

Solution Sheet 10, July 30, 2012

Answers

1. 1012101, and python code...

```
ctr=0
n=0
nmax=input("Enter index of palindromic number: ")
while ctr<nmax:
    mstr=str(n)
    if mstr==mstr[::-1]:
        ctr+=1
    n+=1
print(str(ctr) + "'th palindromic number is " + mstr)</pre>
```

2.

3. for positive integers p, q,

$$\frac{p}{\sqrt{p}} - \frac{q}{\sqrt{q}} = \frac{p - q}{\sqrt{p} + \sqrt{q}}$$

4. (a) $29 = 5^2 + 2^2$, $37 = 6^2 + 1^2$. For 30, note that none of the following are square numbers:

$$30 - 1 = 29, 30 - 4 = 26, 30 - 9 = 21, 30 - 16 = 14, 30 - 25 = 5$$

Similarly, 31 cannot be expressed as a sum of two squares.

(b) easy

(c)
$$1073 = (5^2 + 2^2)(6^2 + 1^2) = (30 - 2)^2 + (5 + 12)^2$$
. Swapping $5^2 + 2^2$ with $2^2 + 5^2$ yields $1073 = 7^2 + 32^2$.

5. Divide the grid into nine 1x1 squares. If ten darts are thrown, at least one square contains at least two darts. These darts are less than $\sqrt{2}$ from each other.