Never Stand Still

Faculty of Science

School of Mathematics and Statistics

MATHEMATICS ENRICHMENT CLUB.¹ Problem Sheet 7, June 9, 2012

- 1. In how many ways can 6 boys and 6 girls stand next to each other in a row such that no two boys stand next to each other and no two girls stand next to each other?
- 2. The notation 5! means $5 \times 4 \times 3 \times 2 \times 1 (= 120)$. How many zeros are there at the end of 1000!.
- 3. (a) a, b are positive numbers with a + b = k. Explain why ab is greatest when $a = b = \frac{k}{2}$.
 - (b) Suppose that $x^2 + y^2 = c^2$, find the minimum value of $x^4 + y^4$.
- 4. (a) Show that there are infinitely many non-zero integers x, y, z such that $2^x + 2^y = 2^z$.
 - (b) Show that if n > 2 then there are no nonzero integers x, y, z such that $n^x + n^y = n^z$.
- 5. (Parts b and c require Year 9 and Year 10 Mathematics). Let ABC be an isosceles triangle with the base angles B and C being 72° and AB = AC = 4. The length of the base BC, called x is chosen such that a line CD can be drawn, where D lies on AB, such that $\angle BDC = 72^{\circ}$.
 - (a) Find a pair of similar triangles and show that x satisfies, $x^2 + 4x 16 = 0$.
 - (b) Use triangle ABC to find $\cos 72^{\circ}$ in surd form.
 - (c) Use triangle ACD to find $\cos 36^{\circ}$ in surd form.
- 6. Suppose that two non-parallel straight lines k and ℓ meet at a point P which is **not** on the page of my book. Construct a line which would (if P did lie on the page) bisect the angle between the lines and pass through P.
- 7. Let K, L be points on the sides AB, AD respectively of the convex quadrilateral ABCD such that $AK = \frac{1}{3}AB$ and $AL = \frac{1}{3}AD$. Similarly, M, N are points on CD, CB such that $CM = \frac{1}{3}CD$ and $CN = \frac{1}{3}CB$.
 - (a) Prove that KLMN is a parallelogram.
 - (b) Find the ratio of the area of KLMN to the area of ABCD.

¹Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.

Year 11 Question.

1. Suppose that m and n are positive real numbers. Use trigonometry to find the the maximum value of

$$\frac{m+n}{\sqrt{m^2+n^2}}.$$