Never Stand Still

Faculty of Science

School of Mathematics and Statistics

MATHEMATICS ENRICHMENT CLUB.¹ Problem Sheet 13, August 20, 2012

- 1. Laurie sold two cars for \$25 000 each. One he sold at a 20% profit and the other at a 20% loss. How much did he gain or lose ?
- 2. A pizza has radius z, and height a. What is interesting about it's volume?²
- 3. If a triangle ABC has sides of length a, b, c such that $a^2 + b^2 = c^2$, prove that it must be a right-angled triangle.
- 4. Without using a calculator, which is larger 31^{24} or 257^{15} .
- 5. Let $S_n = 2n(2n-1)(2n-2)...(n+1)$. For example, $S_3 = 6 \times 5 \times 4 = 120$.
 - (a) What is the power of 2 in the prime factorisation of S_n for n = 2, 3, 4...?
 - (b) Make a conjecture based on(i) and prove it.
- 6. Without using a calculator, show that

$$\sqrt[3]{5\sqrt{13} + 18} - \sqrt[3]{5\sqrt{13} - 18} = 3.$$

(Hint: Let x = a - b and cube.)

- 7. Let ABC be a triangle and D, E points on AB, BC respectively, and S be the intersection of AE and CD. If AD = DB and BE : EC = 2 : 1, find the ratios CS : SD and AS : SE.
- 8. (a) Let P be an interior point in an equilateral triangle ABC. Prove that we can always form a triangle with sides of length AP, BP, CP. (That is, we have to show that the sum of any two of these lengths is larger than the remaining one.)
 - (b) Give an example of a triangle and point inside it for which the above result is not true.

¹Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.

²This question thanks to Mike Hirschhorn