

TASMANIAN DRUG TRENDS 2022

Key Findings from the Tasmanian Illicit Drug
Reporting System (IDRS) Interviews

TASMANIAN DRUG TRENDS 2022: KEY FINDINGS FROM THE ILLICIT DRUG REPORTING SYSTEM (IDRS) INTERVIEWS

Yalei Wilson¹, Andrew Stone¹ & Raimondo Bruno^{1,2}

¹ School of Psychology, University of Tasmania

² National Drug and Alcohol Research Centre, University of New South Wales

UNSW
NDARC
National Drug & Alcohol Research Centre

 UNSW
SYDNEY

 NDRI
national drug research institute

 Curtin University

 Burnet Institute
Medical Research. Practical Action.

 **THE UNIVERSITY
OF QUEENSLAND**
AUSTRALIA

 **NORTHERN
TERRITORY
GOVERNMENT**

ISBN 978-0-7334-4064-9 ©NDARC 2022

This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. All other rights are reserved. Requests and enquiries concerning reproduction and rights should be addressed to the Centre Manager, National Drug and Alcohol Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.

Suggested citation: Wilson, Y., Stone, A., & Bruno, R. (2022). Tasmanian Drug Trends 2022: Key Findings from the Illicit Drug Reporting System (IDRS) Interviews. Sydney: National Drug and Alcohol Research Centre, UNSW Sydney. DOI: 10.26190/119r-jg49

Please note that as with all statistical reports there is the potential for minor revisions to data in this report over its life. Please refer to the online version at [Drug Trends](#).

Please contact the Drug Trends team with any queries regarding this publication:
drugtrends@unsw.edu.au

Table of Contents

SAMPLE CHARACTERISTICS	16
HEROIN	19
METHAMPHETAMINE	23
COCAINE	30
CANNABIS	33
PHARMACEUTICAL OPIOIDS	39
OTHER DRUGS	46
DRUG-RELATED HARMS AND OTHER RISK FACTORS	50

List of Tables

TABLE 1: DEMOGRAPHIC CHARACTERISTICS OF THE SAMPLE, NATIONALLY, 2022, AND HOBART, TAS, 2016-2022.....	16
TABLE 2: PAST SIX MONTH USE OF OTHER OPIOIDS, HOBART, TAS, 2019-2022	45
TABLE 3: PAST SIX MONTH USE OF NEW PSYCHOACTIVE SUBSTANCES, HOBART, TAS, 2013-2022.....	46
TABLE 4: PAST 12-MONTH NON-FATAL OVERDOSE BY DRUG TYPE, NATIONALLY, 2022, AND HOBART, TAS, 2015-2022.....	52
TABLE 5: SHARING AND RE-USING NEEDLES AND INJECTING EQUIPMENT IN THE PAST MONTH, NATIONALLY, 2022, AND HOBART, TAS, 2015-2022	55
TABLE 6: INJECTION-RELATED ISSUES IN THE PAST MONTH, HOBART, TAS, 2020-2022	56
TABLE 7: ANY CURRENT DRUG TREATMENT, NATIONALLY, 2022, AND HOBART, TAS, 2015-2022	57
TABLE 8: HCV AND HIV TESTING AND TREATMENT, NATIONALLY, 2022, AND HOBART, TAS, 2018-2022	57

List of Figures

FIGURE 1: DRUG OF CHOICE, HOBART, TAS, 2000-2022.....	17
FIGURE 2: DRUG INJECTED MOST OFTEN IN THE PAST MONTH, HOBART, TAS, 2000-2022	18
FIGURE 3: WEEKLY OR MORE FREQUENT SUBSTANCE USE IN THE PAST SIX MONTHS, HOBART, TAS, 2000-2022	18
FIGURE 4: PAST SIX MONTH USE AND FREQUENCY OF USE OF HEROIN, HOBART, TAS, 2000-2022.....	20
FIGURE 5: MEDIAN PRICE OF HEROIN PER CAP AND GRAM, HOBART, TAS, 2000-2022	21
FIGURE 6: CURRENT PERCEIVED PURITY OF HEROIN, HOBART, TAS, 2000-2022	21
FIGURE 7: CURRENT PERCEIVED AVAILABILITY OF HEROIN, HOBART, TAS, 2000-2022	22
FIGURE 8: PAST SIX MONTH USE OF ANY METHAMPHETAMINE, POWDER, BASE, AND CRYSTAL, HOBART, TAS, 2000-2022.....	24
FIGURE 9: FREQUENCY OF USE OF ANY METHAMPHETAMINE, POWDER, BASE, AND CRYSTAL, HOBART, TAS, 2000-2022.....	24
FIGURE 10: MEDIAN PRICE OF POWDER METHAMPHETAMINE PER POINT AND GRAM, HOBART, TAS, 2001-2022	27
FIGURE 11: MEDIAN PRICE OF METHAMPHETAMINE CRYSTAL PER POINT AND GRAM, HOBART, TAS, 2001-2022	27
FIGURE 12: CURRENT PERCEIVED PURITY OF POWDER METHAMPHETAMINE, HOBART, TAS, 2002-2022	28
FIGURE 13: CURRENT PERCEIVED PURITY OF METHAMPHETAMINE CRYSTAL, HOBART, TAS, 2002-2022	28
FIGURE 14: CURRENT PERCEIVED AVAILABILITY OF POWDER METHAMPHETAMINE, HOBART, TAS, 2002-2022	29
FIGURE 15: CURRENT PERCEIVED AVAILABILITY OF METHAMPHETAMINE CRYSTAL, HOBART, TAS, 2002-2022	29
FIGURE 16: PAST SIX MONTH USE AND FREQUENCY OF USE OF COCAINE, HOBART, TAS, 2000-2022.....	31
FIGURE 17: MEDIAN PRICE OF COCAINE PER CAP AND GRAM, HOBART, TAS, 2000-2022	31
FIGURE 18: CURRENT PERCEIVED PURITY OF COCAINE, HOBART, TAS, 2000-2022	32
FIGURE 19: CURRENT PERCEIVED AVAILABILITY OF COCAINE, HOBART, TAS, 2000-2022	32
FIGURE 20: PAST SIX MONTH USE AND FREQUENCY OF USE OF NON-PRESCRIBED CANNABIS AND/OR CANNABINOID RELATED PRODUCTS, HOBART, TAS, 2000-2022	34
FIGURE 21: MEDIAN PRICE OF NON-PRESCRIBED HYDROPONIC (A) AND BUSH (B) CANNABIS PER OUNCE AND BAG, HOBART, TAS, 2003-2022	36
FIGURE 22: CURRENT PERCEIVED POTENCY OF NON-PRESCRIBED HYDROPONIC (A) AND BUSH (B) CANNABIS, HOBART, TAS, 2004-2022	37
FIGURE 23: CURRENT PERCEIVED AVAILABILITY OF NON-PRESCRIBED HYDROPONIC (A) AND BUSH (B) CANNABIS, HOBART, TAS, 2004-2022	38
FIGURE 24: PAST SIX MONTH USE (PRESCRIBED AND NON-PRESCRIBED) AND FREQUENCY OF USE OF NON-PRESCRIBED METHADONE, HOBART, TAS, 2000-2022	40
FIGURE 25: PAST SIX MONTH USE (PRESCRIBED AND NON-PRESCRIBED) AND FREQUENCY OF USE OF NON-PRESCRIBED BUPRENORPHINE-NALOXONE, HOBART, TAS, 2006-2022	41
FIGURE 26: PAST SIX MONTH USE (PRESCRIBED AND NON-PRESCRIBED) AND FREQUENCY OF USE OF NON-PRESCRIBED MORPHINE, HOBART, TAS, 2001-2022	42
FIGURE 27: PAST SIX MONTH USE (PRESCRIBED AND NON-PRESCRIBED) AND FREQUENCY OF USE OF NON-PRESCRIBED OXYCODONE, HOBART, TAS, 2005-2022.....	43
FIGURE 28: PAST SIX-MONTH USE (PRESCRIBED AND NON-PRESCRIBED) AND FREQUENCY OF USE OF NON-PRESCRIBED FENTANYL, HOBART, TAS, 2013-2022.....	44

FIGURE 29: PAST SIX MONTH USE OF NON-PRESCRIBED PHARMACEUTICAL DRUGS, HOBART, TAS, 2006-2022	48
FIGURE 30: PAST SIX MONTH USE OF LICIT AND OTHER DRUGS, HOBART, TAS, 2000-2022	49
FIGURE 31: USE OF OPIOIDS, STIMULANTS, BENZODIAZEPINES AND CANNABIS ON THE DAY PRECEDING INTERVIEW AND MOST COMMON DRUG PATTERN PROFILES, HOBART, TAS, 2022	50
FIGURE 32: PAST 12 MONTH NON-FATAL ANY OVERDOSE, HOBART, TAS, 2000-2022	52
FIGURE 33: LIFETIME AWARENESS OF TAKE-HOME NALOXONE PROGRAM AND DISTRIBUTION, HOBART, TAS, 2013-2022.....	54
FIGURE 34: BORROWING AND LENDING OF NEEDLES AND SHARING OF INJECTING EQUIPMENT IN THE PAST MONTH, HOBART, TAS, 2000-2022	55
FIGURE 35: SELF-REPORTED MENTAL HEALTH PROBLEMS AND TREATMENT SEEKING IN THE PAST SIX MONTHS, HOBART, TAS, 2004-2022	58
FIGURE 36: SELF-REPORTED DRIVING IN THE PAST SIX MONTHS HOBART, TAS, 2007-2022	59
FIGURE 37: SELF-REPORTED TESTING AND DRIVING IN THE PAST SIX MONTHS, OVER THE (PERCEIVED) LEGAL LIMIT FOR ALCOHOL AND THREE HOURS FOLLOWING ILLICIT DRUG USE, AMONG THOSE WHO HAD DRIVEN IN THE PAST SIX MONTHS, HOBART, TAS, 2007-2022	59
FIGURE 38: SELF-REPORTED CRIMINAL ACTIVITY IN THE PAST MONTH, HOBART, TAS, 2000-2022.....	60
FIGURE 39: CURRENT CONCERN RELATED TO CONTRACTING COVID-19, HOBART, TAS, 2020-2022.....	61

Acknowledgements

Funding

In 2022, the Illicit Drug Reporting System (IDRS), falling within the Drug Trends program of work, was supported by funding from the Australian Government Department of Health and Aged Care under the Drug and Alcohol Program.

Research Team

The National Drug and Alcohol Research Centre (NDARC), UNSW Sydney, coordinated the IDRS. The following researchers and research institutions contributed to the IDRS in 2022:

- Dr Rachel Sutherland, Fiona Jones, Antonia Karlsson, Julia Uporova, Cate King, Daisy Gibbs, Olivia Price, Professor Louisa Degenhardt, Professor Michael Farrell and Associate Professor Amy Peacock, National Drug and Alcohol Research Centre, University of New South Wales, New South Wales;
- Joanna Wilson, Sarah Eddy and Professor Paul Dietze, Burnet Institute, Victoria;
- Yalei Wilson and Associate Professor Raimondo Bruno, School of Psychology, University of Tasmania, Tasmania;
- Dr Seraina Agramunt and Professor Simon Lenton, National Drug Research Institute and enAble Institute, Curtin University, Western Australia;
- Chris Moon and Warren Que Noy, Northern Territory Health, Northern Territory; and
- Catherine Daly, Dr Natalie Thomas, Dr Jennifer Juckel, and Associate Professor Caroline Salom, Institute for Social Science Research, The University of Queensland, Queensland.

We would like to thank past and present members of the research team.

Participants

We would like to thank all the participants who were interviewed for the IDRS in the present and in previous years.

Contributors

We thank all the individuals who contributed to questionnaire development and assisted with the collection and input of data at a jurisdictional and national level. In particular, we would like to thank Andrew Stone, Joel Keygan, Amelia Kohl, Eleanor Riewoldt, Darcy Lefroy, Hannah McHardy, Jacqueline Hodgson and Callum Thompson for conducting the Tasmanian IDRS interviews in 2022. We would also like to thank the members of the Drug Trends Advisory Committee, as well as the Australian Injecting & Illicit Drug Users League (AIVL), for their contribution to the IDRS.

We acknowledge the palawa people, the traditional custodians of nipluna/Hobart, the land on which the work for this report was undertaken. We pay respect to Elders past, present, and emerging.

Abbreviations

AIL	Australian Injecting & Illicit Drug Users League
ALPHA PVP	α -Pyrrolidinopentiophenone
CBD	Cannabidiol
EDRS	Ecstasy and Related Drugs Reporting System
GBL	Gamma-butyrolactone
GHB	Gamma-hydroxybutyrate
HCV	Hepatitis C Virus
HIV	Human immunodeficiency virus
IDRS	Illicit Drug Reporting System
IQR	Interquartile range
LSD	<i>d</i> -lysergic acid
MDA	3,4-methylenedioxymethamphetamine
MDMA	3,4-methylenedioxymethamphetamine
MDPV	Methylenedioxypyrovalerone
N (or n)	Number of participants
NDARC	National Drug and Alcohol Research Centre
NPS	New psychoactive substances
NSP	Needle and Syringe Program
NSW	New South Wales
NT	Northern Territory
OTC	Over-the-counter
PBS	Pharmaceutical Benefits Scheme
PCR	Polymerase Chain Reaction
PTSD	Post-traumatic stress disorder
QLD	Queensland
RNA	Ribonucleic Acid
SD	Standard deviation
TAS	Tasmania
TGA	Therapeutic Goods Administration
UNSW	University of New South Wales

Executive Summary

The IDRS sample is a sentinel group of people aged 18 years or older who injected illicit drugs at least once monthly in the preceding six months and resided in Hobart, Tasmania. Participants were recruited via advertisements in needle syringe programs and other harm reduction services, as well as via peer referral. The results are not representative of all people who use illicit drugs, nor of use in the general population. **Data were collected in 2022 from June-July. Interviews in 2020, 2021 and 2022 were delivered face-to-face as well as via telephone, to reduce risk of COVID 19 transmission. This methodological change should be factored into all comparisons of data from the 2020-2022 samples, relative to previous years.**

Sample Characteristics

The IDRS sample recruited from Hobart, Tasmania (TAS) in 2022 (N=102) was consistent with the Hobart profile in previous years, whereby almost two-thirds (69%) were male, with a mean age of 43 years. The majority (85%) of the sample were unemployed at the time of interview, and most (93%) had received a government pension/allowance or benefit in the month prior to interview. The median income per week was stable at \$418 in 2022. The drug of choice nominated by half of the sample was methamphetamine (53%; 44% in 2021). The drug injected most often in the past month was methamphetamine (73%; 64% in 2021). In 2022, half (53%) of the sample reported that methamphetamine was their drug of choice (44% in 2021), and almost three-quarters (73%) reported that methamphetamine was the drug they had injected most often in the past month (64% in 2021). Weekly or more frequent use of any methamphetamine was reported by almost two-thirds (67%) of the Hobart sample (61% in 2021).

Heroin

Recent (i.e., past six month) use of heroin has significantly increased from 11% in 2021 to 22% in 2022. Almost one-third (36%) of those who had recently used heroin reported weekly or more frequent use in 2022 (33% in 2021). The price of a point of heroin was reported to be \$100 in 2022,

stable from \$85 in 2021. Perceived purity and availability remained stable between 2021 and 2022.

Methamphetamine

Recent use of any methamphetamine has trended upwards over the past few years, with almost nine in ten participants (86%) reporting recent use in 2022. This was mostly driven by a continued increase in crystal methamphetamine use (84% in 2022) – the most commonly used form since 2014. The frequency of use of any methamphetamine was trending to an increase from 2021 (median of 48 days) to a median of 72 days in 2022. There was a significant increase in daily use of methamphetamine powder, with 29% of recent consumers reporting daily use in 2022. The median price for one point of crystal significantly increased, from \$50 in 2021 to \$100 in 2022 ($p<0.001$). There was a significant change in the perceived purity of crystal methamphetamine between 2021 and 2022, with more participants perceiving crystal methamphetamine as 'medium' purity in 2022 (40%; 30% in 2021) and fewer participants reporting 'high' purity (23%; 40% in 2021).

Cocaine

Fourteen per cent of the Hobart sample had recently consumed cocaine, stable from 16% in 2021. No participants reported using cocaine weekly or more frequently in 2022.

Cannabis and/or Cannabinoid Related Products

The proportion of participants reporting recent non-prescribed cannabis use and/or cannabinoid related products has been slowly declining since the early 2000s to 70% in 2022 (67% in 2021). Almost half (51%) of participants who had recently used non-prescribed cannabis reported daily use, stable relative to 2021 (58%; $p=0.495$). Hydroponic cannabis remained the form most commonly used (84%), followed by bush cannabis (56%) and hashish (9%). Few participants ($n\leq 5$) reported using hash oil and/or non-prescribed pharmaceutical CBD oil and/or THC extract in the six months preceding interview. Both hydroponic and bush cannabis were reported as being 'very easy' to obtain in

2022 (59% and 50% of those who commented, respectively), stable from 2021.

Pharmaceutical Opioids

Recent non-prescribed use of pharmaceutical opioids such as morphine, oxycodone and methadone has declined over the past 10 years of monitoring. In 2022, 27% of the sample reported recent use of non-prescribed morphine, which was a significant decrease from 44% in 2021. Frequency of use was stable at a median of 24 days in the previous six months (11 days in 2021). Nineteen per cent reported recent use of non-prescribed oxycodone, with a median frequency of eight days. One-fifth (22%) reported using non-prescribed methadone, which was a significant decrease relative to 2021 (37%; $p=0.025$). Recent use of non-prescribed buprenorphine tablet, buprenorphine-naloxone, fentanyl, codeine, tramadol and tapentadol all remained stable in 2021.

Other Drugs

Seven per cent of the Hobart sample reported recent use of NPS in 2022. Sixteen per cent reported recent use of non-prescribed pharmaceutical stimulants and six per cent reported recent use of non-prescribed antipsychotics in 2022. Recent non-prescribed benzodiazepine use was reported by 35% of participants in 2022 (41% in 2021). Pregabalin use remained low and stable at 14% (23% in 2021). Recent use of alcohol (64%; 60% in 2021), tobacco (93%; 86% in 2021) and non-prescribed e-cigarettes (15%; 7% in 2021) remained stable in 2022. Few participants ($n\leq 5$) reported recent use of GHB/GBL/1,4-BD in 2021 and 2022.

Drug-Related Harms and Other Behaviours

In 2022, half (50%) of the sample reported using two or more drugs on the day preceding interview, most commonly cannabis (50%), stimulants (33%) and opioids (30%).

Twelve per cent of participants reported experiencing a non-fatal overdose on any drug in the 12 months preceding interview. Fifty-eight per

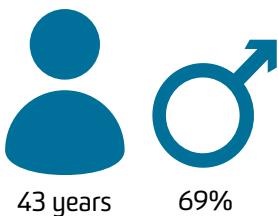
cent of participants reported that they were aware of the free take-home naloxone programs in 2022, with two-thirds (68%) reporting having ever accessed naloxone.

Almost one-quarter (22%) of the sample reported experiencing injection-related problems in the past month, most commonly nerve damage (12%) and infection/abscess (9%). One-third (34%) reported re-using their own needle in the past month, stable from 38% in 2021. One-quarter (25%) of the sample reported being in drug treatment at the time of interview, stable from 29% reporting current treatment in 2021, with the most common being buprenorphine-naloxone treatment (11%) followed by methadone treatment (9%).

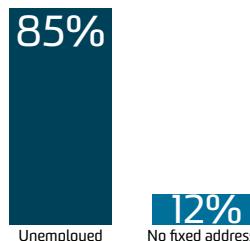
Thirty-eight per cent of the sample (74% of those who had recently driven a vehicle) reported driving within three hours of consuming an illicit or non-prescribed drug in the last six months.

Self-reported past six-month mental health problems remained stable (51%; 64% in 2021), as did past month criminal activity (38%; 38% in 2021).

Almost half (47%) reported that they had received a Hepatitis C virus (HCV) antibody test in the past year, 36% had received an RNA test and small numbers ($n\leq 5$) reported having a current HCV infection.

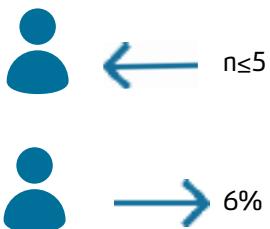

Thirteen per cent of participants reported that they or someone else had ever tested the content and/or purity of their illicit drugs in Australia.

In 2022, 85% of the Hobart sample had been tested for SARS-CoV-2 in the past 12 months, with almost one-third (32%) reporting having been diagnosed with the virus. The majority (60%) of participants were 'not at all' worried about contracting COVID-19 (noting that most interviews took place before the second wave of COVID-19). At the time of interview, 87% reported that they had received at least one COVID-19 vaccine dose, with a median 2 doses.

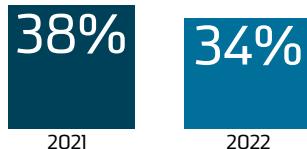

2022 SAMPLE CHARACTERISTICS

In 2022, 102 participants, recruited from Hobart, TAS, were interviewed.

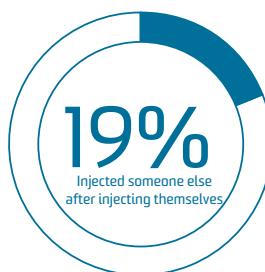
The mean age in 2022 was 43, and 69% identified as male.

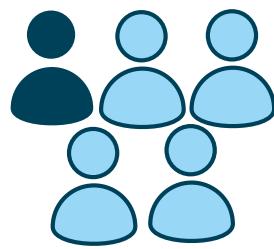


In the 2022 sample, 85% were unemployed and 12% had no fixed address.

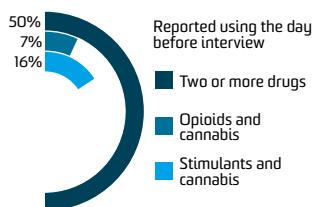

- Injected heroin
- Injected methamphetamine
- Injected other illicit or non-prescribed drugs

Participants were recruited on the basis that they had injected drugs at least monthly in the previous 6 months.

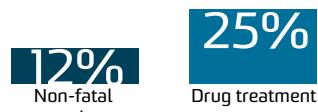

INJECTING RELATED RISKS AND HARMS


In 2022, few (n≤5) participants reported receptive sharing in the past month and 6% reported distributive sharing.

34% of participants reported re-using their own needles in the past month, stable from 2021 (38%).

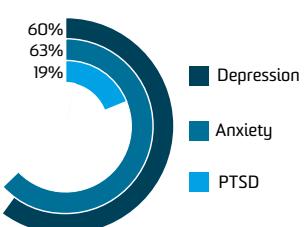


19% of participants reported injecting someone else after injecting themselves in the past month, a decrease from 2021 (39%).

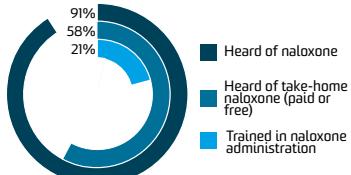


22% of participants reported having an injection-related health issue in the past month, stable from 2021 (23%).

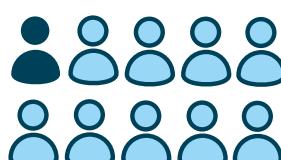
OTHER HARMS AND HELP-SEEKING


The most common patterns of poly substance use on the day preceding interview were cannabis and opioids, and cannabis and stimulants.

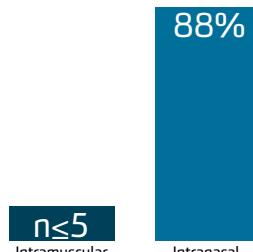
Past year non-fatal overdose (12%) and past 6-month drug treatment (25%) remained stable in 2022 relative to 2021.



In 2022, 51% of participants reported a mental health problem in the 6 months preceding interview, and 29% had seen a mental health professional.

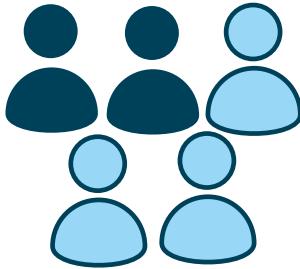


Among those who reported a mental health problem, the three most common mental health issues were depression, anxiety and PTSD.

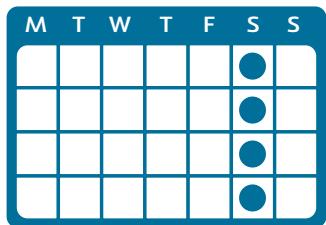

NALOXONE AND HARM REDUCTION

Knowledge of naloxone remained high and stable, and more participants reported to be trained in naloxone administration in 2022 (21%) relative to 2021 (9%).

One-tenth (12%) of the sample reported using naloxone to resuscitate someone who had overdosed at least once in their lifetime.

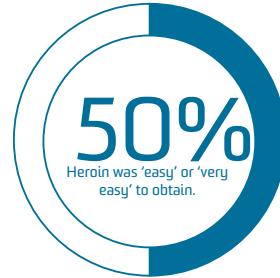


Of those who reported ever accessing naloxone, 88% reported receiving intranasal naloxone on the last occasion of access.

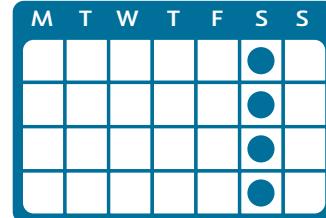
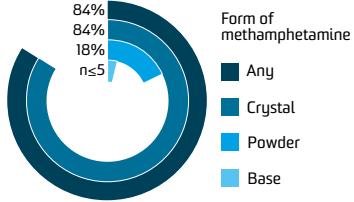


In 2022, small per cent (n≤5) of the sample reported that they or someone else had tested the content and/or purity of their illicit drugs in Australia in the past year.

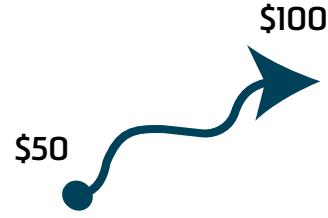
HEROIN


Past 6 month use of heroin increased from 11% in 2021 to 22% in 2022.

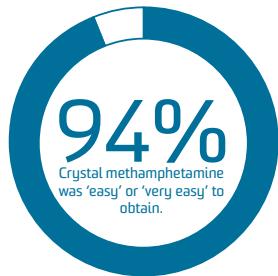
Of those who had recently consumed heroin, 36% reported weekly or more frequent use, stable from 2021 (n≤5).

The median reported price for a point of heroin was \$100 in 2022 (n≤5 respondents in 2021).

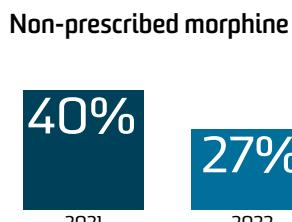

Of those who could comment, 50% perceived heroin to be 'easy' or 'very easy' to obtain (n≤5 respondents in 2021).

METHAMPHETAMINE

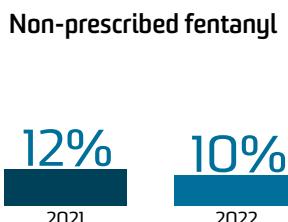


Past 6 month use of all forms of methamphetamine remained stable in 2022 relative to 2021. decreased relative to 2021.

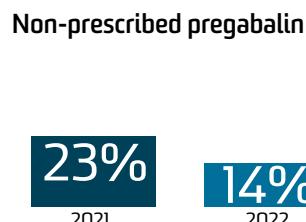
Of those who had recently used any form of methamphetamine, 79% reported weekly or more frequent use, stable from 2021 (68%).

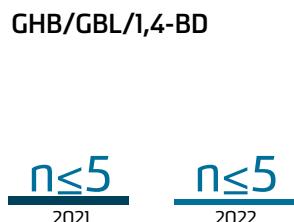


In 2022, the median reported price for a point of crystal methamphetamine increased from \$50 in 2021 to \$100 in 2022.

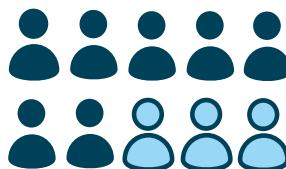


Of those who could comment, 94% perceived crystal methamphetamine to be 'easy' or 'very easy' to obtain in 2022, stable relative to 2021 (96%).

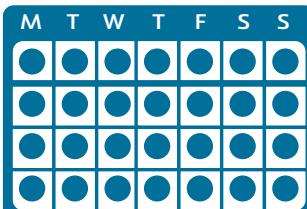

OTHER DRUGS


Past 6 month use of non-prescribed morphine remained stable between 2021 and 2022.

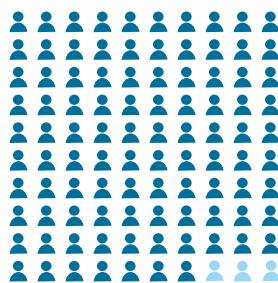
Past 6 month use of non-prescribed fentanyl remained stable between 2021 and 2022.

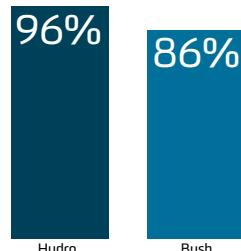


Past 6 month use of non-prescribed pregabalin remained stable between 2021 and 2022.



Past 6 month use of GHB/GBL/1,4-BD remained stable between 2021 and 2022.


CANNABIS AND/OR CANNABINOID RELATED PRODUCTS


Past 6 month use of non-prescribed cannabis and/or cannabinoid related products remained stable in 2022 (70%) relative to 2021 (67%).

Of those who had recently used non-prescribed cannabis and/or cannabinoid related products, half reported daily use (51%), stable from 2021 (58%).

Of participants who had consumed non-prescribed cannabis and/or cannabinoid related products in the last 6 months, 97% had smoked it.

Of those who could comment, the majority perceived both hydro and bush to be 'easy' or 'very easy' to obtain.

Background

The [Illicit Drug Reporting System \(IDRS\)](#) is an ongoing illicit drug monitoring system which has been conducted in all states and territories of Australia since 2000, and forms part of [Drug Trends](#). The purpose of the IDRS is to provide a coordinated approach to monitoring the use, market features, and harms of illicit drugs.

The IDRS is designed to be sensitive to emerging trends, providing data in a timely manner, rather than describing issues in extensive detail. It does this by studying a range of data sources, including data from annual interviews with people who regularly inject drugs and from secondary analyses of routinely-collected indicator data. This report focuses on the key results from the annual interview component of IDRS.

Methods

IDRS 2000-2019

Full details of the [methods for the annual interviews](#) are available for download. To briefly summarise, participants were recruited using multiple methods (e.g., needle and syringe programs (NSP) and peer referral) and needed to: i) be at least 17 years of age (due to ethical requirements); ii) have injected non-prescribed or illicit drugs at least monthly during the six months preceding interview; and iii) have been a resident of the capital city in which the interview took place for ten of the past 12 months. Interviews took place in varied locations negotiated with participants (e.g., treatment services, coffee shops or parks), and were conducted using REDCap (Research Electronic Data Capture), a software program used to collect data on laptops or tablets. Following provision of written informed consent and completion of a structured interview, participants were reimbursed \$40 cash for their time and expenses incurred.

IDRS 2020-2022: COVID-19 Impacts on Recruitment and Data Collection

Given the emergence of COVID-19 and the resulting restrictions on travel and people's movement in Australia (which first came into effect in March 2020), face-to-face interviews were not always possible due to the risk of infection transmission for both interviewers and participants. For this reason, all methods in 2020 were similar to previous years as detailed above, with the exception of:

1. Means of data collection: Interviews were conducted via telephone across all capital cities in 2020, with some capital cities (Darwin, Northern Territory (NT) and Hobart, Tasmania (TAS)) also offering face-to-face interviews;
2. Means of consenting participants: Participants' consent to participate was collected verbally prior to beginning the interview;
3. Means of reimbursement: Participants were given the option of receiving \$40 reimbursement via one of three methods, comprising bank transfer, PayID or gift voucher, where completing the interview via telephone; and
4. Age eligibility criterion: Changed from 17 years old (16 years old in Perth, Western Australia (WA)) to 18 years old.

In 2021 and 2022, a hybrid approach was used whereby interviews were conducted either face-to-face (with participants reimbursed with cash) or via telephone/videoconference (with participants reimbursed via bank transfer or other electronic means). Face-to-face interviews were the preferred methodology, however telephone interviews were conducted when required (i.e., in accordance with government directives) or when requested by services. Consent was collected verbally for all participants.

A total of 879 participants were recruited across capital cities nationally (May-July, 2022), with 102 participants recruited from Hobart, Tasmania between 1st June-13th July, 2022. A total of 20 interviews were conducted via telephone in Hobart, Tasmania.

The recruitment methods were stable compared to 2021 ($p=0.816$), with two-thirds (66%) of participants recruited through NSPs (63% in 2021), and 27% via word-of-mouth (32% in 2021). One-third of the Hobart 2022 sample had taken part in the 2021 interview (33%; 21% of the 2021 sample had taken part in the 2020 interview; $p=0.093$).

Data Analysis

For normally distributed continuous variables, means and standard deviations (SD) are reported; for skewed data (i.e., skewness $> \pm 1$ or kurtosis $> \pm 3$), medians and interquartile ranges (IQR) are reported. Tests of statistical significance have been conducted between estimates for 2021 and 2022. Note that no corrections for multiple comparisons have been made and thus comparisons should be treated with caution. References to 'significant' differences or changes throughout the report are where statistical testing has been conducted and where the p -value is less than 0.050. Values where cell sizes are ≤ 5 have been suppressed with corresponding notation (zero values are reported). References to 'recent' use and behaviours refers to the past six-month time period.

Interpretation of Findings

Caveats to interpretation of findings are discussed more completely in the [methods for the annual interviews](#) but it should be noted that these data are from participants recruited in Hobart, Tasmania, and thus do not reflect trends in regional and remote areas. Further, the results are not representative of all people who consume illicit drugs, nor of illicit drug use in the general population, but rather are intended to provide evidence indicative of emerging issues that warrant further monitoring.

This report covers a subset of items asked of participants and does not include implications of findings. These findings should be interpreted alongside analyses of other data sources for a more complete profile of emerging trends in illicit drug use, market features, and harms in Hobart, Tasmania (see section on 'Additional Outputs' below for details of other outputs providing such profiles).

Differences in the methodology, and the events of 2020-2022, must be taken into consideration when comparing 2021-2022 data to previous years, and treated with caution.

Additional Outputs

[Infographics, executive summary, and data tables](#) from this report are available for download. There are a range of outputs from the IDRS which triangulate key results from the annual interviews and other data sources and consider the implications of these findings, including [jurisdictional reports](#), [bulletins](#), and other resources available via the [Drug Trends webpage](#). This includes results from the [Ecstasy and Related Drugs Reporting System \(EDRS\)](#), which focuses on the use of ecstasy and other stimulants.

Please contact the research team at drugtrends@unsw.edu.au with any queries; to request additional analyses using these data; or to discuss the possibility of including items in future interviews.

1

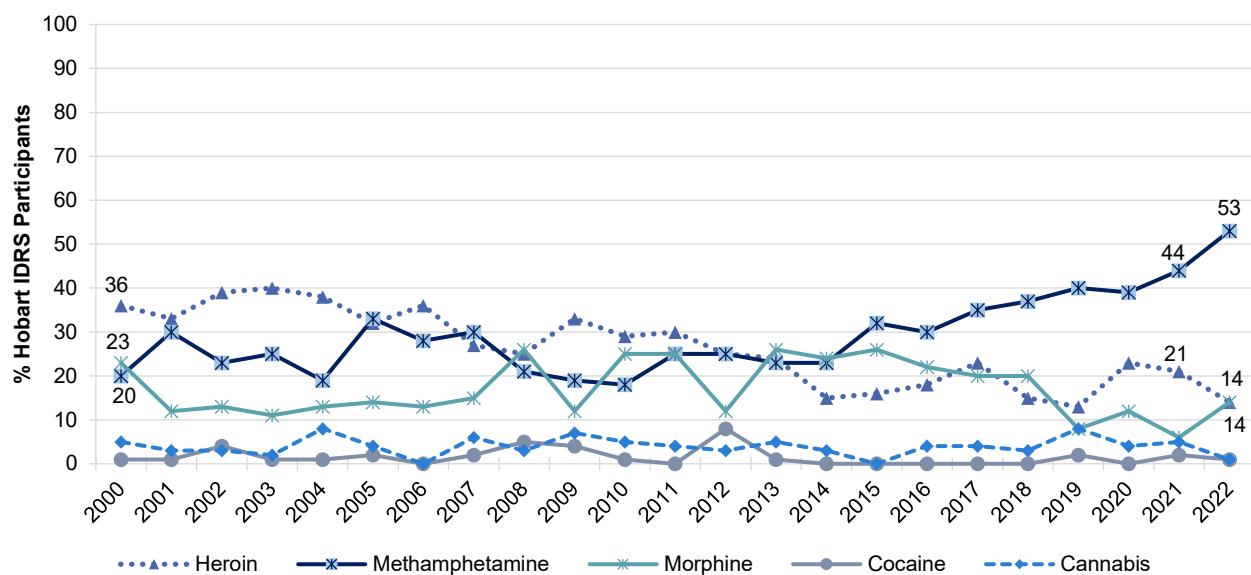
Sample Characteristics

In 2022, the Hobart IDRS sample, for the most part, was similar to the sample in 2021 and in previous years.

Gender identity in the Hobart sample remained stable between 2021 and 2022 ($p=0.636$), with 69% of the 2022 sample being male (71% in 2021). The mean age of the sample was 43 years (SD=9; 42 years in 2021; SD=9; $p=0.706$) (Table 1). The majority of the sample (85%) were unemployed at the time of interview (86% in 2021; $p=0.620$), with almost two-thirds (65%) reporting that they had received a post-school qualification(s) (59% in 2021; $p=0.456$). The vast majority of participants (93%) reported receiving a government pension, allowance or benefit in the past month (96% in 2021; $p=0.540$). The median weekly income in 2022 was \$418 (IQR=315-496), stable relative to 2021 (\$375; IQR=300-500; $p=0.436$).

Drug of choice was stable between 2021 and 2022 ($p=0.076$), with participants typically reporting that methamphetamine was their drug of choice in 2022 (53%; 44% in 2021) (Figure 1). Drug injected most often in the past month was stable in 2022 ($p=0.215$), with almost three-quarters (73%) reporting that methamphetamine was the drug injected most often in the month preceding interview (64% in 2021) (Figure 2).

Weekly or more frequent consumption of key substances such as crystal methamphetamine (66%; 60% in 2021; $p=0.451$), cannabis (60%; 55% in 2021; $p=0.564$) and non-prescribed morphine (16%; 14% in 2021; $p=0.837$) remained stable since 2021 (Figure 3).


Table 1: Demographic characteristics of the sample, nationally, 2022, and Hobart, TAS, 2016-2022

	Hobart, TAS							National
	2016 (N=99)	2017 (N=100)	2018 (N=100)	2019 (N=100)	2020 (N=74)	2021 (N=95)	2022 (N=102)	2022 (N=879)
Mean age (years; SD)	41 (8)	41 (9)	42 (8)	40 (9)	43 (8)	42 (9)	43 (9)	46 (10)
% Gender								
Female	39	40	37	33	41	28	31	33
Male	61	60	63	66	58	71	69	66
Non-binary	0	0	0	-	-	-	0	1
% Aboriginal and/or Torres Strait Islander	16	18	17	15	15	16	15	27
% Sexual identity								
Heterosexual	93	91	89	92	84	83	82	83
Homosexual	-	-	-	-	-	-	-	4
Bisexual	-	8	7	-	9	13	14	11
Queer	/	/	/	-	-	-	-	1
Other	0	0	0	-	0	0	0	1
Mean years of school education (range)	10 (6-12)	10 (6-12)	10 (6-12)	10 (5-12)	10 (5-12)	10 (7-12)	10 (7-12)	10 (0-12)

	Hobart, TAS							National (N=879)
	2016 (N=99)	2017 (N=100)	2018 (N=100)	2019 (N=100)	2020 (N=74)	2021 (N=95)	2022 (N=102)	
% Post-school qualification(s) ^a	56	58	64	64	65	59	65	63
% Current accommodation								
Own home (inc. renting)~	77	82	75	63	65	65	70	68
Parents'/family home	-	6	8	14	-	9	10	5
Boarding house/hostel	9	-	6	7	7	7	7	8
Shelter/refuge	/	/	/	0	7	-	-	2
No fixed address	8	8	11	16	16	18	12	16
Other	-	-	-	0	0	0	0	2
% Current employment status								
Unemployed	85	80	88	85	89	86	85	87
Full-time work	-	-	0	0	-	-	-	3
% Past month gov't pension, allowance or benefit	97	90	88	93	95	96	93	92
Current median income/week (\$; IQR)	\$400 (300-460)	\$400 (275-500)	\$400 (275-450)	\$408 (300-500)	\$550 (450-591)	\$375 (300-500)	\$418 (315-496)	\$385 (300-490)

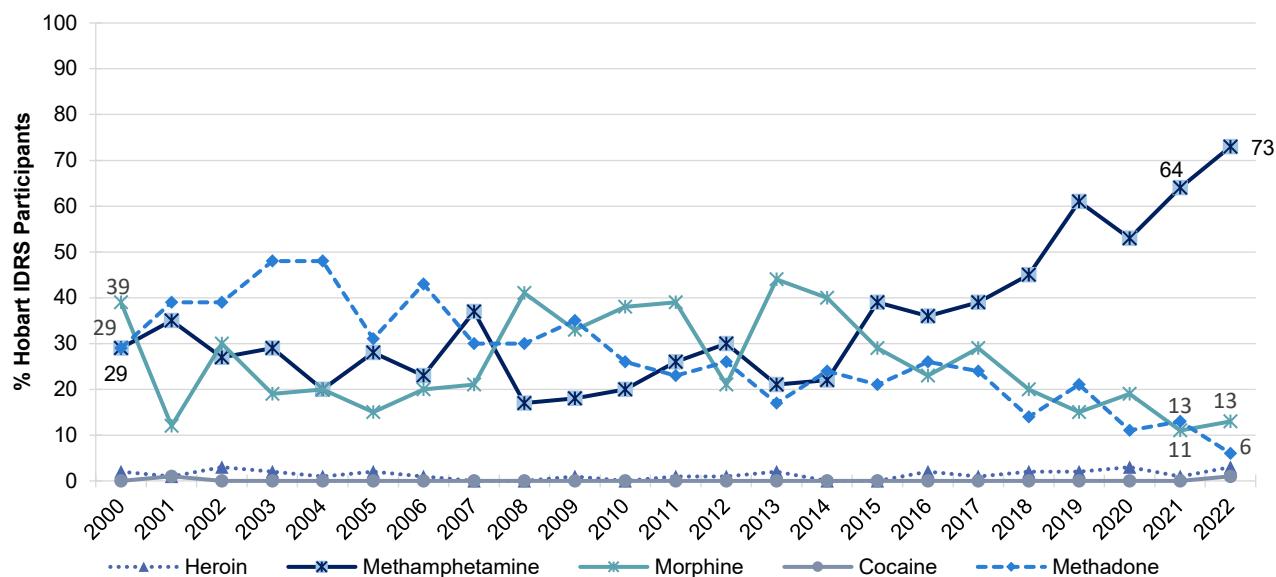

Note. ^aIncludes trade/technical and university qualifications. ~Up until and including 2019, 'own home' included private rental and public housing; in 2020, these were separated out. – Values suppressed due to small cell size (n≤5 but not 0). For historical numbers, please refer to the data tables. / denotes that this item was not asked in these years. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 among the Hobart sample presented in table: *p<0.050; **p<0.010; ***p<0.001.

Figure 1: Drug of choice, Hobart, TAS, 2000-2022

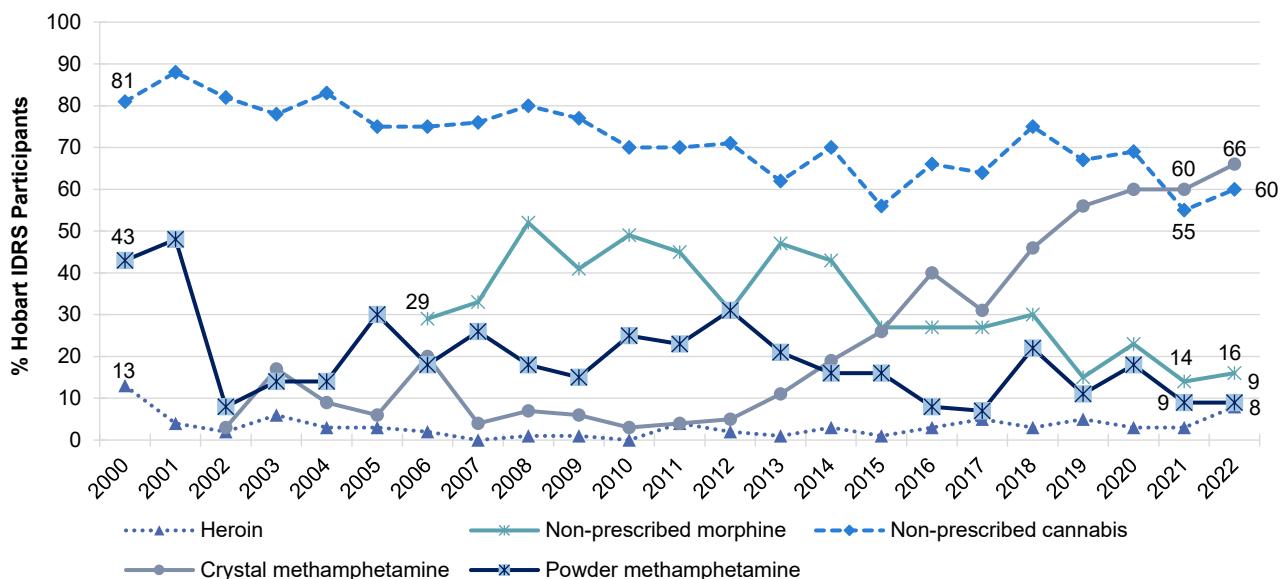

Note. Participants could only endorse one substance. Substances listed in this figure are the primary endorsed; a nominal per cent endorsed other substances. Data labels are only provided for the first (2000) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., n≤5 but not 0). For historical numbers, please refer to the data tables. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure: *p<0.050; **p<0.010; ***p<0.001.

Figure 2: Drug injected most often in the past month, Hobart, TAS, 2000-2022

Note. Participants could only endorse one substance. Substances listed in this figure are the primary endorsed; a nominal per cent endorsed other substances. Data labels are only provided for the first (2000) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., n≤5 but not 0). For historical numbers, please refer to the data tables. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; *p<0.050; **p<0.010; ***p<0.001.

Figure 3: Weekly or more frequent substance use in the past six months, Hobart, TAS, 2000-2022

Note. Computed of the entire sample regardless of whether they had used the substance in the past six months. Non-prescribed morphine frequency of use not asked until 2006. Crystal methamphetamine frequency of use not asked in 2000-2001. Data labels are only provided for the first (2000/2002/2006) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., n≤5 but not 0). For historical numbers, please refer to the data tables. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; *p<0.050; **p<0.010; ***p<0.001.

2

Heroin

Participants were asked about their recent (past six month) use of heroin and of homebake heroin. Participants typically described heroin as white/off-white rock, brown/beige rock or white/off-white powder. Homebake is a form of heroin made from pharmaceutical products and involves the extraction of diamorphine from pharmaceutical opioids such as codeine and morphine.

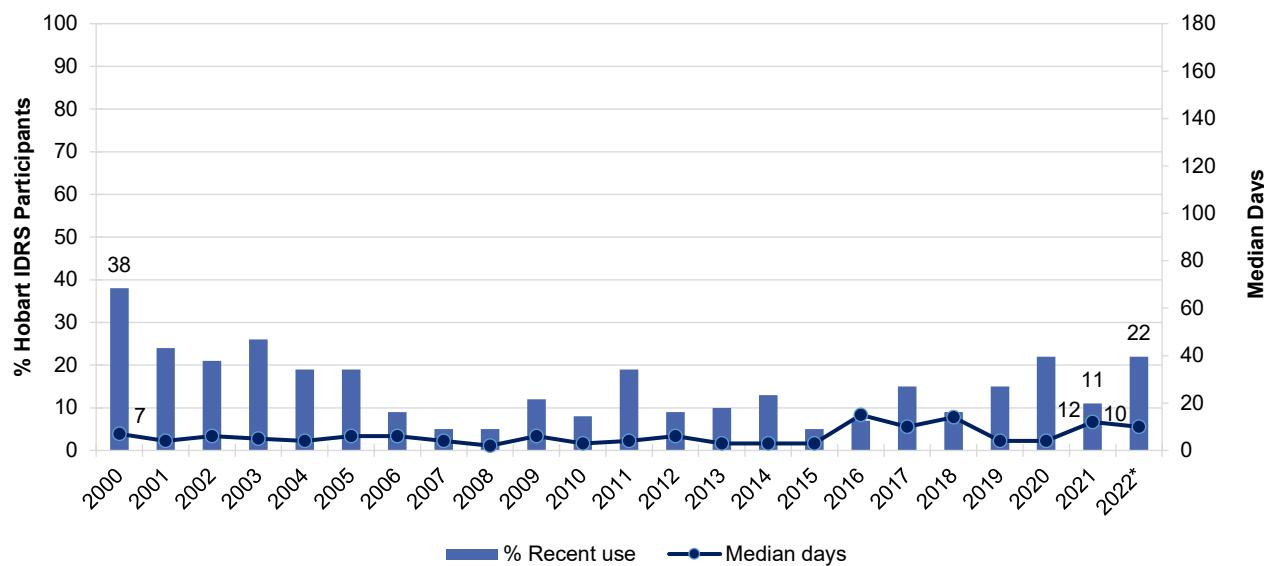
Patterns of Consumption

Recent Use (past 6 months)

The per cent reporting recent use of any heroin remained stable at 22% (11% in 2021; $p=0.054$) (Figure 4).

Frequency of Use

In 2022 the median days of use of heroin in the six months preceding the interview was ten days (IQR=4-29), stable from 12 days in 2021 (IQR=6-24; $p=0.793$) (Figure 4). Weekly use was reported by 36% of recent consumers ($n\leq 5$ in 2021; further details are suppressed). No participants reported daily use of heroin in 2022 ($n\leq 5$ in 2021; $p=0.290$).


Routes of Administration

Among participants who had recently used heroin and commented ($n=22$), injecting remained the most common route of administration (95%; 100% in 2021). Participants who reported injecting heroin had done so on a median of ten days (IQR=5-30), stable relative to 2021 (12 days in 2021; IQR=6-24; $p=0.928$). Few participants ($n\leq 5$) reported smoking heroin in 2022; therefore, these data are suppressed (no participants in 2021).

Quantity

Of those who reported recent use and responded ($n=19$), the median amount of heroin used on an average day of consumption in the six months preceding interview was 0.20 grams (IQR=0.10-0.20) in 2022 (0.20 grams in 2021; IQR=0.10-0.50; $p=0.187$). Of those who reported recent use and responded ($n=19$), the median maximum amount of heroin used per day in the last six months was 0.20 grams (IQR=0.10-0.30), which was a significant decrease from 2021 (0.60 grams; IQR=0.20-1.00; $p=0.039$).

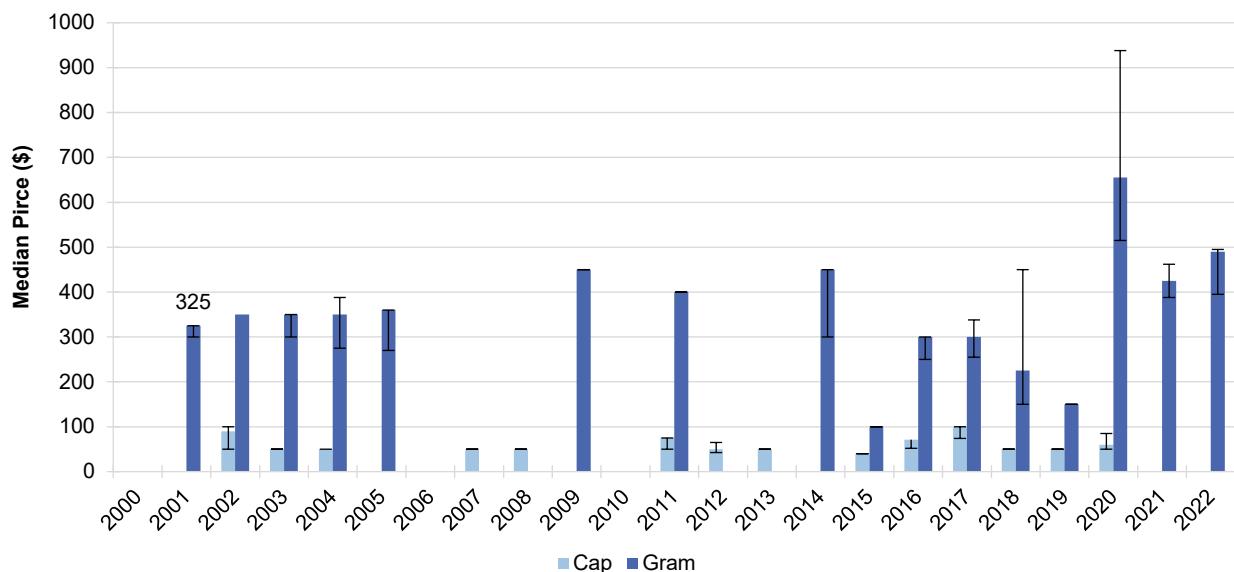
Figure 4: Past six month use and frequency of use of heroin, Hobart, TAS, 2000-2022

Note. Median days computed among those who reported recent use (maximum 180 days). Median days rounded to the nearest whole number. Y axis reduced to 100 days to improve visibility of trends. Data labels are only provided for the first (2000) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., $n \leq 5$ but not 0). For historical numbers, please refer to the data tables. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; * $p < 0.050$; ** $p < 0.010$; *** $p < 0.001$.

Price, Perceived Purity and Perceived Availability

Price

In 2022, the median price of heroin was \$100 (IQR=79-100; $n=12$) for one point (0.10 of a gram), stable relative to 2021 ($n \leq 5$ in 2021; $p=0.461$) (Figure 5). Due to low numbers reporting on the price of a gram and a cap ($n \leq 5$, respectively), further details on price have been suppressed. Please refer to the [National IDRS Report](#) for national trends, or contact the Drug Trends team for further information.


Perceived Purity

The perceived purity of heroin was stable between 2021 and 2022. Among those who were able to comment in 2022 ($n=14$), perceived purity was mostly reported as 'high' or 'fluctuates' ($n \leq 5$, therefore data are suppressed; $n \leq 5$ in 2021) (Figure 6). Please refer to the [National IDRS Report](#) for national trends, or contact the Drug Trends team for further information.

Perceived Availability

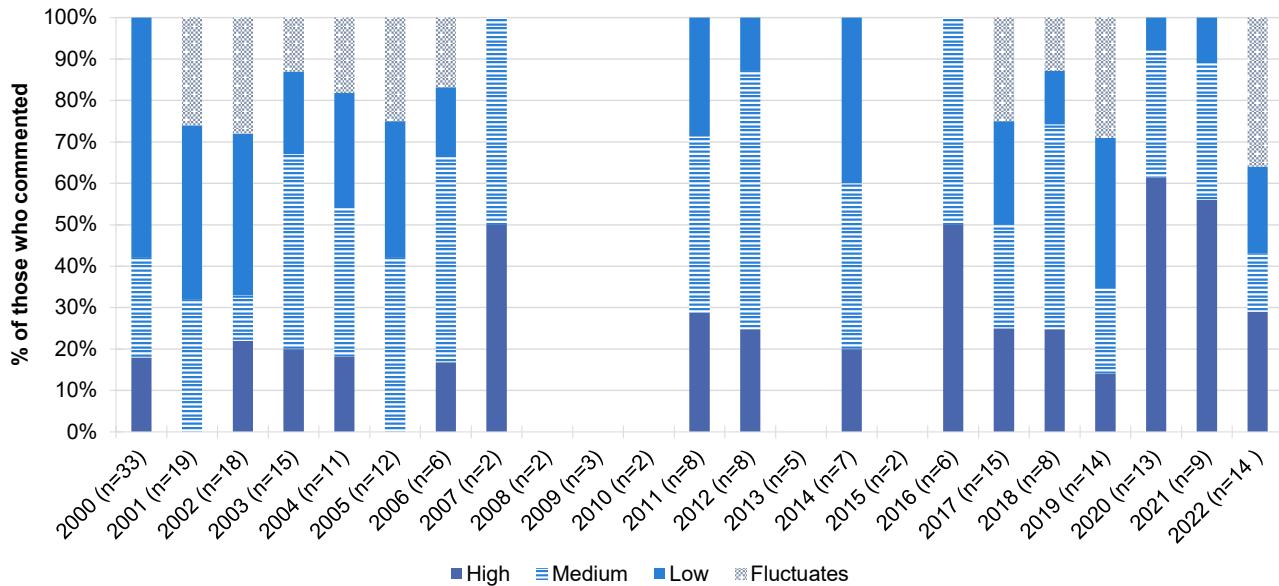

The perceived availability of heroin was stable between 2021 and 2022. Among those who were able to comment in 2022 ($n=16$), perceived purity was mostly reported as 'easy' ($n \leq 5$; therefore, these data are suppressed; $n \leq 5$ in 2021) (Figure 7). Please refer to the [National IDRS Report](#) for national trends, or contact the Drug Trends team for further information.

Figure 5: Median price of heroin per cap and gram, Hobart, TAS, 2000-2022

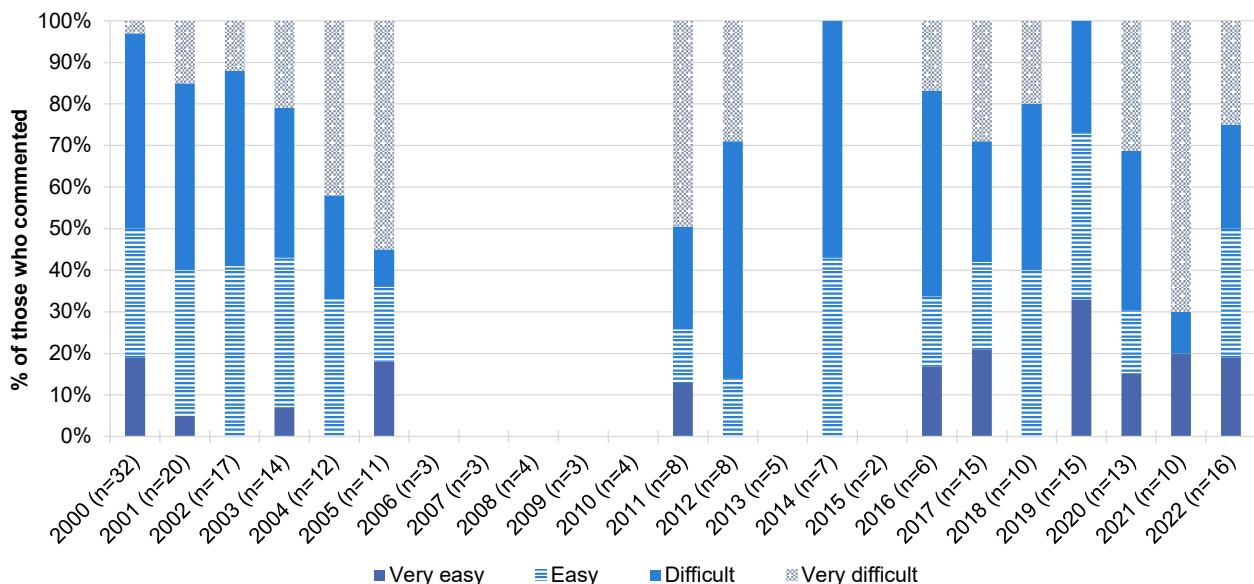

Note. Among those who commented. Price for a gram of heroin was not collected in 2000. Between 2009-2017 a cap was referred to as cap/point and in 2018 these measures were separated as their own response options. Data labels are only provided for the first (2000/2001/2019) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., n≤5 but not 0). For historical numbers, please refer to the data tables. The error bars represent the IQR. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; *p<0.050; **p<0.010; ***p<0.001.

Figure 6: Current perceived purity of heroin, Hobart, TAS, 2000-2022

Note. The response option 'Don't know' was excluded from analysis. Data labels suppressed for all stacked bar charts, with data not provided for years where fewer than six participants (n≤5) responded. For historical numbers, please refer to the data tables. Statistical significance for 2021 versus 2022 presented in figure; *p<0.050; **p<0.010; ***p<0.001.

Figure 7: Current perceived availability of heroin, Hobart, TAS, 2000-2022

Note. The response option 'Don't know' was excluded from analysis. Data labels suppressed for all stacked bar charts, with data not provided for years where fewer than six participants ($n \leq 5$) responded. For historical numbers, please refer to the data tables. Statistical significance for 2021 versus 2022 presented in figure; * $p < 0.050$; ** $p < 0.010$; *** $p < 0.001$.

3

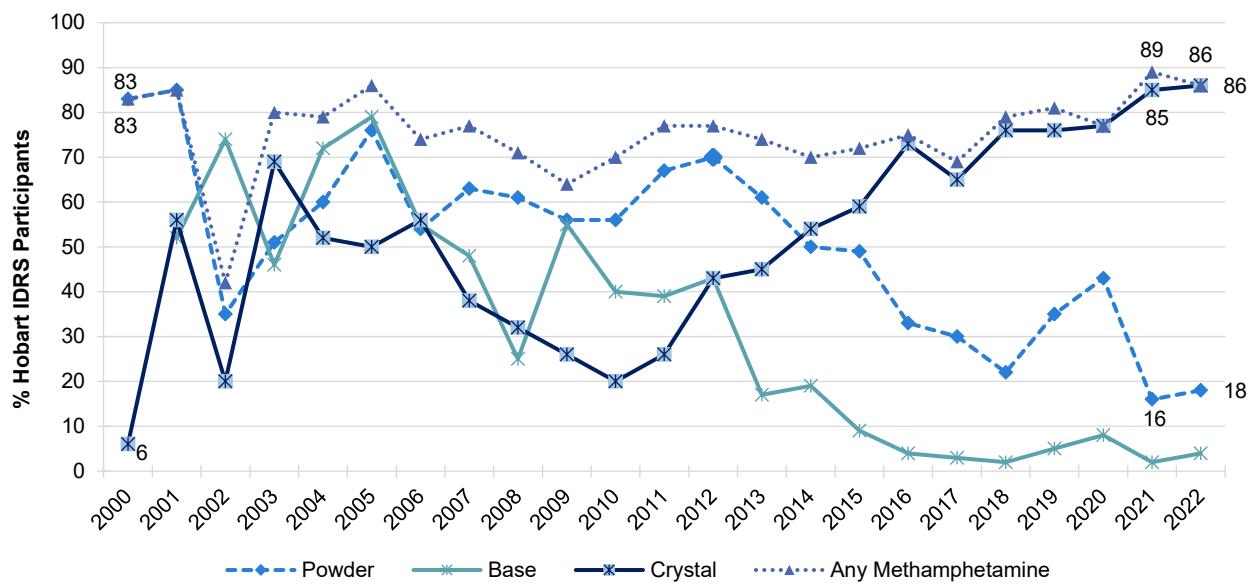
Methamphetamine

Participants were asked about their recent (past six month) use of various forms of methamphetamine, including powder (white particles, described as speed), base (wet, oily powder) and crystal (clear, ice-like crystals).

Patterns of Consumption (any methamphetamine)

Recent Use (past 6 months)

In 2022, 84% of participants reported recent use of any methamphetamine (powder, base or crystal), stable relative to 2021 (89%; $p=0.309$) (Figure 8).


Frequency of Use

In 2022, frequency of use was trending to an increase from 2021 at a median of 72 days (IQR=24-120) in 2022 (48 days in 2021; IQR=12-96; $p=0.056$) (Figure 9). The per cent of participants who had recently used any methamphetamine who reported weekly or more frequent use remained stable, from 68% in 2021 to 79% in 2022 ($p=0.124$). Daily use among those who had recently used methamphetamine also remained stable at 21% (13% in 2021; $p=0.233$).

Forms of Methamphetamine

There has been a shift over time, with decreasing use of methamphetamine powder and base and increasing use of crystal methamphetamine (Figure 8). Indeed, of those who had used methamphetamine in the six months preceding interview in 2022 ($n=86$), all participants had used crystal methamphetamine (100%; 95% in 2021; $p=0.059$), followed by powder (21%; 18% in 2021; $p=0.693$). Few participants ($n\leq 5$) reported recent use of methamphetamine base in 2021 and 2022; therefore, further details are suppressed.

Figure 8: Past six month use of any methamphetamine, powder, base, and crystal, Hobart, TAS, 2000-2022

Note. [#] Base asked separately from 2001 onwards. 'Any methamphetamine' includes crystal, powder, base and liquid methamphetamine combined from 2000-2018, and crystal, powder and base methamphetamine combined from 2019 onwards. Figures for liquid not reported historically due to small numbers. Data labels are only provided for the first (2000) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., n≤5 but not 0). For historical numbers, please refer to the data tables. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; *p<0.050; **p<0.010; ***p<0.001.

Figure 9: Frequency of use of any methamphetamine, powder, base, and crystal, Hobart, TAS, 2000-2022

Note. Median days computed among those who reported recent use (maximum 180 days). Median days rounded to the nearest whole number. Y axis reduced to 100 days to improve visibility of trends. Collection of frequency of use data for base and crystal commenced in 2002. Frequency of use data was not collected in 2020 for base methamphetamine. Data labels are only provided for the first (2000/2002) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., n≤5 but not 0). For historical numbers, please refer to the data tables. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; *p<0.050; **p<0.010; ***p<0.001.

Patterns of Consumption (by form)

Methamphetamine Powder

Recent Use (past 6 months): The per cent reporting recent use of powder methamphetamine has generally been decreasing over time. In 2022, recent use remained stable (16% in 2021; 18% in 2022; $p=0.846$) (Figure 8).

Frequency of Use: Of those who had recently consumed powder and commented ($n=17$) frequency of use remained stable at 24 days (IQR=12-180; 36 days in 2021; IQR=5-58; $p=0.461$) (Figure 9). Fifty-three per cent of participants who had recently used methamphetamine powder reported weekly or more frequent use, consistent with 57% in 2021. There was a significant increase in daily use (29%; $n\leq 5$ in 2021; $p=0.048$).

Routes of Administration: All participants reporting recent use reported recent injection of powder (100%; 100% in 2021). Participants who reported injecting powder did so on a median of 24 days (IQR=10-180; 24 days in 2021; IQR=3-55; $p=0.461$). Few participants ($n\leq 5$) reported smoking powder in 2022 (data are suppressed) (20% in 2021; $p=0.308$).

Quantity: Of those who reported recent use and commented ($n=17$), the median amount of powder used per day in the past six months was 0.10 grams (IQR=0.10-0.20; 0.20 grams in 2021; IQR=0.10-0.20; $n=14$; $p=0.835$). The maximum amount of powder used per day in the last six months was a median of 0.30 grams (IQR=0.20-0.40; 0.30 grams in 2021; IQR=0.10-0.50; $n=14$; $p=0.936$).

Methamphetamine Base

Few participants ($n\leq 5$) reported recent use of methamphetamine base, therefore further details are not reported. Please refer to the [National IDRS Report](#) for national trends, or contact the Drug Trends team for further information.

Methamphetamine Crystal

Recent Use (past 6 months): Reports of recent use of crystal have been increasing since 2010, surpassing base and powder methamphetamine from 2014 and plateauing in recent years. In 2022, recent use of crystal was reported by 84% of the Hobart sample, consistent with 2021 (85%) (Figure 8).

Frequency of Use: Participants reported consuming crystal on a median of 72 days (IQR=24-120) in the six months prior to interview, similar to 2021 (48 days; IQR=14-96; $p=0.116$) (Figure 9). Almost three-quarters (78%) of participants who had recently used crystal methamphetamine reported using crystal on a weekly or more frequent basis, stable from 71% in 2021 ($p=0.284$), with 21% reporting daily use (13% in 2021; $p=0.223$).

Routes of Administration: Ninety-nine per cent of participants who had recently used crystal methamphetamine had injected the form (99% in 2021) on a median of 72 days (IQR=24-102) in the six months preceding interview (48 days in 2021; IQR=13-95; $p=0.101$). Almost one-quarter (23%) reported smoking crystal methamphetamine (31% in 2021; $p=0.304$).

Quantity: Of those who reported recent use and responded ($n=86$), the median amount of crystal used per day in the six months preceding interview was 0.10 grams (IQR=0.10-0.20; 0.20 grams in 2021; IQR=0.10-0.20; $n=77$; $p=0.342$). The maximum amount of crystal used per day in the last six months was reported at a median of 0.30 grams (IQR=0.20-0.50; 0.30 grams in 2021; IQR=0.20-0.50; $p=0.301$).

Price, Perceived Purity and Perceived Availability

Methamphetamine Powder

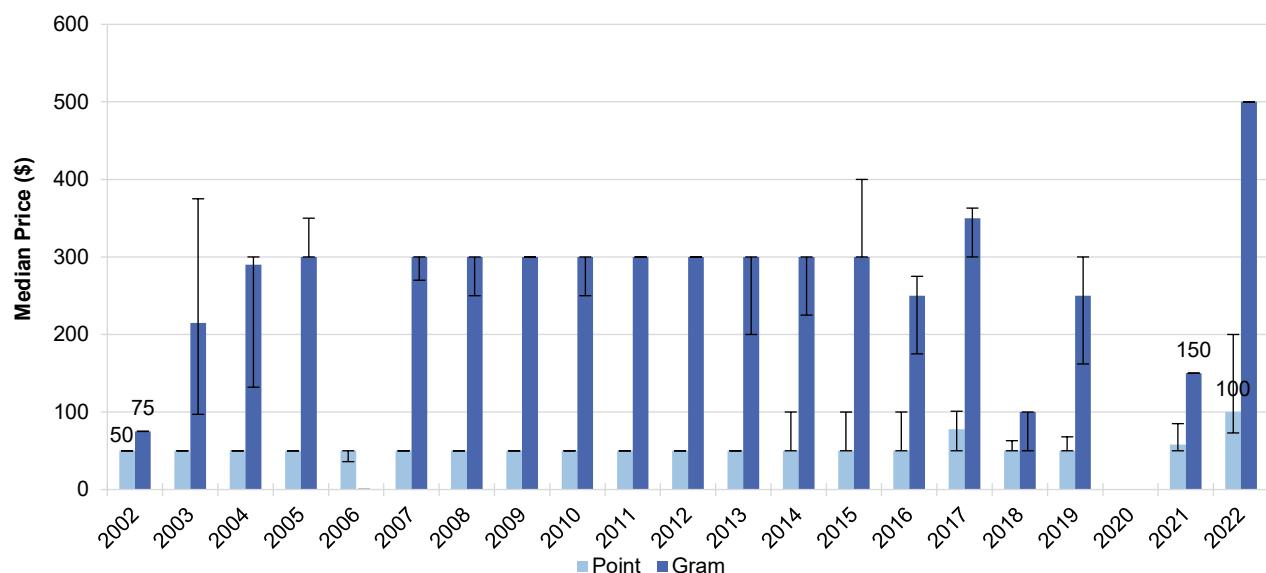
Price: In 2022, the median price for a point (0.10 gram) of methamphetamine powder remained stable at \$100 (IQR=73-100; n=14) compared to \$58 in 2021 (IQR=50-85; n=12; $p=0.087$) (Figure 10).

Perceived Purity: Perceived purity of methamphetamine was stable between 2021 and 2022. Of those who reported recent use and responded (n=17), 47% reported that the perceived purity of powder was 'medium' (44% in 2021). Small numbers (n≤5) reported that the perceived purity was 'low', 'high' or 'fluctuates'; therefore, these data are suppressed (n≤5 in 2021) (Figure 12).

Perceived Availability: The perceived availability of methamphetamine powder was stable between 2021 and 2022 ($p=0.869$). Of participants who had recently used methamphetamine powder and were able to comment (n=20), 45% reported that powder was 'very easy' to obtain (33% in 2021), while 30% reported that it was 'difficult' to obtain (39% in 2021) (Figure 14).

Methamphetamine Base

Questions pertaining to the price, perceived purity and perceived availability of methamphetamine base were not asked of participants in 2020 and onwards. For historical information, please refer to the [2019 IDRS National Report](#).


Methamphetamine Crystal

Price: The median price for a point (0.10 gram) of crystal increased significantly from \$50 (IQR=50-80; n=49) in 2021 to \$100 (IQR=70-100; n=50; $p<0.001$) in 2022 (Figure 11). Few participants (n≤5) reported on the price of a gram of crystal in 2021 and 2022; therefore, these data are suppressed.

Perceived Purity: There was a statistically significant change in the perceived purity of methamphetamine crystal between 2021 and 2022 ($p=0.043$). Among those who were able to comment in 2022 (n=81), more participants perceived crystal methamphetamine as 'medium' purity in 2022 (40%; 30% in 2021) and fewer participants reported 'high' purity (23%; 40% in 2021). Fourteen per cent perceived the purity to be 'fluctuating' (19% in 2021) (Figure 13).

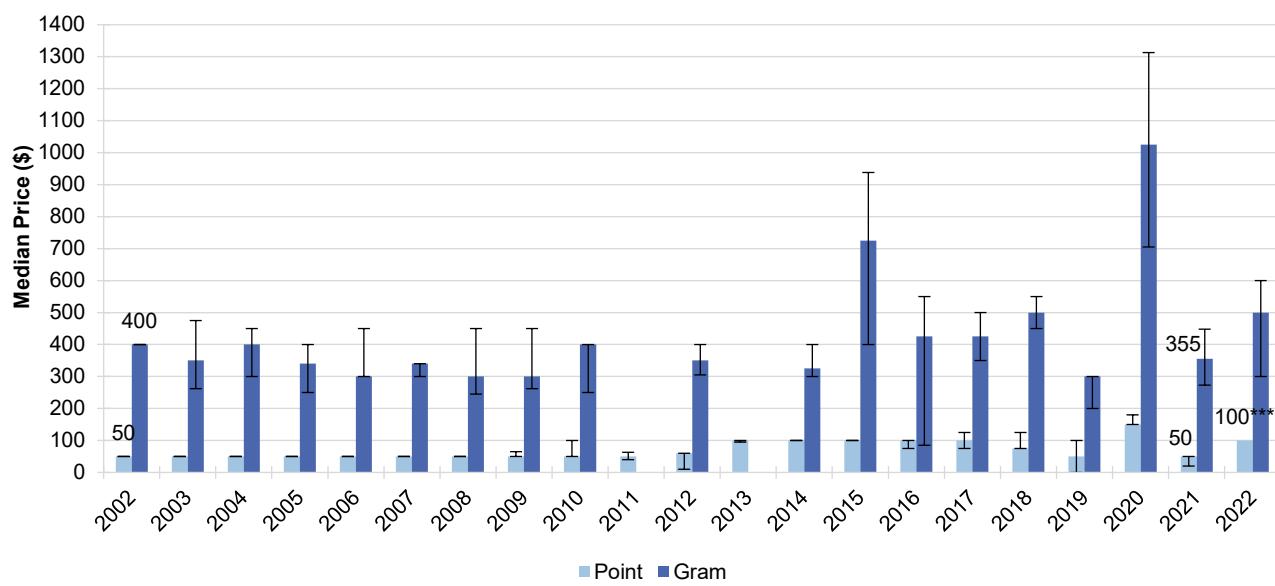

Perceived Availability: The perceived availability of crystal methamphetamine remained stable between 2021 and 2022 ($p=0.928$). Among those who were able to comment in 2022 (n=84), two-thirds (64%) perceived crystal methamphetamine as being 'very easy' to obtain (65% in 2021), with 30% reporting 'easy' obtainment (31% in 2021) (Figure 15).

Figure 10: Median price of powder methamphetamine per point and gram, Hobart, TAS, 2001-2022

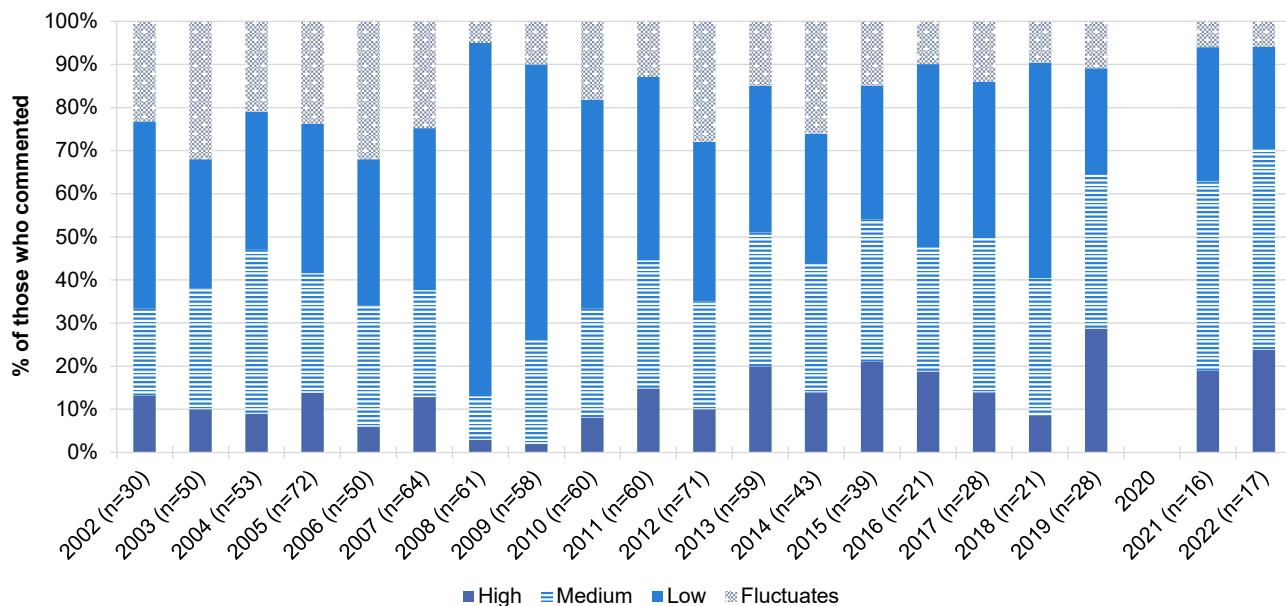

Note. Among those who commented. Price data for powder not collected in 2020. No participants reported purchasing a gram in 2006. Data labels are only provided for the first (2001) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., $n \leq 5$ but not 0). The error bars represent the IQR. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; * $p < 0.050$; ** $p < 0.010$; *** $p < 0.001$

Figure 11: Median price of methamphetamine crystal per point and gram, Hobart, TAS, 2001-2022

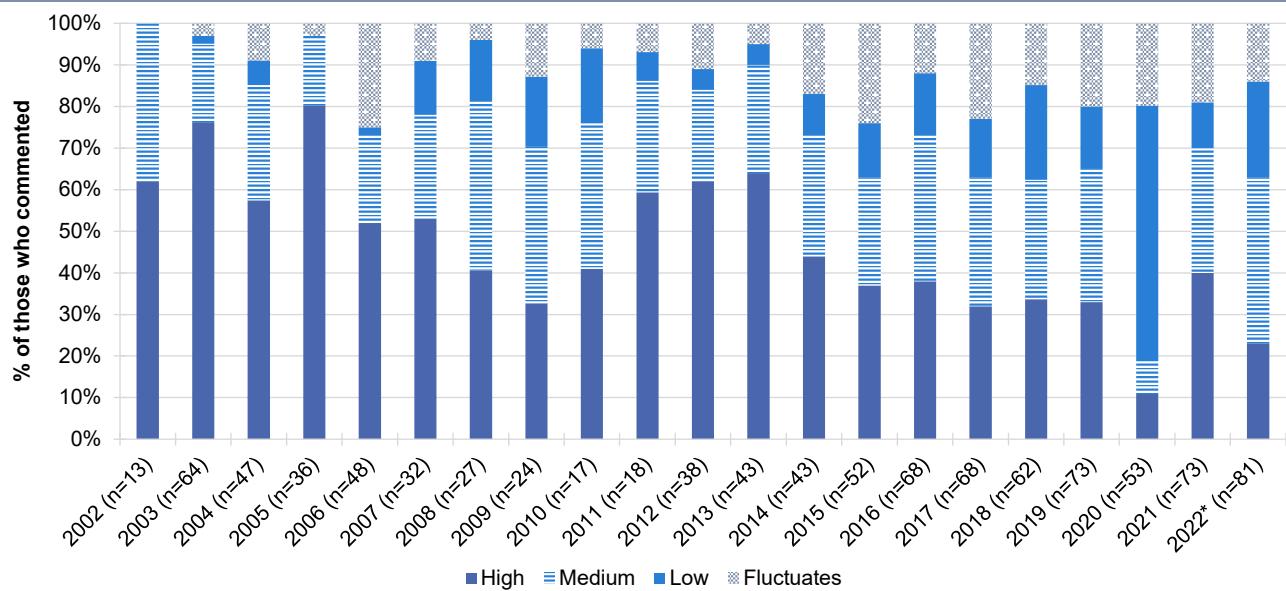

Note. Among those who commented. No data available for gram in 2001. Data labels are only provided for the first (2001) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., $n \leq 5$ but not 0). For historical numbers, please refer to the data tables. The error bars represent the IQR. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; * $p < 0.050$; ** $p < 0.010$; *** $p < 0.001$.

Figure 12: Current perceived purity of powder methamphetamine, Hobart, TAS, 2002-2022

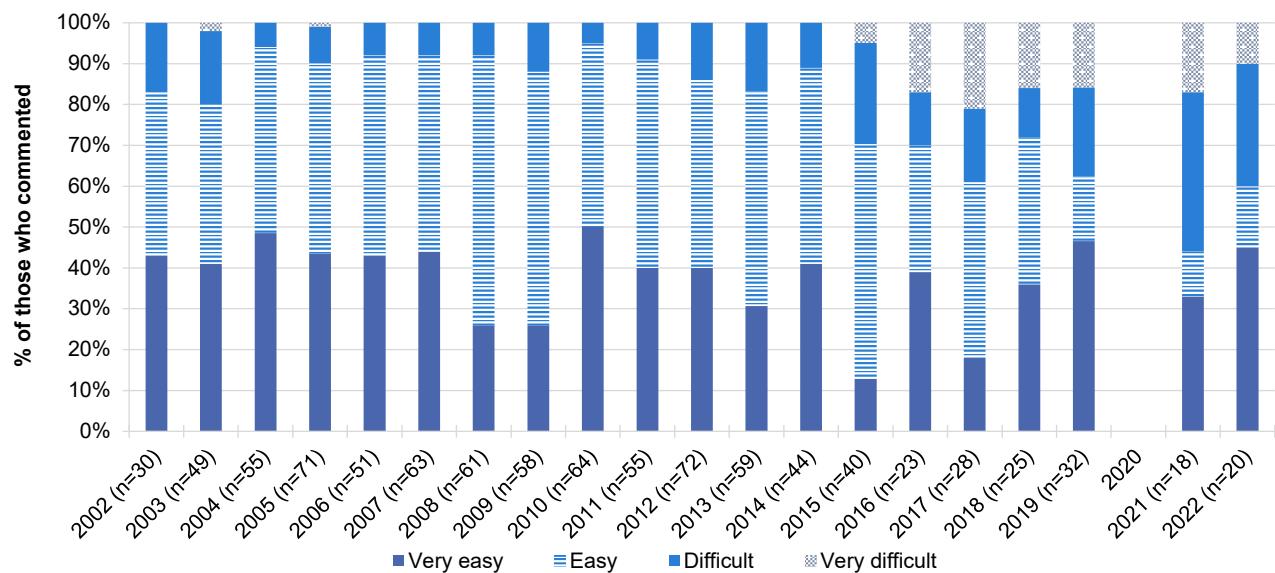

Note. Methamphetamine asked separately for the three different forms from 2002 onwards. Data on perceived purity of powder not collected in 2020. Data labels suppressed for all stacked bar charts, with data not provided for years where fewer than six participants ($n \leq 5$) responded. For historical numbers, please refer to the data tables. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; * $p < 0.050$; ** $p < 0.010$; *** $p < 0.001$.

Figure 13: Current perceived purity of methamphetamine crystal, Hobart, TAS, 2002-2022

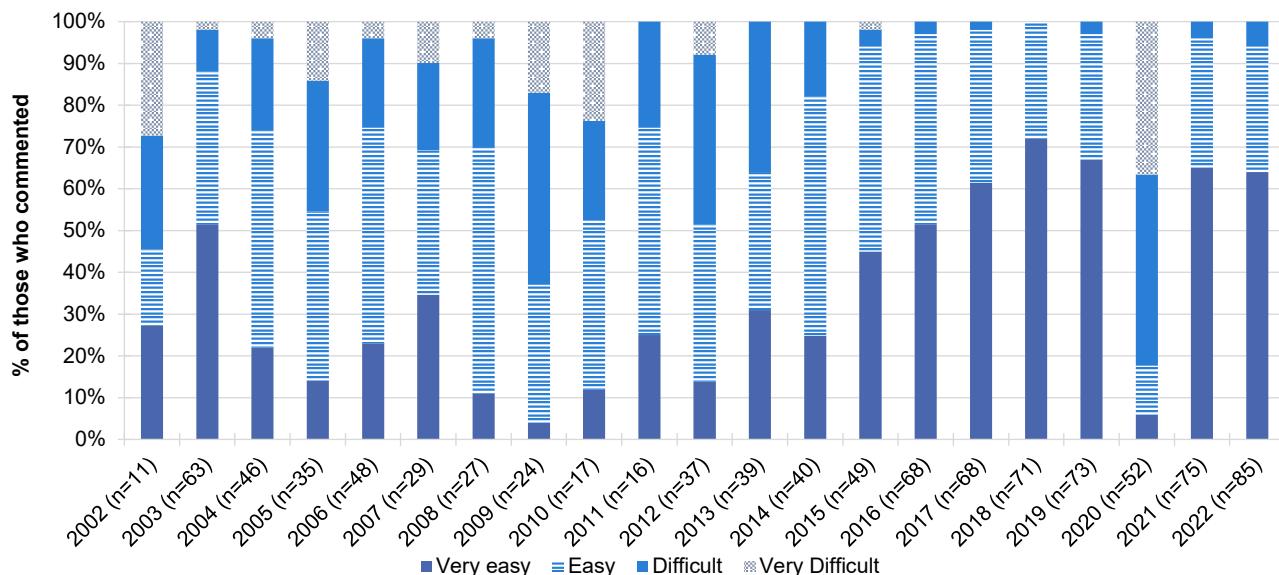

Note. Methamphetamine asked separately for the three different forms from 2002 onwards. The response option 'Don't know' was excluded from analysis. Data labels suppressed for all stacked bar charts, with data not provided for years where fewer than six participants ($n \leq 5$) responded. For historical numbers, please refer to the data tables. Statistical significance for 2021 versus 2022 presented in figure; * $p < 0.050$; ** $p < 0.010$; *** $p < 0.001$.

Figure 14: Current perceived availability of powder methamphetamine, Hobart, TAS, 2002-2022

Note. Methamphetamine asked separately for the three different forms from 2002 onwards. Data on perceived availability of powder not collected in 2020. Data labels suppressed for all stacked bar charts, with data not provided for years where fewer than six participants ($n \leq 5$) responded. For historical numbers, please refer to the data tables. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 is presented in figure; * $p < 0.050$; ** $p < 0.010$; *** $p < 0.001$.

Figure 15: Current perceived availability of methamphetamine crystal, Hobart, TAS, 2002-2022

Note. Methamphetamine asked separately for the three different forms from 2002 onwards. Data labels suppressed for all stacked bar charts, with data not provided for years where fewer than six participants ($n \leq 5$) responded. For historical numbers, please refer to the data tables. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; * $p < 0.050$; ** $p < 0.010$; *** $p < 0.001$.

4

Cocaine

Participants were asked about their recent (past six month) use of various forms of cocaine, including powder and 'crack' cocaine. Cocaine hydrochloride, a salt derived from the coca plant, is the most common form of cocaine available in Australia. 'Crack' cocaine is a form of freebase cocaine (hydrochloride removed), which is particularly pure. 'Crack' is most prevalent in North America and infrequently encountered in Australia.

Patterns of Consumption

Recent Use (past 6 months)

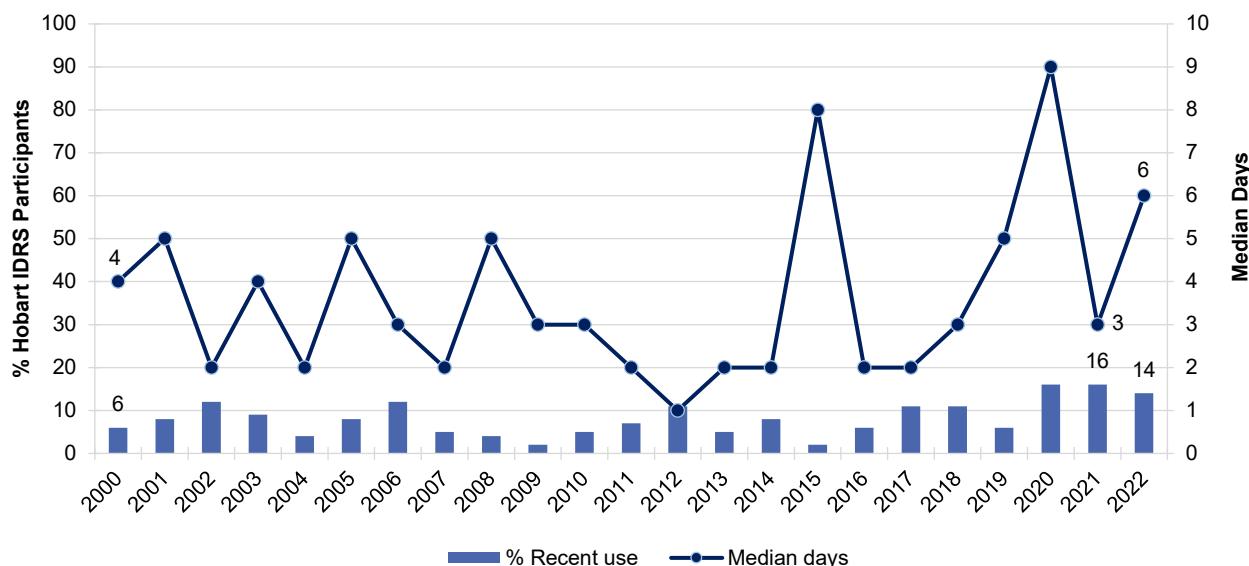
Recent use of cocaine has fluctuated over the years but has remained at a low level of use. In 2022, 14% of the TAS sample reported recently consuming cocaine, stable from 2021 (16%; $p=0.692$) (Figure 16).

Frequency of Use

Of those who had recently consumed cocaine and commented in 2022 ($n=16$), frequency of use remained low and stable at a median of six days (IQR=2-9), stable from three days in 2021 (IQR=2-5; $p=0.582$). No participants reported using cocaine weekly or more frequently in 2022 ($n\leq 5$ in 2021) (Figure 16).

Routes of Administration

Among participants who had recently consumed cocaine and commented ($n=14$), almost three-quarters (71%) reported snorting cocaine, similar to reports in 2021 (87%; $p=0.390$). Few participants ($n\leq 5$) reported on any other route of administration; therefore, these data are suppressed.

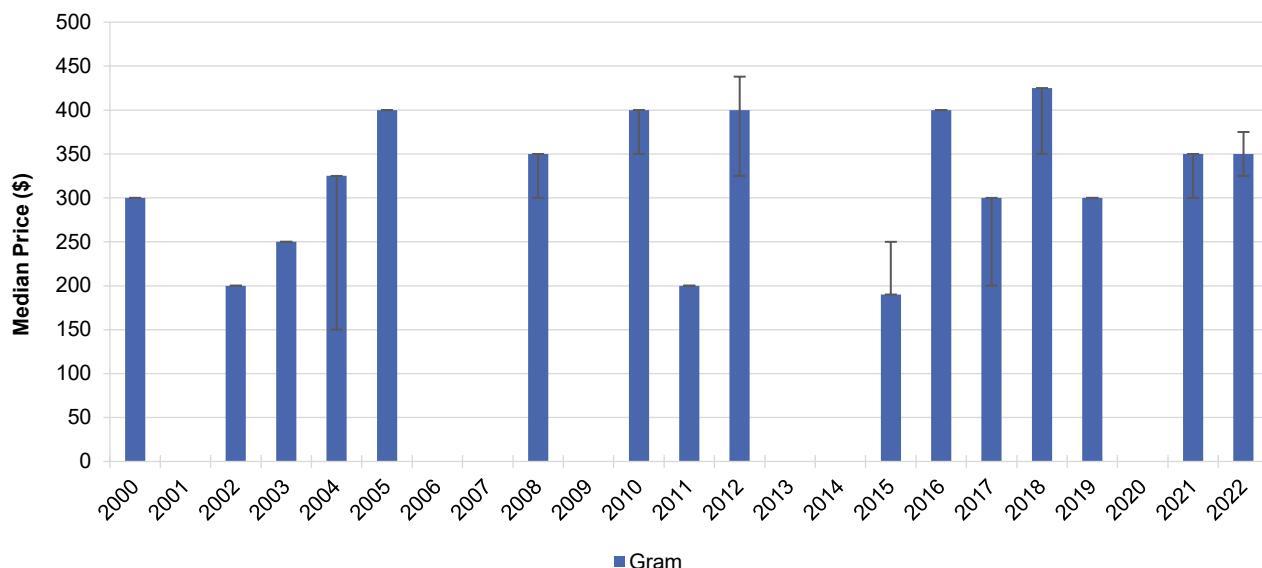

Quantity

Of those who reported recent use and responded ($n=9$), the median amount of cocaine used on an average day of consumption in the six months preceding interview was 0.50 grams (IQR=0.30-1.00; 0.30 grams in 2021; IQR=0.20-1.00 in 2021; $p=0.710$).

Forms used

Among participants who had recently consumed cocaine and commented ($n=14$), the vast majority reported using powder cocaine (93%; 93% in 2021), with no participants reporting use of crack cocaine.

Figure 16: Past six month use and frequency of use of cocaine, Hobart, TAS, 2000-2022



Note. Median days computed among those who reported recent use (maximum 180 days). Median days rounded to the nearest whole number. Y axis reduced to 10 days to improve visibility of trends. Data labels are only provided for the first (2000) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., $n \leq 5$ but not 0). The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; * $p < 0.050$; ** $p < 0.010$; *** $p < 0.001$.

Price, Perceived Purity and Perceived Availability

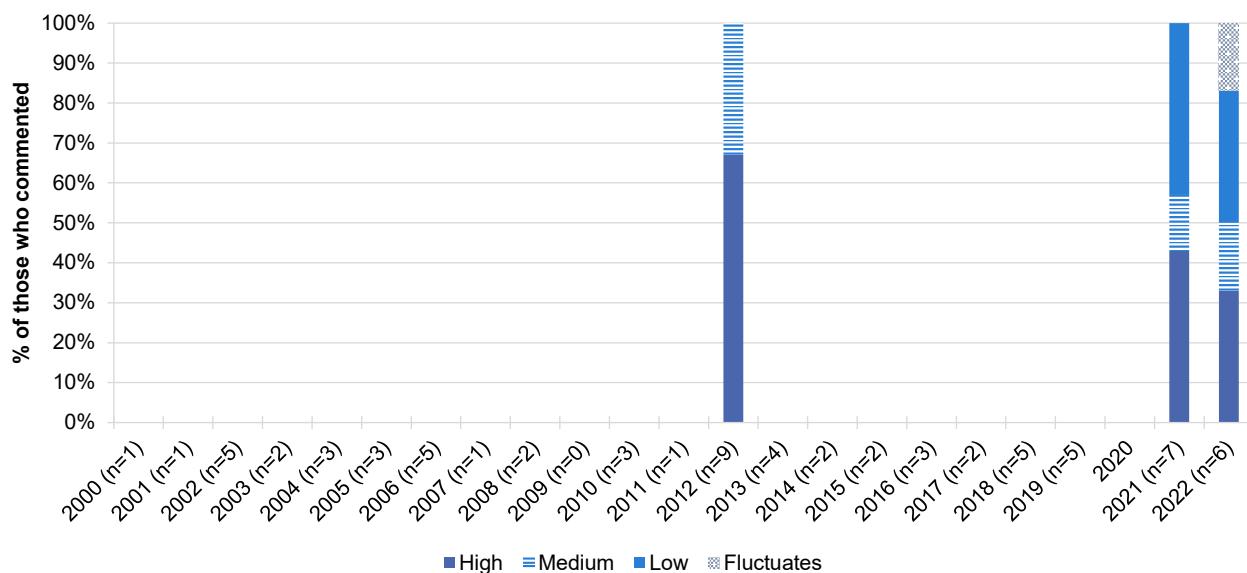

Due to low numbers ($n \leq 5$), details will not be reported on price (Figure 17), perceived purity (Figure 18) and perceived availability (Figure 19) for cocaine. Please refer to the [National IDRS Report](#) for national trends, or contact the Drug Trends team for further information.

Figure 17: Median price of cocaine per cap and gram, Hobart, TAS, 2000-2022

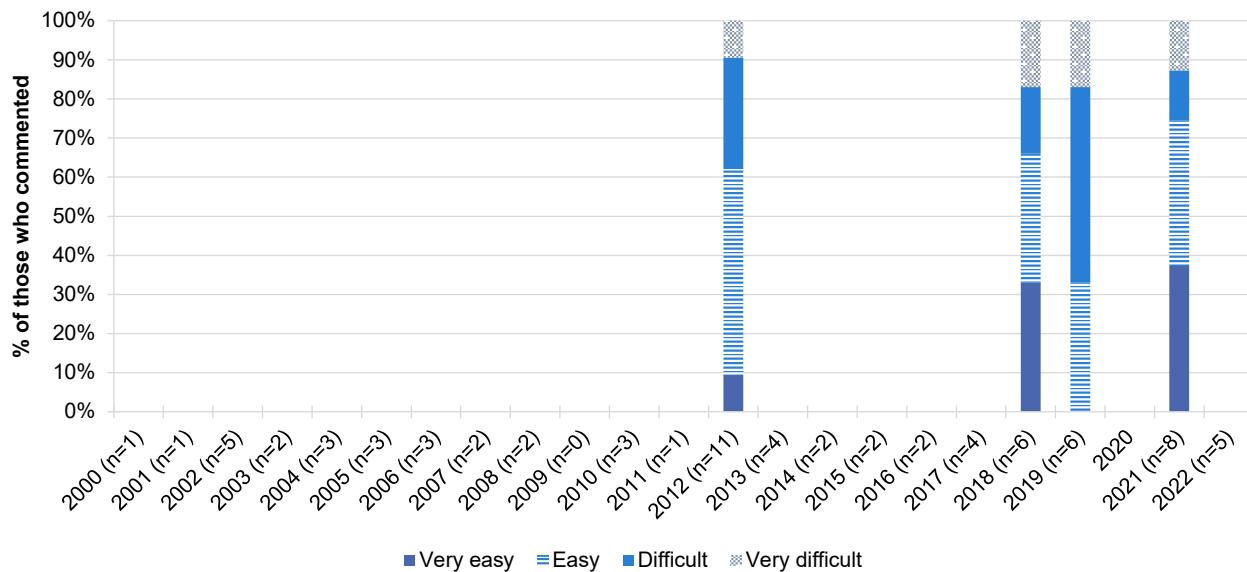

Note. Among those who commented. The error bars represent IQR. Price data for cocaine not collected in 2020. No participants reported on the price of a gram in 2012, 2013 and 2014. No participants reported on the price of a cap in 2021. Data labels are only provided for the first (2000) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., $n \leq 5$ but not 0). For historical numbers, please refer to the data tables. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; * $p < 0.050$; ** $p < 0.010$; *** $p < 0.001$.

Figure 18: Current perceived purity of cocaine, Hobart, TAS, 2000-2022

Note. The response option 'Don't know' was excluded from analysis. Purity data for cocaine not collected in 2020. Data labels suppressed for all stacked bar charts, with data not provided for years where fewer than six participants (n≤5) responded. For historical numbers, please refer to the data tables. Statistical significance for 2021 versus 2022 presented in figure; $p<0.050$; $**p<0.010$; $***p<0.001$.

Figure 19: Current perceived availability of cocaine, Hobart, TAS, 2000-2022

Note. The response option 'Don't know' was excluded from analysis. Availability data for cocaine not collected in 2020. Data labels suppressed for all stacked bar charts, with data not provided for years where fewer than six participants (n≤5) responded. For historical numbers, please refer to the data tables. Statistical significance for 2021 versus 2022 presented in figure; $p<0.050$; $**p<0.010$; $***p<0.001$.

5

Cannabis and/or Cannabinoid Related Products

Participants were asked about their recent (past six month) use of indoor-cultivated cannabis via a hydroponic system ('hydroponic') and outdoor-cultivated cannabis ('bush'), as well as hashish, hash oil and CBD and THC extract.

Terminology throughout this chapter refers to:

- **Prescribed use:** use of cannabis and/or cannabinoid related products obtained by a prescription in the person's name;
- **Non-prescribed use:** use of cannabis and/or cannabinoid related products which the person did not have a prescription for (i.e., illegally sourced or obtained from a prescription in someone else's name); and
- **Any use:** use of cannabis and/or cannabinoid related products obtained through either of the above means.

Patterns of Consumption

In 2022, participants were asked for the first time about their use of both prescribed and non-prescribed cannabis and/or cannabinoid related products (including hydroponic and bush cannabis, hash, hash oil, CBD extract, THC extract); few participants ($n \leq 5$) reported prescribed use in the six months preceding interview.

In this chapter, data from 2021 and 2022, and from 2000-2016, refers to non-prescribed cannabis use only, while data from 2017-2020 refers to 'any' cannabis use (including hydroponic and bush cannabis, hash, hash oil). While comparison between 2021-2022 and previous years should be treated with caution, the relatively recent legalisation of medicinal cannabis in Australia and the small percentage reporting prescribed use in 2022 lends confidence that estimates are relatively comparable.

Recent Use (past 6 months)

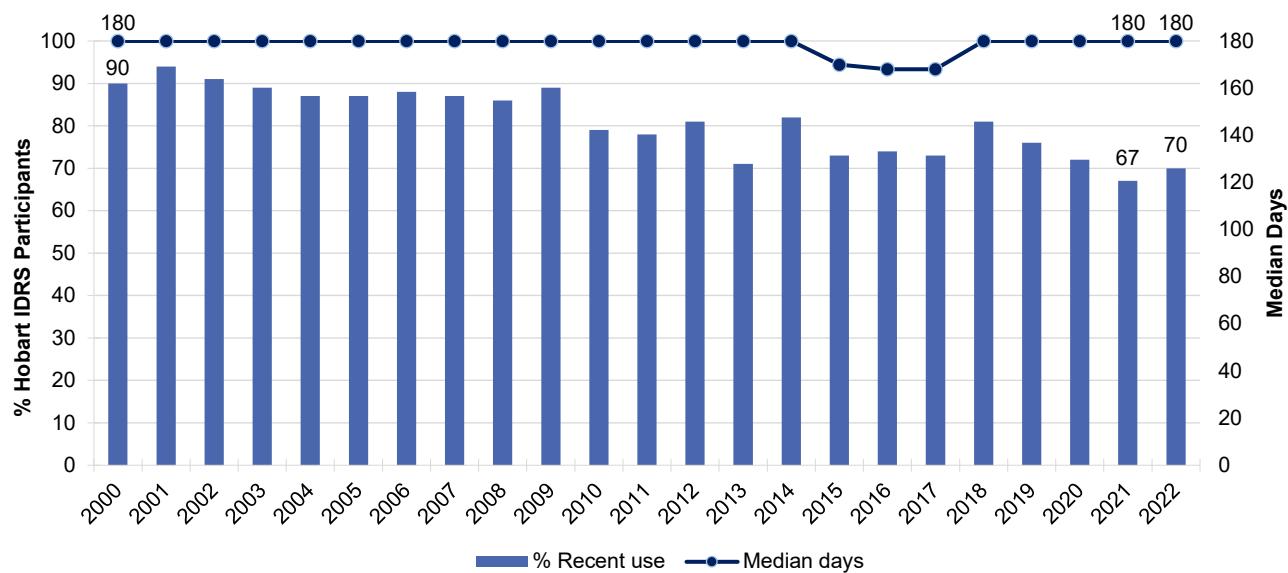
The proportion of participants reporting recent use of non-prescribed cannabis and/or cannabinoid related products has been slowly declining since the early 2000s. Seventy per cent reported recent use of non-prescribed cannabis and/or cannabinoid related products in 2022 (67% in 2021; $p=0.754$) (Figure 20).

Frequency of Use

Frequency of use was stable at a median of 180 days (IQR=76-180) in 2022 (180 days in 2021; IQR=45-180; $p=0.671$). Of those who had recently consumed non-prescribed cannabis and/or cannabinoid related products and commented in 2022 ($n=71$), half (51%) reported daily use, stable relative to 2021 (58%; $p=0.482$) (Figure 20).

Routes of Administration

Among participants who had recently consumed non-prescribed cannabis and/or cannabinoid related products and commented (n=71), smoking continued to be the most common route of administration (97%; 97% in 2021) with 8% reporting inhaling/vaporising in 2022 (n≤5 in 2021; $p=0.119$).


Quantity

Of those who reported recent use of non-prescribed cannabis and/or cannabinoid related products in 2022, the median 'typical' amount used on the last occasion of use was one gram (IQR=0.60-1.20; n=34; 1.00 gram in 2021; IQR=0.50-1.00; n=27; $p=0.473$) or three cones (IQR=2-4; n=27; 2 cones in 2021; IQR=2-4; n=26; $p=0.718$) or one joint (IQR=1.00-2.00; n=10; 1 joint in 2021; IQR=1.00-1.00; n=6).

Forms Used

Of those who had used non-prescribed cannabis and/or cannabinoid related products in the past six months and commented (n=70), 84% reported recent use of hydroponic cannabis (87% in 2021; $p=0.800$), 56% reported recent use of outdoor-grown 'bush' cannabis (65% in 2021; $p=0.372$) and 9% reported using hashish (13% in 2021; $p=0.570$). Few participants (n≤5) in 2022 reported using non-prescribed CBD extract and THC extract in 2021 and 2022 (recent use of THC not asked in 2021). No participants reported using hash oil in the preceding six months (n≤5 in 2021; $p=0.470$).

Figure 20: Past six month use and frequency of use of non-prescribed cannabis and/or cannabinoid related products, Hobart, TAS, 2000-2022

Note. Prior to 2021, we did not distinguish between prescribed and non-prescribed cannabis, and as such, it is possible that 2017-2020 figures include some participants who were using prescribed cannabis only (with medicinal cannabis first legalised in Australia in November 2016), although we anticipate these numbers would be very low. Further, in 2022, we captured use of 'cannabis and/or cannabinoid related products', while in previous years questions referred only to 'cannabis'. Median days computed among those who reported recent use (maximum 180 days). Median days rounded to the nearest whole number. Data labels are only provided for the first (2000) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., n≤5 but not 0). For historical numbers, please refer to the data tables. The response 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; * $p<0.050$; ** $p<0.010$; *** $p<0.001$.

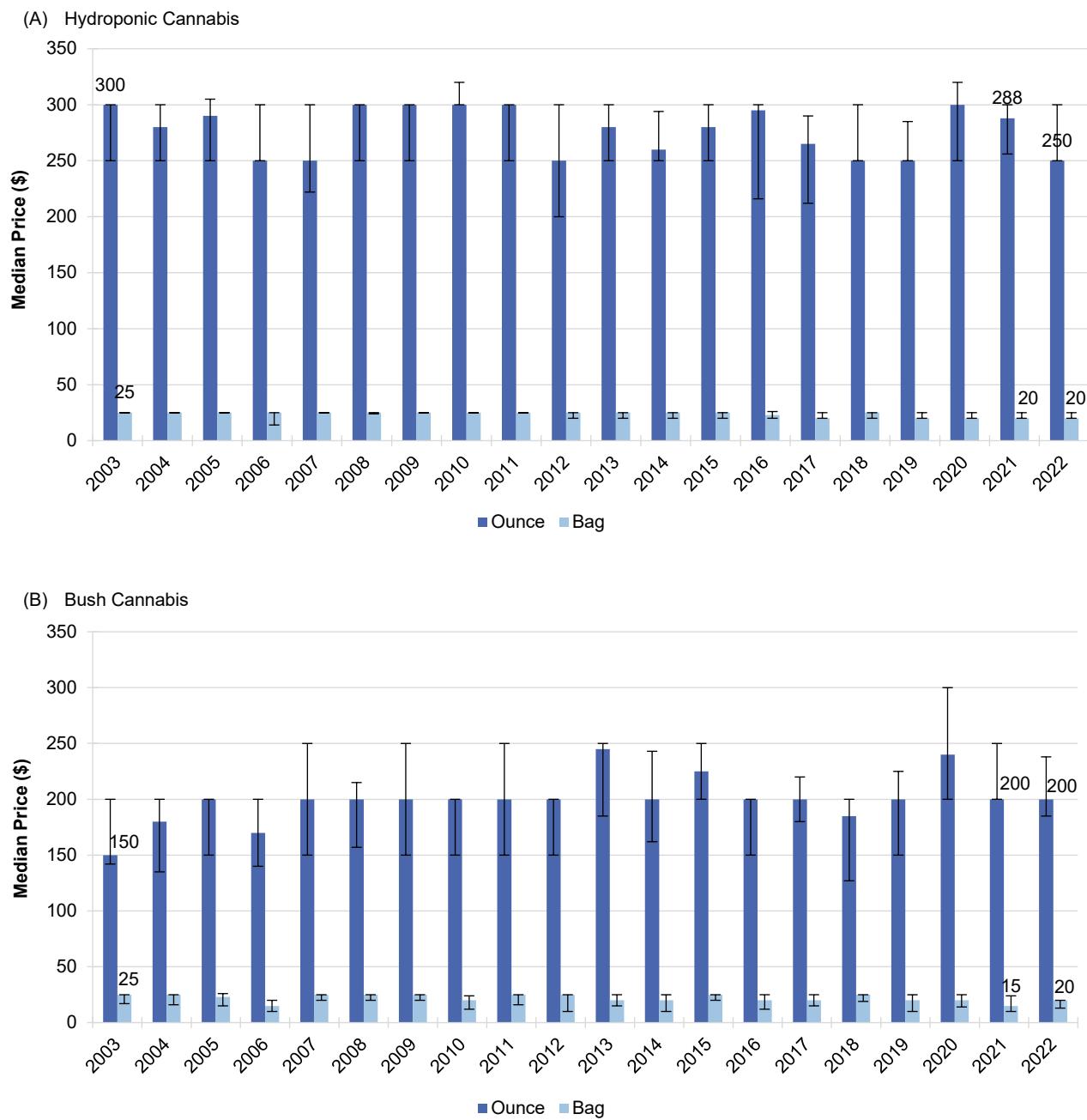
Price, Perceived Potency and Perceived Availability

Hydroponic Cannabis

Price: Consistent with previous years, the median price per gram of hydroponic cannabis in 2022 was \$20 (IQR=20-25; n=19; \$20 in 2021; IQR=20-25; n=23; $p=0.624$). Few participants (n≤5) reported on the median price per ounce of hydroponic cannabis in 2022; therefore, these details are suppressed (\$288 in 2021; IQR=256-300; n=6; $p=0.389$) (Figure 21a).

Perceived Potency: The perceived potency of hydroponic cannabis remained stable between 2021 and 2022 ($p=0.084$). Among those who were able to comment in 2022 (n=54), almost two-thirds (63%) reported 'high' potency in 2022 (76% in 2021), with one-third (35%) reporting 'medium' potency (17% in 2021) (Figure 22a).

Perceived Availability: Perceived availability remained relatively stable between 2021 and 2022 ($p=0.157$). Among those who were able to comment in 2022 (n=54), almost three-fifths (59%) perceived hydroponic cannabis to be 'very easy' to obtain (74% in 2021), with 37% reporting 'easy' obtainment (19% in 2021) (Figure 23a).


Bush Cannabis

Price: The median price per ounce of bush cannabis was \$200 (IQR=185-238; n=6) which remained stable relative to 2021 (\$200; IQR=200-250; n=14; $p=0.637$) (Figure 21b). The median price per gram of bush cannabis in 2022 was \$20 (IQR=13-20; n=10; \$15 in 2021; IQR=10-24; n=12; $p=0.584$).

Perceived Potency: Perceived potency of bush cannabis remained stable between 2021 and 2022 ($p=0.327$). Among those who were able to comment in 2022 (n=34), almost half (47%) perceived potency to be 'medium' (50% in 2021), or 'high' (29%; 29% in 2021) (Figure 22b).

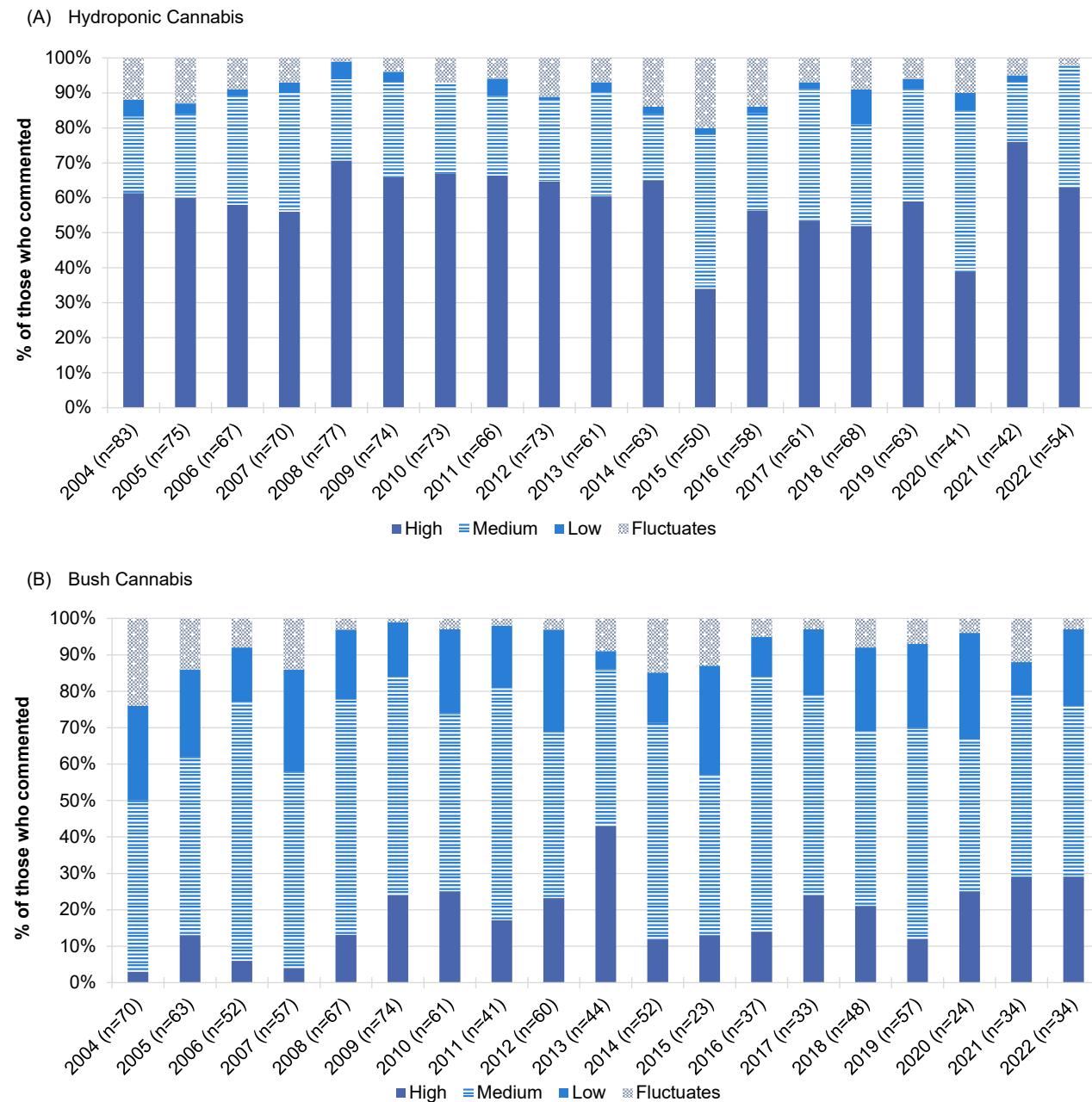
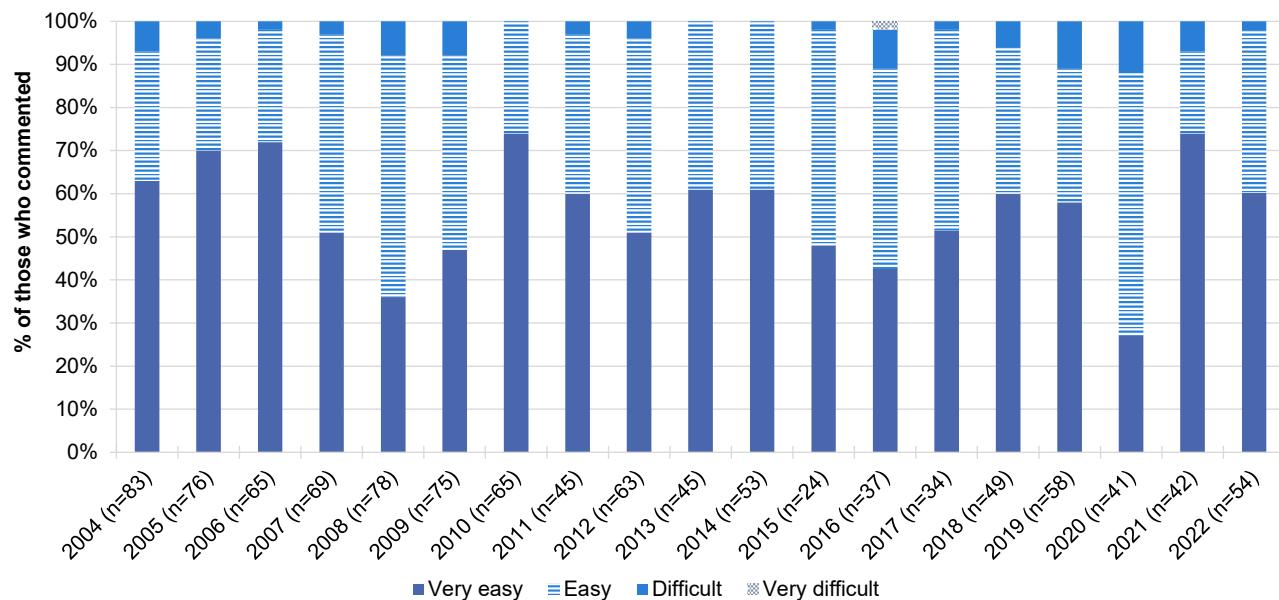

Perceived Availability: The perceived availability of bush cannabis remained stable between 2021 and 2022 ($p=0.947$). Among those who were able to comment in 2022 (n=36), half (50%) perceived that bush was 'very easy' to obtain (47% in 2021), whilst 36% perceived that bush was 'easy' to obtain (35% in 2021) (Figure 23b).

Figure 21: Median price of non-prescribed hydroponic (A) and bush (B) cannabis per ounce and bag, Hobart, TAS, 2003-2022

Note. Among those who commented. From 2003 onwards hydroponic and bush cannabis data collected separately. Data from 2022 onwards refers to non-prescribed cannabis only. Data labels are only provided for the first (2003) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., $n \leq 5$ but not 0). For historical numbers, please refer to the data tables. The error bars represent the IQR. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; * $p < 0.050$; ** $p < 0.010$; *** $p < 0.001$.


Figure 22: Current perceived potency of non-prescribed hydroponic (a) and bush (b) cannabis, Hobart, TAS, 2004-2022

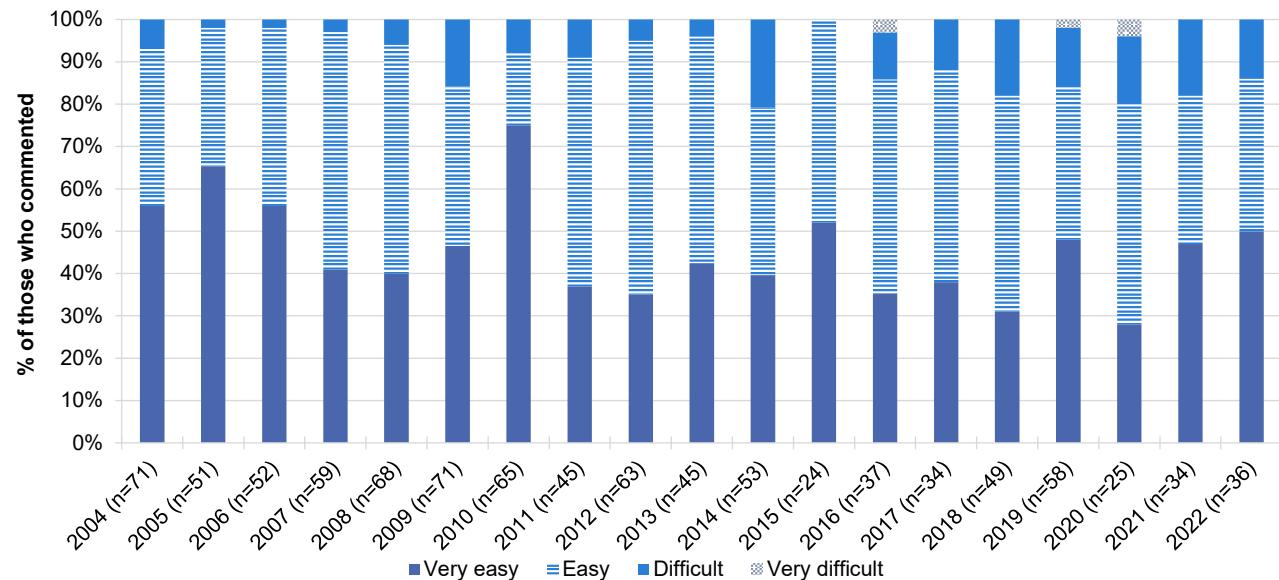

Note. The response option 'Don't know' was excluded from analysis. Hydroponic and bush cannabis data collected separately from 2004 onwards. Data from 2022 onwards refers to non-prescribed cannabis only. Data labels suppressed for all stacked bar charts, with data not provided for years where fewer than six participants (n≤5) responded. For historical numbers, please refer to the data tables. Statistical significance for 2021 versus 2022 presented in figure; *p<0.050; **p<0.010; ***p<0.001.

Figure 23: Current perceived availability of non-prescribed hydroponic (a) and bush (b) cannabis, Hobart, TAS, 2004-2022

(A) Hydroponic Cannabis

(B) Bush Cannabis

Note. The response option 'Don't know' was excluded from analysis. Hydroponic and bush cannabis data collected separately from 2004 onwards. Data from 2022 onwards refers to non-prescribed cannabis only. Data labels suppressed for all stacked bar charts, with data not provided for years where fewer than six participants (n≤5) responded. For historical numbers, please refer to the data tables. Statistical significance for 2021 versus 2022 presented in figure; * $p<0.050$; ** $p<0.010$; *** $p<0.001$.

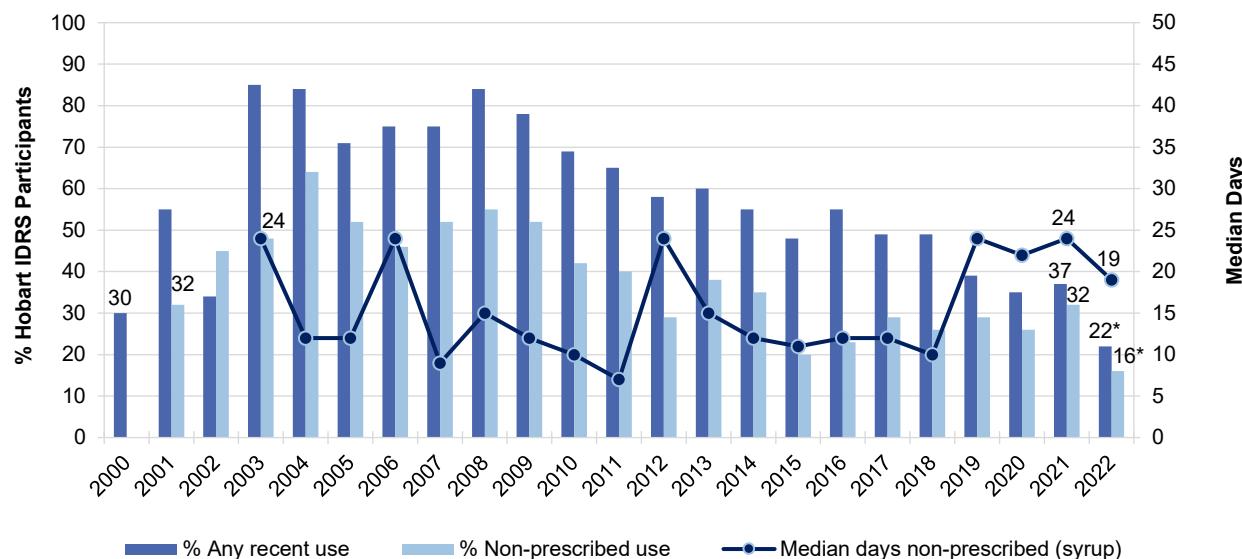
6

Pharmaceutical Opioids

The following section describes recent (past six month) use of pharmaceutical opioids amongst the sample. Terminology throughout refers to:

- **Prescribed use:** use of pharmaceutical opioids obtained by a prescription in the person's name;
- **Non-prescribed use:** use of pharmaceutical opioids obtained from a prescription in someone else's name or via another source (e.g., online); and
- **Any use:** use of pharmaceutical opioids obtained through either of the above means.

For information on price and perceived availability for non-prescribed pharmaceutical opioids, contact the Drug Trends team (drugtrends@unsw.edu.au).


Methadone

Any Recent Use (past 6 months): Notwithstanding some fluctuation, the per cent reporting any recent methadone use (including syrup and tablets) in the Hobart sample has generally decreased since monitoring commenced. In 2022, one-fifth (22%) of participants reported recent use of any prescribed and/or non-prescribed methadone, a significant decrease from 37% in 2021 ($p=0.022$). The per cent reporting non-prescribed use also decreased significantly in 2022 (16%; 32% in 2021; $p=0.013$) (Figure 24).

Frequency of Use: Of those who had recently consumed non-prescribed methadone and commented (n=14), frequency of non-prescribed methadone syrup use remained stable in 2022 (19 days; IQR=5-24; 24 days in 2021; IQR=6-126; $p=0.350$) (Figure 24).

Recent Injecting Use: Of those who had recently used any methadone in 2022 (syrup and tablets; n=22), 86% reported recently injecting any methadone (89% in 2021). Frequency of recent injecting use was relatively stable at 30 days (IQR=13-60; n=19; 24 days in 2021; IQR=6-69; n=30; $p=0.910$).

Figure 24: Past six month use (prescribed and non-prescribed) and frequency of use of non-prescribed methadone, Hobart, TAS, 2000-2022

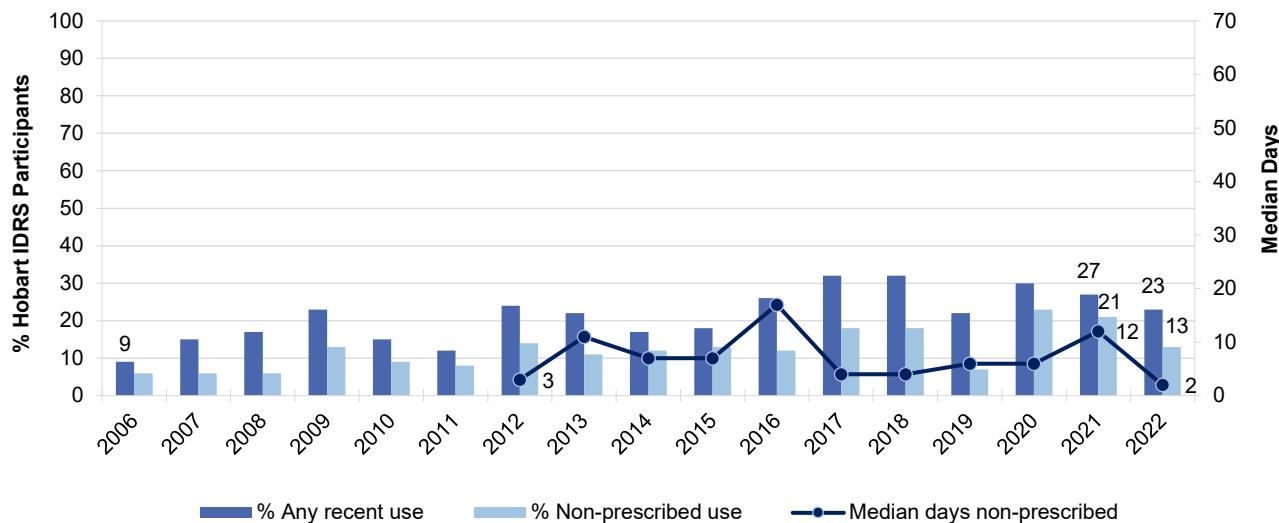
Note. Includes methadone syrup and tablets except where otherwise specified. Non-prescribed use not distinguished 2000-2002.. Median days computed among those who reported recent use (maximum 180 days). Median days rounded to the nearest whole number. Y axis reduced to 50 days to improve visibility of trends. Data labels are only provided for the first (2000/2003) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., $n \leq 5$ but not 0). For historical numbers, please refer to the data tables. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; * $p < 0.050$; ** $p < 0.010$; *** $p < 0.001$.

Buprenorphine Tablet

Any Recent Use (past 6 months): In 2022, 12% of the sample reported recent use of any buprenorphine tablets (12% in 2021), with 7% reporting non-prescribed use (11% in 2021; $p=0.442$) and few participants ($n \leq 5$) reporting prescribed use in 2021 and 2022 (further details have been suppressed).

Frequency of Use: Of those reporting recent use, participants reported a median of three days of non-prescribed use (IQR=2-15; $n=7$) of buprenorphine tablets in the past six months (26 days in 2021; IQR=2-83; $n=8$; $p=0.414$).

Recent Injecting Use: Of those who had recently used any buprenorphine tablets ($n=12$), 67% reported any recent injecting use (64% in 2021) at a frequency of three days (IQR=2-26), stable from 48 days in 2021 (IQR=2-180; $p=0.501$).


Buprenorphine-Naloxone

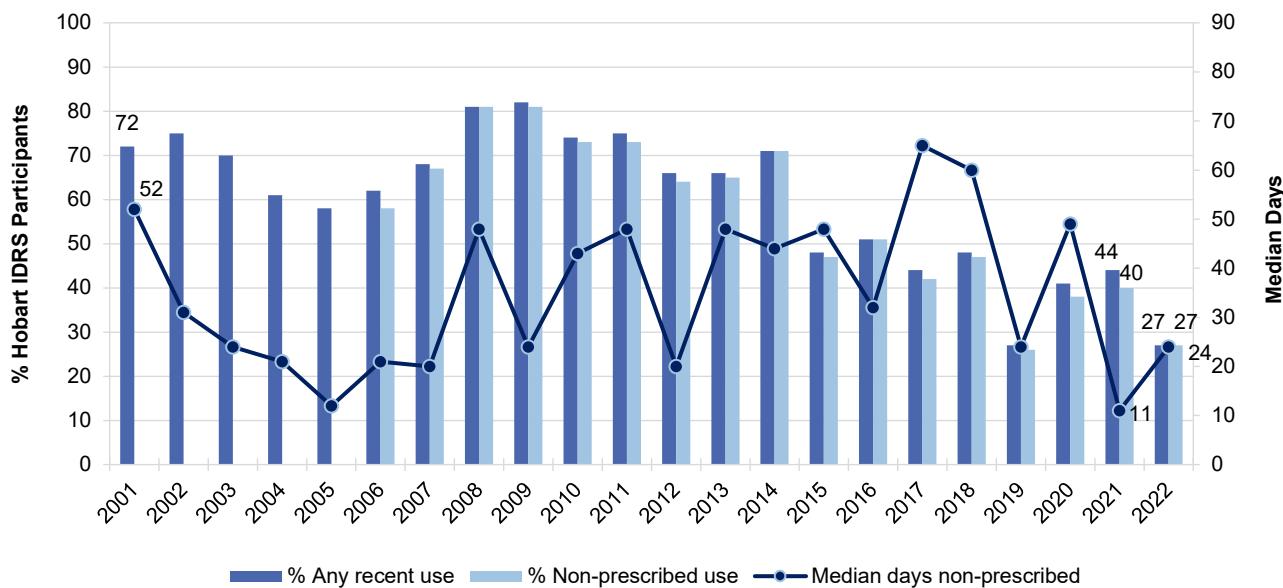
Any Recent Use (past 6 months): The per cent reporting recent buprenorphine-naloxone use has generally remained low and stable over the course of monitoring. In 2022, 23% of the sample reported recent use of any buprenorphine-naloxone (27% in 2021; $p=0.504$), with 13% reporting non-prescribed use (21% in 2021; $p=0.138$) (Figure 25). Ten per cent reported prescribed use (7% in 2021; $p=0.610$).

Frequency of Use: Of those who had recently consumed non-prescribed buprenorphine-naloxone and commented ($n=13$), frequency of use remained low and stable at a median of two days (IQR=1-6) in the past six months (12 days in 2021; IQR=4-120; $p=0.011$) (Figure 25).

Recent Injecting Use: Of those who had recently used any buprenorphine-naloxone in 2022 ($n=23$), 43% reported any recent injecting use (42% in 2021). Frequency of recent injecting use was stable at 12 days (IQR=2-141; $n=10$; 12 days in 2021; IQR=4-173; $n=10$; $p=0.565$).

Figure 25: Past six month use (prescribed and non-prescribed) and frequency of use of non-prescribed buprenorphine-naloxone, Hobart, TAS, 2006-2022

Note. From 2006-2011, participants were asked about the use of buprenorphine-naloxone tablet; from 2012-2016, participants were asked about the use of buprenorphine-naloxone tablet and film; from 2017 onwards, participants were asked about the use of buprenorphine-naloxone film only. Median days of non-prescribed use computed among those who reported recent use (maximum 180 days) and is only reported from 2012 onwards to capture film use. Median days rounded to the nearest whole number. Y axis reduced to 70 days to improve visibility of trends. Data labels are only provided for the first (2006/2012) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., n≤5 but not 0). For historical numbers, please refer to the data tables. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; *p<0.050; **p<0.010; ***p<0.001.


Morphine

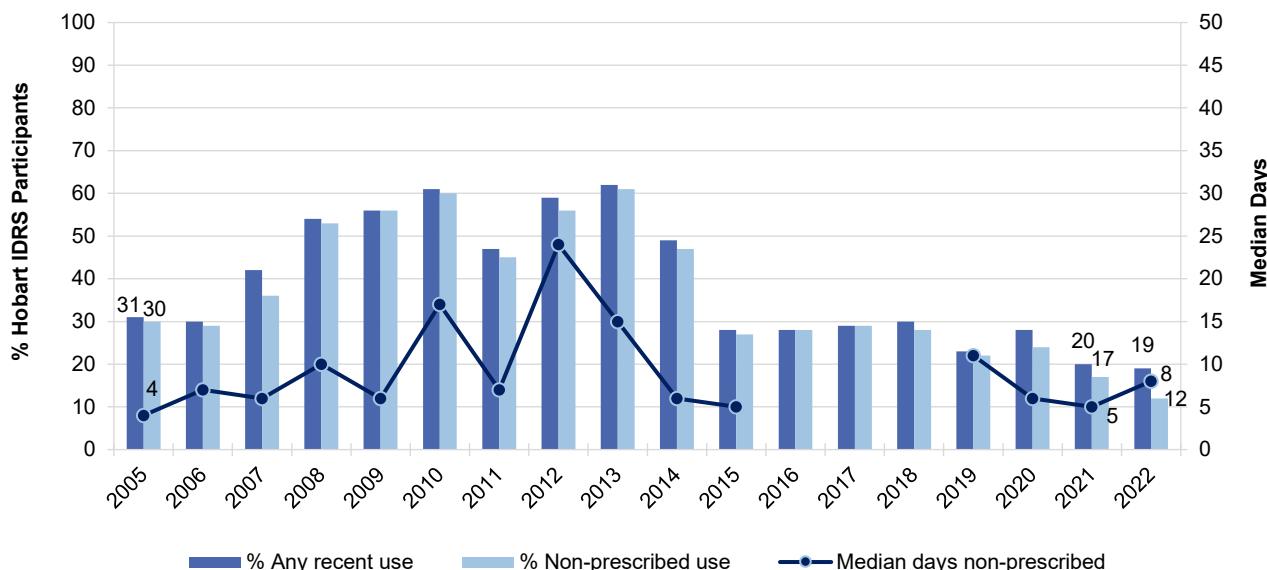
Any Recent Use (past 6 months): The Hobart sample has observed a downward trend in recent use of morphine since peaking in 2009 (Figure 26). In 2022, 27% of the sample had recently used any morphine, a significant decrease from 44% in 2021 ($p=0.020$). This was mostly driven by non-prescribed use (27%; 40% in 2021; $p=0.073$). No participants reported recent prescribed use (n≤5 in 2021; $p=0.052$).

Frequency of Use: Participants who had recently consumed non-prescribed morphine and commented (n=28) reported use on a median of 24 days (IQR=6-77) in 2022, stable relative to 2021 (11 days; IQR=3-26; n=36; $p=0.099$) (Figure 26).

Recent Injecting Use: Of those who had recently used any morphine in 2022 and commented (n=28), 96% reported injecting morphine (93% in 2021; $p=0.645$) on a median of 24 days (IQR=6-81), stable relative to 2021 (15 days; IQR=3-30; n=15; $p=0.237$).

Figure 26: Past six month use (prescribed and non-prescribed) and frequency of use of non-prescribed morphine, Hobart, TAS, 2001-2022

Note. Median days of computed among those who reported recent use (maximum 180 days). Non-prescribed use not distinguished in 2001-2005. Y axis reduced to 90 days to improve visibility of trends. Median days rounded to the nearest whole number. Data labels are only provided for the first (2001/2006) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., $n \leq 5$ but not 0). For historical numbers, please refer to the data tables. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; * $p < 0.050$; ** $p < 0.010$; *** $p < 0.001$.


Oxycodone

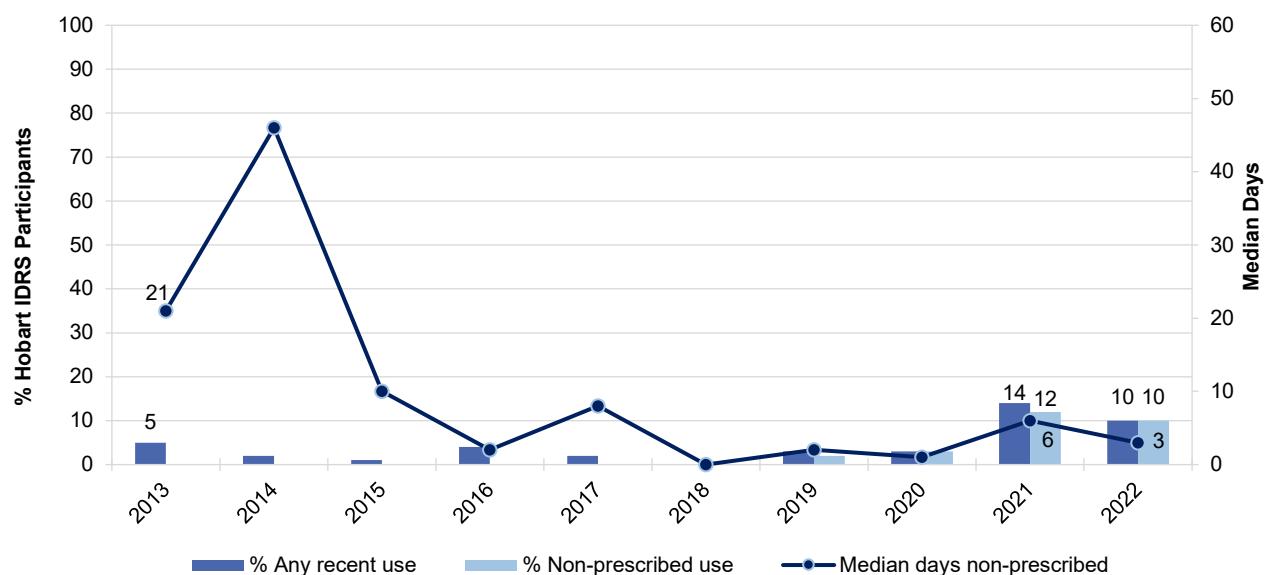
Any Recent Use (past 6 months): Recent use of oxycodone has fluctuated over the course of monitoring, with 19% of participants reporting recent use in 2022, stable relative to 2021 (20%) (Figure 27). In 2022, 8% of the sample had used prescribed oxycodone ($n \leq 5$ in 2021; $p=0.379$) and 12% had used non-prescribed oxycodone, stable from 17% in 2021 ($p=0.316$).

Frequency of Use: Participants who had recently consumed non-prescribed oxycodone and commented ($n=12$) reported use on a median of eight days (IQR=2-113) in the six months preceding interview in 2022 (5 days in 2021; IQR=3-25; $n=15$; $p=0.508$) (Figure 27).

Recent Injecting Use: Of those who had recently used any oxycodone in 2022 ($n=19$), 63% reported recently injecting any form, which was stable relative to 44% in 2021 ($p=0.333$). Participants reported injecting any form of oxycodone on a median of eight days (IQR=4-113; $n=12$) in the past six months (6 days in 2021; IQR=2-30; $n=7$; $p=0.552$).

Figure 27: Past six month use (prescribed and non-prescribed) and frequency of use of non-prescribed oxycodone, Hobart, TAS, 2005-2022

Note. From 2005-2015, participants were asked about recent use and frequency of use for any oxycodone; from 2016-2018, recent use and frequency of use for oxycodone was broken down into three types: tamper resistant ('OP'), non-tamper proof (generic) and 'other oxycodone' (median days non-prescribed use missing from 2016-2018). From 2019, recent use for oxycodone was broken down into four types: tamper resistant ('OP'), non-tamper proof (generic), 'other oxycodone' and oxycodone-naloxone, while frequency of use was asked for any oxycodone. Median days of non-prescribed use computed among those who reported recent use (maximum 180 days). Median days rounded to the nearest whole number. Y axis reduced to 50 days to improve visibility of trends. Data labels are only provided for the first (2005) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., $n \leq 5$ but not 0). For historical numbers, please refer to the data tables. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; * $p < 0.050$; ** $p < 0.010$; *** $p < 0.001$.


Fentanyl

Any Recent Use (past 6 months): The per cent reporting recent use of fentanyl has remained low and stable since monitoring commenced (Figure 28). In 2022, one-tenth (10%) of the sample reported using fentanyl (prescribed or non-prescribed) in the six months preceding interview (14% in 2021; $p=0.501$). No participants reported prescribed use in 2022 ($n \leq 5$ in 2021), and 10% reported non-prescribed use (12% in 2021; $p=0.812$).

Frequency of Use: Frequency of non-prescribed use was stable relative to 2021. Participants who had recently consumed non-prescribed fentanyl and commented ($n=10$) reported use on a median of three days (IQR=1-7) in 2022 (6 days in 2021; IQR=3-7; $n=10$; $p=0.379$) (Figure 28).

Recent Injecting Use: Of those who had recently used any fentanyl in 2022 and commented ($n=10$), 90% of participants reported recently injecting any form (85% in 2021) on a median of three days (IQR=1-7) in the past six months, stable from 2021 (6 days; IQR=3-8; $p=0.410$).

Figure 28: Past six-month use (prescribed and non-prescribed) and frequency of use of non-prescribed fentanyl, Hobart, TAS, 2013-2022

Note. Data on fentanyl use not collected from 2000-2012; from 2013-2017, the IDRS did not distinguish between prescribed and non-prescribed use. Median days computed among those who reported recent use (maximum 180 days). Median days rounded to the nearest whole number. Y axis reduced to 60 days to improve visibility of trends. Data labels are only provided for the first (2013/2018) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., $n \leq 5$ but not 0). For historical numbers, please refer to the data tables. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; * $p < 0.050$; ** $p < 0.010$; *** $p < 0.001$.

Other Opioids

Participants were asked about prescribed and non-prescribed use of other opioids in 2022 (Table 2). In 2022, 10% of participants reported any recent use of codeine (12% in 2021; $p=0.812$), with 6% reporting recent prescribed use ($n \leq 5$ in 2021; $p=0.500$). Few participants ($n \leq 5$) reported recent non-prescribed use; therefore, further details are suppressed (9% in 2021; $p=0.154$). See Figure 32 in the [Tasmania IDRS 2019 Report](#) for more detailed data on use of codeine.

Sixteen per cent reported recent use of any form of tramadol (20% in 2021; $p=0.453$) and few ($n \leq 5$) participants reported recent use of any form of tapentadol in 2021 and 2022 ($p=0.354$). Please refer to the [National IDRS Report](#) for national trends, or contact the Drug Trends team for further information.

Table 2: Past six month use of other opioids, Hobart, TAS, 2019-2022

% Recent Use (past 6 months)	2019 (N=99)	2020 (N=74)	2021 (N=95)	2022 (N=102)
Codeine^				
Any use	9	-	12	10
Non-prescribed use	19	14	9	-
Any injecting use#	0	0	0	0
Tramadol				
Any use	26	-	20	16
Non-prescribed use	18	9	7	7
Any injecting use#	12	0	16	6
Tapentadol				
Any use	-	-	-	-
Non-prescribed use	-	-	-	-
Any injecting use#	0	0	0	0

Note. - Values suppressed due to small cell size (n≤5 but not 0). Includes high and low dose. #Of those who reported past six month use. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in table; *p<0.050; **p<0.010; ***p<0.001.

7

Other Drugs

Participants were asked about their recent (past six month) use of various other drugs, including use of new psychoactive substances, non-prescribed use (i.e., use of a medicine obtained from a prescription in someone else's name) of other pharmaceutical drugs, and use of licit substances (e.g., alcohol, tobacco).

New Psychoactive Substances (NPS)

NPS are often defined as substances which do not fall under international drug control, but which may pose a public health threat. However, there is no universally accepted definition, and in practicality the term has come to include drugs which have previously not been well-established in recreational drug markets.

Seven per cent of participants reported using any NPS in the six months prior to interview (12% in 2021; $p=0.330$). Few participants ($n\leq 5$) reported on various NPS types and patterns of use, and therefore no further reporting on these will be included. Please refer to the [National IDRS Report](#) for national trends, or contact the Drug Trends team for further information.

Table 3: Past six month use of new psychoactive substances, Hobart, TAS, 2013-2022

% Recent Use (past 6 months)	2013 N=105	2014 N=101	2015 N=100	2016 N=99	2017 N=100	2018 N=100	2019 N=99	2020 N=74	2021 N=95	2022 N=102
'New' drugs that mimic the effects of opioids	/	/	/	/	0	0	-	-	-	0
'New' drugs that mimic the effects of ecstasy	/	/	/	/	/	-	-	-	-	-
'New' drugs that mimic the effects of amphetamine or cocaine	-	/	/	/	/	-	-	-	-	-
'New' drugs that mimic the effects of cannabis	-	-	-	-	-	-	-	-	-	0
'New' drugs that mimic the effects of psychedelic drugs	/	/	/	/	-	-	-	-	-	-
'New' drugs that mimic the effects of benzodiazepines	/	/	/	/	/	/	-	-	-	-
Any of the above	-	-	-	0	-	8	16	14	12	7

Note. - Values suppressed due to small cell size ($n\leq 5$ but not 0). / denotes that this item was not asked in these years. #In 2017, participants were asked about use of 'new drugs that mimic the effects of ecstasy or psychedelic drugs' and 'new drugs that mimic the effects of opioids'.

#In 2018, participants were asked about use of 'new drugs that mimic the effects of benzodiazepines'. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in table; * $p<0.050$; ** $p<0.010$; *** $p<0.001$.

Non-Prescribed Pharmaceutical Drugs

Benzodiazepines

Recent Use (past 6 months): Recent non-prescribed use of any benzodiazepines remained stable in 2022 (35%; 41% in 2021; $p=0.456$) (Figure 29). Use of non-prescribed benzodiazepines other than alprazolam remained stable (31%; 31% in 2021). However, recent use of alprazolam underwent a significant decrease from 32% in 2021 to 11% reporting recent use of non-prescribed alprazolam in 2022 ($p<0.001$).

Frequency of Use: Participants who had recently consumed non-prescribed other benzodiazepines and commented (n=32) reported use on a median of ten days in 2022 (IQR=6-48; 20 days in 2021; IQR=6-32). Of those who had recently consumed non-prescribed alprazolam and commented (n=11), median use was three days (IQR=3-20; 5 days in 2021; IQR=3-12; n=32; $p=0.831$).

Recent Injecting Use: In 2022, 11% of the Hobart sample reported recent injecting use of any non-prescribed benzodiazepines (18% in 2021; $p=0.520$).

Pharmaceutical Stimulants

Recent Use (past 6 months): Recent use of non-prescribed pharmaceutical stimulants was stable, with 16% of participants reporting recent use (9% in 2021; $p=0.214$) (Figure 31) (Figure 29).

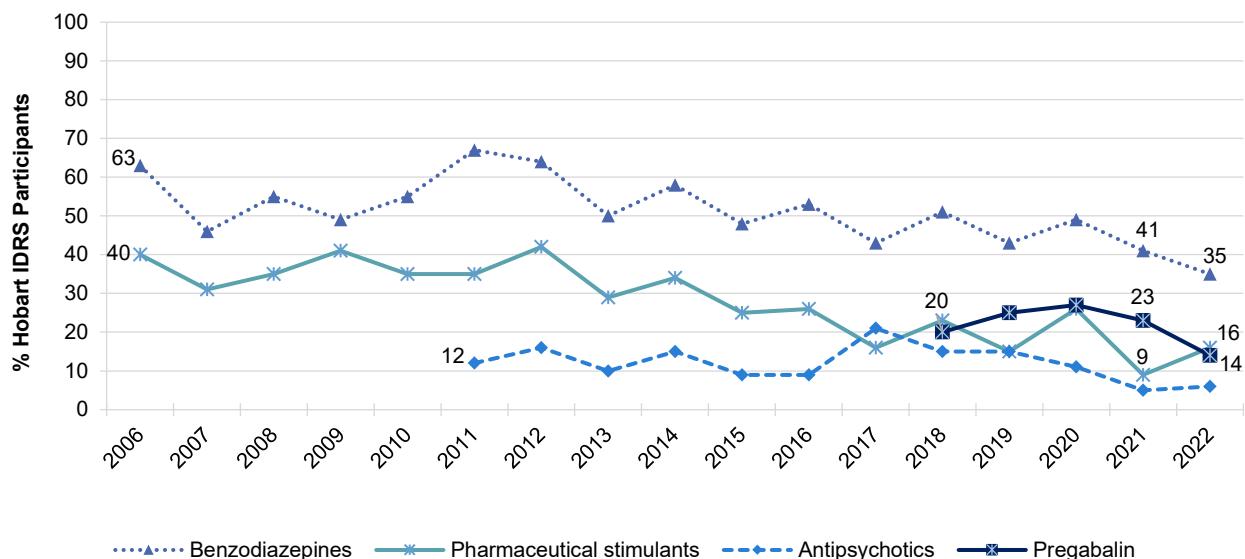
Frequency of Use: Participants reported using non-prescribed pharmaceutical stimulants on a median of five days (IQR=3-17) in 2022, stable relative to 2021 (4 days; IQR=3-10; $p=0.797$).

Recent Injecting use: Of those who had recently used pharmaceutical stimulants in 2022 and commented (n=13), 81% of participants reported recently injecting pharmaceutical stimulants (n≤5 in 2021; $p=0.205$) on a median of four days (IQR=4-24) in the past six months, stable from 2021 ($p=0.425$).

Antipsychotics

Recent Use (past 6 months): Six per cent of participants reported using non-prescribed antipsychotics (asked as 'Seroquel' 2011-2018) in the last six months (n≤5 in 2021) (Figure 29).

Frequency of Use: Participants reported using non-prescribed antipsychotics on a median of four days (IQR=3-6; n≤5 in 2021; $p=0.235$).


Pregabalin

Recent Use (past 6 months): In 2022, 14% of participants had used non-prescribed pregabalin (23% in 2021) in the six months preceding interview (Figure 29).

Frequency of Use: Participants who had recently consumed non-prescribed pregabalin and commented (n=14) reported use on a median of 11 days (IQR=5-24) in 2022, stable from 12 days in 2021 (IQR=6-27; $p=0.869$).

Recent Injecting Use: In 2022, no participants reported recent injecting use of any non-prescribed pregabalin (n≤5 in 2021; $p=0.141$), therefore no further reporting will be included. Please refer to the [National IDRS Report](#) for national trends, or contact the Drug Trends team for further information.

Figure 29: Past six month use of non-prescribed pharmaceutical drugs, Hobart, TAS, 2006-2022

Note. Non-prescribed use is reported. Participants were first asked about antipsychotics in 2011 (asked as 'Seroquel' 2011-2018) and pregabalin in 2018. Pharmaceutical stimulants were separated into prescribed and non-prescribed from 2006 onwards, and benzodiazepines were separated into prescribed and non-prescribed in 2007; Y axis reduced to 50% to improve visibility of trends. Data labels are only provided for the first (2006/2007/2011/2018) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., $n \leq 5$ but not 0). For historical numbers, please refer to the data tables. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure: * $p < 0.050$; ** $p < 0.010$; *** $p < 0.001$.

Licit and Other Drugs

Alcohol

Recent Use (past 6 months): Sixty-four per cent of the sample reported recent use of alcohol in 2022, stable from 60% in 2021 ($p=0.553$) (Figure 30).

Frequency of Use: Participants who had recently consumed alcohol and commented ($n=65$) reported use on a median of 24 days in 2022 (IQR=6-90; 48 days in 2021; IQR=6-158; $p=0.576$), with 15% of recent consumers reporting daily use (25% in 2021; $p=0.259$).

Tobacco

Recent Use (past 6 months): Tobacco use has been consistently high amongst the Hobart IDRS sample. In 2022, the majority of the sample (93%) reported recent use of tobacco (86% in 2021; $p=0.162$) (Figure 30).

Frequency of Use: Participants who had recently consumed tobacco and commented ($n=95$), reported use on a median of 180 days in 2022 (IQR=180-180; 180 days in 2021; IQR=180-180; $p=0.756$), with 89% reporting daily use (88% in 2021; $p=0.807$).

E-cigarettes

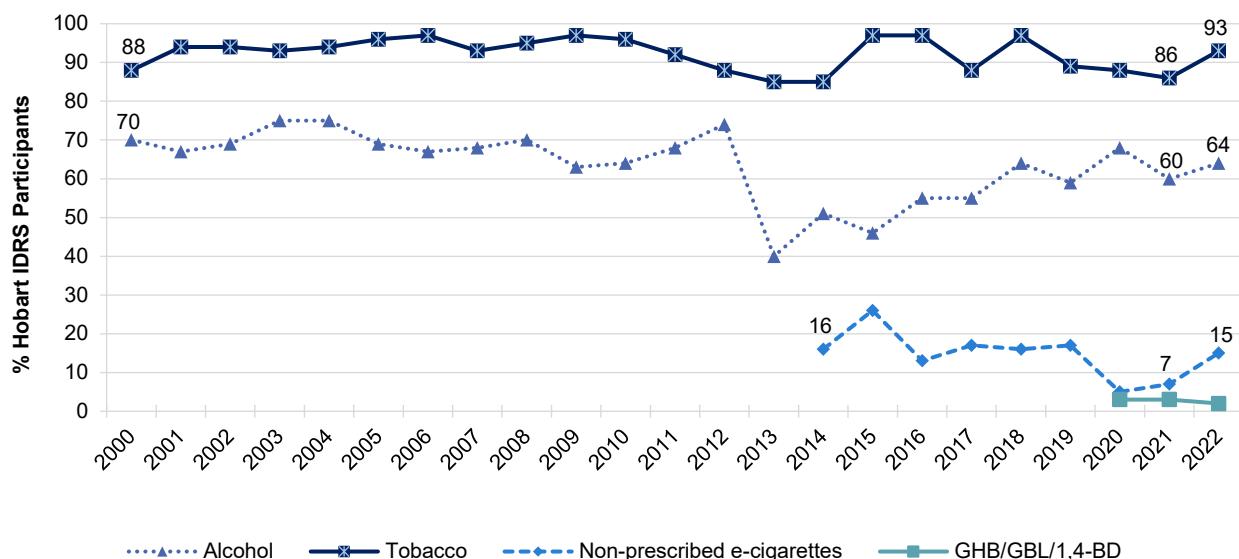
From October 2021, Australians were required to have a prescription to legally access nicotine containing e-cigarette products for any purpose. In 2022, participants were asked for the first time about their use of both prescribed and non-prescribed e-cigarettes. No participants reported recent use of prescribed e-cigarettes in 2022. Data below for 2022 refer only to non-prescribed e-cigarette use; data for 2021 and earlier refers to any e-cigarette use.

Recent Use (past 6 months): Fifteen per cent of participants reported recent use of non-prescribed e-cigarettes in 2022, stable relative to 2021 (7%; $p=0.123$) (Figure 30).

Frequency of Use: Participants who had recently consumed non-prescribed e-cigarettes and commented (n=15) reported use on a median of 10 days in 2022 (IQR=3-24; 18 days in 2021; IQR=6-30; $p=0.432$).

Forms Used: Among those who reported recent non-prescribed use in the last six months and responded (n=16), almost four-fifths (79%) of participants reported using e-cigarettes that contained nicotine (100% in 2021; $p=0.521$). Forty-three per cent of participants reported using e-cigarettes with neither nicotine nor cannabis (no participants in 2021; $p=0.061$). No participants reported using e-cigarettes that contained cannabis or both cannabis and nicotine (29% in 2021; $p=0.100$ and 29%; $p=0.100$, respectively). Please refer to the [National IDRS Report](#) for national trends, or contact the Drug Trends team for further information.

Reason for Use: Of those who reported any (i.e., prescribed or non-prescribed) e-cigarette use in the last six months and responded (n=15), 69% reported using e-cigarettes as a smoking cessation tool (71% in 2021).


Steroids

Few participants (n≤5) reported using non-prescribed steroids in the last six months and therefore no further reporting on patterns of use will be included. Please refer to the [National IDRS Report](#) for national trends, or contact the Drug Trends team for further information.

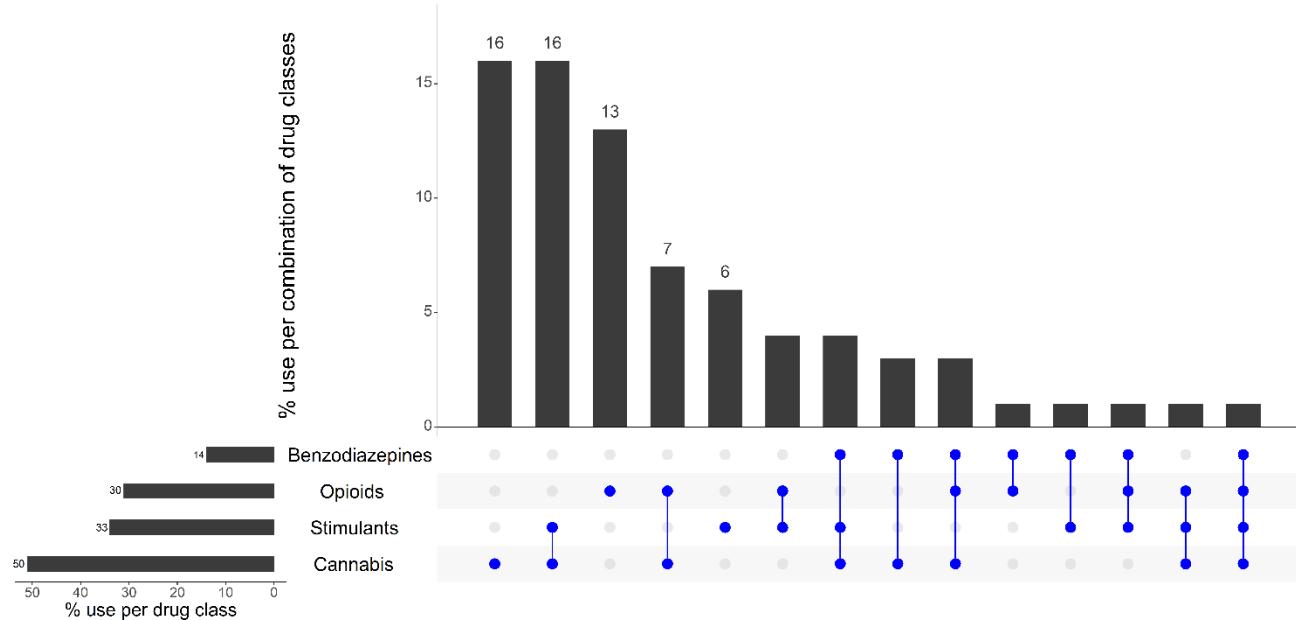
GHB/GBL/1, 4-BD

Few participants (n≤5) reported using GHB/GBL/1, 4-BD in the last six months and therefore no further reporting on patterns of use will be included. For further information, please refer to the [National IDRS Report](#) or contact the Drug Trends team.

Figure 30: Past six month use of licit and other drugs, Hobart, TAS, 2000-2022

Note. Participants were first asked about e-cigarettes in 2014. Participants were first asked about GHB/GBL/1,4-BD in 2020. Data labels are only provided for the first (2000/2014/2020) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., n≤5 but not 0). For historical numbers, please refer to the data tables. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; * $p<0.050$; ** $p<0.010$; *** $p<0.001$.

8


Drug-Related Harms and Other Behaviours

Polysubstance Use

In 2022, half (50%) of the sample reported using two or more drugs (including alcohol and prescription medications but excluding tobacco and e-cigarettes) on the day preceding interview. Of those who reported using one or more drugs (n=96), the most commonly used substances were cannabis (50%), stimulants (34%) and opioids (31%).

Sixteen per cent of participants reported concurrent use of cannabis and stimulants on the day preceding interview, whilst 7% reported concurrent use of cannabis and opioids (Figure 31). Sixteen per cent reported using cannabis alone, whilst 13% reported using opioids alone, and 6% reported using stimulants alone.

Figure 31: Use of opioids, stimulants, benzodiazepines and cannabis on the day preceding interview and most common drug pattern profiles, Hobart, TAS, 2022

Note. % calculated out of total IDRS 2022 sample. The horizontal bars represent the per cent of participants who reported use of each drug class on the day preceding interview; the vertical columns represent the per cent of participants who used the combination of drug classes represented by the blue circles. Participants who did not report use of any of the four drug classes depicted are not shown in the figure but are counted in the denominator. 'Stimulants' includes methamphetamine, cocaine, MDA, ecstasy and/or pharmaceutical stimulants. 'Opioids' includes heroin, methadone, morphine, oxycodone, buprenorphine, buprenorphine-suboxone, fentanyl, other pharmaceutical opioids (codeine, tapentadol, tramadol, etc). Use of benzodiazepines, opioids and stimulants could be prescribed or non-prescribed use. The response option 'Don't know' was excluded from analysis. Y axis reduced to 18% to improve visibility of trends.

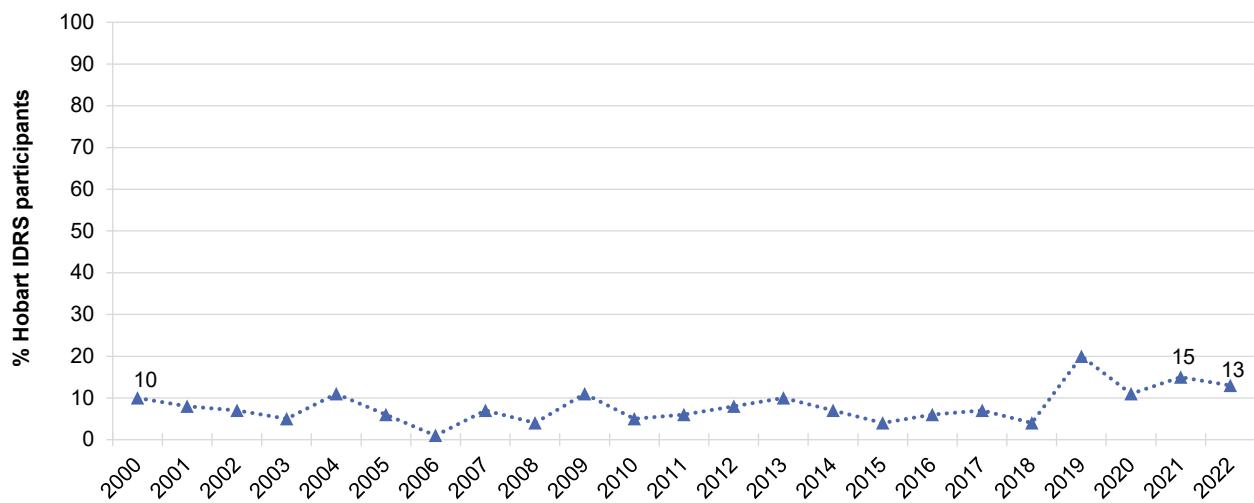
Overdose Events

Non-Fatal Overdose

There has been some variation in the way questions about overdose have been asked over the years.

In 2022, participants were asked about their past 12-month experience of overdose where symptoms aligned with examples provided and effects were outside their normal experience, or they felt professional assistance may have been helpful. We specifically asked about:

- **Opioid overdose** (e.g., reduced level of consciousness, respiratory depression, turning blue, collapsing and being unable to be roused). Participants who reported this experience were asked to identify all opioids involved in such events in the past 12 months;
- **Non-opioid overdose** (e.g., nausea, vomiting, chest pain, tremors, increased body temperature, increased heart rate, seizure, extreme paranoia, extreme anxiety, panic, extreme agitation, hallucinations). Drugs other than opioids were split into the following data coding:
 - **Stimulant overdose:** Stimulant drugs include ecstasy, methamphetamine, cocaine, MDA, methylene, mephedrone, pharmaceutical stimulants and stimulant NPS (e.g., MDPV, Alpha PVP); and
 - **Other drug overdose:** 'Other drugs' include (but are not limited to) alcohol, cannabis, GHB/GBL/1,4-BD, amyl nitrite/alkyl nitrite, benzodiazepines and LSD.


It is important to note that events reported across the drug types may not be unique given high rates of polysubstance use amongst the sample. Each year we compute the total per cent of participants who have experienced any past 12-month overdose event by looking for any endorsement across the drug types queried (see below); however, please note that estimates may vary over time because of changes in how questions have been asked (although the definition has been stable from 2019 onwards).

Overdose in the Hobart sample has fluctuated over the years (likely due to differences in the way questions regarding overdose were asked). The per cent reporting any past 12-month non-fatal overdose in 2022 remained relatively stable (12%; 15% in 2021; $p=0.675$) (Figure 32).

Six per cent reported a **non-fatal overdose following opioid use** in the past 12 months in 2022 ($n\leq 5$ in 2021; $p=0.766$). Small numbers ($n\leq 5$) reported a **non-fatal overdose following stimulant use** in the past 12 months in 2021 and 2022; therefore, further details are suppressed. Few participants ($n\leq 5$) reported a non-fatal overdose following heroin use in 2021 and 2022 (Table 4).

Participants who had overdosed on an opioid had done so on a median of three occasions (IQR=1-3) in the last 12 months. Few participants ($n\leq 5$) were able to comment on the most common opioids, and other drugs used during the last opioid overdose, or whether they received treatment on the last occasion of opioid overdose. These data are therefore suppressed. Please refer to the [National IDRS Report](#) for national trends, or contact the Drug Trends team for further information.

Figure 32: Past 12 month non-fatal any overdose, Hobart, TAS, 2000-2022

Note. Estimates from 2000-2005 refer to heroin and morphine non-fatal overdose only. Data labels are only provided for the first (2000) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., $n \leq 5$ but not 0). For historical numbers, please refer to the data tables. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; * $p < 0.050$; ** $p < 0.010$; *** $p < 0.001$.

Table 4: Past 12-month non-fatal overdose by drug type, nationally, 2022, and Hobart, TAS, 2015-2022

	Hobart, TAS								National	
	2015	2016	2017	2018	2019	2020	2021	2022	2022	2022
% Any opioid	N=100	N=99	N=100	N=100	N=99	N=74	N=95	N=93	N=868	N=868
% Heroin overdose	N=100	N=99	N=100	N=100	N=99	N=74	N=94	N=93	N=867	N=867
% Methadone overdose	N=100	N=99	N=100	N=100	N=99	N=74	N=94	N=93	N=867	N=867
% Morphine overdose	N=100	N=99	N=99	N=100	N=99	N=74	N=94	N=93	N=867	N=867
% Oxycodone overdose	N=100	N=99	N=99	N=100	N=99	N=74	N=94	N=93	N=867	N=867
% Stimulant overdose	N=100	N=89	N=100	N=100	N=98	N=74	N=94	N=102	N=878	N=878
% Other overdose	/	/	/	/	N=99	N=74	N=95	N=102	N=878	N=878
% Any drug overdose	N=100	N=99	N=100	N=97	N=99	N=74	N=95	N=94	N=868	N=868
	-	6	9	-	20	11	15	13	-	17

Note. Participants reported on whether they had overdosed following use of the specific substances; other substances may have been involved on the occasion(s) that participants refer to. From 2015-2018, the stimulant overdose percentage represents participants who reported that they had consumed a stimulant drug prior to their most recent past 12-month 'other drug' overdose and therefore may be an underestimation. – Values suppressed due to small numbers ($n \leq 5$ but not 0). N is the number who responded (denominator). / Not asked. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in table; * $p < 0.050$; ** $p < 0.010$; *** $p < 0.001$.

Naloxone Program and Distribution

Naloxone is a short-acting opioid antagonist that has been used for over forty years to reverse the effects of opioids. In 2012, a take-home naloxone program commenced in the ACT (followed by NSW, VIC, and WA) through which naloxone was made available to peers and family members of people who inject drugs for the reversal of opioid overdose. In early 2016, the Australian Therapeutic Goods Administration (TGA) placed 'naloxone when used for the treatment of opioid overdose' on a dual

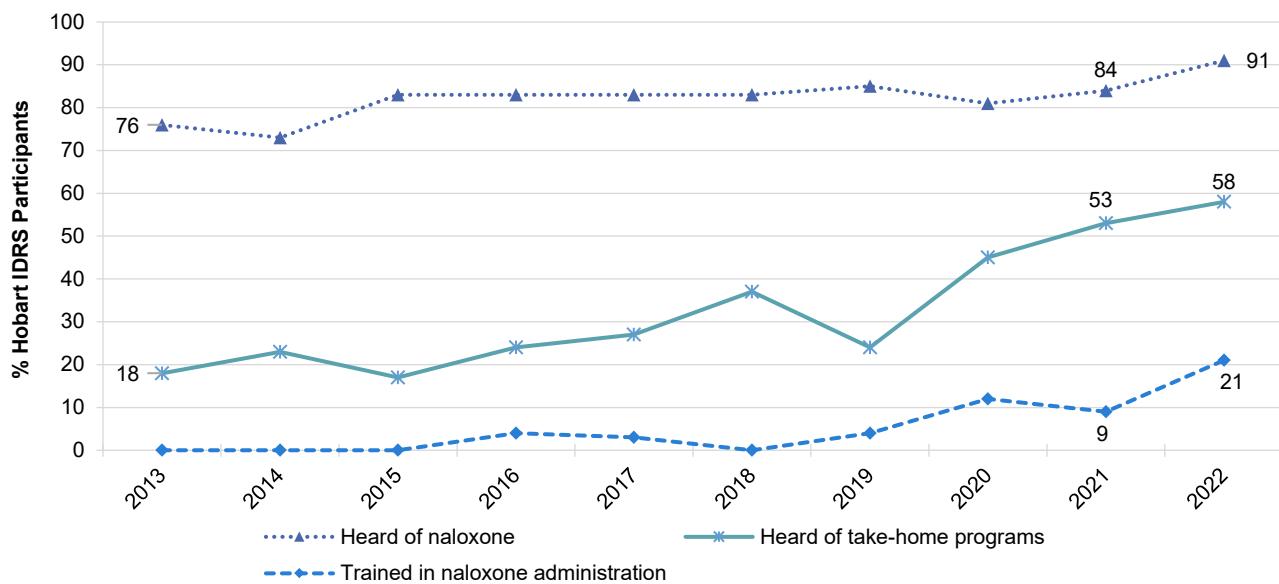
listing of Schedule 3 and Schedule 4, meaning naloxone can be purchased OTC at pharmacies without a prescription, and at a reduced cost via prescription. In 2020 and 2021, under the take home naloxone pilot program, naloxone was made available free of charge and without a prescription in NSW, SA and WA. Furthermore, naloxone nasal spray (Nyxoid®) is now available in Australia as a PBS-listing, which is expected to increase use of naloxone in the community.

Awareness of Naloxone: From 2013-2021, there has been no substantial change in the per cent of participants who have heard of naloxone, ranging between 73% and 85%. Ninety-one per cent of participants reported awareness of naloxone in 2022 (84% in 2021; $p=0.187$) (Figure 33). In 2022, 57% of participants reported having heard of free access (51% in 2021; $p=0.386$), and few participants ($n\leq 5$) reported having heard of paid access to this medication (9% in 2021; $p=0.232$).

Awareness of Take-Home Programs (training program): The per cent reporting that they were aware of the take-home naloxone programs has fluctuated over time, with almost three-fifths (58%) reporting awareness of these programs in 2022, stable relative to 2021 (53%; $p=0.461$) (Figure 33).

Participation in Training Programs: In 2022, 21% had been trained in how to administer naloxone in their lifetime, a significant increase from 2021 (9%; $p=0.034$) (Figure 33). Ninety-three per cent of participants reported that the location of their last naloxone training course was via a needle and syringe program (NSP). It should be noted that this may underestimate the rates that have received instruction in use of naloxone: while formal training programs (such as those that this question asked about) have occurred in Tasmania, since the Tasmanian Government naloxone trial commenced in 2020, all those receiving free take home naloxone have received a brief intervention in relation to its appropriate use.

Accessed Naloxone: Almost two-thirds (68%) of the Hobart sample reported having ever accessed naloxone (68% in 2021), with 58% having done so in the past year (53% in 2021; $p=0.687$).


Few participants ($n\leq 5$) reported that they had tried to access naloxone in their lifetime but had been unsuccessful in 2021 and 2022; therefore, further details are suppressed.

Of those who reported that they had ever accessed naloxone and could respond ($n=40$), nearly 88% reported receiving intranasal naloxone on the last occasion of access, with few participants ($n\leq 5$) in the Hobart sample having received intramuscular naloxone, and no participants reporting having received both. On the last occasion of access, the majority (93%) reported accessing naloxone via a needle and syringe program (NSP), with few participants ($n\leq 5$) reporting accessing naloxone via a health service and a pharmacy; therefore, further details are suppressed. One hundred per cent of participants did not have to pay the last time they accessed naloxone. Of those that had ever accessed naloxone and could respond ($n=39$), 36% reported that they 'always' had naloxone on hand when using opioids in the past month, followed by 15% reporting 'often', and small numbers reporting 'sometimes', 'rarely' and 'never' ($n\leq 5$).

Use of Naloxone to Reverse Overdose: In 2022, 12% of the Hobart sample who had heard of naloxone reported that they had resuscitated someone using naloxone at least once in their lifetime (18% in 2021; $p=0.389$).

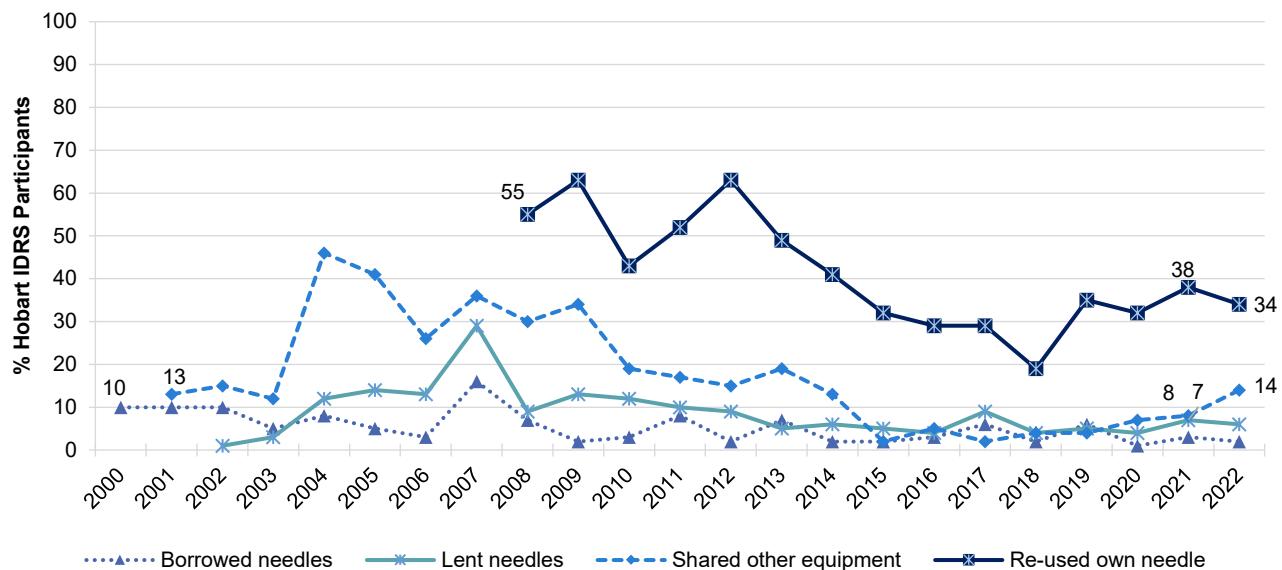
Few ($n\leq 5$) participants reported that they had been resuscitated by a peer using naloxone in the past year in 2021 and 2022 ($p=0.622$).

Figure 33: Lifetime awareness of take-home naloxone program and distribution, Hobart, TAS, 2013-2022

Note. Data labels are only provided for the first (2013) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., $n \leq 5$ but not 0). For historical numbers, please refer to the data tables. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; * $p < 0.050$; ** $p < 0.010$; *** $p < 0.001$.

Injecting Risk Behaviours and Harms

Injecting Risk Behaviours


In 2022, few participants ($n \leq 5$) reported receptive syringe sharing ($n \leq 5$ in 2021; $p = 0.682$), whilst 6% reported distributive sharing in the past month (7% in 2021) (Figure 34).

Fourteen per cent of participants reported having shared other injecting equipment (e.g., spoons, tourniquet, water, and filters) in the past month (8% in 2021; $p = 0.177$) (Figure 36). Thirty-four per cent of the sample reported that they had re-used their own needles in the past month, stable relative to 2021 (38%; $p = 0.649$) (Figure 34).

Almost one-fifth (19%) of the 2022 sample reported that they had injected someone else after injecting themselves, a significant decrease relative to 2021 (39%; $p = 0.008$). Eleven per cent reported that in the month preceding interview, they were injected by someone who had injected themselves or someone else beforehand (19% in 2021; $p = 0.109$) (Table 5).

Location of last injecting use remained stable between 2021 and 2022 ($p = 0.086$). Consistent with previous years, most participants (81%) in the sample reported that they had last injected in a private home (93% in 2021). An additional 11% of participants reported that they had last injected in a car ($n \leq 5$ in 2021) (Table 5).

Figure 34: Borrowing and lending of needles and sharing of injecting equipment in the past month, Hobart, TAS, 2000-2022

Note. Data collection for 'reused own needle' started in 2008. Borrowed (receptive): used a needle after someone else. Lent (distributive): somebody else used a needle after them. Data labels are only provided for the first (2000/2008) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., $n \leq 5$ but not 0). For historical numbers, please refer to the data tables. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; * $p < 0.050$; ** $p < 0.010$; *** $p < 0.001$.

Table 5: Sharing and re-using needles and injecting equipment in the past month, nationally, 2022, and Hobart, TAS, 2015-2022

	Hobart, TAS								National	
	2015 N=100	2016 N=100	2017 N=100	2018 N=101	2019 N=99	2020 N=73	2021 N=94	2022 N=102	2022 N=879	
% Injecting behaviours past month										
Borrowed a needle	N=100 -	N=100 -	N=100 6	N=101 -	N=99 6	N=73 -	N=94 -	N=94 -	N=868 4	
Lent a needle	N=100 -	N=100 -	N=100 9	N=101 -	N=99 6	N=72 -	N=94 7	N=94 6	N=865 8	
Shared any injecting equipment ^	N=100 -	N=100 -	N=99 -	N=101 -	N=99 -	N=72 7	N=94 8	N=101 14	N=872 20	
Re-used own needle	N=100 32	N=100 29	N=100 29	N=100 19	N=99 35	N=71 32	N=94 38	N=94 34	N=865 35	
Injected partner/friend after self~	/	/	/	/	N=99 27	N=73 23	N=94 39	N=93 19**	N=866 27	
Somebody else injected them after injecting themselves~	/	/	/	/	N=99 12	N=73 12	N=94 19	N=94 11	N=865 15	
% Location of last injecting use	N=100	N=99	N=100	N=100	N=99	N=99	N=99	N=94	N=868	

Private home	86	83	87	78	87	87	93	81	78
Car	-	-	6	6	6	6	5	11	5
Street/car park/beach	-	0	-	6	-	-	-	-	6
Public toilet	-	-	-	-	-	-	-	6	5
Medically supervised injected services	/	/	/	/	/	/	/	0	2
Other	0	-	0	0	-	-	-	-	1

Note. ^ Includes spoons, water, tourniquets and filters; excludes needles/syringes. ~ New or used needle. Borrowed (receptive): used a needle after someone else. Lent (distributive): somebody else used a needle after them. - Values suppressed due to small cell size (n≤5 but not 0). / Not asked. N is the number who responded (denominator). The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in table: *p<0.050; **p<0.010; ***p<0.001.

Self-Reported Injection-Related Injuries and Diseases

The per cent of participants who had experienced any injection-related injuries and diseases in the month preceding interview remained stable in 2022 (22%), relative to 2021 (23%; $p=0.861$) (Table 6). The most common injection-related injuries and diseases reported by participants were nerve damage (12%; 7% in 2021), any infection/abscess (9%; 8% in 2021) and a dirty hit (8%; n≤5 in 2021; $p=0.569$).

Table 6: Injection-related issues in the past month, Hobart, TAS, 2020-2022

	2020 (N=74)	2021 (N=95)	2022 (N=102)
% Artery injection	-	8	-
% Any nerve damage	7	7	12
% Any thrombosis	6	6	-
Blood clot	6	-	-
Deep vein thrombosis	0	-	-
% Any infection/abscess	7	8	9
Skin abscess	7	7	7
Endocarditis	0	-	0
Other serious infection (e.g., osteomyelitis/Sepsis/Septic arthritis)	0	-	-
% Dirty hit	7	-	8
% Any injection-related problem	21	23	22

Note. - Values suppressed due to small cell size (n≤5 but not 0). The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in table: *p<0.050; **p<0.010; ***p<0.001.

Drug Treatment

One-quarter (25%) of participants reported that they were currently receiving any drug treatment in 2022, stable from 2021 (29%; $p=0.752$) (Table 7).

Table 7: Any current drug treatment, nationally, 2022, and Hobart, TAS, 2015-2022

	Hobart, TAS								National
	2015 N=100	2016 N=99	2017 N=100	2018 N=100	2019 N=99	2020 N=74	2021 N=95	2022 N=102	2022 N=879
% Any current drug treatment	55	57	44	45	47	30	29	25	38
Methadone	36	35	27	24	23	14	12	9	24
Buprenorphine	15	16	14	18	-	-	-	-	2
Buprenorphine-naloxone	0	-	8	11	-	-	6	11	5
Buprenorphine depot injection	/	/	/	/	0	0	0	0	4
Drug counselling	-	-	-	-	9	7	11	7	9
Other	0	-	0	0	9	0	-	0	3

Note. - Values suppressed due to small cell size (n≤5 but not 0). / not asked. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in table; * $p<0.050$; ** $p<0.010$; *** $p<0.001$.

Bloodborne Virus Testing and Treatment

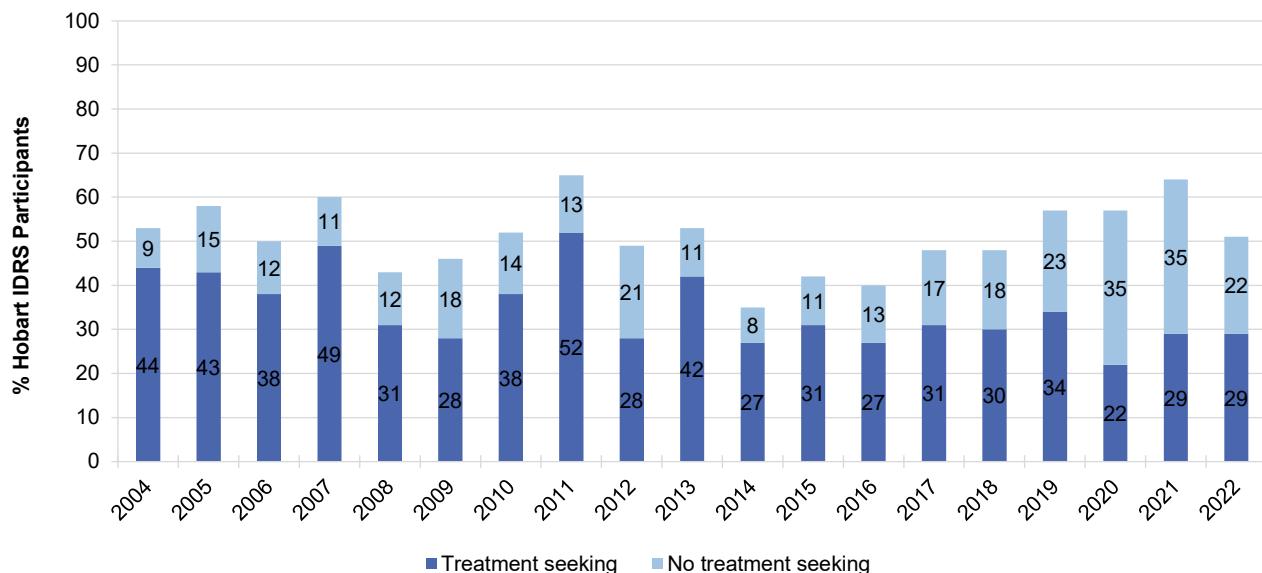
In 2022, 47% of participants reported that they had received a hepatitis C virus (HCV) antibody test in the past year (stable relative to 2021; 55%; $p=0.363$), 36% had received an RNA test (53% in 2021; $p=0.044$) and few participants (n≤5) reported having a current HCV infection (7% in 2021; $p=0.326$) (Table 8). Eight per cent of participants reported that they had received HCV treatment in the past year, of which three-fifths (60%; n=6) reported that their treatment had been successful.

Among those that commented (n=87), four-fifths (80%) reported having ever had a test for human immunodeficiency virus (HIV) (23% within the past six months), with the vast majority reporting that they had never received a positive diagnosis (99%) (Table 8).

Table 8: HCV and HIV testing and treatment, nationally, 2022, and Hobart, TAS, 2018-2022

	Hobart, TAS					National
	2018 N=100	2019 N=99	2020 N=74	2021 N=95	2022 N=102	2022 N=879
Past year Hepatitis C test (n)						
Past year hepatitis C antibody test	N=90 59	N=95 56	N=69 42	N=86 55	N=87 47	N=846 43
Past year hepatitis C PCR or RNA test	N=88 44	N=87 40	N=65 25	N=81 53	N=85 36*	N=803 37
Current hepatitis C status (n)						
Currently have hepatitis C [^]	N=87 20	N=92 10	N=69 4	N=82 7	N=84 -	N=805 7
Past year treatment for hepatitis C (n)						
Received treatment in past year	N=89 22	N=89 11	N=74 11	N=85 12	N=87 8	N=835 10
Most recent treatment was successful (among those who had received treatment in past year)	N=15 100	N=8 100	N=11 100	N=10 60	N=8 -	N=85 69
HIV test (n)			N=74	N=72	N=87	N=823
HIV test in past 6 months	/	/	/	34	74	23
HIV test more than 6 months ago	/	/	/	48	51	55

HIV status (n)			N=74	N=95	N=87	N=633
Lifetime HIV positive diagnosis	/	/	/	0	-	3

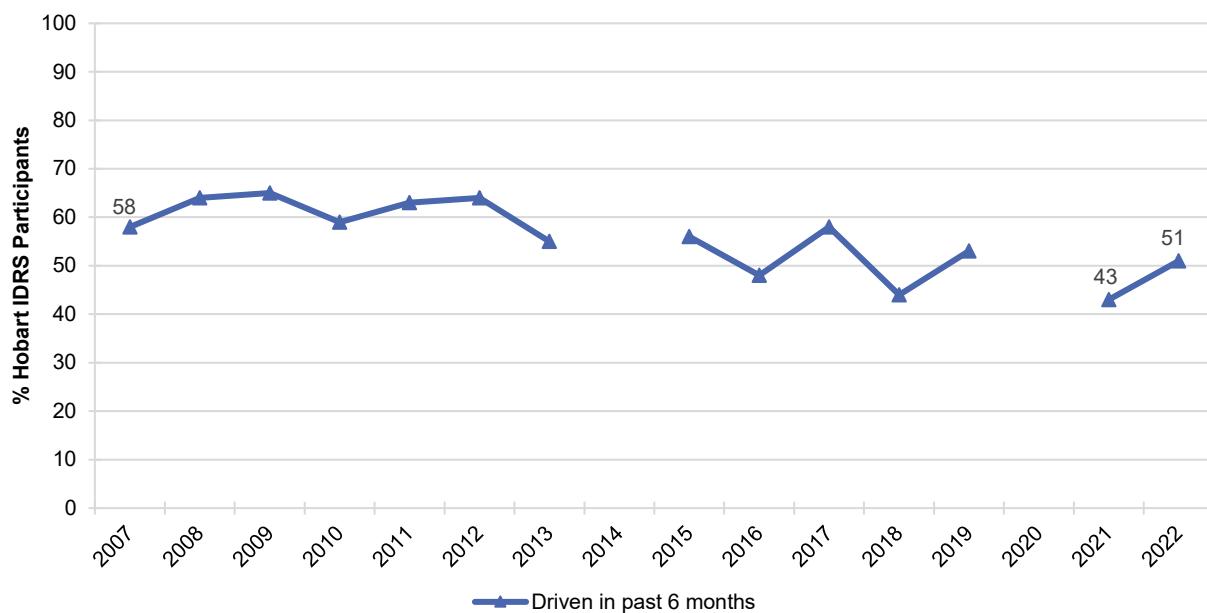

Note. ^aThis includes people who had not been tested for HCV. – Values suppressed due to small numbers (n≤5 but not 0). N is the number who responded (denominator). Timeframes for HCV and HIV differ; i.e., HCV questions focus on lifetime and past year; HIV questions focus on lifetime and past six months. / Not asked. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in table; *p<0.050; **p<0.010; ***p<0.001.

Mental Health

In 2022, 51% of the sample self-reported that they had experienced a mental health problem in the preceding six months, stable from 2021 (64%; $p=0.100$) (Figure 35). Amongst this group, the most commonly reported problems were anxiety (63%), depression (60%), post-traumatic stress disorder (PTSD) (19%) and schizophrenia (16%).

Twenty-nine per cent of the sample had seen a mental health professional during the past six months (57% of those who self-reported a mental health problem during the past six months, stable relative to 2021; $p=0.318$). Three-quarters (76%) of those who had seen a mental health professional reported that they had been prescribed medication for their mental health problem in the preceding six months, stable from 2021 (77%).

Figure 35: Self-reported mental health problems and treatment seeking in the past six months, Hobart, TAS, 2004-2022



Note. The combination of the per cent who report treatment seeking and no treatment is the per cent who reported experiencing a mental health problem in the past six months. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; *p<0.050; **p<0.010; ***p<0.001.

Driving

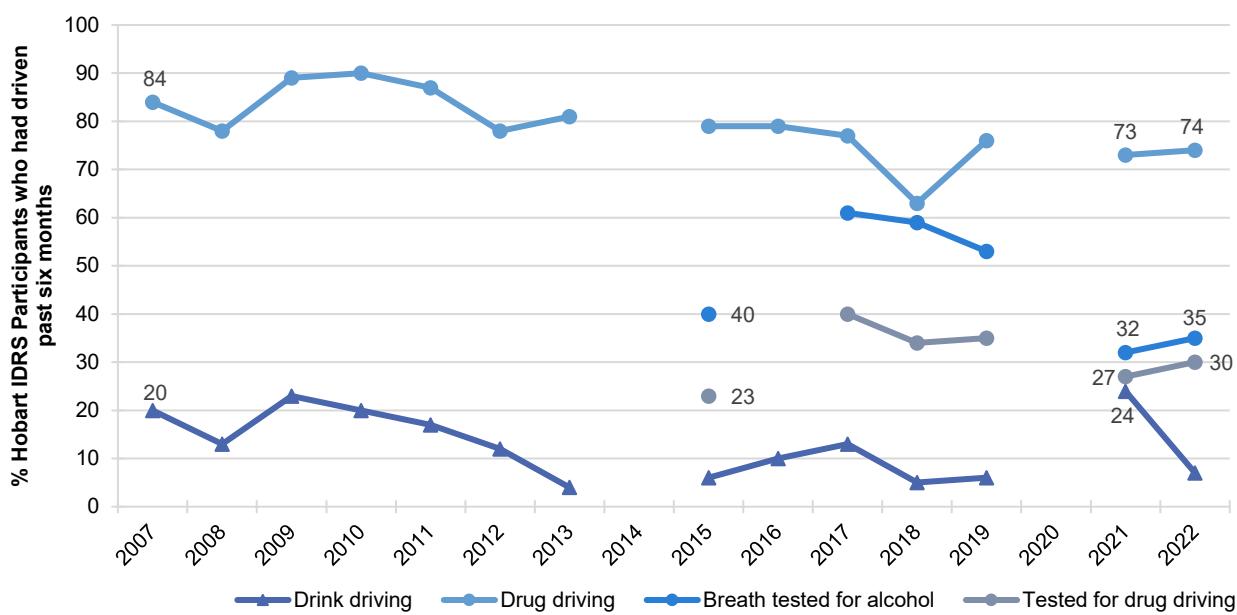

In 2022, 51% of the Hobart sample had driven a car, motorcycle, or other vehicle in the last six months (Figure 36). Of those who had driven in the past six months and responded (n=42), few participants (n≤5) reported driving while over the perceived legal limit of alcohol; therefore, further details are suppressed (24% in 2021; $p=0.061$). Almost three-quarters (74%) reported driving within three hours of consuming an illicit drug in the last six months (73% in 2021) (Figure 37). Among those who had driven in the last six months (n=43), almost one-third (30%) reported that they had been tested for drug driving by the police roadside drug testing service, and 35% reported being breath tested for alcohol by the police roadside testing service in the past six months (Figure 37).

Figure 36: Self-reported driving in the past six months Hobart, TAS, 2007-2022

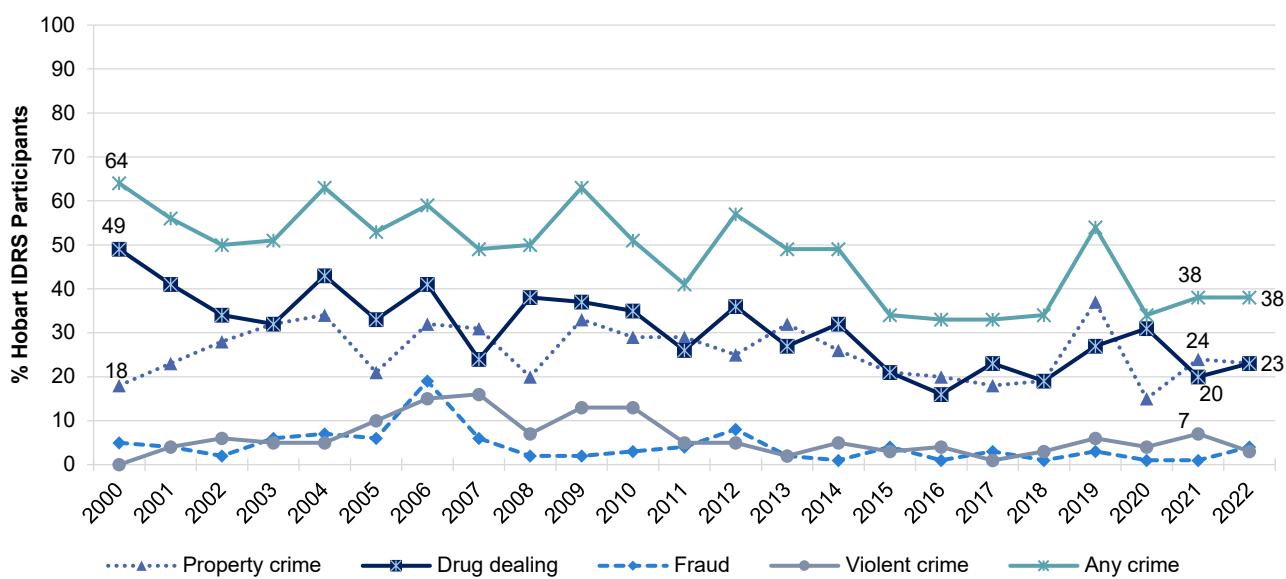
Note. Computed of the entire sample. Questions about driving behaviour were first asked about in 2007. Questions about driving behaviour not asked in 2014 or 2020. Data labels are only provided for the first (2007) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., $n \leq 5$ but not 0). For historical numbers, please refer to the data tables. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; * $p < 0.050$; ** $p < 0.010$; *** $p < 0.001$.

Figure 37: Self-reported testing and driving in the past six months, over the (perceived) legal limit for alcohol and three hours following illicit drug use, among those who had driven in the past six months, Hobart, TAS, 2007-2022

Note. Computer of those who had driven a vehicle in the past six months. Questions about driving behaviour were first asked about in 2007. Questions about driving behaviour not asked in 2014 and 2020, and questions about breath/drug testing not asked in 2007-2014, 2016 and 2020. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure; * $p < 0.050$; ** $p < 0.010$; *** $p < 0.001$.

Drug Checking

Drug checking is a common strategy used to test the purity and contents of illicit drugs.


In 2022, 13% of participants reported that they or someone else had ever tested the content and/or purity of their illicit drugs in Australia (n≤5 in the past year). Given small numbers (n≤5) of past year drug checking, no further results will be reported. Please refer to the [National IDRS Report](#) for national trends, or contact the Drug Trends team for further information.

Experience of Crime and Engagement with the Criminal Justice System

Thirty-eight per cent of participants reported engaging in 'any' crime in the past month in 2022, stable from 38% in 2021. Selling drugs for cash profit (23%; 20% in 2021) and property crime (23%; 24% in 2021) remained the most common self-reported crimes in the month preceding interview (Figure 37). Fourteen per cent reported being the victim of a crime involving violence in the past month (e.g., assault), stable from 2021 (18%; $p=0.527$). Few participants (n≤5) reported engaging in violent crime in 2022 (7% in 2021; $p=0.283$), therefore, further details are suppressed.

In 2022, almost one-third (31%) of the sample had been arrested in the past year, stable from 36% in 2021 ($p=0.514$). In 2022, 18% of the sample reported a drug-related encounter in the last 12 months which did not result in charge or arrest (data not collected in 2021). Almost half (45%) the sample reported a lifetime prison history in 2022, also stable from 56% in 2021 ($p=0.186$).

Figure 38: Self-reported criminal activity in the past month, Hobart, TAS, 2000-2022

Note. 'Any crime' comprises the per cent who report any property crime, drug dealing, fraud and/or violent crime in the past month. Data labels are only provided for the first (2000) and two most recent years (2021 and 2022) of monitoring, however labels are suppressed where there are small numbers (i.e., n≤5 but not 0). For historical numbers, please refer to the data tables. The response option 'Don't know' was excluded from analysis. Statistical significance for 2021 versus 2022 presented in figure: * $p<0.050$; ** $p<0.010$; *** $p<0.001$.

COVID-19 Testing and Diagnosis

In 2022, the majority (85%) of the Hobart IDRS sample had been tested for SARS-COV-2 by the time of interview (34% in 2021; 23% in 2020), of whom 45% had received a PCR test and 75% a Rapid Antigen Test. Almost one-third (32%) of participants reported having been diagnosed with the virus (no participants had been diagnosed with the virus in 2021 and 2020, respectively).

In 2022, 55% of participants reported quarantining for at least seven days due to a positive test or possible exposure in the past 12 months, with 9% quarantining in the month prior to interview and 36% in the six months prior to interview. At the time of interview, 87% reported that they had received at least one COVID-19 vaccine dose (median 2 doses; 46% received two doses; 38% received three or more doses; $n \leq 5$ reported having received one dose).

When asked how worried they currently were about contracting COVID-19, 40% of participants reported some level of concern: 21% responded that they were 'slightly' concerned, 9% reported 'moderately' concerned and 8% reported 'very' concerned, which was stable compared to 2021 ($p=0.061$). Few participants ($n \leq 5$) reported feeling 'extremely' concerned, therefore these data are suppressed (Figure 39). Further, 72% of participants reported that they would be concerned about their health if they did contract COVID-19, with 33% reporting that they would be 'slightly' concerned, 9% reporting 'moderately', 17% reporting 'very' and 13% reporting that they would be 'extremely' concerned.

Figure 39: Current concern related to contracting COVID-19, Hobart, TAS, 2020-2022

Note. The response option 'Don't know' was excluded from analysis. Data labels have been removed from figures with small cell size (i.e., $n \leq 5$ but not 0). For historical numbers, please refer to the data tables. Statistical significance for 2021 versus 2022 presented in figure; * $p < 0.050$; ** $p < 0.010$; *** $p < 0.001$.