

Figure 2: Drug used most often in the past month, Adelaide, SA, 2011-2025



Note. Participants could only endorse one substance. Substances listed in this figure are the primary endorsed; smaller percentages have endorsed other substances. Data are only presented for 2011-2025 as this question was not asked in 2003-2010. Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e.,  $n \leq 5$  but not 0). Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

Figure 3: Weekly or more frequent substance use in the past six months, Adelaide, SA, 2003-2025



Note. Computed from the entire sample regardless of whether they had used the substance in the past six months. Prior to 2021, we did not distinguish between prescribed and non-prescribed cannabis, and as such it is possible that 2017-2020 figures include some participants who were using prescribed cannabis only (with medicinal cannabis first legalised in Australia in November 2016), although we anticipate these numbers would be very low. Further, from 2022, we captured use of 'cannabis and/or cannabinoid-related products', while in previous years questions referred only to 'cannabis'. Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e.,  $n \leq 5$  but not 0). Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

# 2

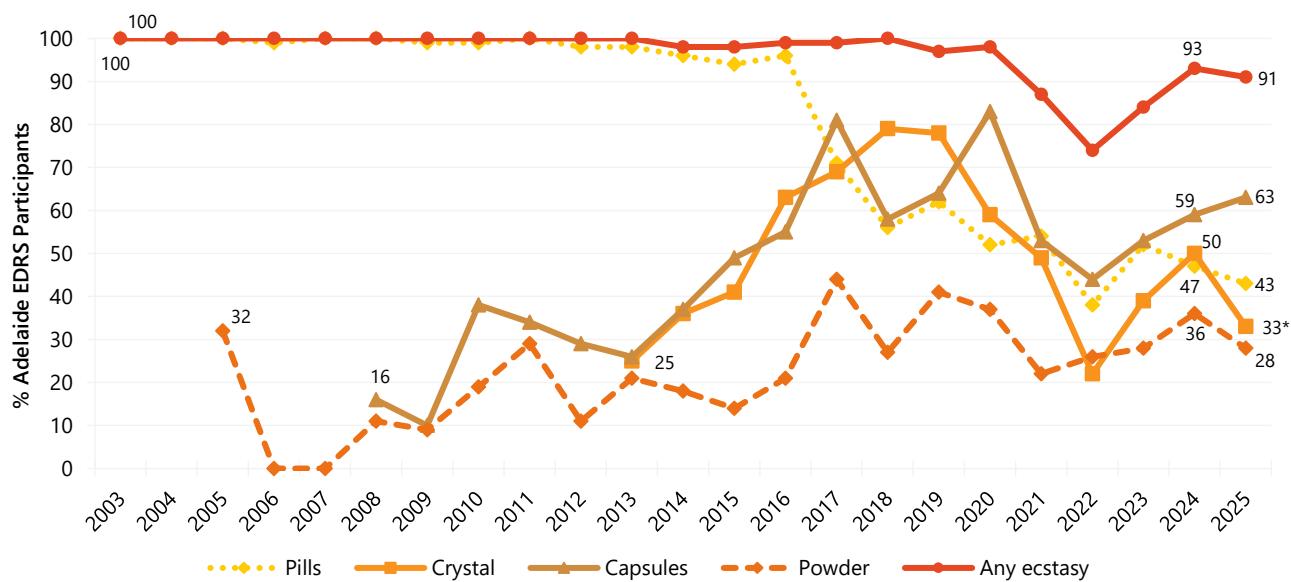
## Non-Prescribed Ecstasy

Participants were asked about their recent (past six month) use of various forms of non-prescribed ecstasy (3,4-methylenedioxymethamphetamine), including pills, powder, capsules, and crystal.

### Patterns of Consumption (Any Ecstasy)

#### Recent Use (past 6 months)

Recent use of any non-prescribed ecstasy in the six months prior to interview remained stable in 2025, relative to 2024 (91%; 93% in 2024;  $p=0.613$ ) (Figure 4). Consistent with the previous few years, in 2025, ecstasy capsules (63%; 59% in 2024;  $p=0.667$ ) remained the most commonly used form of non-prescribed ecstasy in the six months preceding interview. In 2025, two fifths (43%) reported using ecstasy pills (47% in 2024;  $p=0.672$ ), overtaking ecstasy crystal, which significantly decreased from 50% in 2024 to 33% in 2025 ( $p=0.015$ ). Ecstasy powder remained the least commonly used form of non-prescribed ecstasy (28%; 36% in 2024;  $p=0.298$ ), consistent with almost the entirety of the reporting period.


#### Frequency of Use

Among those who reported recent use of any non-prescribed ecstasy and commented ( $n=91$ ), participants reported use (in any form) on a median of nine days (IQR=6-15) in the preceding six months, remaining stable relative to 2024 (7 days; IQR=4-17;  $n=94$ ;  $p=0.177$ ) (Figure 5). Among those who had recently used any non-prescribed ecstasy and commented ( $n=91$ ), weekly or more frequent use of any form of ecstasy remained stable in 2025, relative to 2024 (21%; 15% in 2024;  $p=0.342$ ).

#### Number of Forms Used

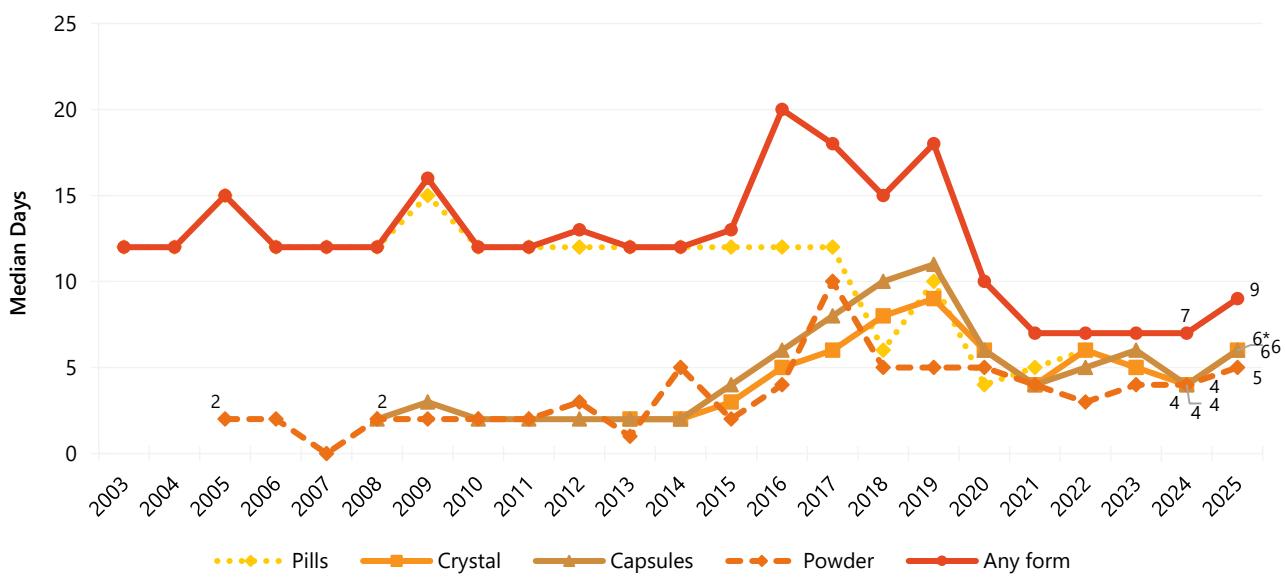

Among participants who had recently consumed non-prescribed ecstasy and commented ( $n=91$ ), the median number of forms of ecstasy used in the six months preceding interview was one (IQR=1-2), stable from 2024 (median 2 forms; IQR=1-3;  $n=94$ ;  $p=0.378$ ).

Figure 4: Past six month use of any non-prescribed ecstasy, and non-prescribed ecstasy pills, powder, capsules, and crystal, Adelaide, SA, 2003-2025



Note. Up until 2012, participant eligibility was determined based on any recent ecstasy use; subsequently it has been expanded to broader illicit stimulant use. Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e.,  $n \leq 5$  but not 0). Statistical significance for 2024 versus 2025 presented in figure;  $*p < 0.050$ ;  $**p < 0.010$ ;  $***p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

Figure 5: Median days of any non-prescribed ecstasy use, and non-prescribed ecstasy pills, powder, capsules, and crystal use in the past six months, Adelaide, SA, 2003-2025



Note. Up until 2012, participant eligibility was determined based on any recent ecstasy use; subsequently it has been expanded to broader illicit stimulant use. Median days computed among those who reported past 6-month use (maximum 180 days). Median days rounded to the nearest whole number. Y axis reduced to 25 days to improve visibility of trends. Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e.,  $n \leq 5$  but not 0). Statistical significance for 2024 versus 2025 presented in figure;  $*p < 0.050$ ;  $**p < 0.010$ ;  $***p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

## Patterns of Consumption (by form)

### Non-Prescribed Ecstasy Pills

**Recent Use (past 6 months):** Recent use of non-prescribed ecstasy pills has declined considerably since the commencement of monitoring. Whilst 96%-100% of participants reported recent use from 2003-2016, 43% of participants reported recent use in 2025 (47% in 2024;  $p=0.672$ ), representing the second lowest per cent observed since 2003 (Figure 4).

**Frequency of Use:** Of those who had recently consumed non-prescribed ecstasy pills and commented ( $n=43$ ), non-prescribed ecstasy pills were used on a median of six days (IQR=4-12) in the six months preceding interview in 2025, stable relative to 2024 (4 days; IQR=2-10;  $n=47$ ;  $p=0.115$ ) (Figure 5). Among those who had recently consumed non-prescribed ecstasy pills, few participants ( $n\leq 5$ ) reported weekly or more frequent use in 2025, stable relative to 2024 (9%;  $p=0.732$ ).

**Routes of Administration:** Among participants who had recently consumed non-prescribed ecstasy pills and commented ( $n=43$ ), the most common route of administration in 2025 was swallowing (98%; 94% in 2024;  $p=0.618$ ), followed by snorting (23%; 38% in 2024;  $p=0.178$ ), consistent with previous years. No participants reported recent smoking as a route of administration (0% in 2024).

**Quantity:** Of those who reported recent use and responded ( $n=43$ ), the median number of non-prescribed ecstasy pills used in a 'typical' session was two (IQR=1.5-3; 2 pills in 2024; IQR=1-3;  $n=47$ ;  $p=0.657$ ). Of those who reported recent use and responded ( $n=43$ ), the median maximum number of non-prescribed ecstasy pills used in a session was three (IQR=2-5; 3 pills in 2024; IQR=2-4.5;  $n=47$ ;  $p=0.338$ ).

### Non-Prescribed Ecstasy Capsules

**Recent Use (past 6 months):** Almost two thirds (63%) of participants reported recent use of non-prescribed ecstasy capsules in 2025, stable from 59% in 2024 ( $p=0.667$ ) (Figure 4).

**Frequency of Use:** Among those who reported recent use of non-prescribed ecstasy capsules and commented ( $n=63$ ), participants reported use on a median of six days in the six months preceding interview (IQR=3-10), stable relative to 2024 (4 days; IQR=2-9;  $n=60$ ;  $p=0.102$ ) (Figure 5). One tenth (10%) of those who had recently consumed non-prescribed ecstasy capsules reported weekly or more frequent use in 2025 ( $n\leq 5$  in 2024;  $p=0.492$ ).

**Routes of Administration:** Among those who had recently consumed non-prescribed ecstasy capsules and commented ( $n=63$ ), the vast majority (98%) of participants reported swallowing as a route of administration (95% in 2024;  $p=0.357$ ) and almost one fifth (17%) reported snorting (23% in 2024;  $p=0.496$ ). No participants reported smoking as a route of administration in 2025 ( $n\leq 5$  in 2024).

**Quantity:** Of those who reported recent use and responded ( $n=63$ ), the median number of non-prescribed ecstasy capsules used in a 'typical' session was two (IQR=2-3; 2 capsules in 2024; IQR=2-3;  $n=60$ ;  $p=0.455$ ). Of those who reported recent use and responded ( $n=63$ ), the median maximum number of non-prescribed ecstasy capsules used in a session was three (IQR=2-4; 3 capsules in 2024; IQR=2-5;  $n=60$ ;  $p=0.207$ ).

### Non-Prescribed Ecstasy Crystal

**Recent Use (past 6 months):** One third (33%) of participants reported recent use of non-prescribed ecstasy crystal, a significant decrease relative to 2024 (50%;  $p=0.015$ ) (Figure 4).

**Frequency of Use:** Among those who reported recent use and commented ( $n=33$ ),

participants reported using non-prescribed ecstasy crystal on a median of six days (IQR=4-12) in the six months preceding interview, a significant increase relative to 2024 (4 days; IQR=2-7; n=51; p=0.022) (Figure 5). Few participants (n≤5) who had recently consumed non-prescribed ecstasy crystal reported weekly or more frequent use (n≤5 in 2024; p=0.733).

**Routes of Administration:** Among participants who had recently consumed non-prescribed ecstasy crystal and commented (n=33), almost three quarters (73%) reported swallowing as a route of administration (67% in 2024; p=0.619), whilst 55% reported snorting (51% in 2024; p=0.818). No participants reported smoking as a route of administration (0% in 2024).

**Quantity:** Of those who reported recent use and responded (n=29), the median amount of non-prescribed ecstasy crystal used in a 'typical' session was 0.25 grams (IQR=0.20-0.50; 0.40 grams in 2024; IQR=0.20-0.50; n=41; p=0.352). Of those who reported recent use and responded (n=29), the median maximum amount of non-prescribed ecstasy crystal used in a session was 0.50 grams (IQR=0.30-1.00; 0.50 grams in 2024; IQR=0.30-1.00; n=41; p=0.904).

### Non-Prescribed Ecstasy Powder

**Recent Use (past 6 months):** Twenty-eight per cent of participants reported recent use of

non-prescribed ecstasy powder, stable relative to 2024 (36%; p=0.298) (Figure 4).

**Frequency of Use:** Amongst those who reported recent use and commented (n=28), participants reported consuming non-prescribed ecstasy powder on a median of five days (IQR=3-10) in the six months preceding interview, stable from four days in 2024 (IQR=2-6; n=36; p=0.128) (Figure 5). Few participants (n≤5) who had recently consumed non-prescribed ecstasy powder reported weekly or more frequent use (n≤5 in 2024).

**Routes of Administration:** Among participants who had recently consumed non-prescribed ecstasy powder and commented (n=28), the majority (71%) reported snorting as a route of administration (78% in 2024; p=0.771), followed by 39% who reported swallowing as a route of administration (53% in 2024; p=0.327).

**Quantity:** Of those who reported recent use and responded (n=21), the median amount of non-prescribed ecstasy powder used in a 'typical' session was 0.50 grams (IQR=0.20-0.50; 0.30 grams in 2024; IQR=0.20-0.50; n=25; p=0.251). Of those who reported recent use and responded (n=22), the median maximum amount of non-prescribed ecstasy powder used in a session was one gram (IQR=0.31-1.88; 0.50 grams in 2024; IQR=0.23-0.95; n=26; p=0.091).

## Price, Perceived Purity and Perceived Availability

### Non-Prescribed Ecstasy Pills

**Price:** The median price of a pill remained stable, recorded at \$30 in 2025 (IQR=25-35; n=41; \$30 in 2024; IQR=25-35; n=35; p=0.869) (Figure 6).

**Perceived Purity:** The perceived purity of non-prescribed ecstasy pills remained stable

between 2024 and 2025 (p=0.575). Among those who responded in 2025 (n=41), two fifths (41%) reported purity as being 'high' (27% in 2024), and equal percentages (22%) perceived purity to be 'medium' (29% in 2024) and 'fluctuating' (25% in 2024). Fifteen per cent reported 'low' purity (18% in 2024) (Figure 8).

**Perceived Availability:** The perceived availability of non-prescribed ecstasy pills remained stable between 2024 and 2025

( $p=0.639$ ). Among those who were able to comment in 2025 (n=41), 46% reported that ecstasy pills were 'very easy' to obtain (44% in 2024), with almost two fifths (39%) reporting 'easy' obtainment (33% in 2024). On the other hand, 15% reported non-prescribed ecstasy pills as being 'difficult' to obtain (19% in 2024) (Figure 12).

### Non-Prescribed Ecstasy Capsules

**Price:** The reported median price of an ecstasy capsule was \$25 in 2025 (IQR=20-28; n=59), stable relative to \$25 in 2024 (IQR=20-25; n=43;  $p=0.642$ ) (Figure 6).

**Perceived Purity:** The perceived purity of non-prescribed ecstasy capsules remained stable between 2024 and 2025 ( $p=0.124$ ). Among those who were able to comment in 2025 (n=61), two fifths (41%) perceived purity to be 'high' (27% in 2024) and one third (34%) perceived purity to be 'medium' (28% in 2024). One fifth (20%) perceived purity to be 'fluctuating' (35% in 2024), and few participants (n≤5) perceived purity to be 'low' (10% in 2024) (Figure 9).

**Perceived Availability:** The perceived availability of non-prescribed ecstasy capsules remained stable between 2024 and 2025 ( $p=0.591$ ). Among those who responded in 2025 (n=62), 50% reported that non-prescribed ecstasy capsules were 'very easy' to obtain (44% in 2024), with a further two fifths (42%) reporting 'easy' obtainment (44% in 2024). Few participants (n≤5) perceived ecstasy capsules as being 'difficult' to obtain (11% in 2024) (Figure 13).

### Non-Prescribed Ecstasy Crystal

**Price:** The median price of a gram of crystal remained stable in 2025 at \$200 (IQR=180-225; n=19; \$200 in 2024; IQR=150-225; n=31;  $p=0.446$ ) (Figure 7). Few participants (n≤5)

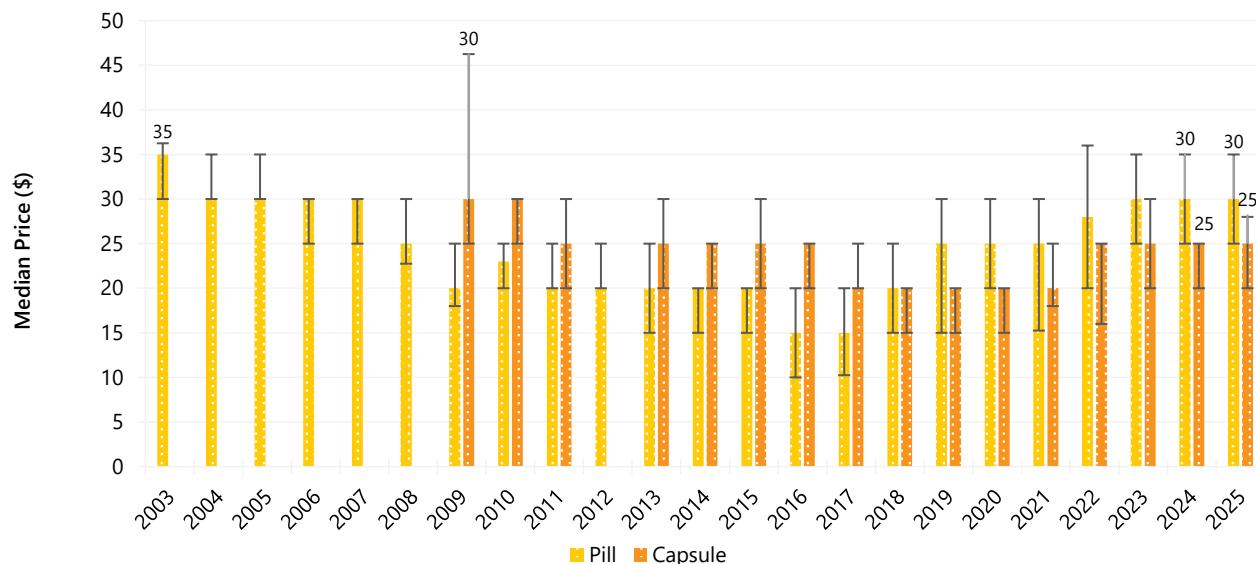
were able to comment on the price of a point of ecstasy crystal in 2025 and 2024 ( $p=0.414$ ).

**Perceived Purity:** The perceived purity of non-prescribed ecstasy crystal remained stable between 2024 and 2025 ( $p=0.245$ ). Among those who responded in 2025 (n=29), almost three fifths (59%) perceived the purity of crystal to be 'high' (35% in 2024) and one fifth (21%) perceived purity to be 'medium' (31% in 2024). Few participants (n≤5) perceived purity to be 'fluctuating' (27% in 2024) (Figure 10).

**Perceived Availability:** The perceived availability of non-prescribed ecstasy crystal remained stable between 2024 and 2025 ( $p=0.538$ ). Among those who were able to comment in 2025 (n=27), 44% reported ecstasy capsules as being 'easy' to obtain (43% in 2024), and a further two fifths (41%) perceived ecstasy capsules as being 'very easy' to obtain (39% in 2024). Few participants (n≤5) reported non-prescribed ecstasy capsules as being 'difficult' to obtain (19% in 2024) (Figure 14).

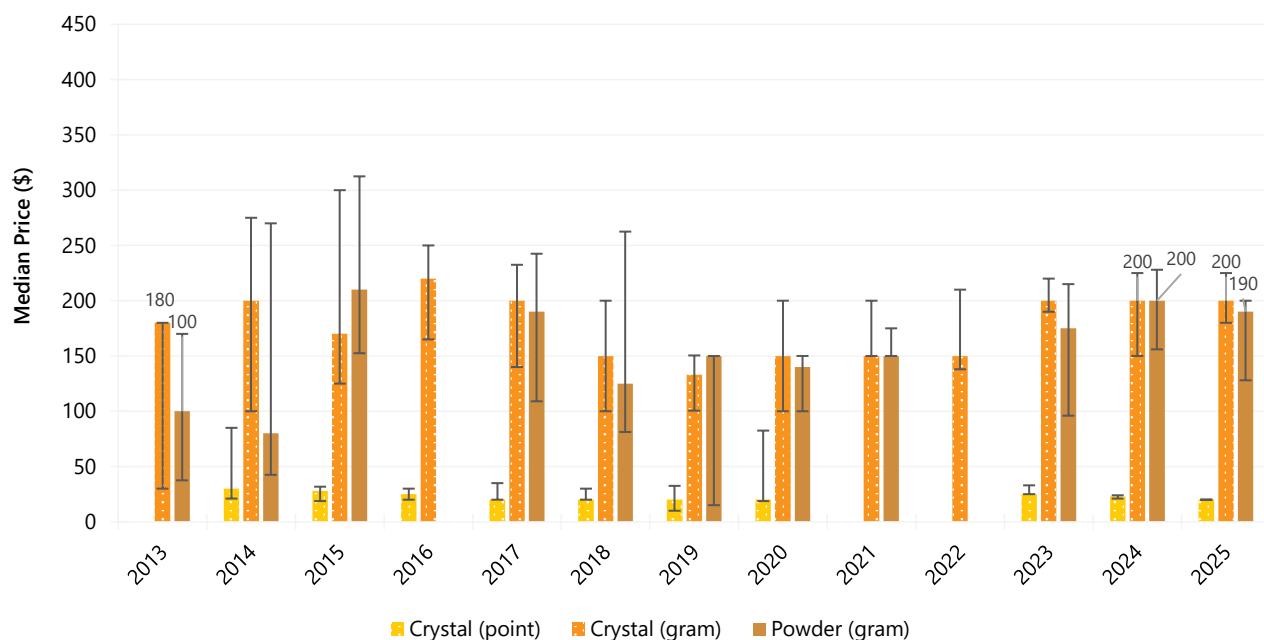
### Non-Prescribed Ecstasy Powder

**Price:** The median price of a gram of ecstasy powder remained stable in 2025 (\$190; IQR=128-200; n=14), relative to 2024 (\$200; IQR=156-228; n=14;  $p=0.531$ ) (Figure 7).


**Perceived Purity:** The perceived purity of non-prescribed ecstasy powder remained stable between 2024 and 2025 ( $p=0.506$ ). Among those who were able to comment in 2025 (n=24), 46% perceived purity to be 'medium' (36% in 2024), and almost two fifths (38%) perceived purity to be 'high' (32% in 2024) (Figure 11).

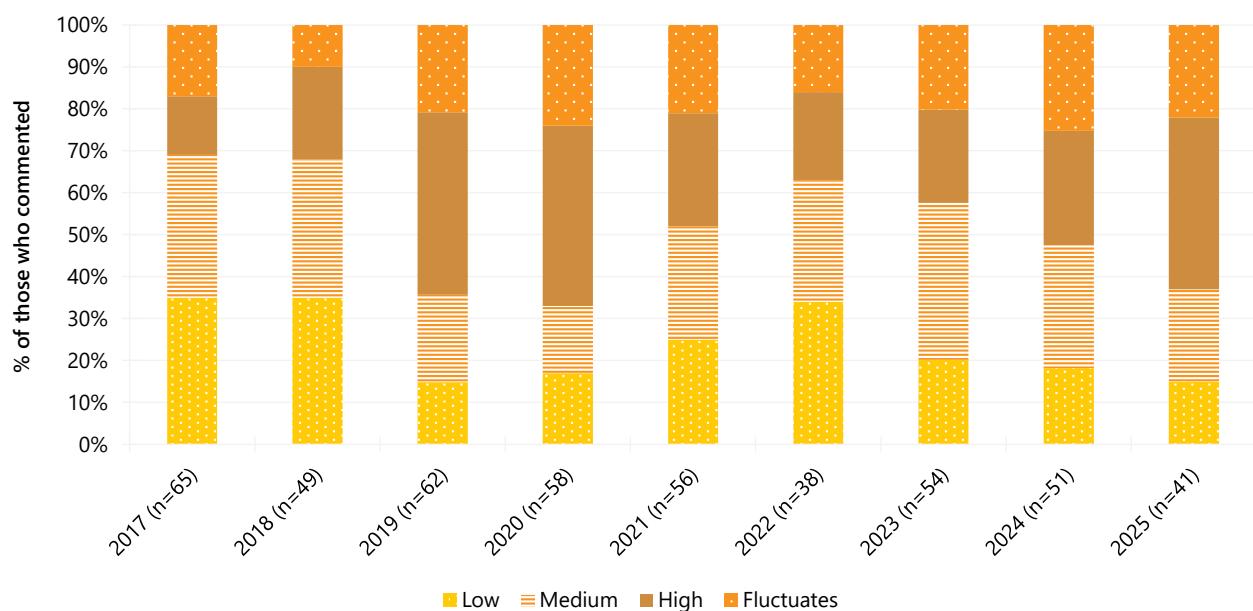
**Perceived Availability:** The perceived availability of non-prescribed ecstasy powder remained stable between 2024 and 2025 ( $p=0.445$ ). Among those who were able to respond in 2025 (n=25), 52% reported non-prescribed ecstasy powder as being 'very easy'

to obtain (31% in 2024), and a further one quarter (24%) reported powder as being 'easy' to obtain (38% in 2024). Few participants ( $n \leq 5$ )

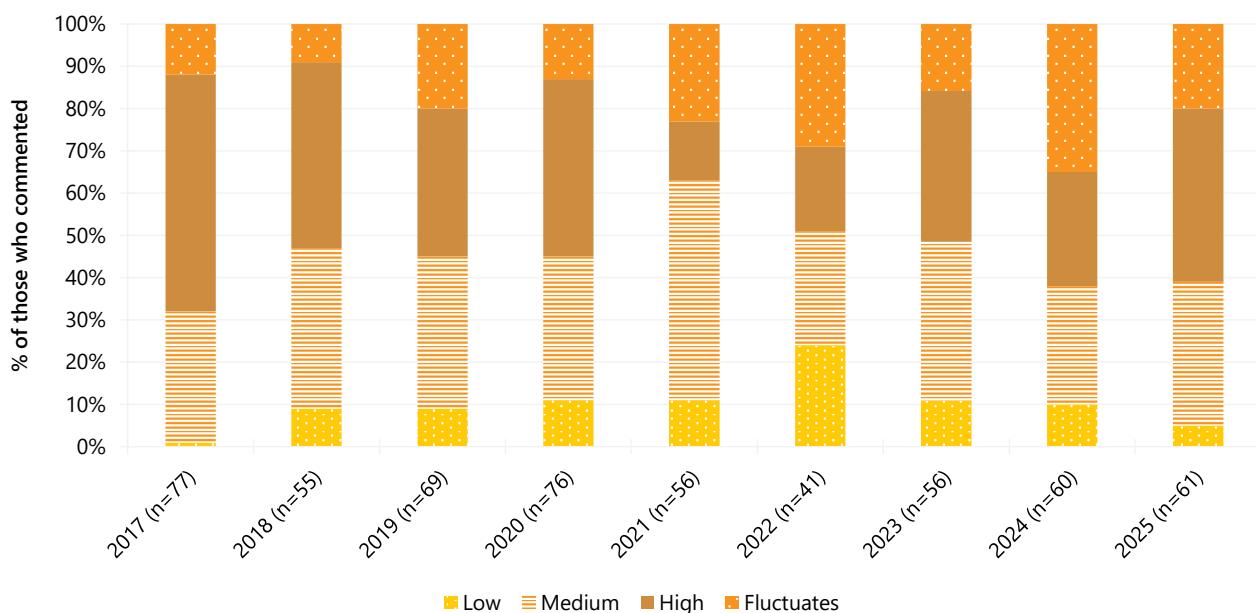

perceived powder as being 'difficult' to obtain (28% in 2024) (Figure 15).

**Figure 6: Median price of non-prescribed ecstasy pills and capsules, Adelaide, SA, 2003-2025**

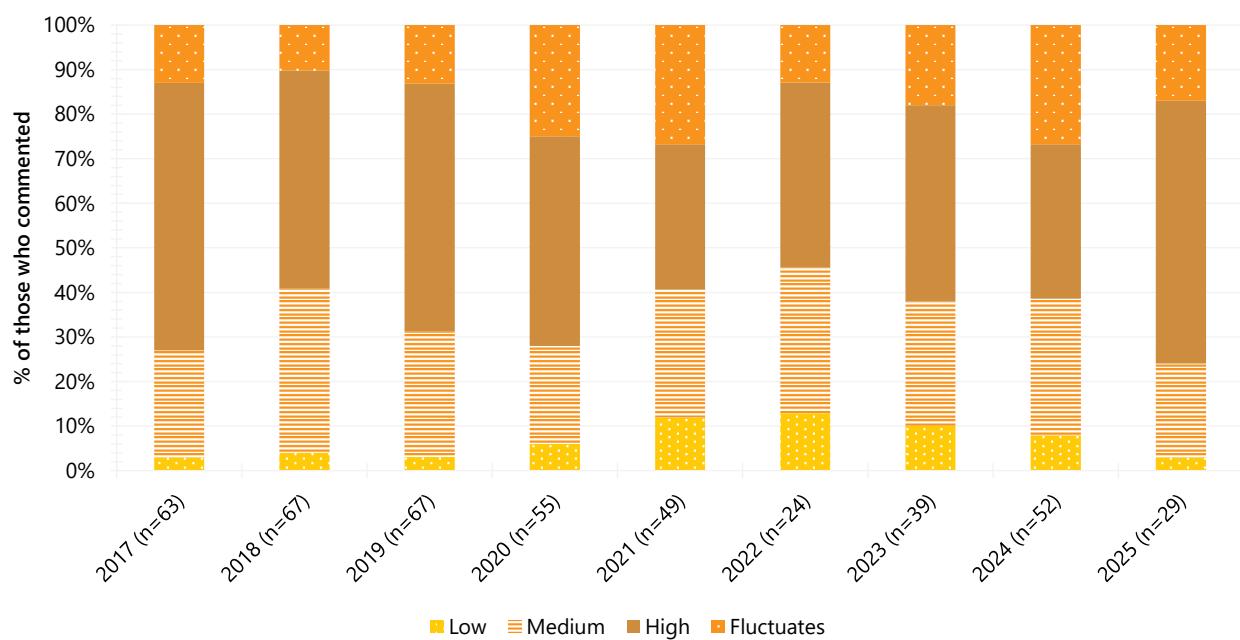



Note. Among those who commented. Data labels are only provided for the first and two most recent years of monitoring, however data are suppressed in the figure where  $n \leq 5$  responded. The error bars represent the IQR. Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

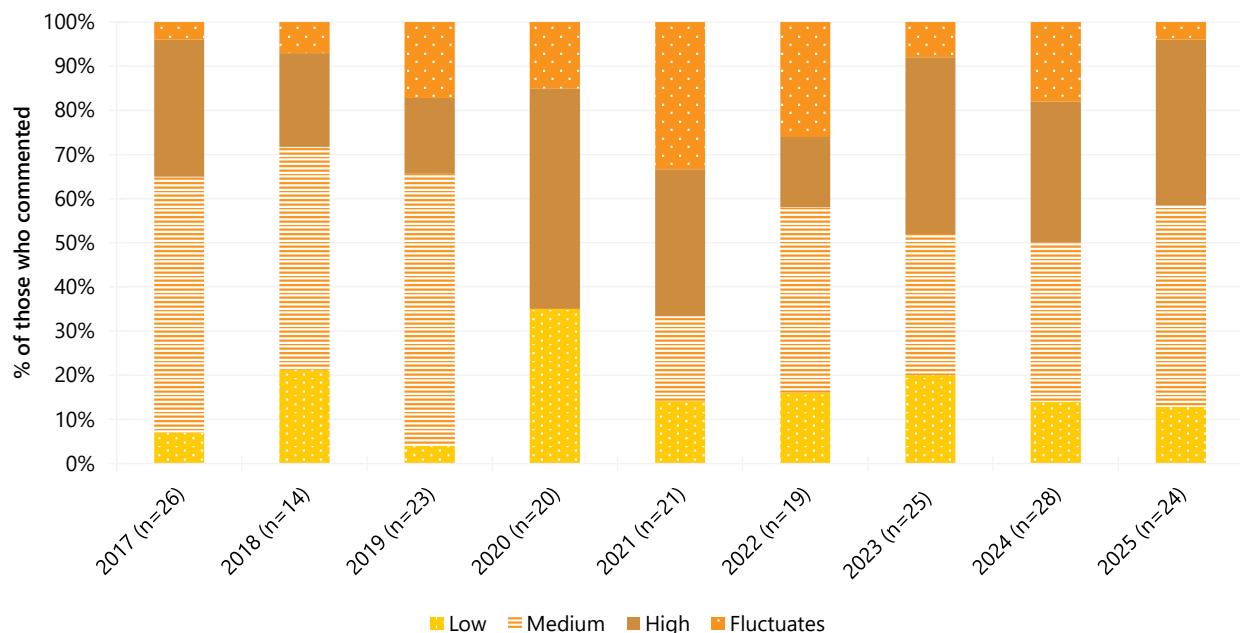
**Figure 7: Median price of non-prescribed ecstasy crystal (per point and gram) and powder (per gram only), Adelaide, SA, 2013-2025**



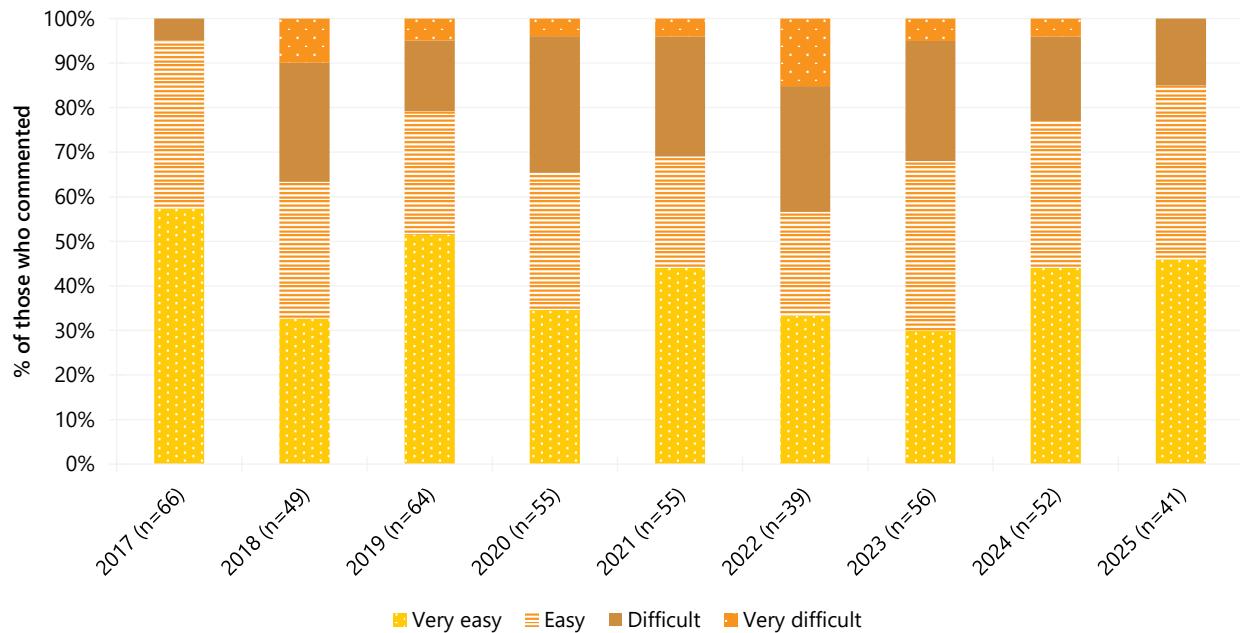

Note. Among those who commented. Data collection for price of ecstasy crystal (gram and point) and ecstasy powder (gram) started in 2013. Data labels are only provided for the first and two most recent years of monitoring, however data are suppressed in the figure where  $n \leq 5$  responded. The error bars represent the IQR. Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.


**Figure 8: Current perceived purity of non-prescribed ecstasy pills, Adelaide, SA, 2017-2025**



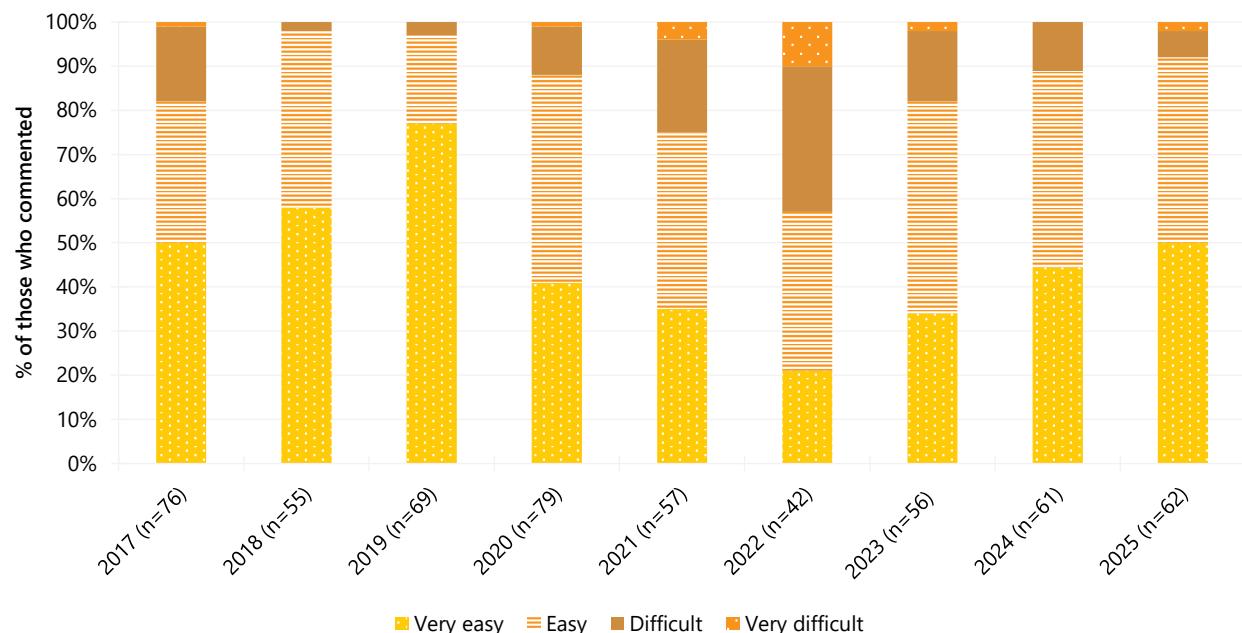

Note. Market questions were only asked for all forms of ecstasy from 2017 onwards. Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

**Figure 9: Current perceived purity of non-prescribed ecstasy capsules, Adelaide, SA, 2017-2025**


Note. Market questions were only asked for all forms of ecstasy from 2017 onwards. Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure;  $*p < 0.050$ ;  $**p < 0.010$ ;  $***p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

**Figure 10: Current perceived purity of non-prescribed ecstasy crystal, Adelaide, SA, 2017-2025**

Note. Market questions were only asked for all forms of ecstasy from 2017 onwards. Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure;  $*p < 0.050$ ;  $**p < 0.010$ ;  $***p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.


**Figure 11: Current perceived purity of non-prescribed ecstasy powder, Adelaide, SA, 2017-2025**

Note. Market questions were only asked for all forms of ecstasy from 2017 onwards. Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure: \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

**Figure 12: Current perceived availability of non-prescribed ecstasy pills, Adelaide, SA, 2017-2025**

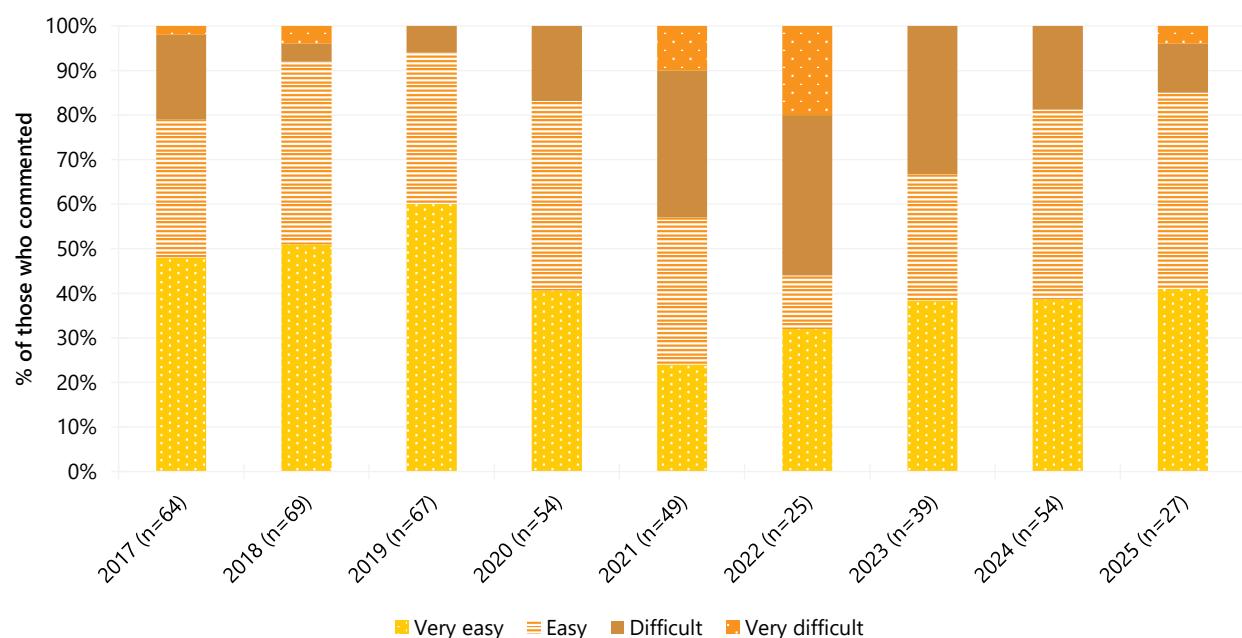

Note. Market questions were only asked for all forms of ecstasy from 2017 onwards. Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure: \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

Figure 13: Current perceived availability of non-prescribed ecstasy capsules, Adelaide, SA, 2017-2025



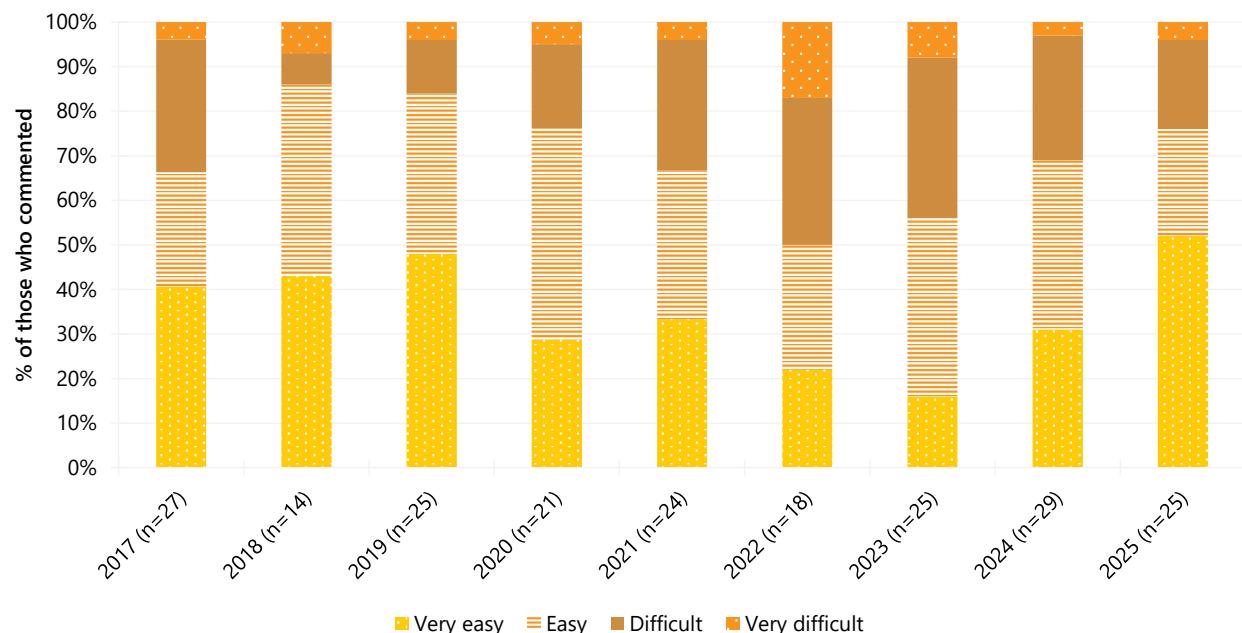

Note. Market questions were only asked for all forms of ecstasy from 2017 onwards. Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure: \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

Figure 14: Current perceived availability of non-prescribed ecstasy crystal, Adelaide, SA, 2017-2025



Note. Market questions were only asked for all forms of ecstasy from 2017 onwards. Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure: \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

Figure 15: Current perceived availability of non-prescribed ecstasy powder, Adelaide, SA, 2017-2025



Note. Market questions were only asked for all forms of ecstasy from 2017 onwards. Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure: \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

# 3

## Methamphetamine

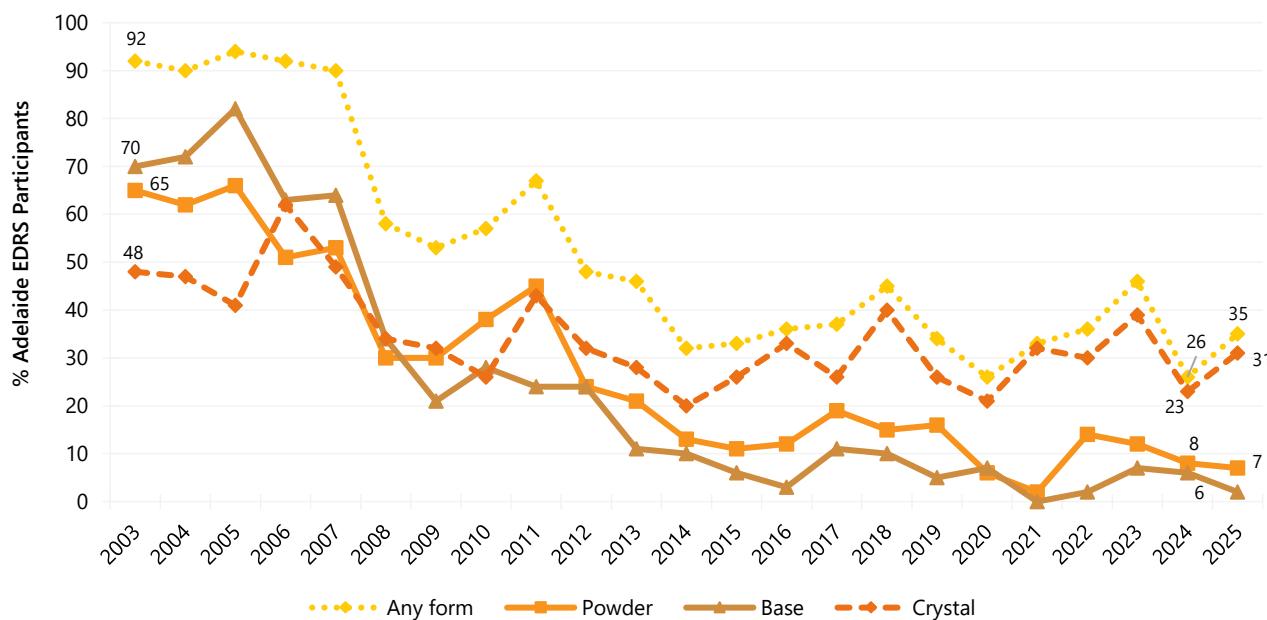
Participants were asked about their recent (past six month) use of various forms of methamphetamine, including powder (white particles, described as 'speed'), base (wet, oily powder) and crystal (clear, ice-like crystals). Findings for methamphetamine base are not reported here due to small numbers reporting recent use. For further information on methamphetamine base, please refer to the [2025 National IDRS Report](#) for national trends, or contact the Drug Trends team ([drugtrends@unsw.edu.au](mailto:drugtrends@unsw.edu.au)).

### Patterns of Consumption (Any Methamphetamine)

#### Recent Use (past 6 months)

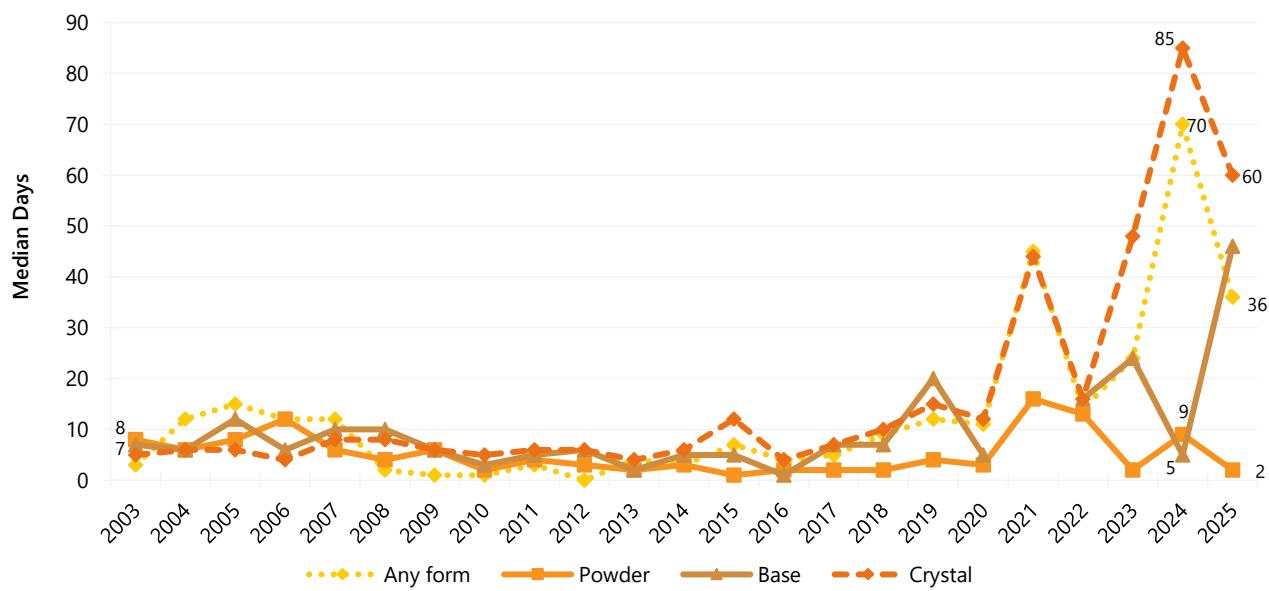
Recent use of any methamphetamine has largely declined since monitoring commenced (Figure 16), from more than nine in ten participants reporting recent use in 2003 (92%), down to 26% in 2020. In 2025, one third (35%) of participants reported recent use, stable relative to 2024 (26%;  $p=0.177$ ).

In 2025, among participants who had recently consumed methamphetamine ( $n=35$ ), methamphetamine crystal was the form most commonly used (89%; 88% in 2024), with one fifth (20%) reporting recent use of methamphetamine powder (31% in 2024;  $p=0.376$ ). Few participants ( $n\leq 5$ ) reported recent use of methamphetamine base ( $n\leq 5$  in 2024;  $p=0.063$ ); this has remained consistent over the past decade.


#### Frequency of Use

In 2025, the median frequency of use reported by participants in the six months preceding interview was 36 days (IQR=6-90;  $n=35$ ), remaining stable from 70 days in 2024 (IQR=24-153;  $n=26$ ;  $p=0.165$ ) (Figure 17). Fifty-four per cent of those who had recently used methamphetamine and commented reported using methamphetamine weekly or more frequently, stable relative to 2024 (77%;  $p=0.111$ ).

#### Number of Forms Used


Among participants who had recently consumed any methamphetamine and commented ( $n=35$ ), the median number of forms used was one (IQR=1-1), a significant change relative to 2024 (1 form; IQR=1-2;  $n=26$ ;  $p=0.042$ ).

**Figure 16: Past six month use of any methamphetamine, and methamphetamine powder, base, and crystal, Adelaide, SA, 2003-2025**



Note. Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e.,  $n \leq 5$  but not 0). Statistical significance for 2024 versus 2025 presented in figure;  $*p < 0.050$ ;  $**p < 0.010$ ;  $***p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

**Figure 17: Median days of any methamphetamine use, and methamphetamine powder, base, and crystal use in the past six months, Adelaide, SA, 2003-2025**



Note. Median days computed among those who reported recent use (maximum 180 days). Median days rounded to the nearest whole number. Y axis reduced to 90 days to improve visibility of trends. Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e.,  $n \leq 5$  but not 0). Statistical significance for 2024 versus 2025 presented in figure;  $*p < 0.050$ ;  $**p < 0.010$ ;  $***p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

## Patterns of Consumption (by form)

### Methamphetamine Powder

**Recent Use (past 6 months):** Recent use of methamphetamine powder has declined over the course of monitoring, though remained stable in 2025 at 7% (8% in 2024) (Figure 16).

**Frequency of Use:** Amongst those who had recently consumed methamphetamine powder and commented (n=7), participants reported use on a median of two days (IQR=1-4) in 2025, stable relative to 2024 (9 days; IQR=2-30; n=8;  $p=0.173$ ) (Figure 17). No participants reported weekly or more frequent use of methamphetamine powder in 2025 (n≤5 in 2024;  $p=0.200$ ).

**Routes of Administration:** Among participants who had recently consumed methamphetamine powder and commented (n=7), snorting was the most common route of administration in 2025 (86%; 75% in 2024). Few participants (n≤5) reported other routes of administration.

**Quantity:** Few participants (n≤5) were able to report on the median amount of methamphetamine powder used in a 'typical' session in 2025 (0.20 grams in 2024; IQR=0.13-0.43; n=6;  $p=0.628$ ). Few participants (n≤5) were also able to report on the median maximum amount of methamphetamine powder used in a session in 2025 (n≤5 in 2024;  $p=0.746$ ).

### Methamphetamine Crystal

**Recent Use (past 6 months):** Since 2012, crystal has consistently been the most commonly used form of methamphetamine. Almost one third (31%) of participants reported recent use of methamphetamine crystal in 2025, stable relative to 2024 (23%;  $p=0.207$ ) (Figure 16).

**Frequency of Use:** Of those who had recently consumed methamphetamine crystal and commented (n=31), participants reported use on a median of 60 days (IQR=7-93) in the six months preceding interview, stable relative to 2024 (85 days; IQR=36-146; n=23;  $p=0.213$ ) (Figure 17). Three fifths (61%) of participants who had recently used methamphetamine crystal reported weekly or greater use in 2025, stable relative to 2024 (87%;  $p=0.064$ ).

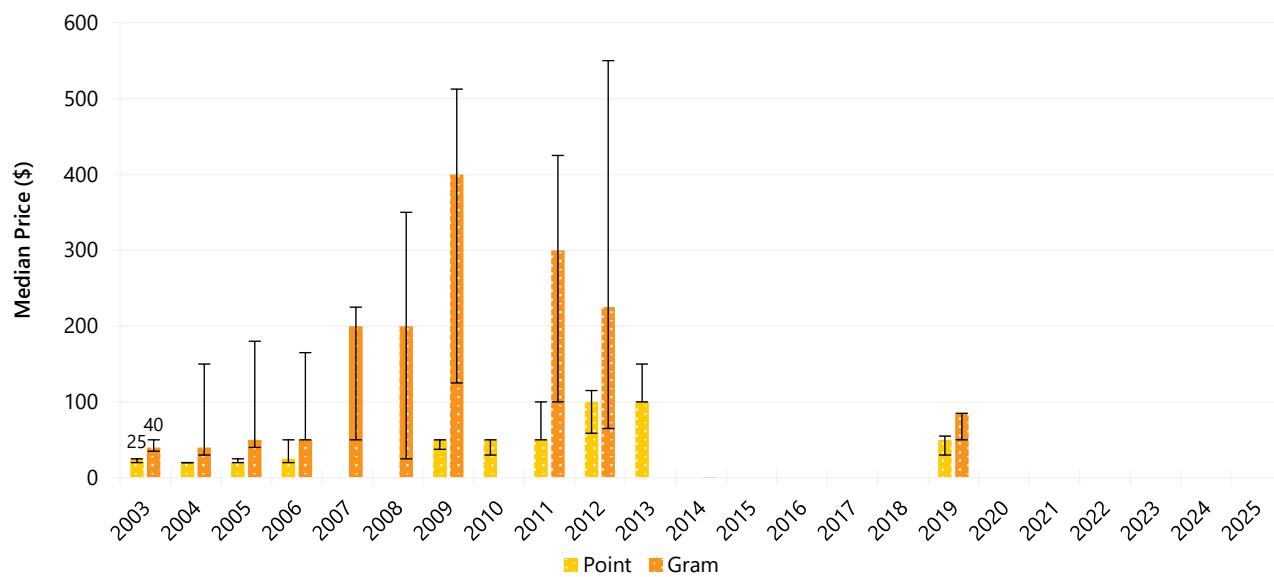
**Routes of Administration:** Among participants who had recently consumed methamphetamine crystal and commented (n=31), smoking remained the most common route of administration (87%), stable from 2024 (96%;  $p=0.380$ ). Almost one fifth (19%) reported swallowing methamphetamine crystal in 2025, stable relative to 2024 (n≤5;  $p=0.443$ ).

**Quantity:** Of those who reported recent use and responded (n=29), the median amount of methamphetamine crystal used in a 'typical' session was 0.20 grams (IQR=0.20-0.40; 0.30 grams in 2024; IQR=0.20-0.45; n=23;  $p=0.806$ ). Of those who reported recent use and responded (n=29), the median maximum amount of methamphetamine crystal used in a session was 0.50 grams (IQR=0.30-0.60; 0.50 grams in 2024; IQR=0.35-1.00; n=19;  $p=0.733$ ).

## Price, Perceived Purity and Perceived Availability

### Methamphetamine Powder

Due to low numbers reporting, further details are not reported on price (Figure 18), perceived purity (Figure 20) and perceived availability (Figure 22) for methamphetamine powder. Please refer to the [2025 National EDRS Report](#) for national trends, or contact the Drug Trends team for further information ([drugtrends@unsw.edu.au](mailto:drugtrends@unsw.edu.au)).


### Methamphetamine Crystal

**Price:** The median price of one gram of methamphetamine crystal remained stable in 2025 at \$200 (IQR=200-250; n=11; n≤5 in 2024;  $p=0.409$ ). The median price of one point also remained stable (\$50; IQR=33-50; n=14), relative to 2024 (n≤5;  $p=0.860$ ) (Figure 19).

**Perceived Purity:** The perceived purity of methamphetamine crystal remained stable between 2024 and 2025 ( $p=0.191$ ). Among those who were able to comment in 2025 (n=31), one third (35%) reported purity to be 'high' (24% in 2024). A further 29% reported purity as 'fluctuating' (n≤5 in 2024), and one quarter (26%) reported purity as 'medium' (48% in 2024) (Figure 21).

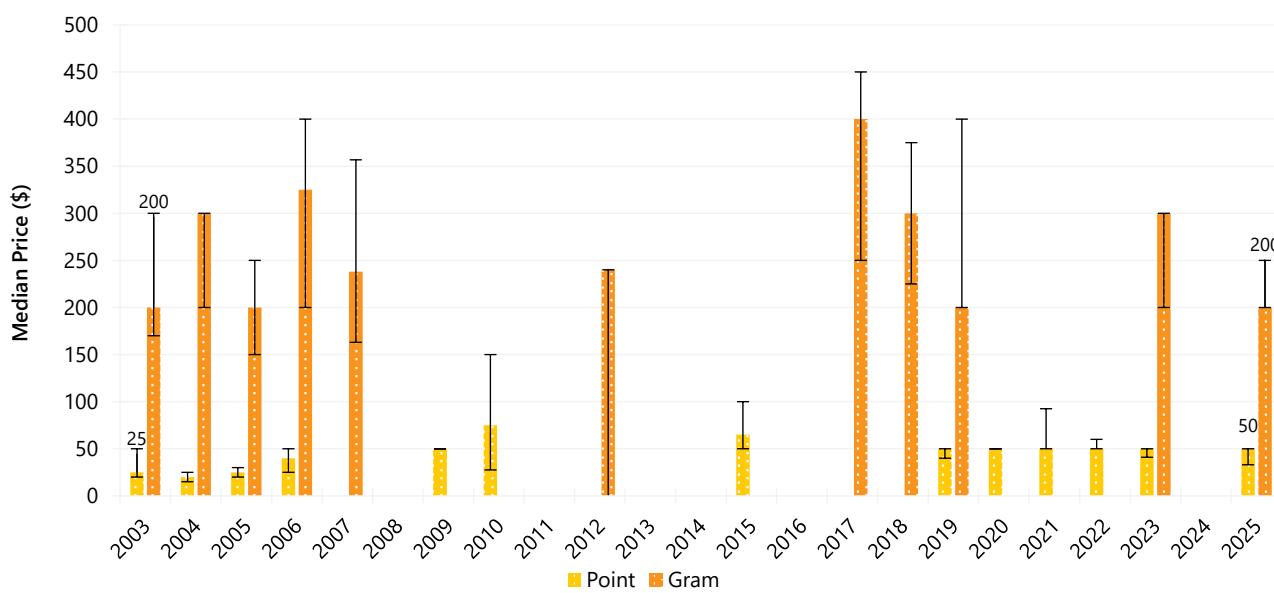
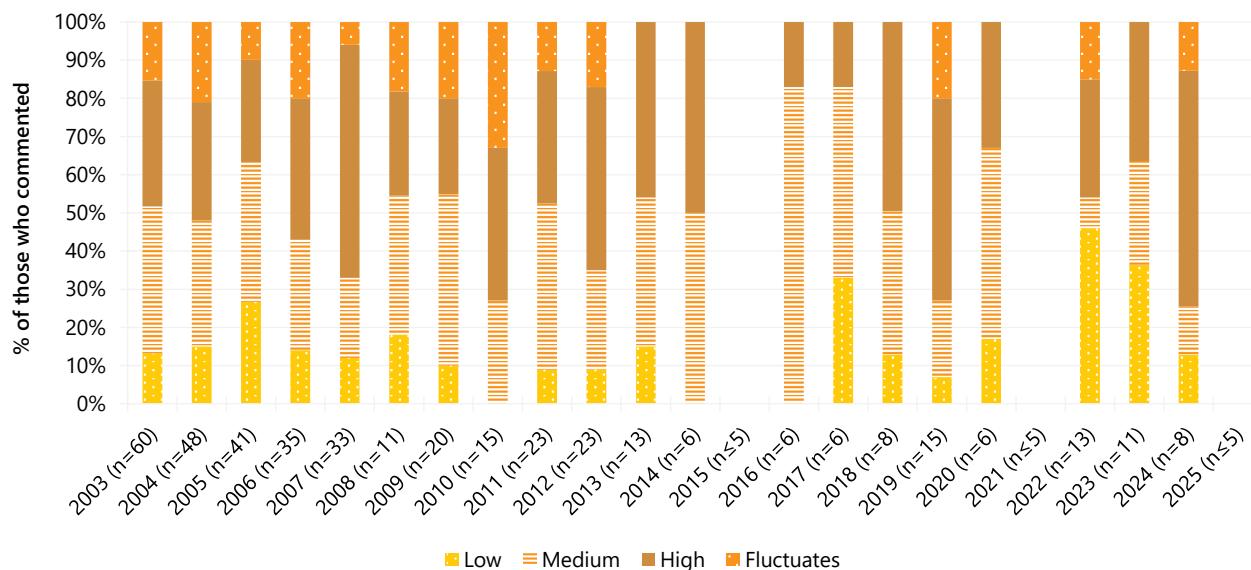
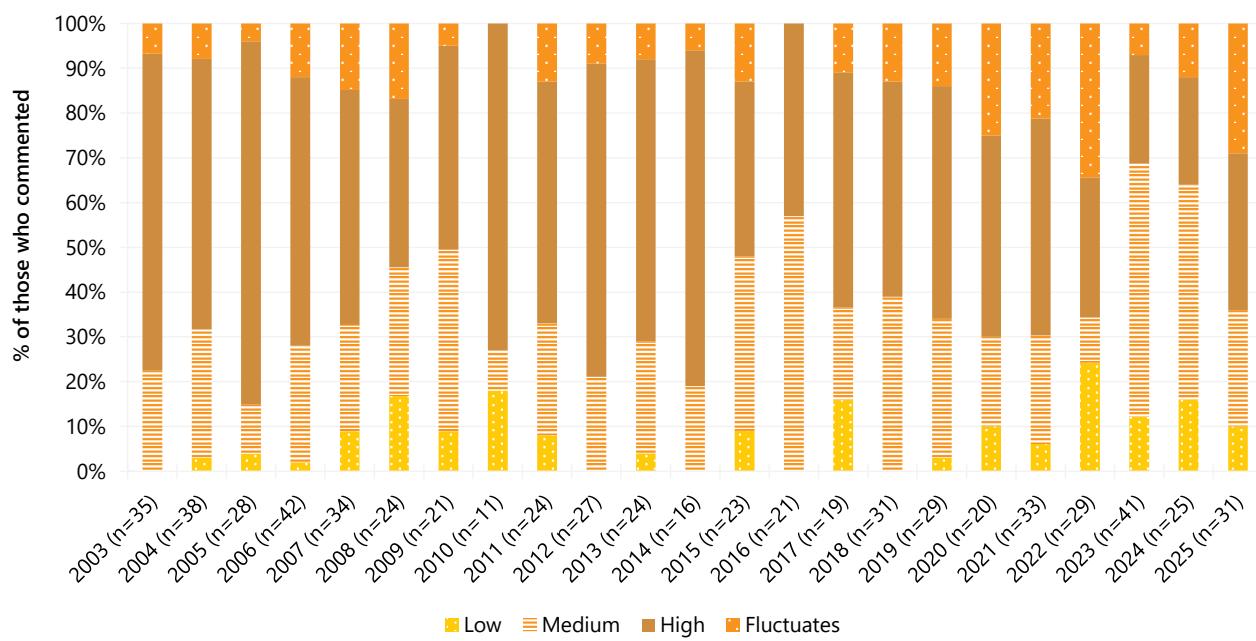

**Perceived Availability:** The perceived availability of methamphetamine crystal remained stable between 2024 and 2025 ( $p=0.755$ ). Among those who were able to respond in 2025 (n=31), the highest percentage (71%) reported availability as 'very easy' (65% in 2025), with a further one quarter (26%) reporting it as 'easy' (31% in 2024) (Figure 23).

Figure 18: Median price of methamphetamine powder per point and gram, Adelaide, SA, 2003-2025

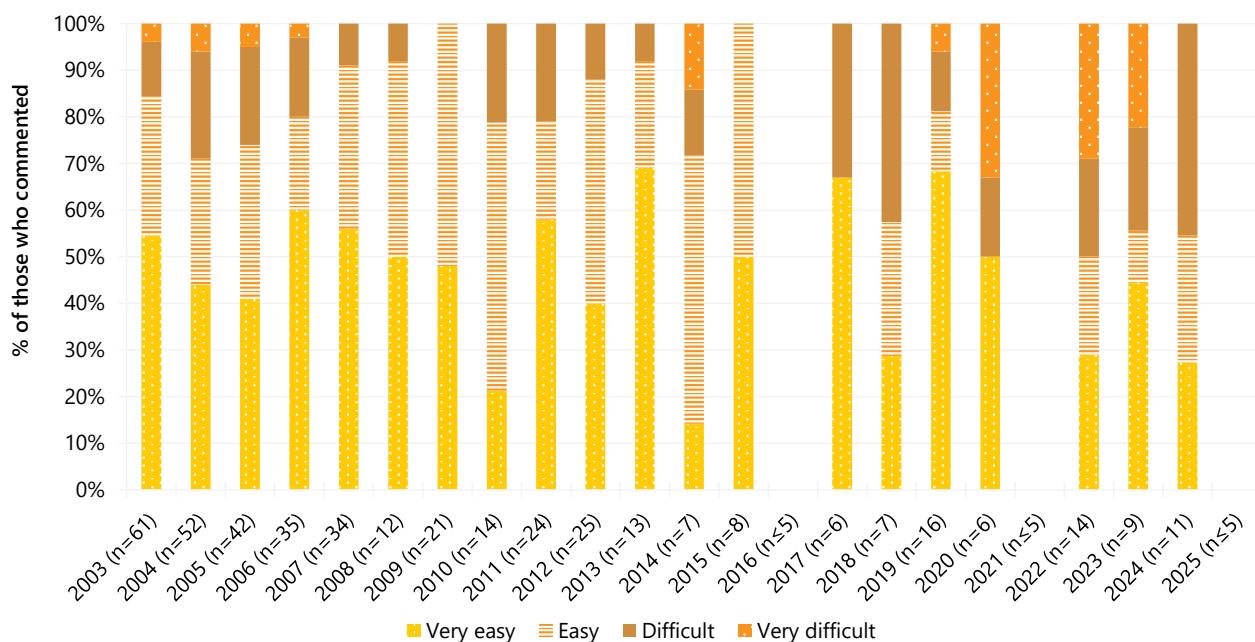



Note. Among those who commented. Data labels are only provided for the first and two most recent years of monitoring, however data are suppressed in the figure where  $n \leq 5$  responded. The error bars represent the IQR. Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.


Figure 19: Median price of methamphetamine crystal per point and gram, Adelaide, SA, 2003-2025



Note. Among those who commented. Data labels are only provided for the first and two most recent years of monitoring, however data are suppressed in the figure and data tables where  $n \leq 5$  responded. The error bars represent the IQR. Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.


**Figure 20: Current perceived purity of methamphetamine powder, Adelaide, SA, 2003-2025**

Note. Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure;  $*p < 0.050$ ;  $**p < 0.010$ ;  $***p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

**Figure 21: Current perceived purity of methamphetamine crystal, Adelaide, SA, 2003-2025**

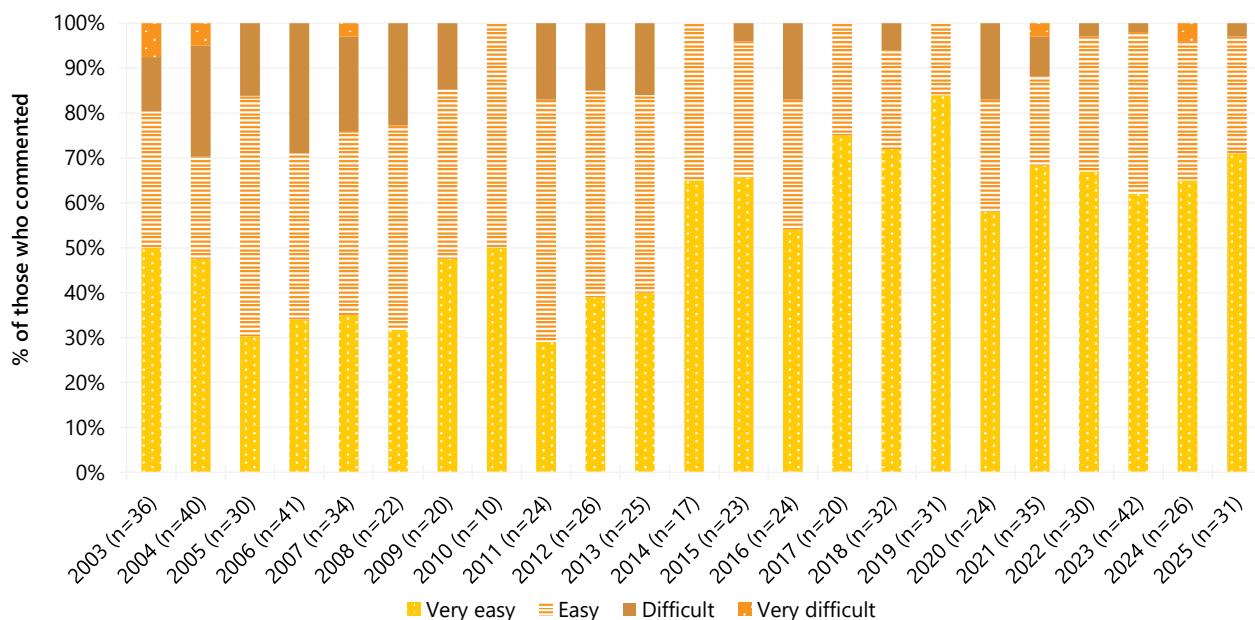

Note. Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure;  $*p < 0.050$ ;  $**p < 0.010$ ;  $***p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

Figure 22: Current perceived availability of methamphetamine powder, Adelaide, SA, 2003-2025



Note. Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure;  $*p < 0.050$ ;  $**p < 0.010$ ;  $***p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

Figure 23: Current perceived availability of methamphetamine crystal, Adelaide, SA, 2003-2025



Note. Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure;  $*p < 0.050$ ;  $**p < 0.010$ ;  $***p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

# 4

## Non-Prescribed Pharmaceutical Stimulants

Participants were asked about their recent (past six month) use of non-prescribed pharmaceutical stimulants, such as dexamfetamine, lisdexamfetamine (Vyvanse®), or methylphenidate (Concerta®, Ritalin®, Ritalin LA®). These substances are commonly prescribed to treat attention deficit hyperactivity disorder (ADHD) and narcolepsy.

### Patterns of Consumption

#### Recent Use (past 6 months)

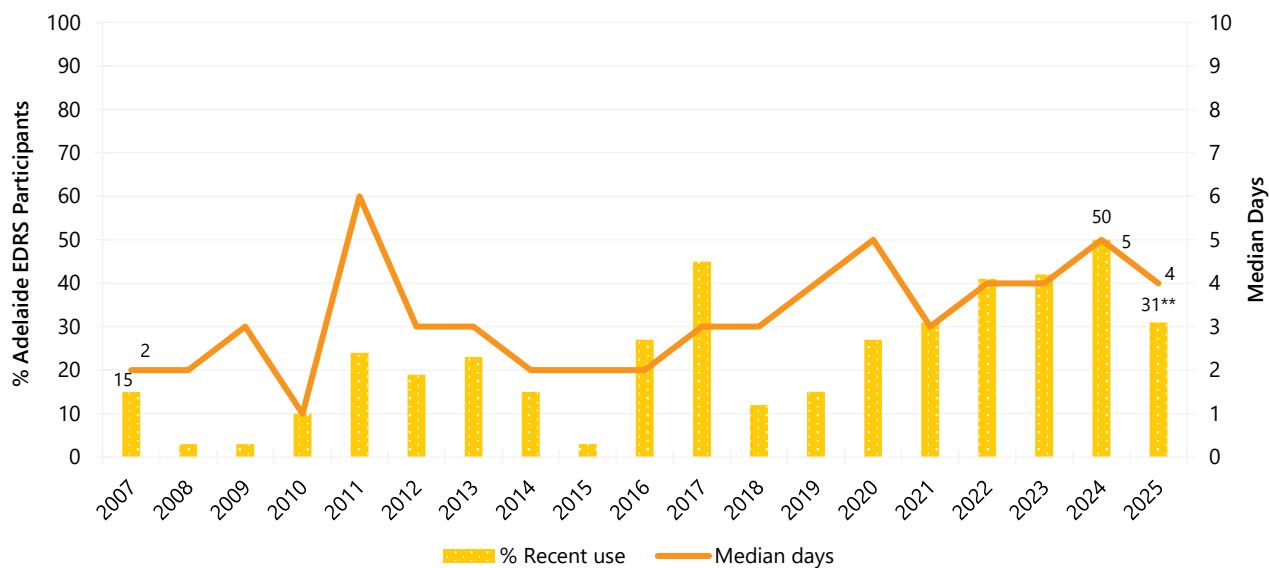
The per cent of participants reporting any recent non-prescribed pharmaceutical stimulant (e.g., dexamphetamine, methylphenidate, modafinil) use has steadily increased since the commencement of monitoring, from 15% in 2007 to 50% in 2024. A significant decrease, however, was observed in 2025 (31%;  $p=0.008$ ) (Figure 24).

#### Frequency of Use

Frequency of use remained stable in 2025, at a median of four days in the six months prior to interview (IQR=3-9; n=31; 5 days in 2024; IQR=3-18; n=51;  $p=0.457$ ) (Figure 24).

#### Routes of Administration

Among participants who had recently consumed non-prescribed pharmaceutical stimulants and commented (n=31), the vast majority reported swallowing as a route of administration (97%; 94% in 2024), with fewer participants reporting snorting (23%; 25% in 2024;  $p=0.796$ ).


#### Quantity

Among those who reported recent use and responded (n=28), the median amount used in a 'typical' session was two pills/tablets (IQR=2-3; 2 pills/tablets in 2024; IQR=1-3; n=42;  $p=0.708$ ). Of those who reported recent use and responded (n=28), the median maximum amount used in a session was two and a half pills/tablets (IQR=2-5; 3 pills/tablets in 2024; IQR=2-6; n=41;  $p=0.642$ ).

#### Forms Used

Among participants who had recently consumed non-prescribed pharmaceutical stimulants and commented (n=31), the majority reported using dexamfetamine (77%; 76% in 2024), and almost half (48%) reported using methylphenidate (51% in 2024). Few participants (n≤5) reported using lisdexamfetamine (24% in 2024;  $p=0.573$ ). No participants reported using modafinil (12% in 2024;  $p=0.081$ ).

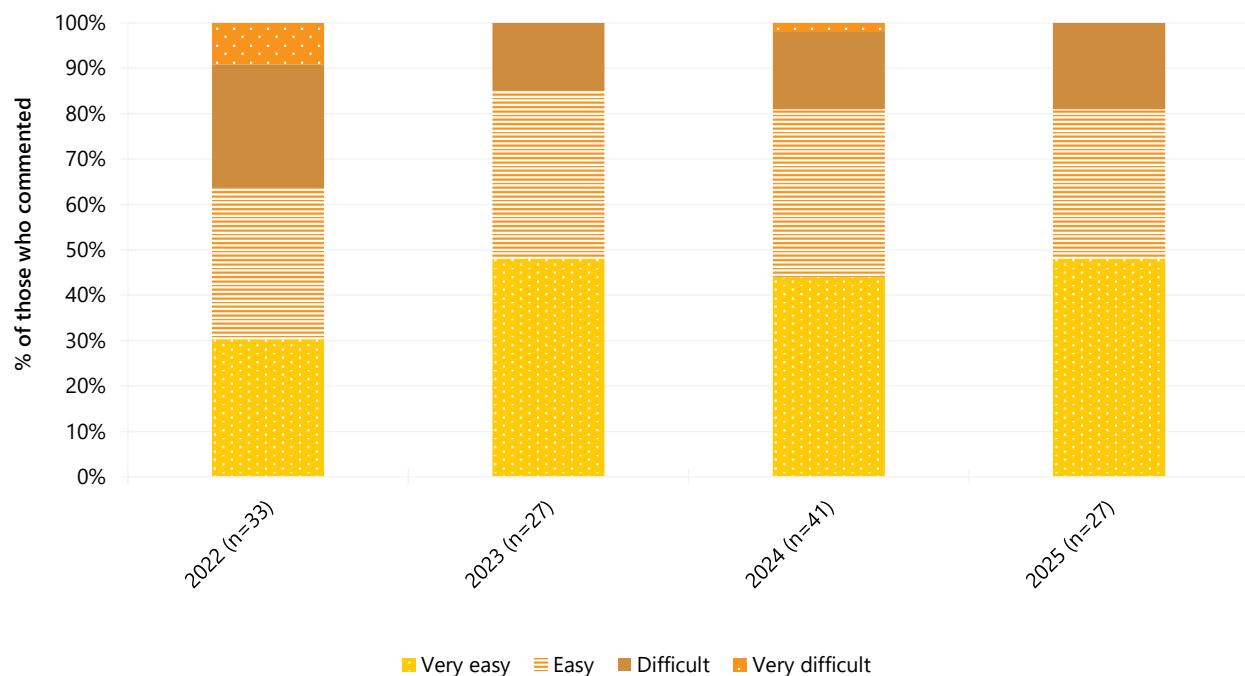
**Figure 24: Past six month use and frequency of use of non-prescribed pharmaceutical stimulants, Adelaide, SA, 2007-2025**



Note. Monitoring of pharmaceutical stimulants commenced in 2007. Median days computed among those who reported recent use (maximum 180 days). Median days rounded to the nearest whole number. Secondary Y axis reduced to 10 days to improve visibility of trends. Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e.,  $n \leq 5$  but not 0). Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

## Price and Perceived Availability

Price and availability data for non-prescribed pharmaceutical stimulants have been collected from 2022 onwards.


### Price

Participants reported a median price of \$10 per 5mg tablet in 2025 (IQR=6-10;  $n=11$ ; \$10 in 2024; IQR=6-10;  $n=8$ ;  $p=0.896$ ). Few participants ( $n \leq 5$ ) were able to comment on the price per 10mg or 20mg tablet.

### Perceived Availability

The perceived availability of non-prescribed pharmaceutical stimulants remained stable between 2024 and 2025 ( $p=0.970$ ). Among those who responded in 2025 ( $n=27$ ), almost half (48%) perceived non-prescribed pharmaceutical stimulants to be 'very easy' to obtain (44% in 2024), with a further one third (33%) perceiving availability as 'easy' (37% in 2024). Few participants ( $n \leq 5$ ) perceived availability as 'difficult' (17% in 2024) (Figure 25).

**Figure 25: Current perceived availability of non-prescribed pharmaceutical stimulants, Adelaide, SA, 2022-2025**



Note. Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure;  $*p < 0.050$ ;  $**p < 0.010$ ;  $***p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

# 5

## Cocaine

Participants were asked about their recent (past six month) use of various forms of cocaine, including powder and crack/rock cocaine. Cocaine hydrochloride, a salt derived from the coca plant, is the most common form of cocaine available in Australia. 'Crack' cocaine is a form of freebase cocaine (hydrochloride removed), which is particularly pure. 'Crack' is most prevalent in North America and infrequently encountered in Australia.

## Patterns of Consumption

### Recent Use (past 6 months)

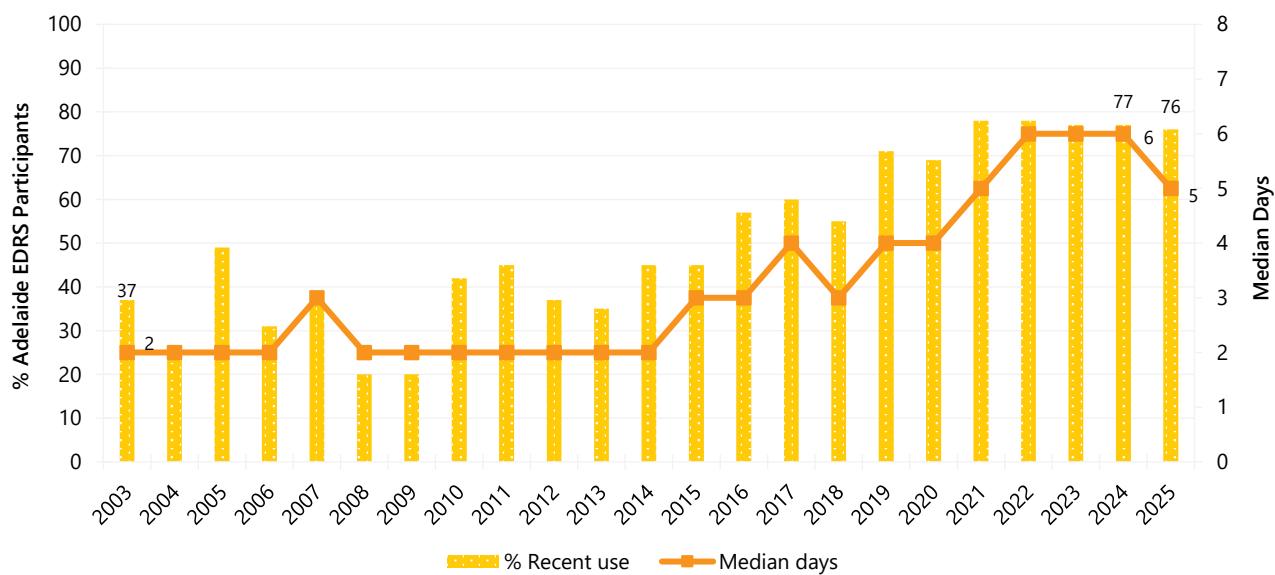
Since 2015, the per cent reporting any recent cocaine use has gradually increased. In 2025, three quarters (76%) of the Adelaide sample reported recent use, stable relative to 2024 (77%;  $p=0.866$ ) (Figure 26).

### Frequency of Use

Frequency of use gradually increased between 2014 and 2022, before subsequently stabilising. Of those who had recently consumed cocaine and commented ( $n=76$ ), participants reported a median of five days (IQR=3-10) of use in the six months preceding interview, stable from six days in 2024 (IQR=3-12;  $n=78$ ;  $p=0.379$ ) (Figure 26), equating to almost monthly use. Few participants ( $n\leq 5$ ) who had recently used cocaine reported weekly or more frequent use (13% in 2024;  $p=0.160$ ).

### Routes of Administration

Among participants who had recently consumed cocaine and commented ( $n=76$ ), 97% of participants reported snorting cocaine, stable relative to 2024 (97%). Few participants ( $n\leq 5$ ) reported swallowing as a route of administration (9% in 2024;  $p=0.765$ ).


### Quantity

Of those who reported recent use and responded ( $n=56$ ), the median amount of cocaine used in a 'typical' session was 0.50 grams (IQR=0.29-0.77; 0.50 grams in 2024; IQR=0.31-1.00;  $n=50$ ;  $p=0.633$ ). Of those who reported recent use and responded ( $n=57$ ), the median maximum amount of cocaine used in a session was 0.50 grams (IQR=0.50-1.00; 0.90 grams in 2024; IQR=0.50-1.00;  $n=49$ ;  $p=0.352$ ).

### Forms Used

Among participants who had recently consumed cocaine and commented ( $n=76$ ), the majority reported using powder cocaine (95%; 90% in 2024;  $p=0.369$ ), followed by crack/rock cocaine (8%; 18% in 2024;  $p=0.097$ ).

Figure 26: Past six month use and frequency of use of cocaine, Adelaide, SA, 2003-2025

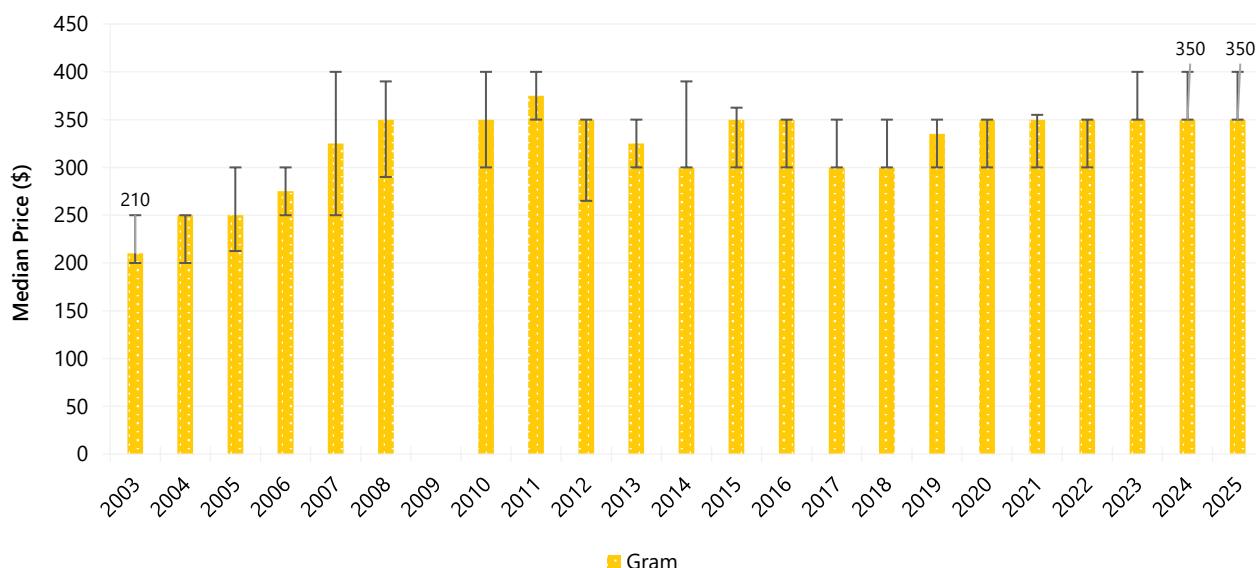


Note. Median days computed among those who reported recent use (maximum 180 days). Median days rounded to the nearest whole number. Secondary Y axis reduced to 8 days to improve visibility of trends for days of use. Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e.,  $n \leq 5$  but not 0). Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

## Price, Perceived Purity and Perceived Availability

### Price

In 2025, the median price per gram of cocaine was \$350 (IQR=350-400;  $n=46$ ; \$350 in 2024; IQR=350-400;  $n=50$ ;  $p=0.888$ ) (Figure 27).


### Perceived Purity

The perceived purity of cocaine remained stable between 2024 and 2025 ( $p=0.835$ ). Among those who were able to respond in 2025 ( $n=65$ ), 29% perceived purity to be 'high' (22% in 2024), 26% perceived purity to be 'medium' (29% in 2024), and one quarter (25%) perceived purity to be 'fluctuating' (26% in 2024). A further one fifth (20%) perceived purity to be 'low' (22% in 2024) (Figure 28).

### Perceived Availability

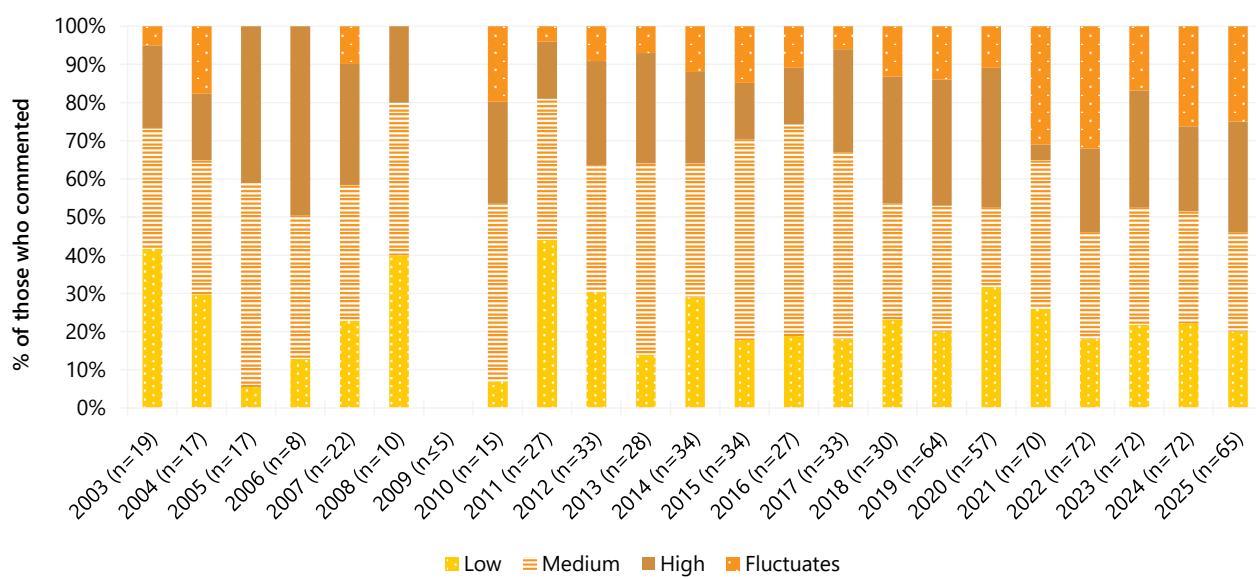

The perceived availability of cocaine remained stable between 2024 and 2025 ( $p=0.605$ ). Among those who were able to respond in 2025 ( $n=64$ ), 44% perceived cocaine to be 'easy' to obtain (43% in 2024) and almost two fifths (39%) perceived it to be 'very easy' to obtain (46% in 2024). On the other hand, 16% perceived cocaine to be 'difficult' to obtain in 2025 (11% in 2024) (Figure 29).

Figure 27: Median price of cocaine per gram, Adelaide, SA, 2003-2025



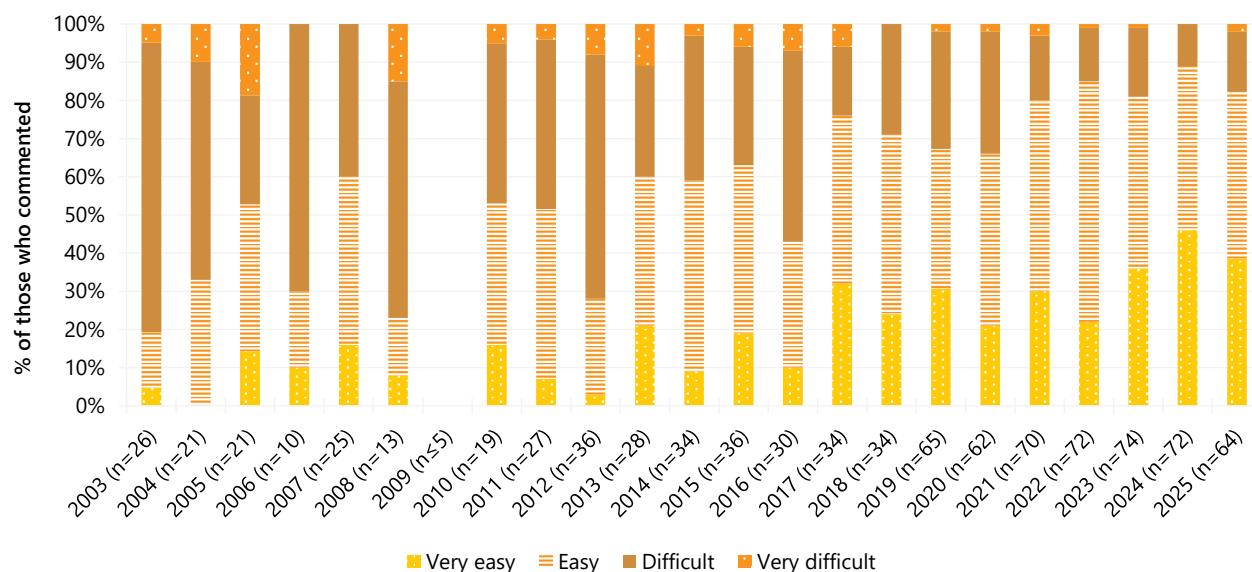

Note. Among those who commented. Data labels are only provided for the first and two most recent years of monitoring, however data are suppressed in the figure where  $n \leq 5$  responded. The error bars represent the IQR. Statistical significance for 2024 versus 2025 presented in figure;  $*p < 0.050$ ;  $**p < 0.010$ ;  $***p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

Figure 28: Current perceived purity of cocaine, Adelaide, SA, 2003-2025



Note. Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure;  $*p < 0.050$ ;  $**p < 0.010$ ;  $***p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

Figure 29: Current perceived availability of cocaine, Adelaide, SA, 2003–2025



Note. Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure;  $*p < 0.050$ ;  $**p < 0.010$ ;  $***p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

# 6

## Cannabis and/or Cannabinoid-Related Products

Participants were asked about their recent (past six month) use of various forms of cannabis, including indoor-cultivated cannabis via a hydroponic system ('hydroponic'), outdoor-cultivated cannabis ('bush'), hashish, hash oil, commercially prepared edibles and CBD and THC extract.

Terminology throughout this chapter refers to:

- **Prescribed use:** use of cannabis and/or cannabinoid-related products obtained by a prescription in the person's name;
- **Non-prescribed use:** use of cannabis and/or cannabinoid-related products which the person did not have a prescription for (i.e., illegally sourced or obtained from a prescription in someone else's name); and
- **Any use:** use of cannabis and/or cannabinoid-related products obtained through either of the above means.

## Patterns of Consumption

Participants were asked about their use of both prescribed and non-prescribed cannabis and/or cannabinoid-related products. Seven per cent reported prescribed use in the six months preceding interview ( $n \leq 5$  in 2024;  $p=0.568$ ).

In the remainder of this chapter, data from 2021-2025, and from 2003-2016, refers to non-prescribed cannabis use only, while data from 2017-2020 refers to 'any' cannabis use (including hydroponic and bush cannabis, hashish and hash oil). While comparison between 2021-2025 and previous years should be treated with caution, the relatively recent legalisation of medicinal cannabis in Australia and the small percentage reporting prescribed use between 2022 and 2023 lends confidence that estimates are relatively comparable.

### Recent Use (past 6 months)

Two thirds (67%) of the Adelaide sample reported recent use of non-prescribed cannabis and/or cannabinoid-related products in 2025, stable relative to 2024 (73%;  $p=0.359$ ) (Figure 30).

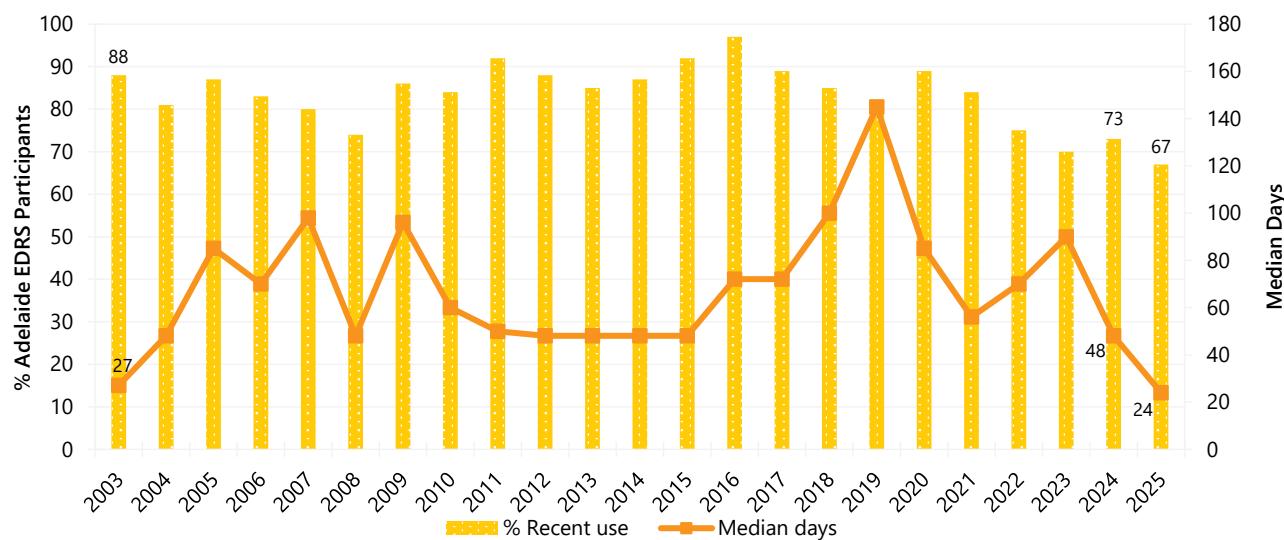
### Frequency of Use

Median frequency of use has varied between at least once per week to up to four days per week over the course of monitoring. Of those who had recently consumed non-prescribed cannabis and/or cannabinoid-related products and commented in 2025 ( $n=67$ ), participants reported a median of 24 days (IQR=6-158) of use in the six months preceding interview, stable relative to 2024 (48 days; IQR=5-120;  $n=74$ ;  $p=0.947$ ) (Figure 30). Fifty-five per cent of those who had recently used non-prescribed

cannabis and/or cannabinoid-related products reported weekly or more frequent use (61% in 2024;  $p=0.606$ ), including one fifth (21%) who reported daily use, stable relative to 2024 (18%;  $p=0.660$ ).

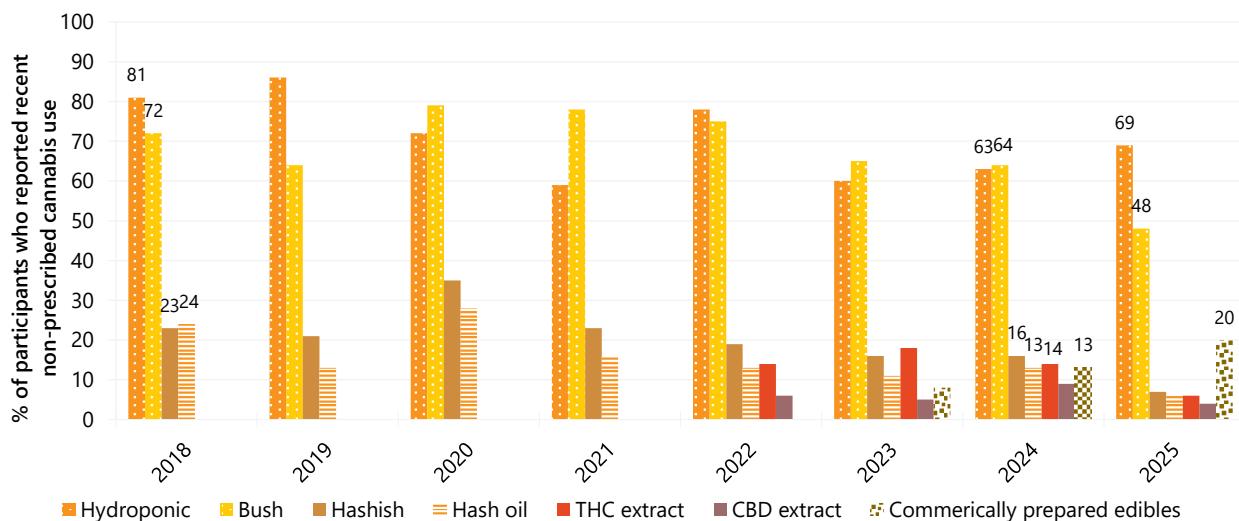
### Routes of Administration

Among participants who had recently consumed non-prescribed cannabis and/or cannabinoid-related products and commented (n=67), 85% reported smoking as a route of administration, unchanged from 2024 (85%). One quarter (27%) reported swallowing, stable relative to 2024 (16%;  $p=0.156$ ), and 16% reported inhaling/vaporising, a significant decrease relative to 2024 (34%;  $p=0.023$ ).


### Quantity

Of those who reported recent non-prescribed use and responded, the median amount of non-prescribed cannabis and/or cannabinoid-related products used on the last occasion of use was two and a half cones (IQR=1-6.5; n=20; 2 cones in 2024; IQR=1-3; n=27;  $p=0.487$ ) or one gram (IQR=0.50-2.00; n=19; 1 gram in 2024; IQR=0.50-1.00; n=17;  $p=0.652$ ) or one joint (IQR=0.5-1; n=15; 1 joint in 2024; IQR=1-1; n=18;  $p=0.689$ ).

### Forms Used


Among participants who had recently consumed non-prescribed cannabis and/or cannabinoid-related products and responded (n=54), the majority reported recent use of hydroponic cannabis (69%; 63% in 2024;  $p=0.548$ ). This was closely followed by outdoor grown 'bush' cannabis, with almost half (48%) reporting recent use, stable relative to 2024 (64%;  $p=0.132$ ). One fifth (20%) reported recent use of commercially prepared edibles (13% in 2024;  $p=0.304$ ). Few participants reported having used hashish (n≤5; 16% in 2024;  $p=0.238$ ), hash oil (n≤5; 13% in 2024;  $p=0.321$ ), THC extract (n≤5; 14% in 2024;  $p=0.203$ ) and CBD extract (n≤5; n≤5 in 2024;  $p=0.438$ ) in the six months preceding interview (Figure 31).

**Figure 30: Past six month use and frequency of use of non-prescribed cannabis and/or cannabinoid-related products, Adelaide, SA, 2003-2025**



Note. Prior to 2021, we did not distinguish between prescribed and non-prescribed cannabis, and as such it is possible that 2017-2020 figures include some participants who were using prescribed cannabis only (with medicinal cannabis first legalised in Australia in November 2016), although we anticipate these numbers would be very low (in 2022, no participants reported use of prescribed cannabis only). Further, from 2022 onwards, we captured use of 'cannabis and/or cannabinoid-related products', while in previous years questions referred only to 'cannabis'. Median days computed among those who reported recent use (maximum 180 days). Median days rounded to the nearest whole number. Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e.,  $n \leq 5$  but not 0). Statistical significance for 2024 versus 2025 presented in figure: \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

**Figure 31: Past six month use of different forms of non-prescribed cannabis and/or cannabinoid-related products, among those who reported recent non-prescribed use, Adelaide, SA, 2018-2025**



Note. Prior to 2021, we did not distinguish between prescribed and non-prescribed cannabis, and as such it is possible that 2018-2020 figures include some participants who were using prescribed forms of cannabis (with medicinal cannabis first legalised in Australia in November 2016), although we anticipate these numbers would be very low. Data labels are only provided for the first and two most recent years of monitoring, however data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure: \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

## Price, Perceived Potency and Perceived Availability

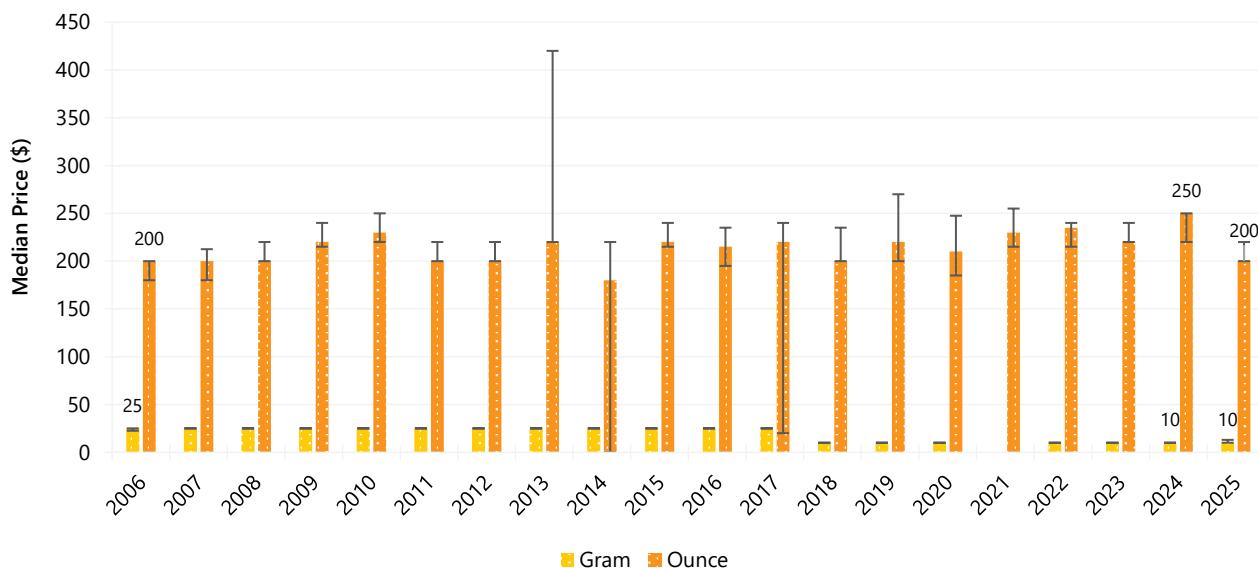
### Hydroponic Cannabis

**Price:** The median price per ounce of non-prescribed hydroponic cannabis has fluctuated over the course of monitoring. In 2025, participants paid a median of \$200 per ounce (IQR=200-220; n=7), stable relative to 2024 (\$250; IQR=220-250; n=13;  $p=0.068$ ). The median price per gram of non-prescribed hydroponic cannabis remained stable at \$10 (IQR=10-13; n=7; \$10 in 2024; IQR=10-10; n=7;  $p=0.722$ ) (Figure 32A).

**Perceived Potency:** The perceived potency of non-prescribed hydroponic cannabis remained stable between 2024 and 2025 ( $p=0.147$ ). Among those who were able to respond in 2025 (n=31), almost two thirds (65%) perceived non-prescribed hydroponic cannabis to be of 'high' potency (65% in 2024), and almost one quarter (23%) perceived potency to be 'fluctuating' ( $n \leq 5$  in 2024) (Figure 33A).

**Perceived Availability:** The perceived availability of non-prescribed hydroponic cannabis remained stable between 2024 and 2025 ( $p=0.704$ ). Among those who were able to respond in 2025 (n=31), 71% perceived non-prescribed hydroponic cannabis to be 'very easy' to obtain (66% in 2024), and almost one quarter (23%) perceived it to be 'easy' to obtain (32% in 2024) (Figure 34A).

### Bush Cannabis


**Price:** Few participants ( $n \leq 5$ ) were able to comment on the median price per ounce of non-prescribed bush cannabis (\$200 in 2024; IQR=200-215; n=7;  $p=0.486$ ) or the median price per gram of non-prescribed bush cannabis (\$10 in 2024; IQR=10-13; n=8;  $p=0.220$ ) (Figure 32B).

**Perceived Potency:** The perceived potency of non-prescribed bush cannabis remained stable between 2024 and 2025 ( $p=0.950$ ). Among those who were able to respond in 2025 (n=15), equal percentages (40%) perceived the potency of non-prescribed bush cannabis to be 'high' (38% in 2024) and 'medium' (33% in 2024), respectively (Figure 33B).

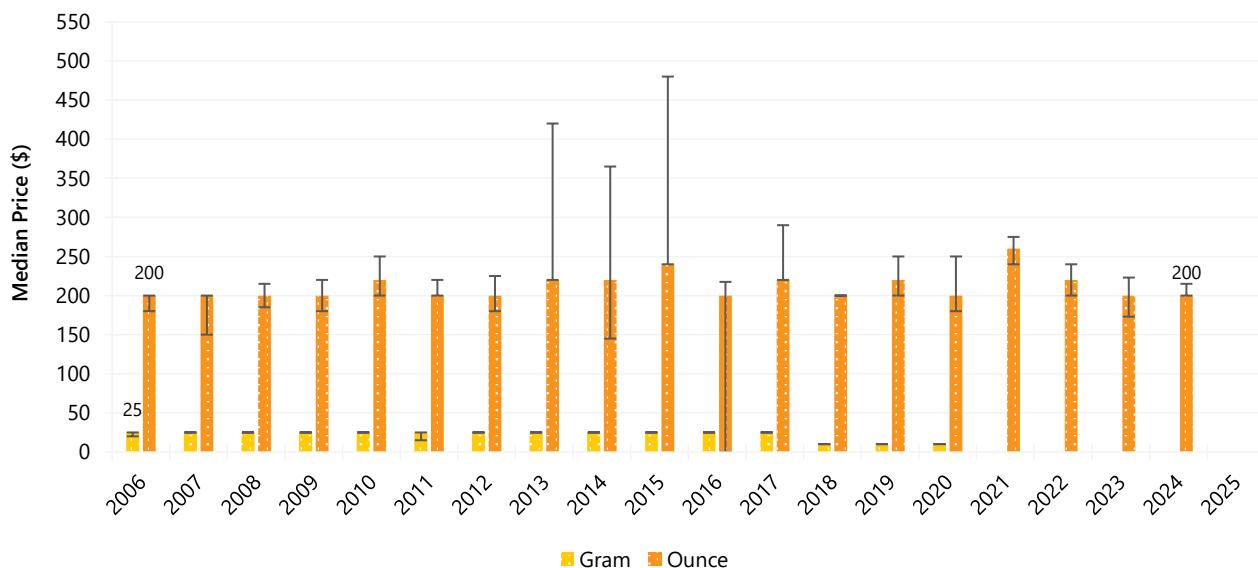
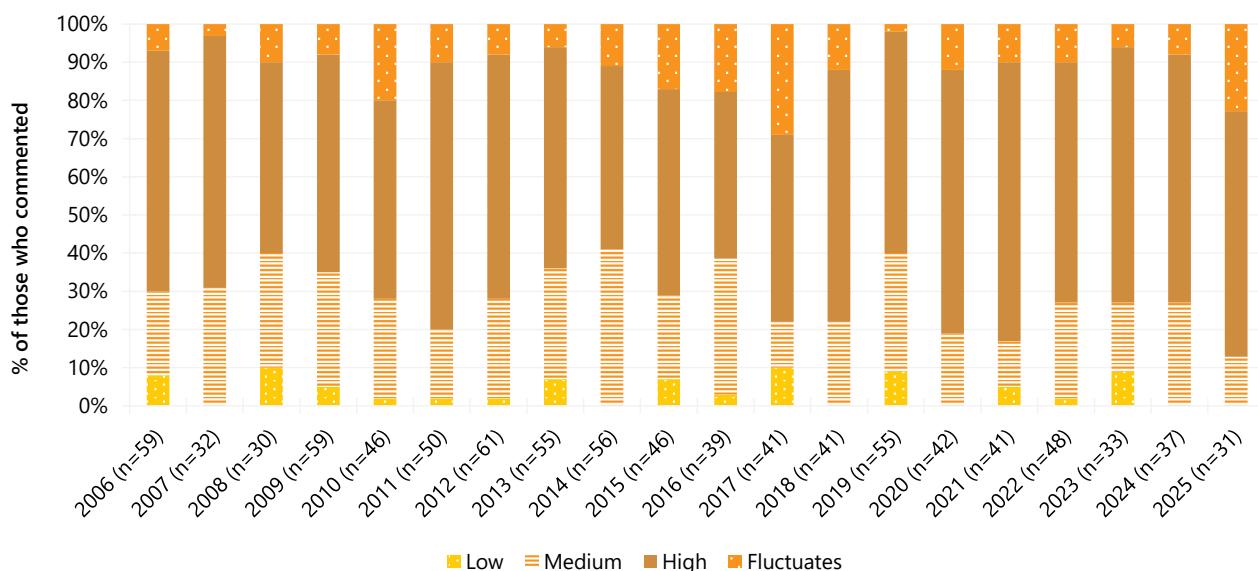

**Perceived Availability:** The perceived availability of non-prescribed bush cannabis remained stable between 2024 and 2025 ( $p=0.538$ ). Among those who were able to respond in 2025 (n=15), the highest percentage (67%) perceived non-prescribed bush cannabis to be 'very easy' to obtain (69% in 2024) (Figure 34B).

Figure 32: Median price of non-prescribed hydroponic (A) and bush (B) cannabis per ounce and gram, Adelaide, SA, 2006-2025

**(A) Hydroponic cannabis**




**(B) Bush cannabis**



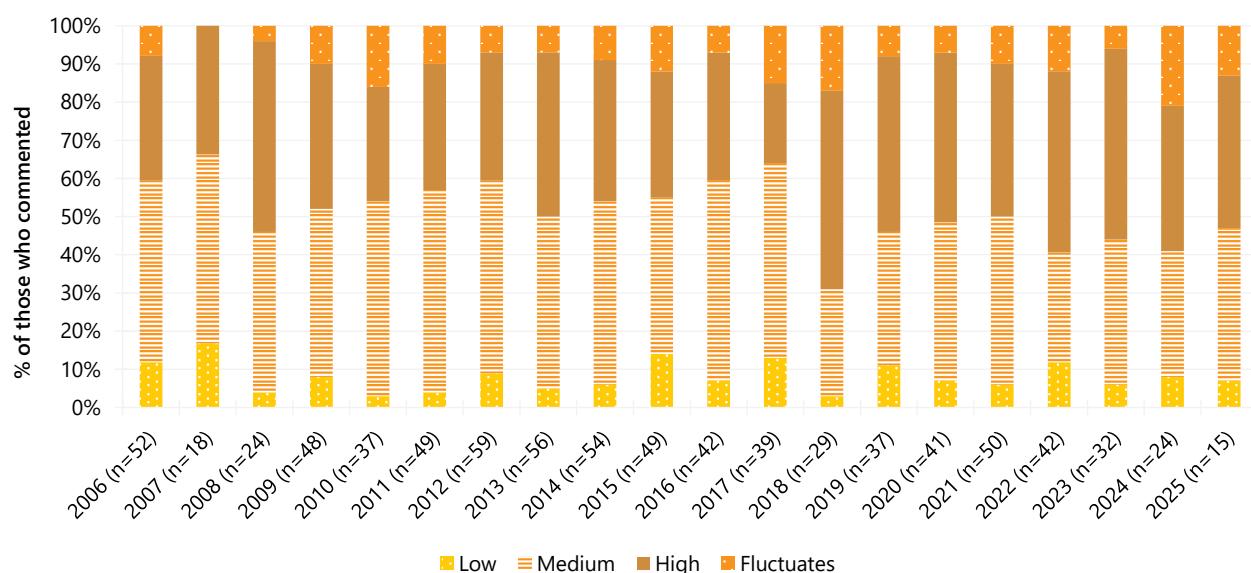
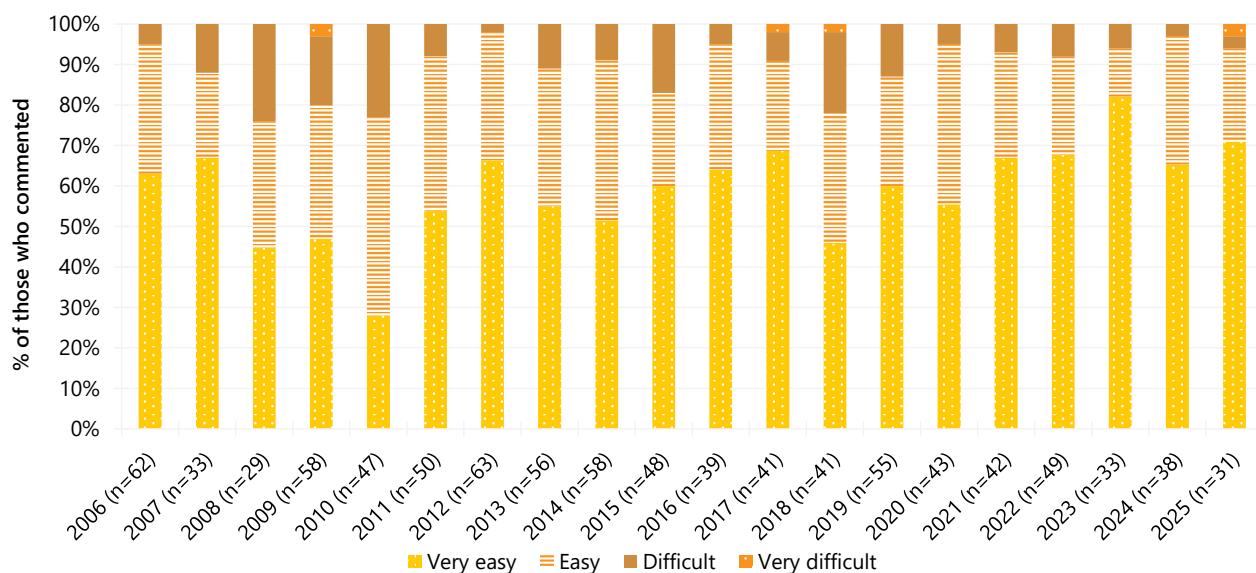

Note. From 2006 onwards hydroponic and bush cannabis data collected separately. Data from 2022 onwards refers to non-prescribed cannabis only; prior to 2022, we did not distinguish between prescribed and non-prescribed cannabis, and as such it is possible that 2017-2021 figures include some participants who reported on the price of prescribed cannabis (with medicinal cannabis first legalised in Australia in November 2016), although we anticipate these numbers would be very low. Data labels are only provided for the first and two most recent years of monitoring, however data are suppressed in the figure where  $n \leq 5$  responded. The error bars represent the IQR. Statistical significance for 2024 versus 2025 presented in figure;  $*p < 0.050$ ;  $**p < 0.010$ ;  $***p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

Figure 33: Current perceived potency of non-prescribed hydroponic (A) and bush (B) cannabis, Adelaide, SA, 2006-2025

**(A) Hydroponic cannabis**




**(B) Bush cannabis**



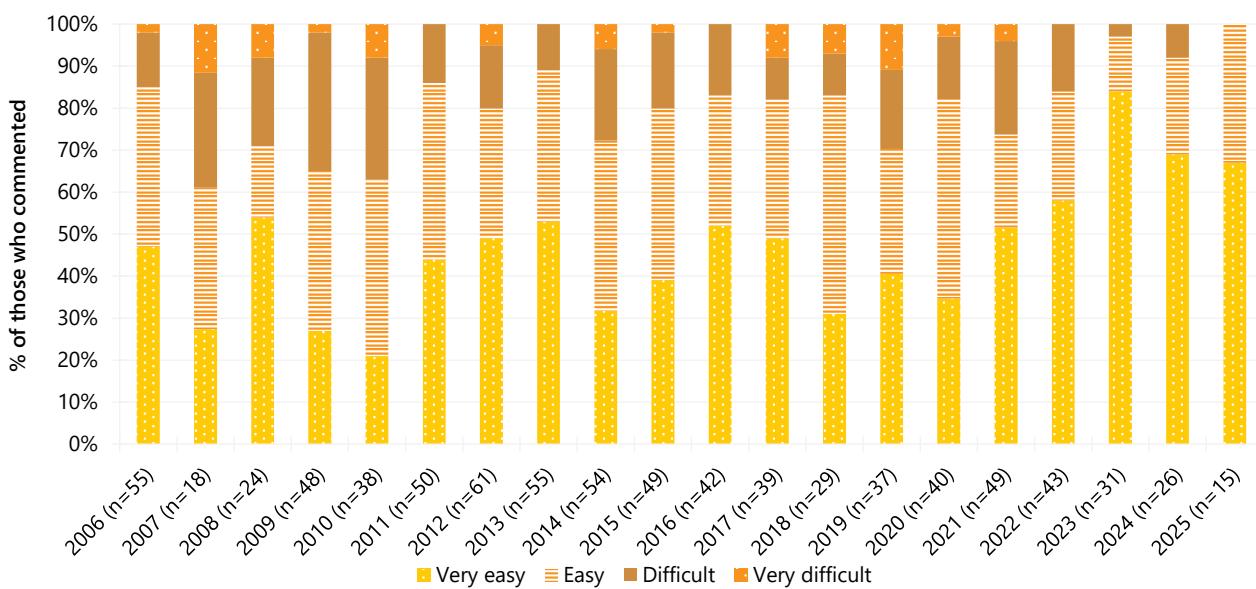

Note. From 2006 onwards hydroponic and bush cannabis data collected separately. Data from 2022 onwards refers to non-prescribed cannabis only; prior to 2022, we did not distinguish between prescribed and non-prescribed cannabis, and as such it is possible that 2017-2021 figures include some participants who reported on the perceived potency of prescribed cannabis (with medicinal cannabis first legalised in Australia in November 2016), although we anticipate these numbers would be very low. Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

Figure 34: Current perceived availability of non-prescribed hydroponic (A) and bush (B) cannabis, Adelaide, SA, 2006-2025

**(A) Hydroponic cannabis**



**(B) Bush cannabis**



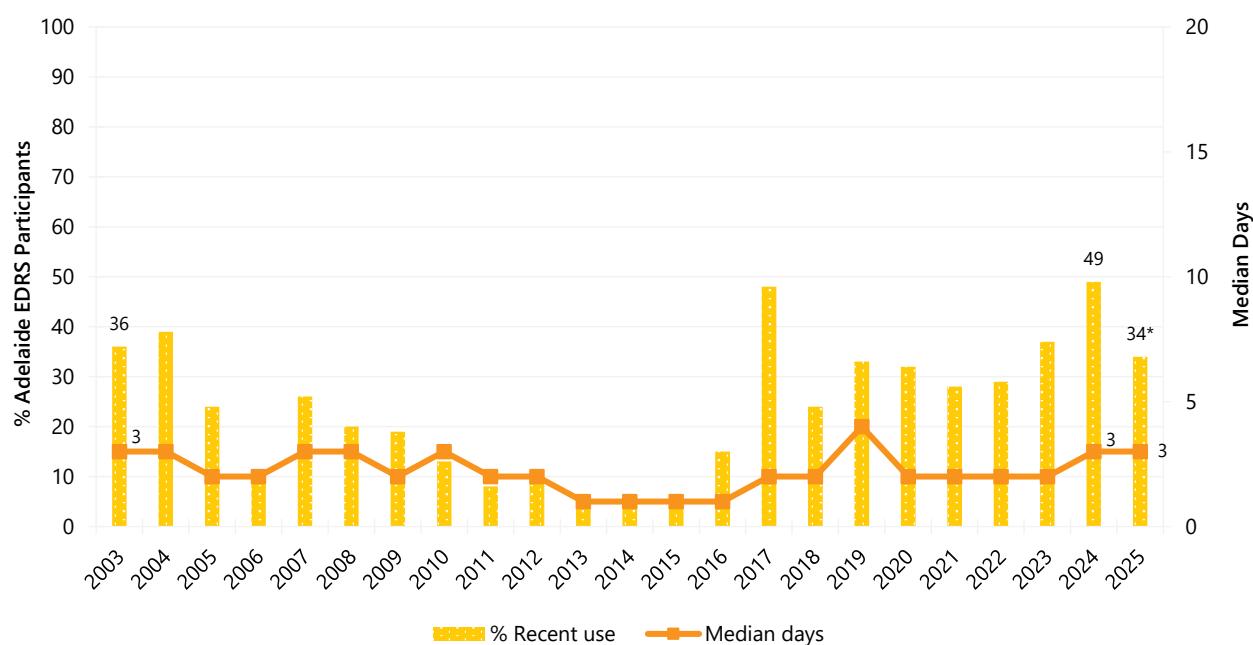
Note. From 2006 onwards hydroponic and bush cannabis data collected separately. Data from 2022 onwards refers to non-prescribed cannabis only; prior to 2022, we did not distinguish between prescribed and non-prescribed cannabis, and as such it is possible that 2017-2021 figures include some participants who reported on the perceived availability of prescribed cannabis (with medicinal cannabis first legalised in Australia in November 2016), although we anticipate these numbers would be very low. Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

# 7

## Ketamine, LSD and DMT

### Non-Prescribed Ketamine

#### Patterns of Consumption


**Recent Use (past 6 months):** One third (34%) of the Adelaide sample reported using non-prescribed ketamine in the six months prior to interview, a significant decrease from 49% in 2024 ( $p=0.048$ ) (Figure 35).

**Frequency of Use:** Of those who had recently consumed non-prescribed ketamine and commented (n=34), median days of use remained low and stable in 2025 (3 days; IQR=1-5), relative to 2024 (3 days; IQR=2-8; n=49;  $p=0.254$ ) (Figure 35). Few participants (n≤5) reported weekly or more frequent use in 2025, therefore, these data are suppressed (n≤5 in 2024;  $p=0.641$ ).

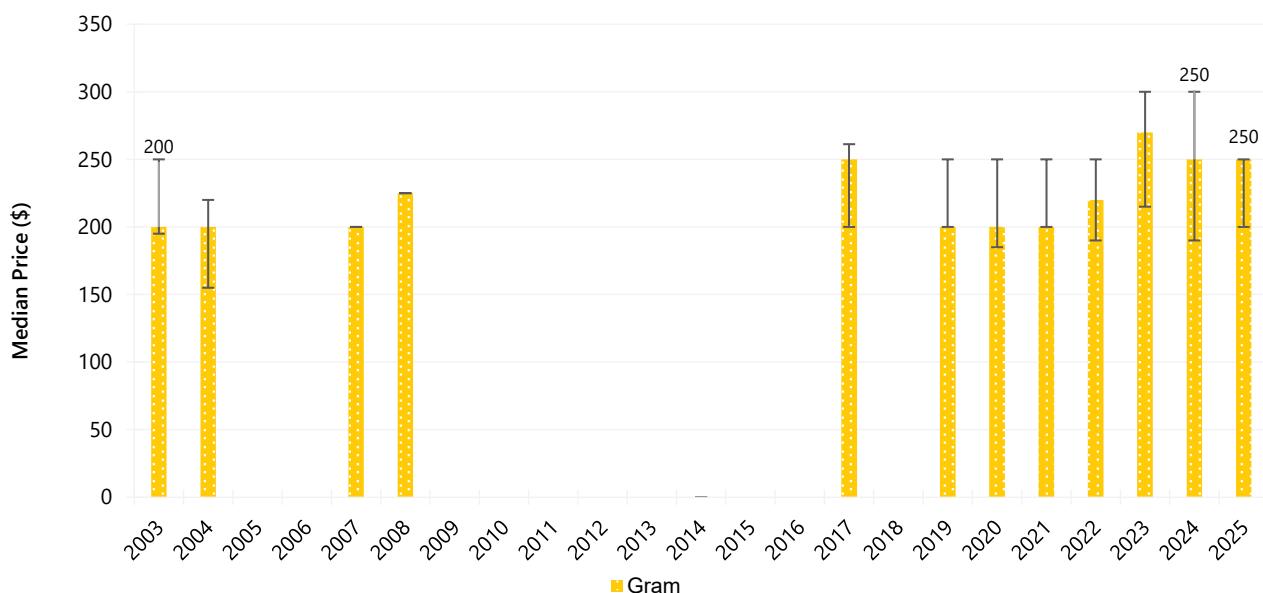
**Routes of Administration:** Among participants who had recently consumed non-prescribed ketamine and commented (n=34), the majority (94%) of participants reported snorting as a route of administration, stable relative to 2024 (92%).

**Quantity:** Of those who reported recent use and responded (n=16), the median amount of non-prescribed ketamine used in a 'typical' session was 0.25 grams (IQR=0.10-0.31; 0.20 grams in 2024; IQR=0.10-0.30; n=32;  $p=0.463$ ). Of those who reported recent use and responded (n=16), the median maximum amount of non-prescribed ketamine used in a session was 0.28 grams (IQR=0.20-0.50; 0.30 grams in 2024; IQR=0.14-0.50; n=32;  $p=0.800$ ).

Figure 35: Past six month use and frequency of use of non-prescribed ketamine, Adelaide, SA, 2003-2025



Note. Median days computed among those who reported recent use (maximum 180 days). Median days rounded to the nearest whole number. Secondary Y axis reduced to 20 days to improve visibility of trends. Data from 2023 onwards refers to non-prescribed ketamine only (noting that although ketamine has been used as an anaesthetic for many years, it only became available via prescription, for treatment resistant depression, in 2021). Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e.,  $n \leq 5$  but not 0). Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.


## Price, Perceived Purity and Perceived Availability

**Price:** The median reported price of non-prescribed ketamine has fluctuated somewhat since the commencement of monitoring. The median price per gram of ketamine in 2025 was \$250 (IQR=200-250;  $n=17$ ; \$250 in 2024; IQR=190-300;  $n=23$ ;  $p=0.649$ ) (Figure 36).

**Perceived Purity:** The perceived purity of non-prescribed ketamine remained stable between 2024 and 2025 ( $p=0.844$ ). Among those who were able to respond in 2025 ( $n=26$ ), almost three quarters (73%) perceived the purity of ketamine to be 'high' (67% in 2024), though few participants ( $n \leq 5$ ) perceived purity to be 'medium' (22% in 2024). No participants reported 'low' purity (Figure 37).

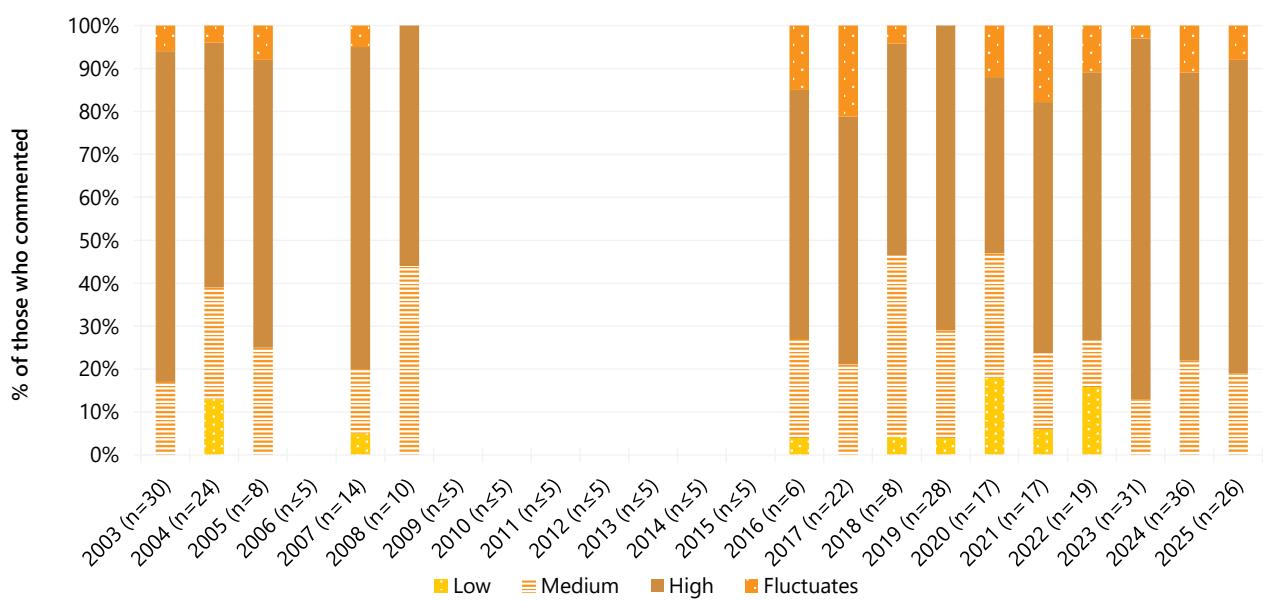

**Perceived Availability:** The perceived availability of non-prescribed ketamine remained stable between 2024 and 2025 ( $p=0.572$ ). Of those who were able to respond in 2025 ( $n=26$ ), 46% reported ketamine to be 'easy' to obtain (36% in 2024), with a further 31% perceiving it to be 'very easy' to obtain (25% in 2024) (Figure 38).

Figure 36: Median price of non-prescribed ketamine per gram, Adelaide, SA, 2003-2025



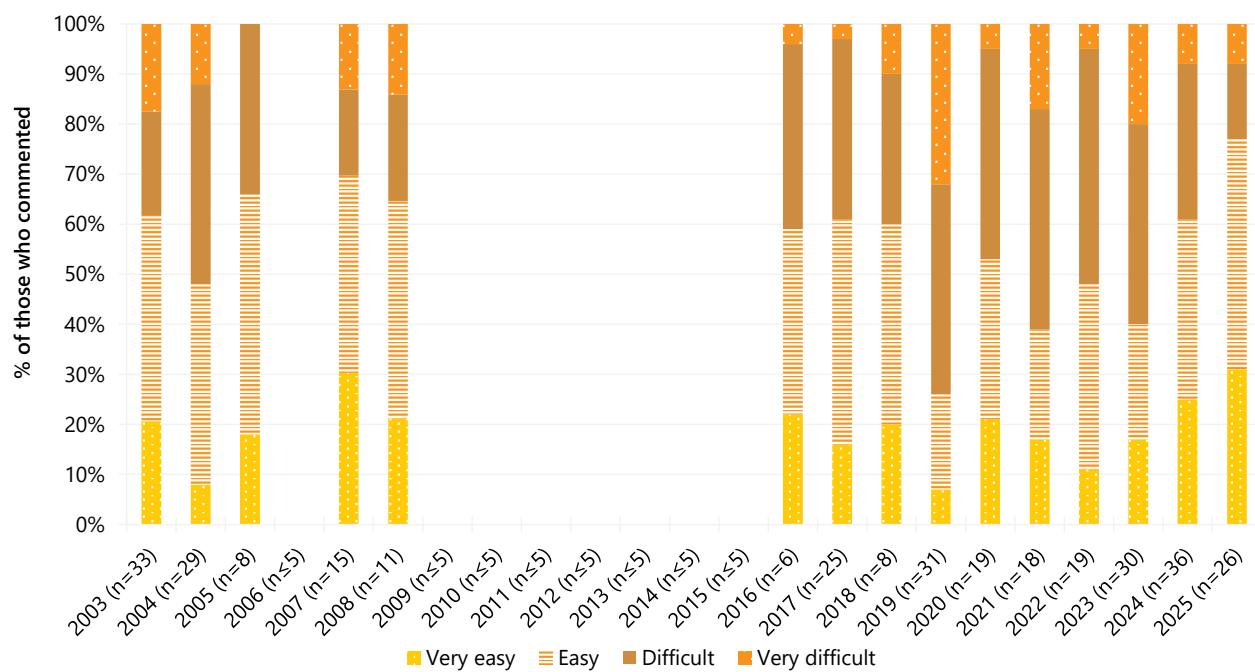

Note. Among those who commented. Data from 2023 onwards refers to non-prescribed ketamine only (noting that although ketamine has been used as an anaesthetic for many years, it only became available via prescription, for treatment resistant depression, in 2021). Data labels are only provided for the first and two most recent years of monitoring, however data are suppressed in the figure where  $n \leq 5$  responded. The error bars represent the IQR. Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

Figure 37: Current perceived purity of non-prescribed ketamine, Adelaide, SA, 2003-2025



Note. Data from 2023 onwards refers to non-prescribed ketamine only (noting that although ketamine has been used as an anaesthetic for many years, it only became available via prescription, for treatment resistant depression, in 2021). Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

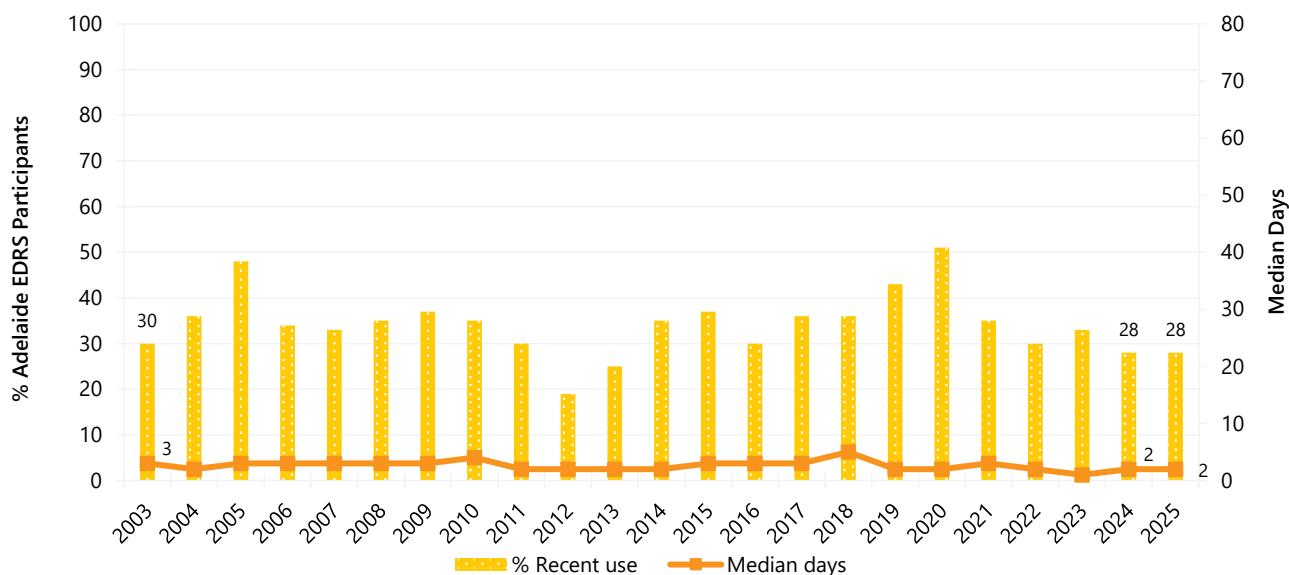
Figure 38: Current perceived availability of non-prescribed ketamine, Adelaide, SA, 2003-2025



Note. Data from 2023 onwards refers to non-prescribed ketamine only (noting that although ketamine has been used as an anaesthetic for many years, it only became available via prescription, for treatment resistant depression, in 2021). Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

## LSD

### Patterns of Consumption


**Recent Use (past 6 months):** Twenty-eight per cent of the Adelaide sample had used LSD in the six months preceding interview, stable relative to 2024 (28%) (Figure 39).

**Frequency of Use:** Median days of LSD use over the years has remained low. Of those who had recently consumed LSD in 2025 and commented ( $n=28$ ), frequency of use remained stable at two days (IQR=1-3; 2 days in 2024; IQR=1-3;  $n=28$ ;  $p=0.383$ ) (Figure 39). No participants who had recently consumed LSD reported weekly or more frequent use in 2025 ( $n \leq 5$  in 2024).

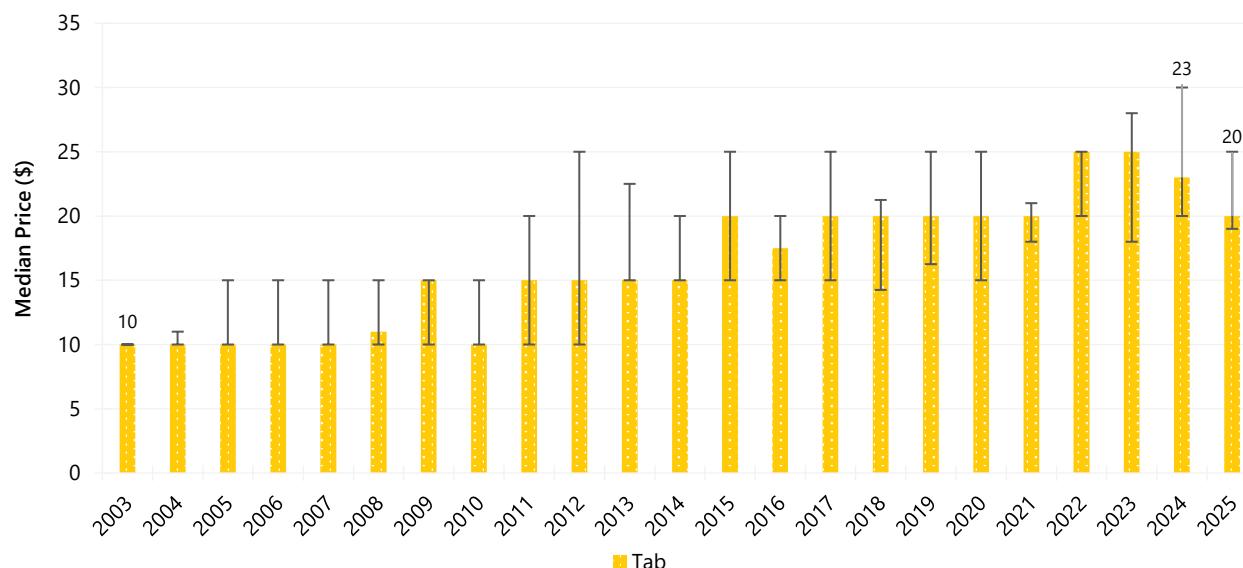
**Routes of Administration:** Among participants who had recently consumed LSD and commented ( $n=28$ ), all participants (100%) reported swallowing LSD in 2025, stable relative to 2024 (100%).

**Quantity:** Of those who reported recent use and responded ( $n=16$ ), the median amount of LSD used in a 'typical' session was one tab (IQR=1-2; 1.5 tabs in 2024; IQR=1-2;  $n=14$ ;  $p=0.661$ ). Of those who reported recent use and responded ( $n=15$ ), the median maximum amount of LSD used in a session was 2 tabs (IQR=1-3; 1.5 tabs in 2024; IQR=1-2;  $n=14$ ;  $p=0.419$ ).

Figure 39: Past six month use and frequency of use of LSD, Adelaide, SA, 2003-2025



Note. Median days computed among those who reported recent use (maximum 180 days). Median days rounded to the nearest whole number. Secondary Y axis reduced to 80 days to improve visibility of trends. Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e.,  $n \leq 5$  but not 0). Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.


## Price, Perceived Purity and Perceived Availability

**Price:** The median price for one tab of LSD has doubled since the commencement of monitoring. In 2025, the median price remained stable (\$20; IQR=19-25;  $n=19$ ) relative to 2024 (\$23; IQR=20-30;  $n=22$ ;  $p=0.593$ ) (Figure 40).

**Perceived Purity:** The perceived purity of LSD remained stable between 2024 and 2025 ( $p=0.948$ ). Among those who were able to respond in 2025 ( $n=23$ ), three fifths (61%) perceived the purity of LSD to be 'high' (52% in 2024), followed by almost one third (30%) who reported the purity to be 'medium' (34% in 2024) (Figure 41).

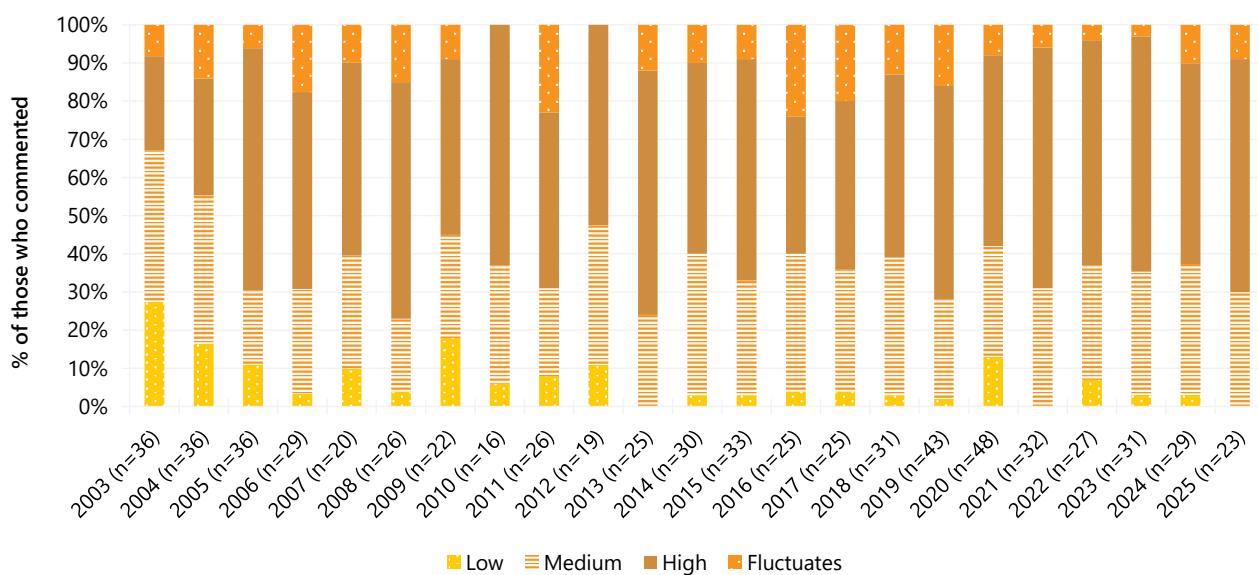

**Perceived Availability:** The perceived availability of LSD remained stable between 2024 and 2025 ( $p=0.718$ ). Of those able to comment in 2025 ( $n=23$ ), half (52%) reported LSD as being 'easy' to obtain (47% in 2024), with a further 26% reporting it was 'very easy' to obtain (19% in 2024). In contrast, few participants ( $n \leq 5$ ) reported LSD as being 'difficult' to obtain (31% in 2024) (Figure 42).

Figure 40: Median price of LSD per tab, Adelaide, SA, 2003-2025



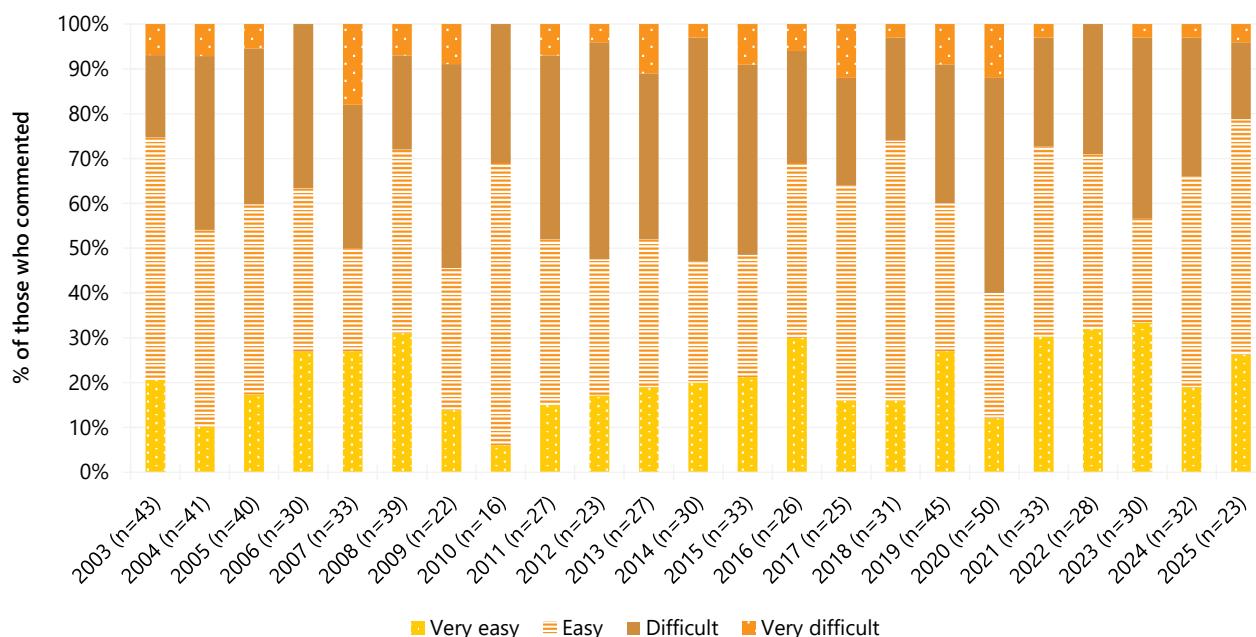

Note. Among those who commented. Data labels are only provided for the first and two most recent years of monitoring, however data are suppressed in the figure where  $n \leq 5$  responded. The error bars represent the IQR. Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

Figure 41: Current perceived purity of LSD, Adelaide, SA, 2003-2025



Note. Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

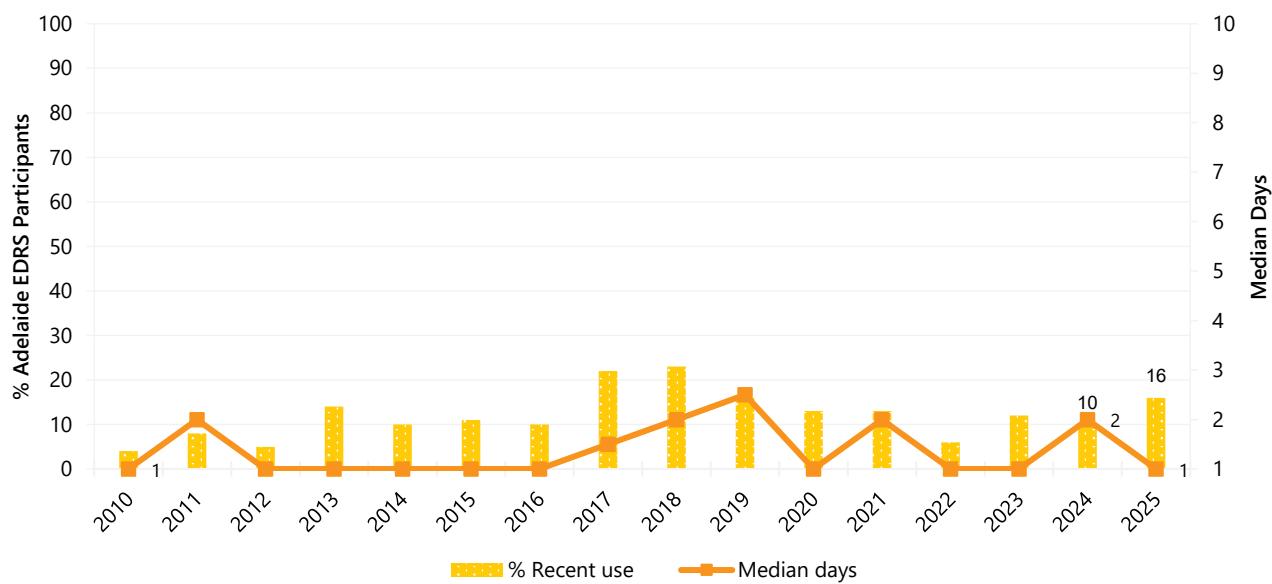
Figure 42: Current perceived availability of LSD, Adelaide, SA, 2003-2025



Note. Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

## DMT

### Patterns of Consumption


**Recent Use (past 6 months):** DMT use has fluctuated over the reporting period, with 16% reporting recent use in 2025, stable relative to 10% in 2024 ( $p=0.228$ ) (Figure 43).

**Frequency of Use:** Median days of DMT use across the years has been infrequent and stable, with a median of one day of use (IQR=1-3;  $n=16$ ) reported in 2025 (2 days in 2024; IQR=1-4;  $n=10$ ;  $p=0.472$ ) (Figure 43).

**Routes of Administration:** Among participants who had recently consumed DMT and commented ( $n=16$ ), 94% reported smoking as a route of administration, stable relative to 2024 (90%).

**Quantity:** Few participants ( $n \leq 5$ ) reported on the 'typical' and maximum quantity of DMT used in a session in 2025, therefore, further details are not reported ( $n \leq 5$  in 2024, respectively).

Figure 43: Past six month use and frequency of use of DMT, Adelaide, SA, 2010-2025



Note. Median days computed among those who reported recent use (maximum 180 days). Median days rounded to the nearest whole number. Secondary Y axis reduced to 10 days to improve visibility of trends. Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e.,  $n \leq 5$  but not 0). Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

# 8

## New Psychoactive Substances

New psychoactive substances (NPS) are often defined as substances which do not fall under international drug control, but which may pose a public health threat. However, there is no universally accepted definition, and in practicality the term has come to include drugs which have previously not been well-established in recreational drug markets.

In previous (2010-2020) EDRS reports, DMT and *paramethoxyamphetamine* (PMA) were categorised as NPS. However, the classification of these substances as NPS is not universally accepted, and from 2021 onwards, the decision was made to exclude them from this category. This means that the figures presented below for recent use of any NPS will not align with those in our 2010-2020 reports.

Further, some organisations (e.g., the United Nations Office on Drugs and Crime) include plant-based substances in their definition of NPS, whilst other organisations exclude them. To allow comparability with both methods, historically we have presented figures for 'any' NPS use, both including and excluding plant-based NPS. However, in 2025, we did not specifically ask about the use of any specific plant-based NPS (e.g., mescaline, ayahuasca) and thus only present the per cent for 'any' NPS, excluding plant-based NPS.

## Patterns of Consumption

### Recent Use (past 6 months)

Eleven per cent of the sample reported recent use of any NPS, excluding plant-based NPS, stable relative to 2024 (15%;  $p=0.527$ ) (Table 3).

### Forms Used

Participants are asked about a range of NPS, updated each year to reflect key emerging substances of interest.

In 2025, drugs that 'mimic' psychedelic drugs were the most commonly used NPS class (6%), though few participants ( $n \leq 5$ ) reported use of any individual NPS (Table 4). Please refer to the [2025 National EDRS Report](#) for national trends, or contact the Drug Trends team for further information ([drugtrends@unsw.edu.au](mailto:drugtrends@unsw.edu.au)).

**Table 3: Past six month use of NPS (excluding plant-based NPS), Adelaide, SA, 2010-2025**

| %           | Excluding plant-based NPS |
|-------------|---------------------------|
| <b>2010</b> | 22                        |
| <b>2011</b> | 47                        |
| <b>2012</b> | 37                        |
| <b>2013</b> | 36                        |
| <b>2014</b> | 35                        |
| <b>2015</b> | 44                        |
| <b>2016</b> | 25                        |
| <b>2017</b> | 25                        |
| <b>2018</b> | 26                        |
| <b>2019</b> | 24                        |
| <b>2020</b> | 12                        |
| <b>2021</b> | 8                         |
| <b>2022</b> | 7                         |
| <b>2023</b> | 12                        |
| <b>2024</b> | 15                        |
| <b>2025</b> | <b>11</b>                 |

Note. Monitoring of NPS first commenced in 2010. In 2021, the decision was made to remove DMT and PMA from the NPS category, with these substances now presented in Chapter 7 and Chapter 9, respectively. This has had a substantial impact on the percentage of the sample reporting 'any' NPS use in the past six months and means that the figures presented above will not align with those presented in previous (2010-2020) EDRS reports. Statistical significance for 2024 versus 2025 presented in table; \* $p<0.050$ ; \*\* $p<0.010$ ; \*\*\* $p<0.001$ . Please refer to Table 1 for a guide to table/figure notes.

Table 4: Past six month use of NPS by drug type, Adelaide, SA, 2010-2025

| %                                                             | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 |
|---------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| <b>Drugs that mimic the effects of ecstasy</b>                | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | -    |
| Mephedrone                                                    | 9    | 8    | -    | -    | -    | 0    | 0    | 0    | -    | -    | -    | -    | 0    | 0    | -    | -    |
| Methylone                                                     | /    | -    | -    | -    | -    | -    | -    | -    | 7    | -    | 0    | -    | 0    | 0    | -    | -    |
| N-ethylpentylone (ephylone)                                   | /    | /    | /    | /    | /    | /    | /    | /    | /    | 0    | 0    | 0    | 0    | 0    | 0    | -    |
| N-ethylbutylone (eutyline)                                    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | 0    | 0    | 0    | 0    | 0    | -    |
| Other drugs that mimic the effects of ecstasy                 | /    | /    | /    | /    | /    | /    | /    | 0    | -    | -    | -    | -    | -    | 0    | -    | 0    |
| <b>Drugs that mimic the effects of amphetamine or cocaine</b> | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | -    |
| 3-chloromethcathinone (e.g., 3-CMC; clophedrone)              | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | 0    | 0    | 0    | 0    | -    |
| 3-Methylmethcathinone                                         | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | -    | -    | -    | -    | -    |
| 4-Chloromethcathinone                                         | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | 0    | 0    | 0    | -    |
| 4-FA                                                          | /    | /    | /    | /    | /    | /    | -    | -    | 0    | 0    | 0    | 0    | -    | -    | 0    | 0    |
| Alpha PHP                                                     | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | -    | 0    | 0    | 0    |
| Alpha PVP                                                     | /    | /    | /    | /    | /    | /    | -    | -    | -    | -    | 0    | 0    | -    | 0    | 0    | 0    |
| Dimethylpentylone                                             | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | -    | -    | -    | 0    |
| MDPV                                                          | -    | -    | -    | 1    | 1    | 1    | 0    | -    | 0    | -    | 0    | 0    | -    | 0    | 0    | 0    |
| Methcathinone                                                 | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | 0    | 0    |
| N-Ethylhexedrone                                              | /    | /    | /    | /    | /    | /    | /    | /    | /    | 0    | 0    | 0    | -    | 0    | 0    | 0    |
| Other drugs that mimic the effects of amphetamine or cocaine  | /    | /    | /    | /    | /    | /    | /    | -    | -    | -    | 0    | 0    | 0    | 0    | -    | -    |
| <b>Drugs that mimic the effects of psychedelic drugs</b>      | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | 6    |
| Any 2C substance (e.g., 2C-I, 2C-B)~                          | 11   | 18   | 10   | 19   | 15   | 14   | 11   | 9    | 8    | 6    | 5    | 6    | 3    | 5    | 5    | -    |
| 4-AcO-DMT                                                     | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | -    |
| 5-MeO-DMT                                                     | -    | -    | -    | -    | 0    | 0    | 0    | 0    | -    | -    | -    | -    | 0    | -    | 0    | -    |
| Dox (e.g., DOB, DOC, DOI, DOM)                                | -    | 7    | 0    | -    | 0    | 0    | 0    | -    | 0    | -    | 0    | 0    | 0    | 0    | 0    | 0    |
| NBOH (e.g., 25I, 25B)                                         | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | 0    | 0    | 0    | 0    |
| NBOMe (e.g., 25I, 25B, 25C, others)                           | /    | /    | /    | /    | 9    | 7    | 4    | 5    | 2    | 2    | 1    | 1    | 1    | -    | -    | 0    |
| Other drugs that mimic the effects of psychedelic drugs       | /    | /    | /    | /    | /    | /    | /    | 0    | 0    | -    | -    | 0    | -    | 0    | 0    | 0    |
| <b>Drugs that mimic the effects of dissociatives</b>          | /    | /    | 0    | 2    | 2    | 2    | 3    | 2    | 0    | 2    | 1    | 2    | 1    | 2    | 4    | -    |
| 2F-2-oxo PCE                                                  | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | 1    | 0    |
| 2-Fluorodeschloroketamine (2-FDCK)                            | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | -    | -    | 1    | 0    |
| 3 CI-PCP/4CI-PCP                                              | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | -    | 0    | -    | 0    |
| 3F-2-oxo-PCE                                                  | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | 0    | 0    |
| 3-HO-PCP/4-HO-PCP                                             | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | -    | 0    | 0    | 0    |
| 3-MeO-PCP/4-MeO-PCP                                           | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | /    | -    | -    | -    | 0    |

|                                                        |   |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |
|--------------------------------------------------------|---|---|----|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Methoxetamine                                          | / | / | 0  | 2 | 2 | 2 | 3 | 2 | 0 | 2 | 0 | 1 | - | - | 1 | 0 |
| Tiletamine                                             | / | / | /  | / | / | / | / | / | / | / | / | / | / | / | - | - |
| Other drugs that mimic the effects of dissociatives    | / | / | /  | / | / | / | / | / | / | / | 0 | 0 | 0 | 0 | - | - |
| <b>Drugs that mimic the effects of cannabis</b>        | 0 | 0 | 10 | / | / | 0 | / | / | / | - | - | 0 | - | - | 0 | - |
| <b>Drugs that mimic the effects of benzodiazepines</b> | / | / | /  | / | / | / | 0 | - | - | - | - | 0 | - | - | - | - |
| 8-Aminoclonazolam                                      | / | / | /  | / | / | / | / | / | / | / | / | / | - | 0 | 0 | 0 |
| Bromazolam                                             | / | / | /  | / | / | / | / | / | / | / | / | / | - | - | - | 0 |
| Clobromazolam                                          | / | / | /  | / | / | / | / | / | / | / | / | / | / | / | / | 0 |
| Clonazolam                                             | / | / | /  | / | / | / | / | / | / | / | / | / | 1 | 1 | - | - |
| Etizolam                                               | / | / | /  | / | / | / | 1 | 1 | 1 | 1 | 0 | 1 | - | - | - | - |
| Flualprazolam                                          | / | / | /  | / | / | / | / | / | / | / | / | / | - | - | - | 0 |
| Flubromazepam                                          | / | / | /  | / | / | / | / | / | / | / | / | / | / | / | / | 0 |
| Phenazolam                                             | / | / | /  | / | / | / | / | / | / | / | / | / | / | / | 0 | 0 |
| Other drugs that mimic the effects of benzodiazepines  | / | / | /  | / | / | / | / | / | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 |
| <b>Drugs that mimic the effects of opioids</b>         | / | / | /  | / | / | / | / | / | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 |
| <b>Drugs that mimic the effect of any other NPS</b>    | / | / | /  | - | - | - | - | - | - | 0 | 0 | 0 | - | 0 | 0 | - |

Note. NPS first asked about in 2010. Due to lower numbers reporting use in recent years, in 2025 participants were asked about broad categories of NPS (e.g., drugs that mimic the effects of ecstasy) and then if reported use, were asked to specify the substance. ~ In 2010 and between 2017-2019, three forms of 2C were asked about whereas between 2011-2016 four forms were asked about. From 2020 onwards, 'any' 2C use is captured. Statistical significance for 2024 versus 2025 presented in table; \*p<0.050; \*\*p<0.010; \*\*\*p<0.001. Please refer to Table 1 for a guide to table/figure notes.

# 9

## Other Drugs

### Non-Prescribed Pharmaceutical Drugs

#### Codeine

Before 1 February 2018, people could access low-dose codeine products (<30mg, e.g., Nurofen Plus) over-the-counter (OTC), while high-dose codeine ( $\geq 30$ mg, e.g., Panadeine Forte) required a prescription from a doctor. On 1 February 2018, legislation changed so that all codeine products, low- and high-dose, require a prescription from a doctor to access.

Up until 2017, participants were only asked about use of OTC codeine for non-pain purposes. Additional items on use of prescription low-dose and prescription high-dose codeine were included in the 2018-2020 EDRS. However, from 2021, participants were only asked about prescribed and non-prescribed codeine use, regardless of whether it was low- or high-dose.

**Recent Use (past 6 months):** In 2025, 11% of the Adelaide sample reported using any non-prescribed codeine (e.g., Nurofen Plus, Panadeine, Panadeine Extra) in the six months preceding interview, stable relative to 2024 (13%;  $p=0.822$ ) (Figure 44).

**Frequency of Use:** Participants who had recently used non-prescribed codeine and commented ( $n=11$ ) reported use on a median of three days (IQR=2-4) in the six months preceding interview, stable relative to 2024 (4 days; IQR=2-14;  $n=13$ ;  $p=0.500$ ).

#### Pharmaceutical Opioids

**Recent Use (past 6 months):** In 2025, almost one tenth (9%) of the Adelaide sample had recently used non-prescribed pharmaceutical opioids, excluding codeine (e.g., methadone, buprenorphine, morphine, oxycodone, fentanyl), stable relative to 2024 (11%;  $p=0.808$ ) (Figure 44).

**Frequency of Use:** Participants who had recently used non-prescribed pharmaceutical opioids reported use on a median of 12 days (IQR=6-15;  $n=9$ ) in the six months preceding interview (6 days in 2024; IQR=2-20;  $n=11$ ;  $p=0.360$ ).

**Forms used:** Among participants who had recently consumed non-prescribed pharmaceutical opioids and commented in 2025 ( $n=9$ ), few participants ( $n\leq 5$ ) were able to comment on the most commonly used pharmaceutical opioid. Please refer to the [2025 National EDRS Report](#) for national trends, or contact the Drug Trends team for further information ([drugtrends@unsw.edu.au](mailto:drugtrends@unsw.edu.au)).

## Benzodiazepines

From 2019-2023, participants were asked about non-prescribed alprazolam use and non-prescribed use of 'other' benzodiazepines (e.g., diazepam). In 2024, the two forms were combined, such that participants were asked about non-prescribed use of any benzodiazepines.

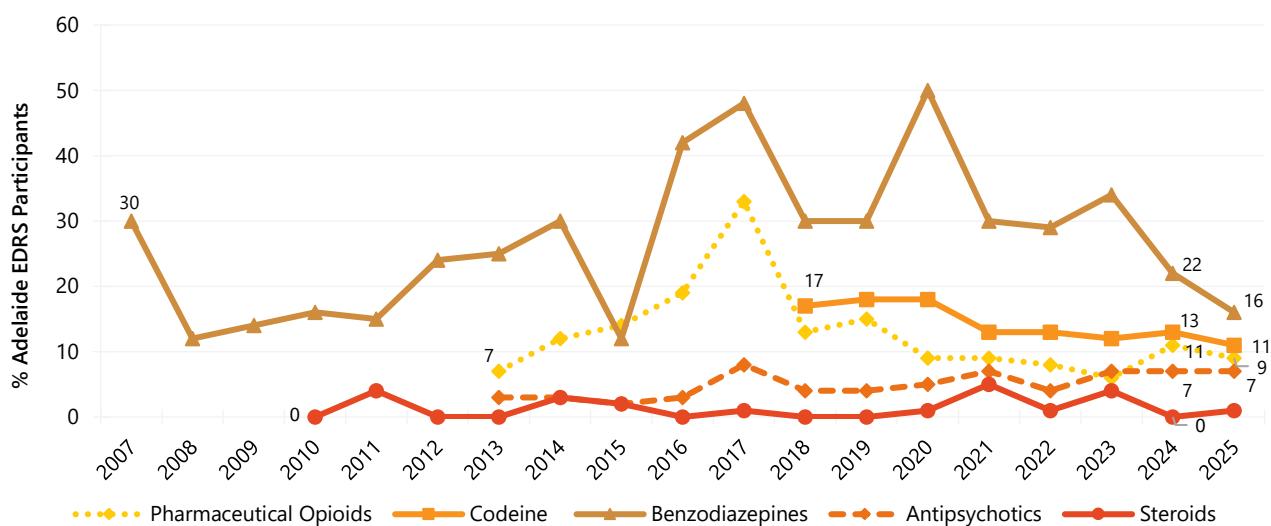
**Recent Use (past 6 months):** Recent use of non-prescribed benzodiazepines (e.g., Valium, Diazepam, Xanax, Kalma) has fluctuated considerably over the course of monitoring, with 16% of the Adelaide sample reporting recent use in 2025, stable relative to 2024 (22%;  $p=0.367$ ) (Figure 44).

**Frequency of Use:** Participants who reported recent non-prescribed use of benzodiazepines (e.g., Valium, Diazepam, Xanax, Kalma) reported a median of 17 days (IQR=5-25;  $n=16$ ) of use in the six months preceding interview, stable from 2024 (6 days; IQR=2-20;  $n=22$ ;  $p=0.186$ ).

**Forms Used:** Among those who reported recent non-prescribed benzodiazepine use and responded in 2025 ( $n=15$ ), Valium (diazepam) (53%) was the most commonly used benzodiazepine, followed by Xanax (alprazolam) (40%).

## Steroids

**Recent Use (past 6 months):** The per cent of the sample reporting recent non-prescribed steroid use has remained low and stable since monitoring commenced. In 2025, few participants ( $n\leq 5$ ) reported recent use, stable relative to 2024 (0%;  $p=0.498$ ) (Figure 44).


## Antipsychotics

**Recent Use (past 6 months):** Seven per cent of the Adelaide sample had recently used non-prescribed antipsychotics in 2025, stable relative to 2024 (7%) (Figure 44).

**Frequency of Use:** Participants who had recently used non-prescribed antipsychotics and commented ( $n=7$ ) reported use on a median of 30 days (IQR=8-140) in the six months preceding interview (4 days in 2024; IQR=3-10;  $n=7$ ;  $p=0.457$ ).

**Forms Used:** Among participants who had recently consumed non-prescribed antipsychotics and commented in 2025 ( $n=7$ ), few participants ( $n\leq 5$ ) were able to comment on the most commonly used antipsychotic. Please refer to the [2025 National EDRS Report](#) for national trends, or contact the Drug Trends team for further information ([drugtrends@unsw.edu.au](mailto:drugtrends@unsw.edu.au)).

Figure 44: Non-prescribed use of pharmaceutical medicines in the past six months, Adelaide, SA, 2007-2025



Note. Non-prescribed use is reported for prescription medicines. Monitoring of over-the-counter (OTC) codeine (low-dose codeine) commenced in 2010, however, in February 2018, the scheduling for codeine changed such that low-dose codeine formerly available OTC was required to be obtained via a prescription. To allow for comparability of data, the time series here represents non-prescribed low- and high dose codeine (2018-2024), with high-dose codeine excluded from pharmaceutical opioids from 2018. Between 2019 and 2023, participants were asked about 'alprazolam' and 'other benzodiazepines'. In 2024, 'alprazolam' and 'other benzodiazepines' were combined. Y axis has been reduced to 60% to improve visibility of trends. Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e.,  $n \leq 5$  but not 0). Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

## Other Illicit Drugs

### Non-Prescribed Hallucinogenic Mushrooms/Psilocybin

**Recent Use (past 6 months):** In 2025, almost two fifths (39%) of the Adelaide sample reported recent use of non-prescribed hallucinogenic mushrooms/psilocybin in the six months prior to interview, stable relative to 2024 (44%;  $p=0.569$ ) (Figure 45).

**Frequency of Use:** A median of two days of non-prescribed hallucinogenic mushroom/psilocybin use (IQR=1-4;  $n=39$ ) was reported in the six months prior to interview in 2025 (2 days in 2024; IQR=1-4;  $n=44$ ;  $p=0.932$ ).

### MDA

Due to few participants ( $n \leq 5$ ) reporting recent use of MDA, further details are not reported ( $n \leq 5$  in 2024) (Figure 45). Please refer to the [2025 National EDRS Report](#) for national trends, or contact the Drug Trends team for further information ([drugtrends@unsw.edu.au](mailto:drugtrends@unsw.edu.au)).

### Substance with Unknown Contents

**Recent Use (past 6 months):** From 2019, we asked participants about their use of substances with 'unknown contents'. Twelve per cent of the Adelaide sample reported recent use of any substance with 'unknown contents' in 2025 (19% in 2024;  $p=0.246$ ) (Figure 45).

When broken down by form, 6% of participants reported recent use of powder with 'unknown contents' (11% in 2024;  $p=0.316$ ). Few participants ( $n \leq 5$ ) reported recent use of pills ( $n \leq 5$  in 2024;  $p=0.621$ ), capsules ( $n \leq 5$  in 2024) and crystal ( $n \leq 5$  in 2024;  $p=0.498$ ) with 'unknown contents' in 2025,

therefore, further details are not reported. Please refer to the [2025 National EDRS Report](#) for national trends, or contact the Drug Trends team for further information ([drugtrends@unsw.edu.au](mailto:drugtrends@unsw.edu.au)).

**Frequency of Use:** Of those who had recently consumed any 'unknown' substance and responded (n=12), participants reported a median of one day (IQR=1-1; n=12) of use in the six months preceding interview, stable relative to 2024 (1 day; IQR=1-2; n=19;  $p=0.543$ ).

**Quantity:** From 2020, we asked participants about the average amount of pills and capsules used with 'unknown contents' in the six months preceding interview. Few participants (n≤5) were able to answer questions regarding the median quantity of pills and/or capsules used in a 'typical' session in 2025, therefore, further details are not reported. Please refer to the [2025 National EDRS Report](#) for national trends, or contact the Drug Trends team for further information ([drugtrends@unsw.edu.au](mailto:drugtrends@unsw.edu.au)).

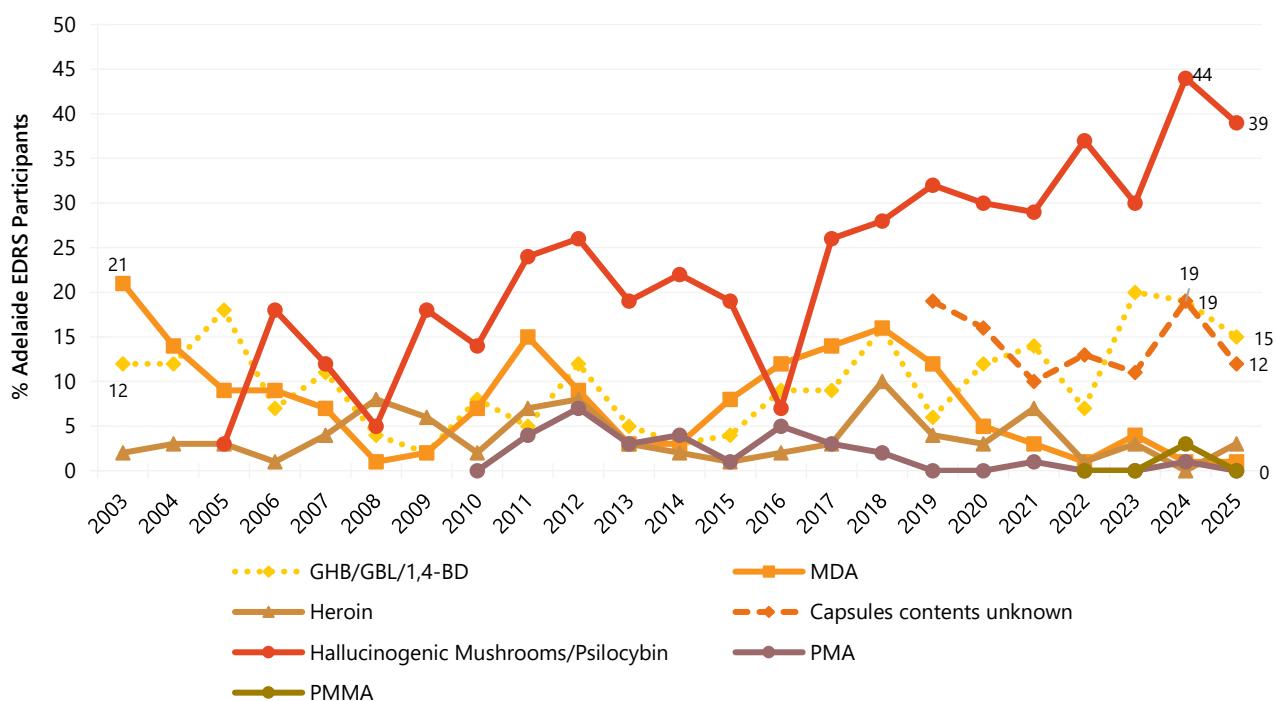
## PMA

No participants reported recent use of PMA in 2025 (n≤5 in 2024) (Figure 45). Please refer to the [2025 National EDRS Report](#) for national trends, or contact the Drug Trends team for further information ([drugtrends@unsw.edu.au](mailto:drugtrends@unsw.edu.au)).

## PMMA

No participants reported recent use of PMMA in 2025 (0% in 2024) (Figure 45). Please refer to the [2025 National EDRS Report](#) for national trends, or contact the Drug Trends team for further information ([drugtrends@unsw.edu.au](mailto:drugtrends@unsw.edu.au)).

## Heroin


Few participants (n≤5) reported recent use of heroin in 2025 (0% in 2024;  $p=0.121$ ) (Figure 45). Please refer to the [2025 National EDRS Report](#) for national trends, or contact the Drug Trends team for further information ([drugtrends@unsw.edu.au](mailto:drugtrends@unsw.edu.au)).

## GHB/GBL/1,4-BD (Liquid E)

**Recent Use (past 6 months):** In 2025, 15% of the Adelaide sample reported recent use of GHB/GBL/1,4-BD in the six months prior to interview, stable relative to 2024 (19%;  $p=0.571$ ) (Figure 45).

**Frequency of Use:** A median of three days of GHB/GBL/1,4-BD use (IQR=1-9; n=15) was reported in the six months prior to interview in 2025 (3 days in 2024; IQR=2-105; n=19;  $p=0.439$ ).

Figure 45: Past six month use of other illicit drugs, Adelaide, SA, 2003-2025



Note. From 2019, participants were asked about 'substances contents unknown' (with further ascertainment by form). Y axis has been reduced to 50% to improve visibility of trends. Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e.,  $n \leq 5$  but not 0). Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

## Licit and Other Drugs

### Alcohol

**Recent Use (past 6 months):** The majority of the Adelaide sample continued to report recent use of alcohol in 2025 (92%), stable relative to 2024 (94%;  $p=0.591$ ) (Figure 46).

**Frequency of Use:** A median of 24 days of alcohol use in the six months preceding interview (IQR=12-48;  $n=92$ ) was reported in 2025, stable relative to 2024 (24 days; IQR=14-48;  $n=95$ ;  $p=0.714$ ). Almost two thirds (64%) of those who had recently consumed alcohol had done so on a weekly or more frequent basis in 2025, stable relative to 2024 (66%;  $p=0.763$ ). Few participants ( $n \leq 5$ ) reported daily use of alcohol in 2025 ( $n \leq 5$  in 2024).

### Tobacco

In 2024 and 2025, additional questions were included about illicit tobacco. This was defined as products sold illegally without the necessary taxes added to the price.

**Recent Use (past 6 months):** Almost two thirds (65%) of the Adelaide sample reported recent tobacco use in 2025, stable from 75% reporting recent use in 2024 ( $p=0.132$ ) (Figure 46). One quarter (25%) of participants reported recent use of smoked or non-smoked illicit tobacco products, stable relative to 2024 (31%;  $p=0.343$ ).

**Frequency of Use:** Participants reported using tobacco on a median of 90 days in 2025 (IQR=20-180; n=65), stable relative to 2024 (53 days in 2024; IQR=10-180; n=76;  $p=0.220$ ), with almost two fifths (38%) of participants who had recently used tobacco reporting daily use (34% in 2024;  $p=0.709$ ).

### E-cigarettes/'Vapes'

Legislation regulating e-cigarettes (also known as vapes) has changed markedly in recent years. From October 2021, Australians were required to have a prescription to legally access nicotine containing e-cigarette products for any purpose, and from 1 July 2024, all e-cigarette products, regardless of whether they contained nicotine, could only legally be sold in a pharmacy. From 1 October 2024, people 18 years and older could buy e-cigarettes from participating pharmacies with a nicotine concentration of 20 mg/mL or less *without a prescription*, where state and territory laws allowed: products with a nicotine concentration of >20 mg/mL still required a prescription.

To capture these changes, in 2022, participants were asked for the first time about their use of both prescribed and non-prescribed e-cigarettes. In 2025, participants were asked about their use of e-cigarettes obtained from a pharmacy (with or without a prescription) and 'non-pharmacy' locations.

In 2025, few participants (n≤5) reported recent use of e-cigarettes that were obtained from a pharmacy. Between 2022 and 2024, few participants (n≤5) reported recent use of prescribed e-cigarettes (n≤5 in 2022, n≤5 in 2023 and 0% in 2024). The data presented below for 2025 refers only to use of e-cigarettes that were obtained from non-pharmacy locations. Data between 2022-2024 refers to non-prescribed e-cigarette use, while data for 2021 and earlier refers to any e-cigarette use (collectively referred to as 'illicit use' from herein).

**Recent Use (past 6 months):** In 2025, 71% of the Adelaide sample had used illicit e-cigarettes in the six months preceding interview (78% in 2024;  $p=0.260$ ) (Figure 46), the second highest percentage observed since the commencement of monitoring.

**Frequency of Use:** A median frequency of 90 days of illicit use was reported in the past six months in 2025 (IQR=24-180; n=70), stable relative to 2024 (120 days; IQR=22-180; n=79;  $p=0.590$ ). One third (36%) of participants who had recently used illicit e-cigarettes reported daily use, stable relative to 2024 (42%;  $p=0.495$ ).

**Contents and Forms Used:** Among participants who had recently used illicit e-cigarettes and responded (n=69), all participants (100%) reported using disposable devices, with few participants (n≤5) reporting using re-fillable devices.

**Reason for Use:** Of those who reported *any* e-cigarette use and responded (n=72), almost two fifths (38%) of the Adelaide sample reported that they used e-cigarettes as a smoking cessation tool in 2025, a significant increase relative to 2024 (15%;  $p=0.003$ ).

### Nicotine Pouches

**Recent Use (past 6 months):** Sixteen per cent of the Adelaide sample reported recent use of nicotine pouches in 2025, stable relative to 2024 (21%;  $p=0.461$ ) (Figure 46).

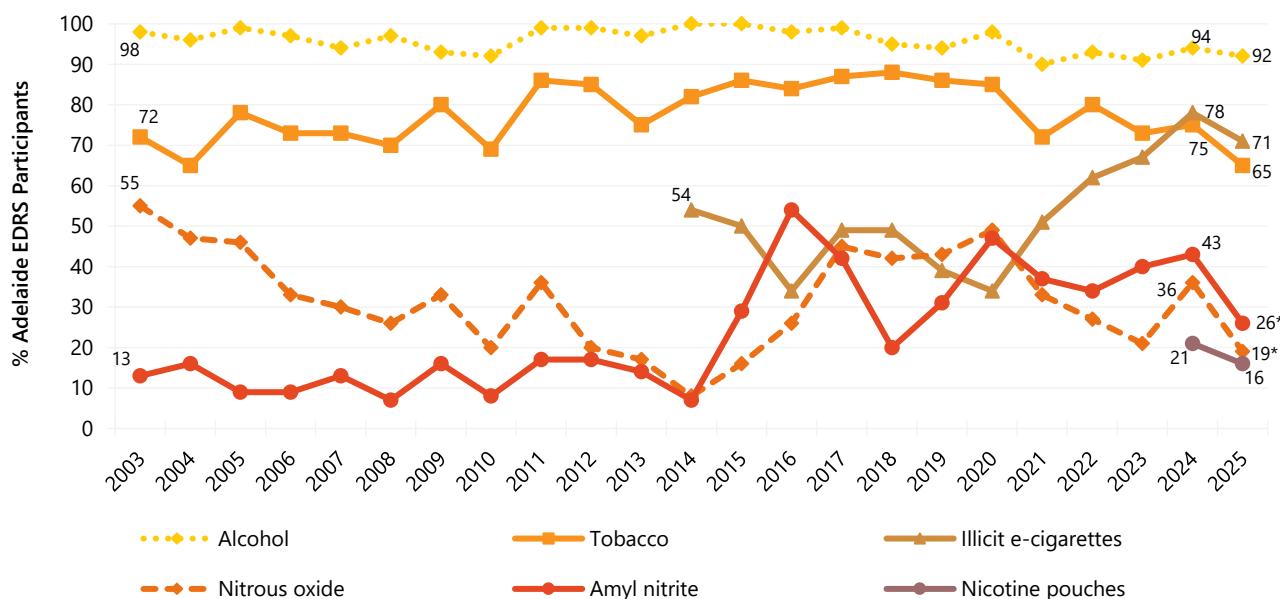
**Frequency of Use:** Participants who had recently used nicotine pouches reported use on a median of five days (IQR=3-23; n=16), stable compared to two days in 2024 (IQR=1-7; n=21;  $p=0.076$ ).

## Nitrous Oxide

**Recent Use (past 6 months):** Almost one fifth (19%) of the Adelaide sample reported recent use of nitrous oxide in 2025, a significant decrease relative to 2024 (36%;  $p=0.013$ ) (Figure 46).

**Frequency of Use:** Frequency of use remained stable at a median of two days (IQR=1-7; n=19) in 2025 (3 days in 2024; IQR=1-6; n=36;  $p=0.900$ ).

**Quantity:** Among those who reported recent use and responded (n=16), the median amount used in a 'typical' session was 7.5 bulbs (IQR=4.5-20; 10 bulbs in 2024; IQR=3-22.5; n=31;  $p=0.735$ ). Of those who reported recent use and responded (n=16), the median maximum amount used was 10 bulbs (IQR=5-20; 10 bulbs in 2024; IQR=3.5-45; n=30;  $p=0.991$ ).


## Amyl Nitrite

Following a review by the [Therapeutic Goods Administration](#), amyl nitrite was listed as Schedule 3 (i.e., for purchase over-the-counter) from 1 February 2020 when sold "in preparations for human therapeutic use and packaged in containers with child-resistant closures". However, to our knowledge, the TGA has not yet approved any amyl nitrite products for supply in Australia.

**Recent Use (past 6 months):** After considerable fluctuation over the course of monitoring, one quarter (26%) of the Adelaide sample reported recent use of amyl nitrite in 2025, a significant decrease relative to 2024 (43%;  $p=0.020$ ) (Figure 46). In 2025, no participants reported that they had obtained amyl nitrite from a pharmacy in the past six months (not asked in 2024).

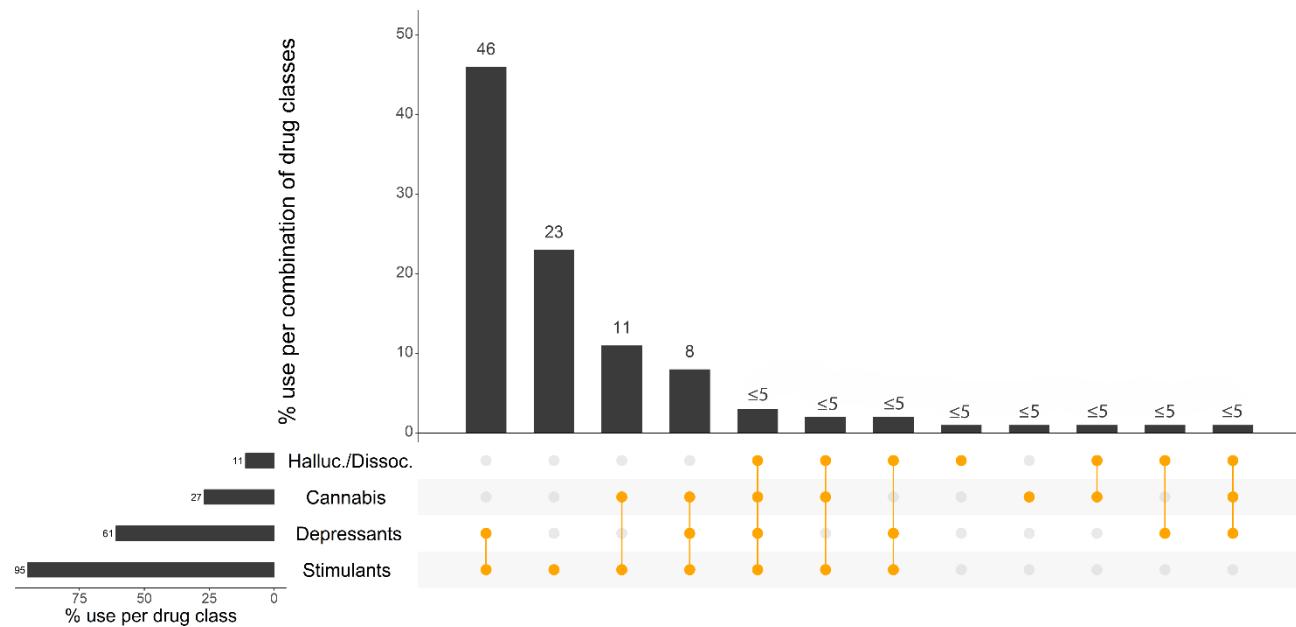
**Frequency of Use:** A median of four days of use was reported in 2025 (IQR=2-10; n=26; 6 days in 2024; IQR=3-12; n=43;  $p=0.108$ ).

**Figure 46: Licit and other drugs used in the past six months, Adelaide, SA, 2003-2025**



Note. Regarding e-cigarettes, on 1 October 2021, legislation came into effect requiring people to obtain a prescription to legally import nicotine vaping products. Data from 2022 onwards refers to non-prescribed e-cigarettes only. Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e., n≤5 but not 0). Statistical significance for 2024 versus 2025 presented in figure; \* $p<0.050$ ; \*\* $p<0.010$ ; \*\*\* $p<0.001$ . Please refer to Table 1 for a guide to table/figure notes.

# 10

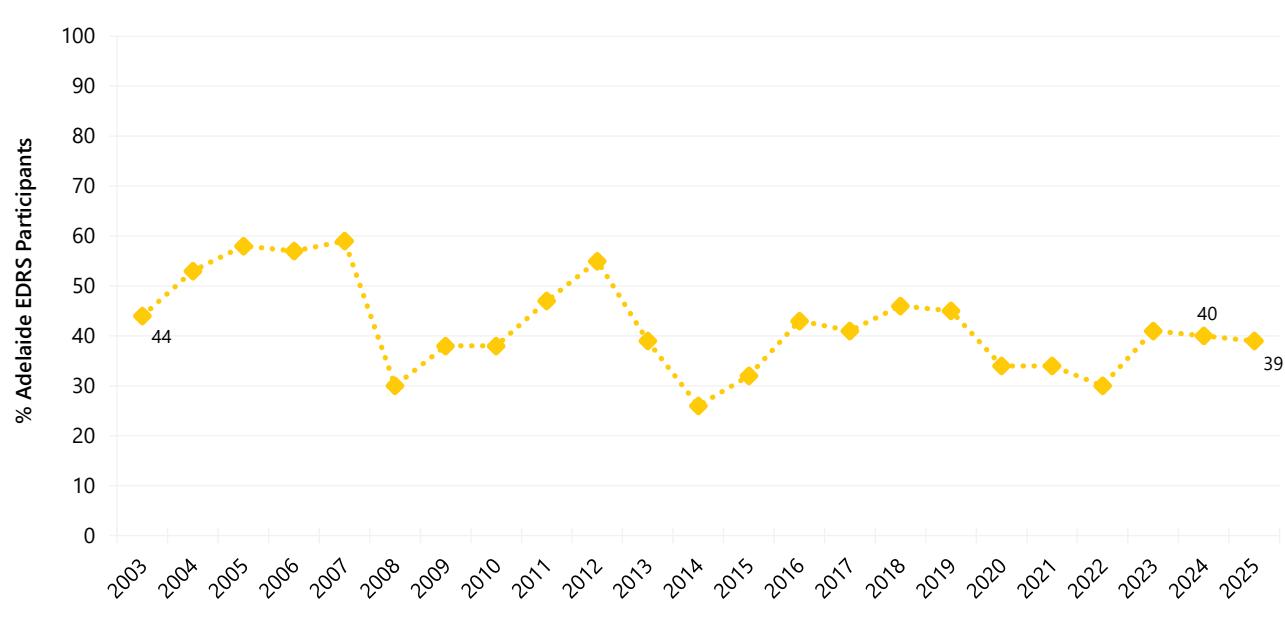

## Drug-Related Harms and Other Behaviours

### Polysubstance Use

Among those who responded (n=100), the most commonly used substances on the last occasion of ecstasy or related drug use were alcohol (57%) and ecstasy (49%), followed by cocaine (36%), cannabis (27%) and e-cigarettes (26%).

Three quarters (77%; n=77) of the Adelaide sample reported concurrent use of two or more drugs on the last occasion of ecstasy or related drug use (excluding tobacco and e-cigarettes). The most commonly used combination of drug classes was stimulants and depressants (46%), followed by stimulants and cannabis (11%) and stimulants, cannabis and depressants (8%). Almost one quarter (23%) reported using stimulants alone (Figure 47).

**Figure 47: Use of depressants, stimulants, cannabis, hallucinogens and dissociatives on the last occasion of ecstasy or related drug use, Adelaide, SA, 2025: Most common drug pattern profiles**



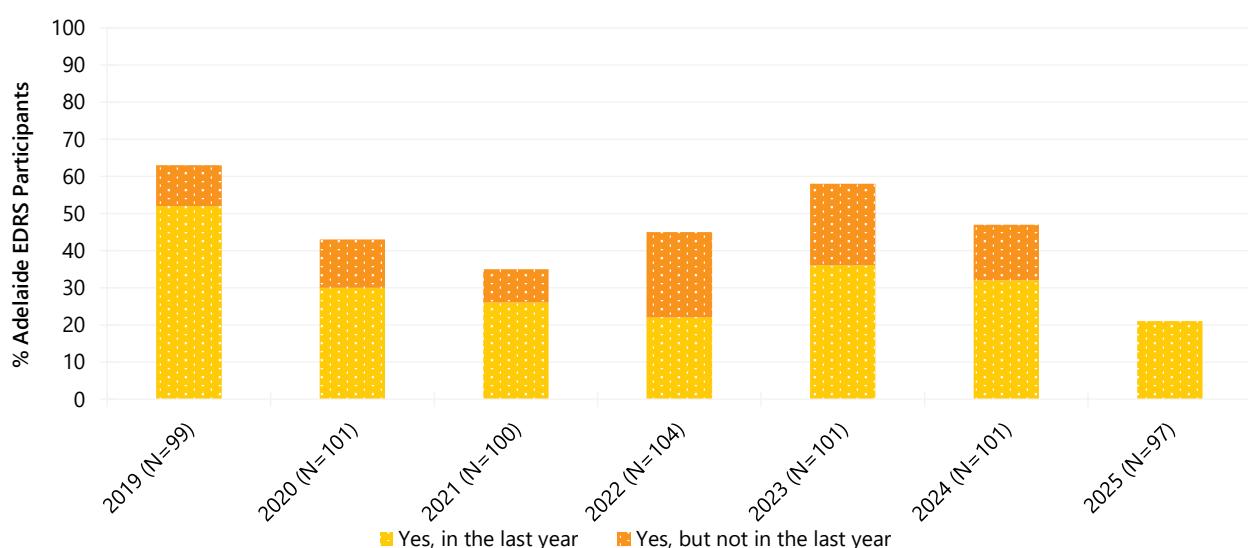

Note. % calculated out of total EDRS 2025 sample. The horizontal bars represent the per cent of participants who reported use of each substance on their last occasion of ecstasy or related drug use; the vertical columns represent the per cent of participants who used the combination of drug classes represented by the orange circles. Drug use pattern profiles reported by ≤5 participants or which did not include any of the four drug classes depicted are not shown in the figure but are counted in the denominator. Halluc./Dissoc = hallucinogens/dissociatives (LSD, hallucinogenic mushrooms, amyl nitrite, DMT, ketamine and/or nitrous oxide); depressants (alcohol, GHB/GBL, 1,4-BD, kava, opioids and/or benzodiazepines); stimulants (cocaine, MDA, ecstasy, methamphetamine, and/or pharmaceutical stimulants). Use of benzodiazepines, opioids and stimulants could be prescribed or non-prescribed use. Note that participants may report use of multiple substances within a class. Y axis reduced to 50% to improve visibility of trends.

## Binge Drug Use

Participants were asked whether they had used any stimulant for 48 hours or more continuously without sleep (i.e., binged) in the six months preceding interview. The per cent of the Adelaide sample who have reported bingeing has fluctuated considerably since the commencement of monitoring. In 2025, almost two fifths (39%) of the sample had binged on one or more drugs in the preceding six months, stable from 2024 (40%) (Figure 48).

**Figure 48: Past six month use of stimulants for 48 hours or more continuously without sleep ('binge'), Adelaide, SA, 2003-2025**




Note. Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e.  $n \leq 5$  but not 0). Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

## Drug Checking

Drug checking is a common strategy used to test the purity and contents of illicit drugs. At the time interviewing commenced in 2025, the only government-sanctioned drug checking services that had operated in Australia were in the ACT, QLD, VIC and NSW. In Canberra, ACT, drug checking was provided at the Groovin the Moo festival in 2018 and 2019, and a fixed-site drug checking service (CanTEST) has been operational since 17 July 2022. Queensland's first fixed-site drug checking service, CheQpoint, opened in Brisbane on 20 April 2024, and a second service opened in the Gold Coast in July 2024. Drug checking was also provided at 3 festivals in 2024 - Rabbits Eat Lettuce and Wildlands (by Pill Testing Australia) and Earth Frequency (by CheQpoint) - and as part of the 2024 Qld Gov Schoolies Response (CheQpoint). However, all government funded services ceased in April 2025. In Victoria, drug checking was provided at 'up to' 10 festivals throughout 2024-2025 during an 18-month implementation trial and in March 2025, NSW commenced a 12-month trial of mobile drug checking at 'up to' 12 festivals.

In 2025, one fifth (21%) of participants reported that they or someone else had tested the content and/or purity of their illicit drugs in Australia in the past year, stable relative to 2024 (32%;  $p=0.111$ ) (Figure 49). Of those who reported that they or someone else had tested their illicit drugs in the past year and commented ( $n=20$ ), 75% reported using a personal testing kit – most commonly colorimetric reagent test kits (70%). Few participants ( $n\leq 5$ ) reported testing via professional testing equipment (e.g., Fourier Transform Infrared Spectroscopy) or testing strips (e.g., BTNX fentanyl strips or other immunoassay testing strips). Of those who reported that they or someone else had tested their illicit drugs in the past year ( $n=20$ ), few participants ( $n\leq 5$ ) reported that they had submitted drugs for testing at a drug checking service. Please refer to the [2025 National EDRS Report](#) for national trends or contact the Drug Trends team for further information ([drugtrends@unsw.edu.au](mailto:drugtrends@unsw.edu.au)).

Figure 49: Lifetime and past year engagement in drug checking, Adelaide, SA, 2019-2025



Note. Questions on drug checking commenced in 2019. In 2025, survey questions were separated into 'personal testing kits' and 'drug checking services' and focused on past year use only. Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n\leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure; \* $p<0.050$ ; \*\* $p<0.010$ ; \*\*\* $p<0.001$ . Please refer to Table 1 for a guide to table/figure notes.

## Alcohol Use Disorders Identification Test

The Alcohol Use Disorders Identification Test ([AUDIT](#)) was designed by the World Health Organization (WHO) as a brief screening scale to identify individuals with problematic alcohol use in the past 12 months.

In 2025, the mean score on the AUDIT for the total Adelaide sample (including people who had not consumed alcohol in the past 12 months) was 11.8 (SD 7.0), a significant decrease from 12.6 (SD 7.5) in 2024 ( $p<0.001$ ). AUDIT scores are divided into four 'zones' which indicate risk level. Specifically, scores between 0-7 indicate low risk drinking or abstinence; scores between 8-15 indicate alcohol use in excess of low-risk guidelines; scores between 16-19 indicate harmful or hazardous drinking; and scores 20 or higher indicate possible alcohol dependence.

There was no significant difference in the per cent of the sample falling into each of these risk categories from 2024 to 2025 ( $p=0.666$ ) (Table 5). Two thirds (67%) of the sample obtained a score of eight or more (70% in 2024;  $p=0.758$ ), indicative of hazardous use (Table 5).

Table 5: AUDIT total scores and per cent of participants scoring above recommended levels, Adelaide, SA, 2010-2025

|                                    | 2010       | 2011     | 2012       | 2013       | 2014       | 2015       | 2016       | 2017       | 2018       | 2019       | 2020       | 2021       | 2022       | 2023       | 2024       | 2025                 |
|------------------------------------|------------|----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|----------------------|
|                                    | N=84       | N=75     | N=89       | N=97       | N=100      | N=100      | N=99       | N=99       | N=100      | N=99       | N=101      | N=100      | N=104      | N=101      | N=96       | N=94                 |
| <b>Mean AUDIT total score (SD)</b> | 14.9 (6.8) | 18 (6.5) | 16.5 (6.6) | 15.2 (6.5) | 14.7 (6.2) | 13.1 (5.3) | 11.3 (5.6) | 12.9 (6.1) | 14.6 (7.6) | 13.5 (7.7) | 12.8 (7.4) | 12.1 (7.0) | 12.9 (7.9) | 12.0 (8.0) | 12.6 (7.5) | <b>11.8 (7.0)***</b> |
| <b>Score 8 or above (%)</b>        | 86         | 99       | 89         | 88         | 89         | 81         | 75         | 84         | 84         | 74         | 77         | 72         | 70         | 60         | 70         | <b>67</b>            |
| <b>AUDIT zones:</b>                |            |          |            |            |            |            |            |            |            |            |            |            |            |            |            |                      |
| Score 0-7                          | 14         | -        | 11         | 12         | 11         | 19         | 25         | 16         | 16         | 26         | 23         | 28         | 30         | 40         | 30         | <b>33</b>            |
| Score 8-15                         | 42         | 41       | 34         | 44         | 44         | 48         | 52         | 52         | 40         | 38         | 46         | 43         | 32         | 25         | 38         | <b>35</b>            |
| Score 16-19                        | 19         | 17       | 21         | 21         | 25         | 23         | 13         | 18         | 20         | 16         | 12         | 15         | 19         | 13         | 10         | <b>15</b>            |
| Score 20 or higher                 | 25         | 40       | 34         | 23         | 20         | 10         | 10         | 14         | 24         | 19         | 20         | 14         | 19         | 23         | 22         | <b>17</b>            |

Note. Monitoring of AUDIT first commenced in 2010. Computed from the entire sample regardless of whether they had consumed alcohol in the past twelve months. Total AUDIT score range is 0-40, with higher scores indicating greater likelihood of hazardous and harmful drinking. Imputation used for missing scale scores. Statistical significance for 2024 versus 2025 presented in table; \* $p<0.050$ ; \*\* $p<0.010$ ; \*\*\* $p<0.001$ . Please refer to Table 1 for a guide to table/figure notes.

## Overdose Events

### Non-Fatal Overdose

Previously, participants had been asked about their experience in the past 12-months of i) stimulant overdose, and ii) depressant overdose.

From 2019, changes were made to this module, with participants asked about alcohol, stimulant and other drug overdose, prompted by the following definitions:

- **Alcohol overdose:** experience of symptoms (e.g., reduced level of consciousness and collapsing) where professional assistance would have been helpful.
- **Stimulant overdose:** experience of symptoms (e.g., nausea, vomiting, chest pain, tremors, increased body temperature, increased heart rate, seizure, extreme paranoia, extreme anxiety, panic, extreme agitation, hallucinations, excited delirium) where professional assistance would have been helpful.
- **Other drug overdose (not including alcohol or stimulant drugs):** similar definition to above. Note that in 2019, participants were prompted specifically for opioid overdose, but this was removed in 2020 as few participants endorsed this behaviour.

It is important to note that events reported on for each drug type may not be unique given high rates of polysubstance use among the sample.

For the purpose of comparison with previous years, we computed the per cent reporting any depressant overdose, comprising any endorsement of alcohol overdose, or other drug overdose where a depressant (e.g., opioid, GHB/GBL/1,4-BD, benzodiazepines) was listed.

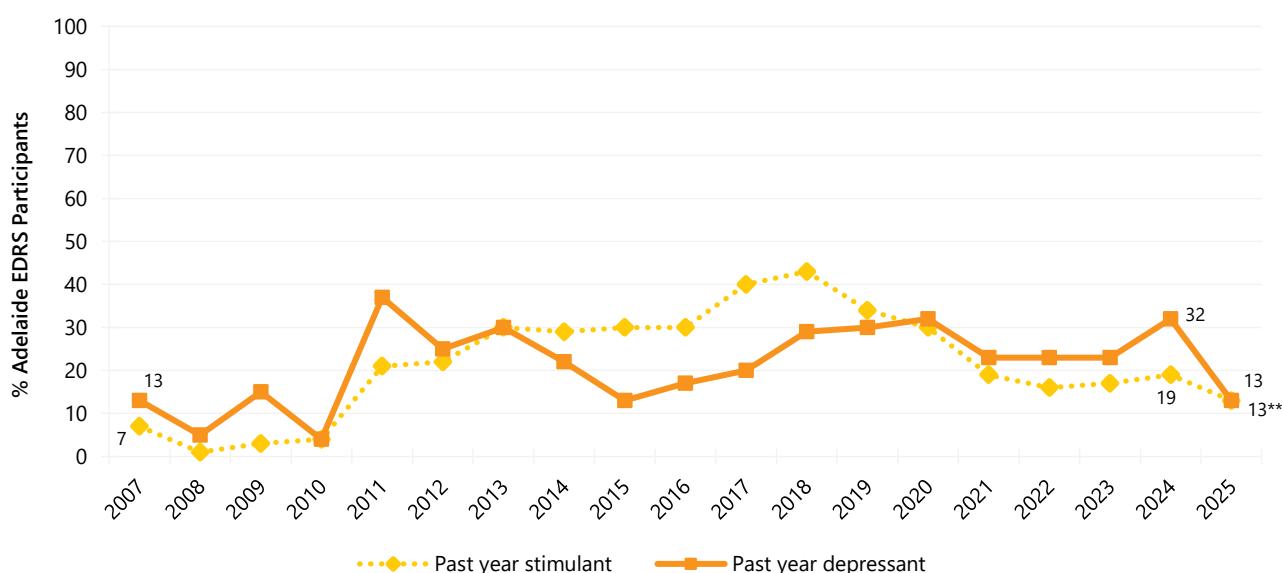
### Non-Fatal Stimulant Overdose

In 2025, 13% of the Adelaide sample reported experiencing a non-fatal stimulant overdose in the 12 months preceding interview, stable relative to 2024 (19%;  $p=0.337$ ) (Figure 50).

The most common stimulant reported during the most recent non-fatal stimulant overdose in the past 12 months comprised any form of ecstasy (62%;  $n\leq 5$  for capsules, pills and crystal, respectively). Among those who experienced a recent non-fatal stimulant overdose, 85% ( $n=13$ ) reported that they had also consumed one or more additional drugs on the last occasion, most notably, alcohol (54%;  $\geq 5$  standard drinks:  $n\leq 5$ ;  $\leq 5$  standard drinks:  $n\leq 5$ ).

Due to few participants ( $n\leq 5$ ) reporting on forms of treatment on the last occasion of experiencing a non-fatal stimulant overdose, please refer to the [2025 National EDRS Report](#) for national trends, or contact the Drug Trends team for further information ([drugtrends@unsw.edu.au](mailto:drugtrends@unsw.edu.au)).

### Non-Fatal Depressant Overdose


**Alcohol:** One tenth (11%) of the Adelaide sample reported a non-fatal alcohol overdose in the 12 months preceding interview in 2025, a significant decrease relative to 2024 (23%;  $p=0.039$ ), on a median of one occasion (IQR=1-3). Of those who had experienced an alcohol overdose in the past year ( $n=11$ ), the majority (70%) reported not receiving treatment on the last occasion. Due to few

participants ( $n \leq 5$ ) reporting that they had received treatment or assistance, please refer to the [2025 National EDRS Report](#) for national trends, or contact the Drug Trends team for further information ([drugtrends@unsw.edu.au](mailto:drugtrends@unsw.edu.au)).

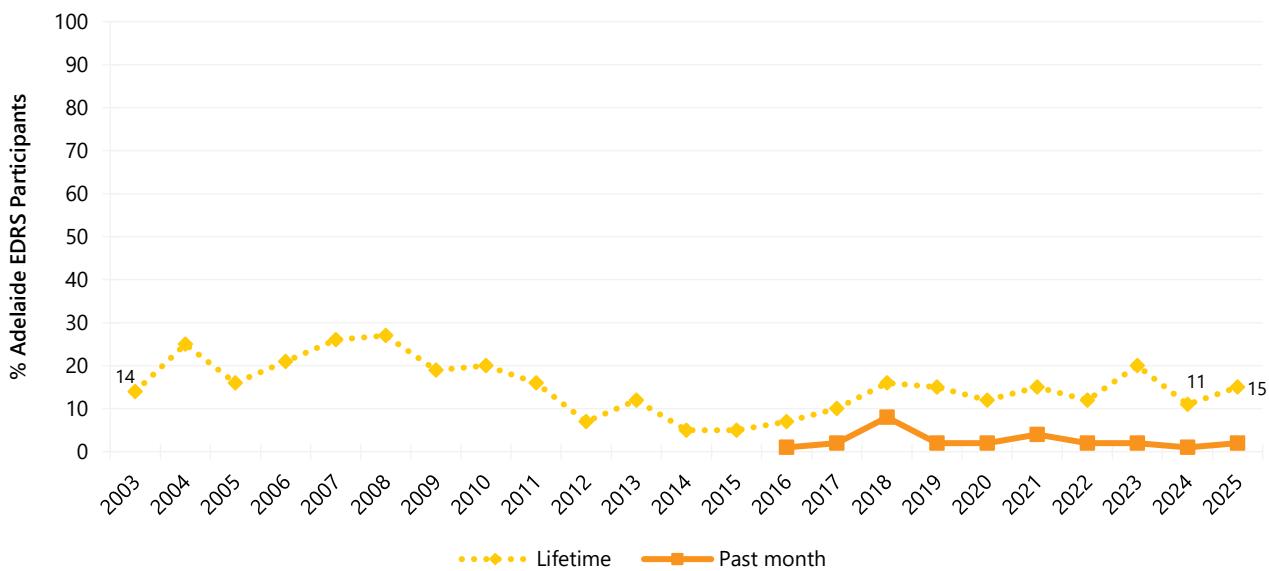
**Any depressant (including alcohol):** In 2025, 13% of participants reported that they had experienced a non-fatal depressant overdose in the past 12 months, a significant decrease relative to 2024 (32%;  $p=0.003$ ) (Figure 50).

Of those who had experienced any non-fatal depressant overdose in the past 12 months ( $n=13$ ), 85% of participants reported alcohol as the most common depressant drug. Few participants ( $n \leq 5$ ) reported a non-fatal depressant overdose due to other drugs, therefore, these data are suppressed. Please refer to the [2025 National EDRS Report](#) for national trends, or contact the Drug Trends team for further information ([drugtrends@unsw.edu.au](mailto:drugtrends@unsw.edu.au)).

**Figure 50: Past 12 month non-fatal stimulant and depressant overdose, Adelaide, SA, 2007-2025**



Note. Past year stimulant and depressant overdose was first asked about in 2007. In 2019, items about overdose were revised, and changes relative to 2018 may be a function of greater nuance in capturing depressant events. Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e.,  $n \leq 5$  but not 0). Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.


## Awareness of Naloxone

In 2025, three fifths (62%) reported that they had ever heard of naloxone, stable relative to 2024 (54%;  $p=0.323$ ). Among those who had ever heard of naloxone and responded ( $n=59$ ), 97% were able to correctly identify the purpose of naloxone, stable from 88% in 2024 ( $p=0.144$ ). Among participants who had ever heard of naloxone and responded ( $n=62$ ), almost one quarter (24%) reported obtaining naloxone in their lifetime, a significant increase relative to 2024 ( $n \leq 5$ ;  $p=0.001$ ) and one fifth (21%) reported obtaining naloxone in the twelve months prior to interview, also a significant increase relative to 2024 ( $n \leq 5$ ;  $p=0.001$ ).

## Injecting Drug Use and Associated Risk Behaviours

For the past several years, at least one in ten participants have reported ever injecting drugs, with 15% reporting lifetime injection in 2025 (11% in 2024;  $p=0.412$ ). The per cent who reported injecting drugs in the past month remained low in 2025 ( $n\leq 5$ ;  $n\leq 5$  in 2024;  $p=0.621$ ) (Figure 51).

Figure 51: Lifetime and past month drug injection, Adelaide, SA, 2003-2025



Note. Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e.,  $n\leq 5$  but not 0). Statistical significance for 2024 versus 2025 presented in figure;  $*p<0.050$ ;  $**p<0.010$ ;  $***p<0.001$ . Please refer to Table 1 for a guide to table/figure notes.

## Drug Treatment

In 2025, 6% of the Adelaide sample reported currently receiving drug treatment (10% in 2024;  $p=0.435$ ). The most common form of drug treatment comprised 'other self-help groups' (50%), with few participants ( $n\leq 5$ ) reporting other forms of drug treatment. Please refer to the [2025 National EDRS Report](#) for national trends, or contact the Drug Trends team for further information ([drugtrends@unsw.edu.au](mailto:drugtrends@unsw.edu.au)).

## Ecstasy and Methamphetamine Dependence

From 2015, participants were asked questions from the Severity of Dependence Scale (SDS) adapted to investigate ecstasy and methamphetamine dependence. The SDS is a five-item questionnaire designed to measure the degree of dependence on a variety of drugs. The SDS focuses on the psychological aspects of dependence, including impaired control of drug use, and preoccupation with, and anxiety about use. A total score was created by summing responses to each of the five questions. Possible scores range from 0 to 15.

To assess ecstasy dependence in the past six months, a [cut-off score of three](#) or more was used, as this has been found to be a good balance between sensitivity and specificity for identifying problematic dependent ecstasy use. Among those who reported recent ecstasy use and commented

(n=91), almost one fifth (19%) recorded a score of three or above, stable relative to 2024 (15%;  $p=0.553$ ). The median ecstasy SDS score was zero (IQR=0-2). Fifty-seven per cent of participants obtained a score of zero on the ecstasy SDS (51% in 2024;  $p=0.453$ ), indicating that half the respondents reported no or few symptoms of dependence in relation to ecstasy use (Table 6).

To assess methamphetamine dependence in the past six months, the [cut-off of four and above](#), which is a more conservative estimate, has been used previously in the literature as a validated cut-off for methamphetamine dependence. Among those who reported recent methamphetamine use and responded (n=33), almost half (48%) scored four or above, stable relative to 2024 (63%;  $p=0.422$ ). The median methamphetamine SDS score was three (IQR=1-8). In 2025, almost one quarter (24%) of participants obtained a score of zero on the methamphetamine SDS (n≤5 in 2024;  $p=0.533$ ), indicative of no symptoms of dependence in relation to methamphetamine use (Table 6).

Table 6: Total ecstasy and methamphetamine SDS scores, and per cent of participants scoring above cut-off scores indicative of dependence, among those who reported past six month use, Adelaide, SA, 2015-2025

|                                 | 2015    | 2016    | 2017    | 2018    | 2019    | 2020    | 2021    | 2022    | 2023    | 2024    | 2025           |
|---------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------------|
| <b>Ecstasy</b>                  | (n=99)  | (n=100) | (n=98)  | (n=100) | (n=97)  | /       | (n=85)  | (n=77)  | (n=85)  | (n=94)  | (n=91)         |
| <b>Median total score (IQR)</b> | 1 (0-3) | 1 (0-3) | 1 (0-2) | 1 (0-3) | 1 (0-3) | /       | 0 (0-2) | 0 (0-1) | 0 (0-1) | 0 (0-2) | <b>0 (0-2)</b> |
| % score = 0                     | 40      | 34      | 42      | 46      | 42      | /       | 59      | 70      | 62      | 51      | <b>57</b>      |
| % score $\geq 3$                | 34      | 27      | 24      | 27      | 32      | /       | 20      | 8       | 18      | 15      | <b>19</b>      |
| <b>Methamphetamine</b>          | (n=29)  | (n=35)  | (n=31)  | (n=41)  | (n=34)  | (n=26)  | (n=32)  | (n=37)  | (n=44)  | (n=24)  | (n=33)         |
| <b>Median total score (IQR)</b> | 4 (1-7) | 2 (2-5) | 2 (0-6) | 3 (0-6) | 4 (0-7) | 4 (1-9) | 5 (2-8) | 4 (0-8) | 4 (0-7) | 5 (2-8) | <b>3 (1-8)</b> |
| % score = 0                     | 24      | 31      | 32      | 37      | 26      | -       | 19      | 27      | 27      | -       | <b>24</b>      |
| % score $\geq 4$                | 52      | 31      | 39      | 46      | 59      | 54      | 69      | 51      | 52      | 63      | <b>48</b>      |

Note. Severity of Dependence scores calculated out of those who used ecstasy/methamphetamine recently (past 6 months). A cut-off score of  $\geq 3$  and  $\geq 4$  is used to indicate screening positive for potential ecstasy and methamphetamine dependence, respectively. Imputed values used for missing scale scores. Statistical significance for 2024 versus 2025 presented in table; \* $p<0.050$ ; \*\* $p<0.010$ ; \*\*\* $p<0.001$ . Please refer to Table 1 for a guide to table/figure notes.

## Sexual Health Behaviours

In 2025, three quarters (75%) of the Adelaide sample reported some form of sexual activity in the past four weeks, stable relative to 2024 (85%;  $p=0.117$ ) (Table 7). Given the sensitive nature of these questions, participants were given the option of self-completing this section of the interview (if the interview was undertaken face-to-face).

Of those who had engaged in sexual activity in the past four weeks and who responded ( $n=74$ ), 85% reported using alcohol and/or other drugs prior to or while engaging in sexual activity, stable relative to 2024 (86%). Of those who had engaged in sexual activity in the past four weeks and responded ( $n=74$ ), few participants ( $n\leq 5$ ) reported that their use of alcohol and/or other drugs had impaired their ability to negotiate their wishes during sex (11% in 2024;  $p=0.416$ ), whilst almost one third (30%) reported that they had used alcohol and/or other drugs to enhance sexual activity or pleasure with another person (37% in 2024;  $p=0.398$ ). Few participants ( $n\leq 5$ ) had engaged in sexual activity in exchange for money, drugs, or other goods or services (0% in 2024;  $p=0.469$ ) (Table 7).

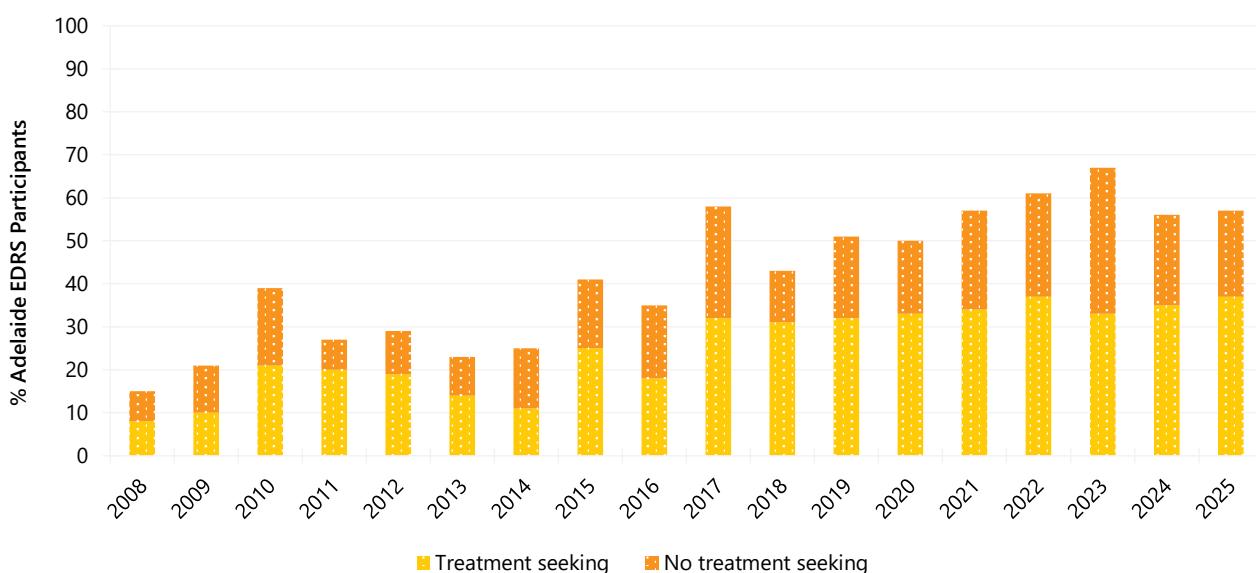
Of those who commented ( $n=100$ ), 28% reported having a sexual health check-up in the six months prior to interview (41% in 2024;  $p=0.078$ ), whilst almost two thirds (65%) had done so in their lifetime (77% in 2024;  $p=0.089$ ). Of the total sample who responded ( $n=100$ ), no participants reported that they had received a positive diagnosis for a sexually transmitted infection (STI) in the past six months in 2025, a significant decrease from 7% in 2024 ( $p=0.014$ ), whilst 8% had received a positive diagnosis in their lifetime, also a significant decrease relative to 2024 (22%;  $p=0.012$ ) (Table 7). Due to no participants reporting a past six month STI diagnosis, please refer to the [2025 National EDRS Report](#) for national trends, or contact the Drug Trends team for further information ([drugtrends@unsw.edu.au](mailto:drugtrends@unsw.edu.au)).

Of those who commented ( $n=99$ ), 17% of the sample reported having a test for human immunodeficiency virus (HIV) in the six months prior to interview, a significant decrease relative to 2024 (32%;  $p=0.023$ ), whilst two fifths (40%) had done so in their lifetime (55% in 2024;  $p=0.050$ ). In 2025, few participants ( $n\leq 5$ ) had been diagnosed with HIV in the past six months (0% in 2024;  $p=0.246$ ) or within their lifetime (0% in 2024;  $p=0.246$ ) (Table 7).

Table 7: Sexual health behaviours, Adelaide, SA, 2021-2025

|                                                                                                    | 2021         | 2022         | 2023         | 2024         | 2025                 |
|----------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|----------------------|
| <b>Of those who responded<sup>#</sup>:</b>                                                         | <b>N=88</b>  | <b>N=100</b> | <b>N=99</b>  | <b>N=100</b> | <b>N=100</b>         |
| % Any sexual activity in the past four weeks (n)                                                   | 82<br>(n=72) | 69<br>(n=69) | 74<br>(n=73) | 85<br>(n=85) | <b>75<br/>(n=75)</b> |
| <b>Of those who responded<sup>#</sup> and reported any sexual activity in the past four weeks:</b> | <b>n=70</b>  | <b>n=69</b>  | <b>n=72</b>  | <b>n=84</b>  | <b>n=74</b>          |
| % Drugs and/or alcohol used prior to or while engaging in sexual activity                          | 84           | 83           | 86           | 86           | <b>85</b>            |
| <b>Of those who responded<sup>#</sup> and reported any sexual activity in the past four weeks:</b> | <b>n=70</b>  | <b>n=68</b>  | <b>n=72</b>  | <b>n=84</b>  | <b>n=74</b>          |
| % Drugs and/or alcohol impaired their ability to negotiate their wishes during sexual activity     | 10           | 10           | 14           | 11           | -                    |
| % Drugs and/or alcohol used to enhance sexual activity or pleasure with another person             | /            | /            | /            | 37           | <b>30</b>            |
| <b>Of those who responded<sup>#</sup> and reported any sexual activity in the past four weeks:</b> | <b>n=73</b>  | <b>n=68</b>  | <b>n=72</b>  | <b>n=85</b>  | <b>n=75</b>          |
| % Engaged in sexual activity in exchange for money, drugs or other goods or services               | /            | /            | /            | 0            | -                    |
| <b>Of those who responded<sup>#</sup>:</b>                                                         | <b>n=94</b>  | <b>n=100</b> | <b>n=99</b>  | <b>n=100</b> | <b>n=100</b>         |
| % Had a sexual health check in the last six months                                                 | 33           | 31           | 35           | 41           | <b>28</b>            |
| % Had a sexual health check in their lifetime                                                      | 73           | 76           | 82           | 77           | <b>65</b>            |
| <b>Of those who responded<sup>#</sup>:</b>                                                         | <b>n=94</b>  | <b>n=100</b> | <b>n=99</b>  | <b>n=100</b> | <b>n=100</b>         |
| % Diagnosed with a sexually transmitted infection in the last six months                           | -            | 0            | -            | 7            | <b>0*</b>            |
| % Diagnosed with a sexually transmitted infection in their lifetime                                | 20           | 14           | 30           | 22           | <b>8*</b>            |
| <b>Of those who responded<sup>#</sup>:</b>                                                         | <b>n=93</b>  | <b>n=96</b>  | <b>n=99</b>  | <b>n=100</b> | <b>n=99</b>          |
| % Had a HIV test in the last six months                                                            | 25           | 20           | 22           | 32           | <b>17*</b>           |
| % Had a HIV test in their lifetime                                                                 | 53           | 51           | 74           | 55           | <b>40</b>            |
| <b>Of those who responded<sup>#</sup>:</b>                                                         | <b>n=94</b>  | <b>n=100</b> | <b>n=99</b>  | <b>n=100</b> | <b>n=99</b>          |
| % Diagnosed with HIV in the last six months                                                        | 0            | 0            | -            | 0            | -                    |
| % Diagnosed with HIV in their lifetime                                                             | 0            | 0            | -            | 0            | -                    |

Note. <sup>#</sup> Due to the sensitive nature of these items, there is missing data for some participants who chose not to respond. Statistical significance for 2024 versus 2025 presented in table; \* $p<0.050$ ; \*\* $p<0.010$ ; \*\*\* $p<0.001$ . Please refer to Table 1 for a guide to table/figure notes.


## Mental Health and Psychological Distress (K10)

### Mental Health

Almost three fifths (57%) of the Adelaide sample self-reported that they had experienced a mental health problem in the preceding six months (other than drug dependence), stable relative to 2024 (56%). Of those who reported a mental health problem in 2025 and commented (n=56), the most common mental health problem reported was anxiety (71%; 71% in 2024), followed by depression (59%; 64% in 2024;  $p=0.768$ ), attention-deficit/hyperactivity disorder (ADHD) (30%; 23% in 2024;  $p=0.439$ ) and post-traumatic stress disorder (PTSD) (21%; 14% in 2024;  $p=0.354$ ). Of those who reported experiencing a mental health problem (n=57), almost two thirds (65%) (37% of the total sample) reported seeing a mental health professional during the six months preceding interview (61% in 2024;  $p=0.843$ ) (Figure 52). Of those who reported seeing a mental health professional in 2025

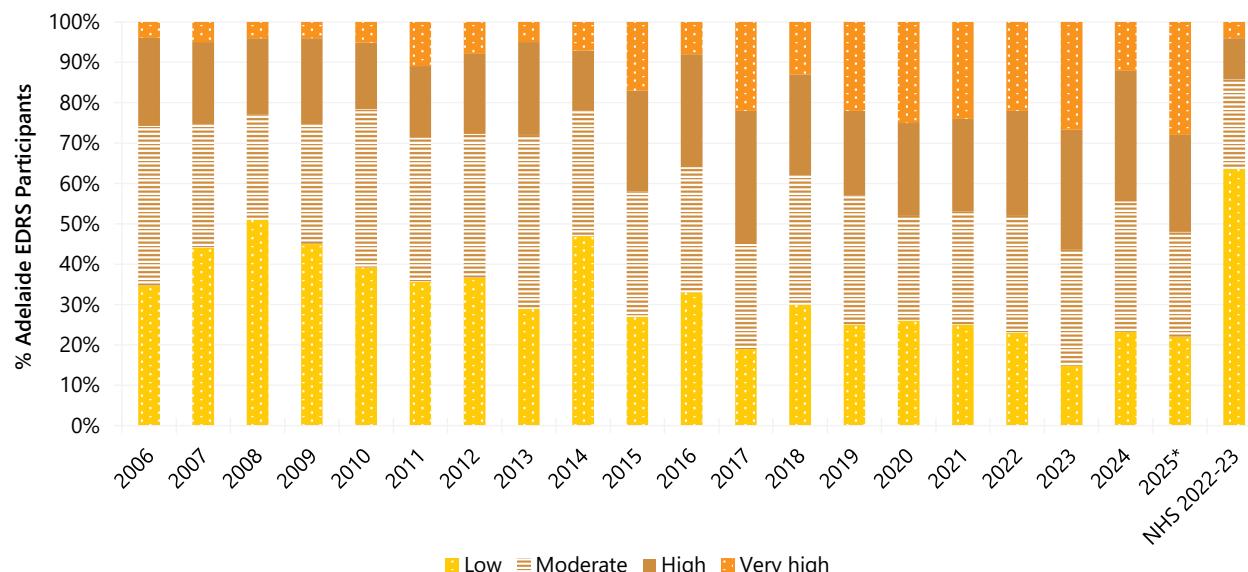
(n=37), three fifths (62%) reported being prescribed medication for their mental health problem (63% in 2024).

**Figure 52: Self-reported mental health problems and treatment seeking in the past six months, Adelaide, SA, 2008-2025**



Note. Questions about treatment seeking were first asked in 2008. The combination of the per cent who report treatment seeking and no treatment is the per cent who reported experiencing a mental health problem in the past six months. Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure;  $*p < 0.050$ ;  $**p < 0.010$ ;  $***p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

### Psychological Distress (K10)


The [Kessler Psychological Distress Scale 10 \(K10\)](#) was administered to obtain a measure of psychological distress in the past four weeks. It is a 10-item standardised measure that has been found to have good psychometric properties and to identify clinical levels of psychological distress as measured by the Diagnostic and Statistical Manual of Mental Disorders and the Structured Clinical Interview for DSM disorders.

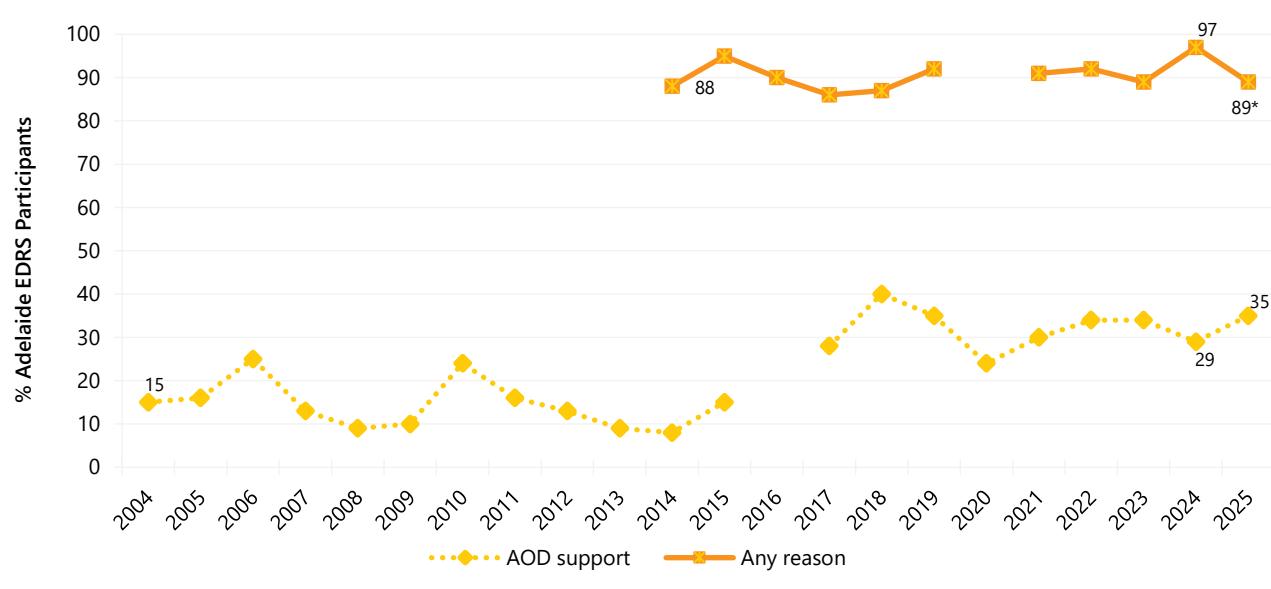
The minimum score is 10 (indicating no psychological distress) and the maximum is 50 (indicating very high psychological distress). Scores can be coded into four categories to describe degrees of distress: scores from 10–15 are considered to indicate 'low' psychological distress; scores between 16–21 indicate 'moderate' psychological distress; scores between 22–29 indicate 'high' psychological distress; and scores between 30–50 indicate 'very high' psychological distress. Among the general population, scores of 30 or more have been demonstrated to indicate a high likelihood of having a mental health problem, and possibly requiring clinical assistance.

The per cent of participants scoring in each of the four K10 categories significantly changed between 2024 and 2025 ( $p=0.047$ ). Among those who responded in 2025 (n=100), 28% had a score of 30 or more (12% in 2024) (Figure 53).

The National Health Survey 2022-23 provides Australian population data for adult ( $\geq 18$  years) K10 scores. EDRS participants in 2024 reported greater levels of 'high' and 'very high' distress compared to the general population (Figure 53).

Figure 53: K10 psychological distress scores, Adelaide, SA, 2006-2025 and among the general population, 2022-2023




Note. Data from the National Health Survey are a national estimate from 2022-23 for adults 18 or older. Imputation used for missing scale scores (EDRS only). Data labels are not shown for any of the stacked bar charts in the jurisdictional reports. Data are suppressed in the figure where  $n \leq 5$  responded to the item. Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

## Health Service Access

In 2025, one third (35%) of the Adelaide sample reported accessing any health service for alcohol and/or drug support (AOD) in the six months preceding interview, stable relative to 2024 (29%;  $p=0.369$ ) (Figure 54). The most common services accessed by participants in 2025 included a drug and alcohol counsellor (18%; 10% in 2024;  $p=0.108$ ), followed by a general practitioner (GP) (9%; 10% in 2024). Additionally, a significant increase was observed in those accessing a peer based harm reduction service in 2025 (6%; 0% in 2024;  $p=0.014$ ) (Table 8).

Eight-nine per cent of participants reported accessing any health service for any reason in the six months preceding interview in 2025, a significant decrease from 2024 (97%;  $p=0.028$ ) (Figure 54). The most common services accessed by participants in 2025 was a GP (71%; 80% in 2024;  $p=0.150$ ), followed by a pharmacy (41%; 56% in 2024;  $p=0.038$ ), a dentist (40%; 48% in 2024;  $p=0.327$ ) and a psychologist (25%; 32% in 2024;  $p=0.349$ ). Seven per cent reported accessing a peer based harm reduction service in 2025, a significant increase relative to 2024 ( $n \leq 5$ ;  $p=0.034$ ) (Table 8).

**Figure 54: Health service access for alcohol and other drug reasons, and for any reason, in the past six months, Adelaide, SA, 2004-2025**



Note. Questions about health service access for any reason were first asked about in 2015. Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e.,  $n \leq 5$  but not 0). Statistical significance for 2024 versus 2025 presented in figure;  $*p < 0.050$ ;  $**p < 0.010$ ;  $***p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

Table 8: Types of health services accessed for alcohol and other drug reasons and for any reason in the past six months, Adelaide, SA, 2022-2025

|                                                   | AOD support       |                   |                   |                          | Any reason        |                   |                   |                            |
|---------------------------------------------------|-------------------|-------------------|-------------------|--------------------------|-------------------|-------------------|-------------------|----------------------------|
|                                                   | 2022              | 2023              | 2024              | 2025                     | 2022              | 2023              | 2024              | 2025                       |
| <b>% accessing health services</b>                | N=104<br>34<br>14 | N=101<br>34<br>15 | N=101<br>29<br>10 | <b>N=99<br/>35<br/>9</b> | N=104<br>92<br>76 | N=101<br>89<br>71 | N=101<br>97<br>80 | <b>N=99<br/>89*<br/>71</b> |
| GP <sup>^</sup>                                   |                   |                   |                   |                          |                   |                   |                   |                            |
| <i>In-person</i>                                  | /                 | /                 | /                 | <b>9</b>                 | /                 | /                 | /                 | <b>67</b>                  |
| <i>Telehealth</i>                                 | /                 | /                 | /                 | -                        | /                 | /                 | /                 | <b>25</b>                  |
| Emergency department                              | -                 | 8                 | 6                 | -                        | 16                | 18                | 15                | <b>14</b>                  |
| Hospital admission (inpatient)                    | -                 | 8                 | 6                 | -                        | 11                | 14                | 14                | <b>13</b>                  |
| Medical tent (e.g., at a festival)                | -                 | -                 | 6                 | -                        | -                 | -                 | 10                | <b>6</b>                   |
| Drug and Alcohol counsellor                       | 9                 | 10                | 10                | <b>18</b>                | 9                 | 10                | 10                | <b>18</b>                  |
| Hospital as an outpatient                         | -                 | -                 | 0                 | <b>0</b>                 | 6                 | 7                 | -                 | -                          |
| Specialist doctor (not including a psychiatrist)  | 0                 | -                 | 0                 | -                        | 12                | 15                | 8                 | <b>15</b>                  |
| Dentist                                           | 0                 | 0                 | -                 | -                        | 37                | 37                | 48                | <b>40</b>                  |
| Ambulance attendance                              | -                 | -                 | -                 | -                        | 6                 | 13                | 8                 | -                          |
| Pharmacy                                          | /                 | /                 | -                 | -                        | /                 | /                 | 56                | <b>41*</b>                 |
| Other health professional (e.g., physiotherapist) | -                 | -                 | 0                 | -                        | 28                | 22                | 23                | <b>21</b>                  |
| Psychiatrist                                      | -                 | -                 | -                 | -                        | 9                 | 8                 | 16                | <b>15</b>                  |
| Psychologist                                      | 18                | 10                | 13                | <b>6</b>                 | 38                | 28                | 32                | <b>25</b>                  |
| NSP                                               | 6                 | -                 | -                 | -                        | 6                 | -                 | -                 | -                          |
| Peer based harm reduction service                 | -                 | -                 | 0                 | <b>6*</b>                | -                 | -                 | -                 | <b>7*</b>                  |
| Other harm reduction service                      | -                 | -                 | 0                 | <b>0</b>                 | -                 | -                 | 0                 | -                          |

Note. <sup>^</sup> In 2025, we separated 'GP' into 'GP in person' and 'GP via telehealth'. Statistical significance for 2024 versus 2025 presented in table; \* $p<0.050$ ; \*\* $p<0.010$ ; \*\*\* $p<0.001$ . Please refer to Table 1 for a guide to table/figure notes.

## Driving

In 2025, 77% of the Adelaide sample had driven a car, motorcycle, or other vehicle in the six months prior to interview. Of those who had driven in the past six months and responded (n=72), 15% reported driving while over the (perceived) legal limit of alcohol (26% in 2024;  $p=0.164$ ).

Of those who had driven in the past six months and responded (n=77), one third (35%) reported driving within three hours of consuming an illicit or non-prescribed drug in the last six months (50% in 2024;  $p=0.081$ ) (Figure 55). Participants most commonly reported using cannabis (52%) prior to driving in the six months preceding interview, followed by methamphetamine crystal (44%).

Among those who had driven in the past six months (n=77), one fifth (21%) reported that they had been tested for drug driving by the police roadside drug testing service (24% in 2024;  $p=0.707$ ), and almost two fifths (39%) reported that they had been breath tested for alcohol by the police roadside testing service in the six months prior to interview (38% in 2024) (Figure 55). Among those who had had been tested for drug driving by the police roadside drug testing service (n=16), few participants ( $n \leq 5$ ) were able to report on the specific drug/s that had been detected, therefore, these numbers are suppressed. Please refer to the [2025 National EDRS Report](#) for national trends, or contact the Drug Trends team for further information ([drugtrends@unsw.edu.au](mailto:drugtrends@unsw.edu.au)).

**Figure 55: Self-reported testing, and driving over the (perceived) legal limit for alcohol or three hours following illicit drug use, among those who had driven in the past six months, Adelaide, SA, 2007-2025**

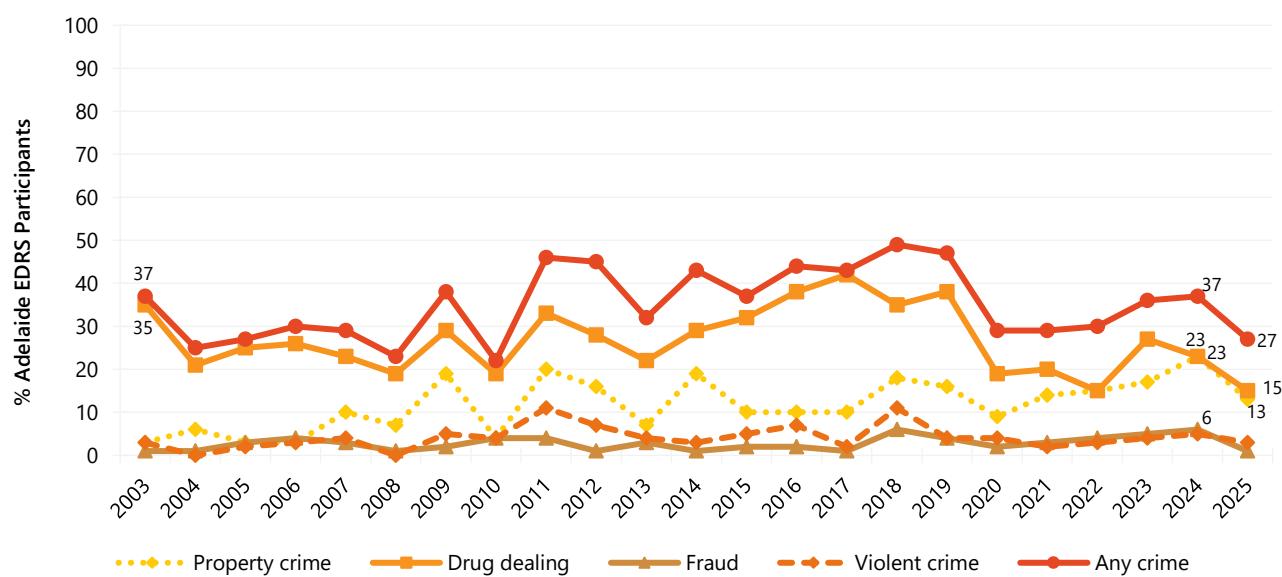


Note. Computed of those who had driven a vehicle in the past six months. Questions about driving behaviour were first asked about in 2007. Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e.,  $n \leq 5$  but not 0). Statistical significance for 2024 versus 2025 presented in figure;  $*p < 0.050$ ;  $**p < 0.010$ ;  $***p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

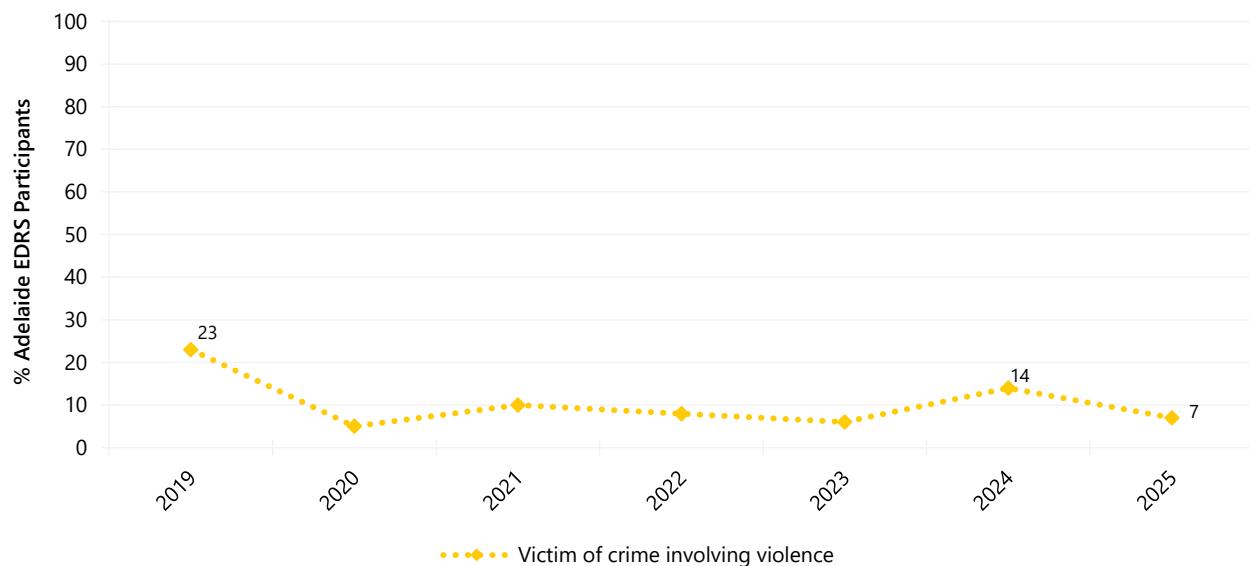
## Experience of Crime and Engagement with the Criminal Justice System

In 2025, one quarter (27%) of the Adelaide sample reported 'any' crime in the past month (37% in 2024;  $p=0.178$ ), with selling drugs for cash profit (15%; 23% in 2024;  $p=0.211$ ) and property crime (13%; 23% in 2024;  $p=0.101$ ) being the two main forms of criminal activity in 2025 (Figure 56).

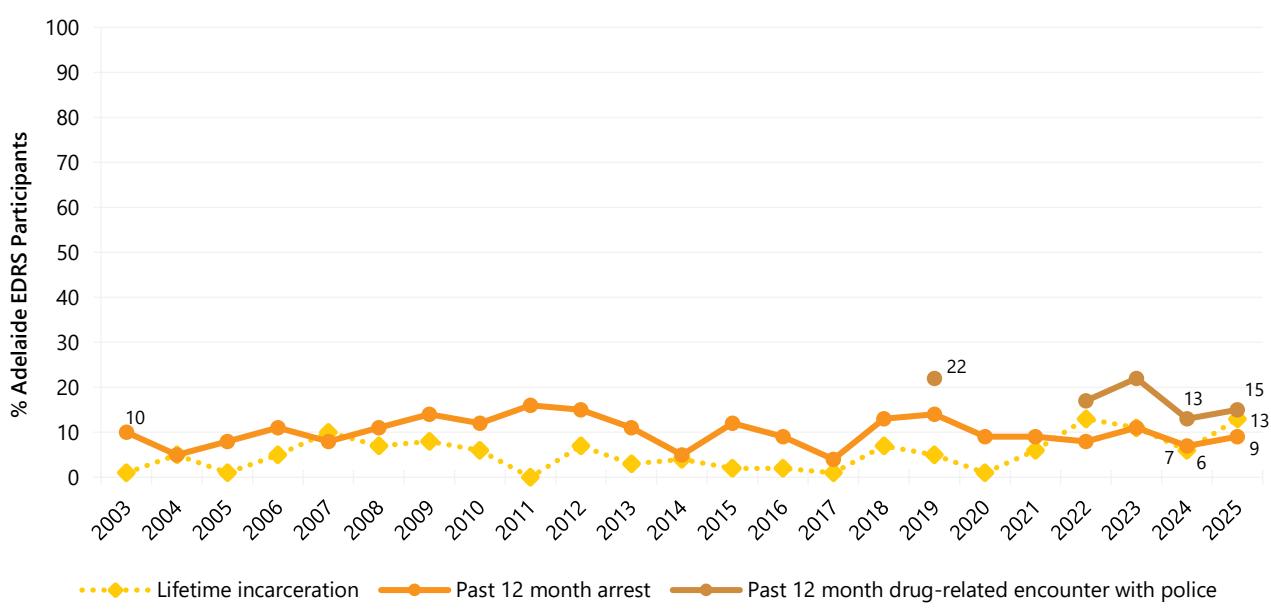
In 2025, 7% of the Adelaide sample reported being the victim of a crime involving violence, stable relative to 2024 (14%;  $p=0.175$ ) (Figure 57).


Thirteen per cent reported having ever been in prison in 2025, stable relative to 2024 (6%;  $p=0.101$ ) (Figure 58).

Nine per cent of the 2025 sample reported having been arrested in the 12 months preceding interview (7% in 2024;  $p=0.610$ ) (Figure 58). Few participants ( $n\leq 5$ ) reported reasons for arrest; therefore, further details are not reported. Please refer to the [2025 National EDRS Report](#) for national trends, or contact the Drug Trends team for further information ([drugtrends@unsw.edu.au](mailto:drugtrends@unsw.edu.au)).


In 2025, 6% of the sample had been convicted of a drug-related offence in the past year ( $n\leq 5$  in 2024;  $p=0.331$ ), and few participants ( $n\leq 5$ ) had been sentenced to a community corrections order ( $n\leq 5$  in 2024;  $p=0.721$ ).

Fifteen per cent of participants reported a drug-related encounter with police which did not result in charge or arrest in the past 12 months, stable relative to 2024 (13%;  $p=0.837$ ) (Figure 58). This predominantly comprised being stopped and searched (60%; 69% in 2024;  $p=0.705$ ), with few participants ( $n\leq 5$ ) able to comment on other drug-related encounters. Few participants ( $n\leq 5$ ) reported being issued a court attendance notice (not asked in 2024).


**Figure 56: Self-reported criminal activity in the past month, Adelaide, SA, 2003-2025**



Note. Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e.,  $n\leq 5$  but not 0). Statistical significance for 2024 versus 2025 presented in figure; \* $p<0.050$ ; \*\* $p<0.010$ ; \*\*\* $p<0.001$ . Please refer to Table 1 for a guide to table/figure notes.

**Figure 57: Victim of crime involving violence in the past month, Adelaide, SA, 2019-2025**

Note. Questions regarding being the victim of a crime involving violence were first asked in 2019. Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e.,  $n \leq 5$  but not 0). Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

**Figure 58: Lifetime incarceration, and past 12 month arrest and drug-related encounters with police that did not result in arrest, Adelaide, SA, 2003-2025**

Note. Data labels are only provided for the first and two most recent years of monitoring, however labels are suppressed where there are small numbers (i.e.,  $n \leq 5$  but not 0). Statistical significance for 2024 versus 2025 presented in figure; \* $p < 0.050$ ; \*\* $p < 0.010$ ; \*\*\* $p < 0.001$ . Please refer to Table 1 for a guide to table/figure notes.

## Modes of Purchasing Illicit or Non-Prescribed Drugs

In interviewing and reporting, 'online sources' were defined as either surface or darknet marketplaces.

### Purchasing Approaches

In 2025, the most popular means of arranging the purchase of illicit or non-prescribed drugs in the 12 months preceding interview was in person (77%; 79% in 2024;  $p=0.860$ ) and via social networking or messaging applications (e.g., Facebook, Wickr, WhatsApp, Snapchat, Grindr, Tinder) (58%), a significant decrease relative to 2024 (73%;  $p=0.041$ ) (Table 9). It is important to re-iterate that this refers to people *arranging the purchase* of illicit or non-prescribed drugs. This captures participants who messaged friends or known dealers on Facebook Messenger or WhatsApp, for example, to organise the purchase of illicit or non-prescribed drugs, which may have then been picked up in person.

Among those who had used social networking or messaging applications to arrange the purchase of illicit or non-prescribed drugs in the 12 months preceding interview, the most commonly used social networking or messaging apps were Snapchat (52%), followed by Telegram (41%) and Facebook (27%), with substances mostly obtained from a known dealer/vendor (74%), followed by a friend/relative/partner/colleague (62%) and an unknown dealer/vendor (34%).

### Buying and Selling Drugs Online

Few participants ( $n\leq 5$ ) reported obtaining drugs via the darknet (7% in 2024;  $p=0.065$ ) and few participants ( $n\leq 5$ ) reported obtaining drugs via the surface web ( $n\leq 5$  in 2024;  $p=0.621$ ) in the past year. However, 31% of participants reported ever obtaining illicit drugs through someone who had purchased them on the surface web or darknet, with one fifth (21%) having done so in the last 12 months (38% in 2024;  $p=0.030$ ).

In 2025, few participants ( $n\leq 5$ ) reported selling illicit/non-prescribed drugs via surface or darknet marketplaces in the 12 months preceding interview ( $n\leq 5$  in 2024;  $p=0.721$ ).

### Source and Means of Obtaining Drugs

Three quarters (75%) of participants reported obtaining illicit drugs from a friend/relative/partner/colleague in 2025, a significant decrease relative to 2024 (90%;  $p=0.012$ ). Two thirds (66%) reported obtaining illicit drugs from a known dealer/vendor (73% in 2024;  $p=0.286$ ) and one quarter (27%) reported obtaining illicit drugs from an unknown dealer/vendor (36% in 2024;  $p=0.223$ ) (Table 9).

When asked about how they had received illicit drugs on any occasion in the last 12 months, the vast majority of participants reported face-to-face (99%; 100% in 2024), followed by a collection point (defined as a predetermined location where a drug will be dropped for later collection; 19%; 26% in 2024;  $p=0.245$ ). Few participants ( $n\leq 5$ ) reported receiving illicit drugs via post, a significant decrease relative to 2024 (8%;  $p=0.018$ ) (Table 9).

Table 9: Means of purchasing and obtaining illicit drugs in the past 12 months, Adelaide, SA, 2019-2025

|                                                                      | 2019<br>(N=100) | 2020<br>(N=101) | 2021<br>(N=100) | 2022<br>(N=104) | 2023<br>(N=101) | 2024<br>(N=101) | 2025<br>(N=100) |
|----------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| <b>% Purchasing approaches in the last 12 months<sup>^#</sup></b>    | (n=100)         | (n=99)          | (n=98)          | (n=104)         | (n=101)         | (n=100)         | <b>(n=100)</b>  |
| Face-to-face                                                         | 79              | 72              | 83              | 72              | 85              | 79              | <b>77</b>       |
| Surface web                                                          | -               | -               | -               | -               | -               | -               | -               |
| Darknet market                                                       | 8               | 6               | 9               | -               | -               | 7               | -               |
| Social networking or messaging applications <sup>~</sup>             | 74              | 81              | 72              | 72              | 76              | 73              | <b>58*</b>      |
| Text messaging                                                       | 44              | 43              | 54              | 52              | 60              | 55              | <b>41</b>       |
| Phone call                                                           | 37              | 34              | 35              | 39              | 50              | 38              | <b>31</b>       |
| Grew/made my own                                                     | 0               | -               | -               | -               | 7               | 11              | -               |
| Other                                                                | -               | 0               | 0               | -               | -               | -               | -               |
| <b>% Means of obtaining drugs in the last 12 months<sup>^~</sup></b> | (n=100)         | (n=101)         | (n=98)          | (n=104)         | (n=100)         | (n=99)          | <b>(n=100)</b>  |
| Face-to-face                                                         | 0               | 0               | 96              | 94              | 98              | 100             | <b>99</b>       |
| Collection point                                                     | 12              | 25              | 20              | 24              | 20              | 26              | <b>19</b>       |
| Post                                                                 | 10              | 14              | 6               | 7               | 7               | 8               | -*              |
| <b>% Source of drugs in the last 12 months<sup>^</sup></b>           | (n=100)         | (n=100)         | (n=98)          | (n=104)         | (n=100)         | (n=98)          | <b>(n=100)</b>  |
| Friend/relative/partner/colleague                                    | 91              | 86              | 89              | 89              | 88              | 90              | <b>75*</b>      |
| Known dealer/vendor                                                  | 75              | 78              | 78              | 70              | 67              | 73              | <b>66</b>       |
| Unknown dealer/vendor                                                | 50              | 50              | 33              | 38              | 32              | 36              | <b>27</b>       |

Note. <sup>^</sup> participants could endorse multiple responses. <sup>\*</sup>This refers to people *arranging the purchase* of illicit or non-prescribed drugs. This captures participants who messaged friends or known dealers on Facebook Messenger or WhatsApp, for example, to organise the purchase of illicit or non-prescribed drugs, which may have then been picked up in person. <sup>~</sup> The face-to-face response option from 2021 was combined by those responding, 'I went and picked up the drugs', 'The drugs were dropped off to my house by someone' and/or 'Was opportunistic – I arranged and collected at the same time (e.g., at an event/club.)' Statistical significance for 2024 versus 2025 presented in table; \* $p<0.050$ ; \*\* $p<0.010$ ; \*\*\* $p<0.001$ . Please refer to Table 1 for a guide to table/figure notes.