

Never Stand Still

Faculty of Science

School of Mathematics and Statistics

MATHEMATICS ENRICHMENT CLUB.¹ Problem Sheet 3, May 21, 2013

- 1. The perimeter of a base of a rectangular brick with integer sides is 18 cm, whilst its volume is 42 cm³. What is its height?
- 2. Calculate

$$\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\ldots\left(1-\frac{1}{2008}\right).$$

- 3. Find the smallest positive integer whose square ends in (a) 09 and (b) 9009.
- 4. Show that if a, b are positive numbers such that $ab \leq 1$ then

$$\frac{a}{b+1} + \frac{b}{a+1} + (1-a)(1-b) \le 1.$$

- 5. Suppose we have the numbers $x_0 = 0, x_1 = 1$ and $x_{n+1} = x_n + 2x_{n-1}$ for $n \ge 2$.
 - (a) Write down the numbers x_n for n = 2, 3, 4, 5, 6.
 - (b) Show that there is no n for which $x_n = 1999$. (Hint: Use modulo 8 arithmetic).
 - (c) Show that $x_n = \frac{2^n (-1)^n}{3}$ satisfies the equation.
- 6. In $\triangle ABC$, extend the sides AB and AC and draw a circle outside the triangle which touches BC and these two produced sides. This circle is called the *escribed circle* of the triangle.
 - (a) Show that $r_1 = \frac{A}{s-a}$, where r_1 is the radius of the escribed circle, A is the area of ABC, a is the length of BC and s is half the perimeter of ABC.
 - (b) Show that $\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} = \frac{1}{r}$, where r_2, r_3 are the radii of the other two escribed circles and r is the radius of the incircle (recall last weeks result.)
- 7. ABCD is a parallelogram, Q a point inside it. Prove that the sum of the areas of AQB and CQD is half the area of ABCD.

¹Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres, Macquarie Uni.

Senior Questions

1. Prove that the square of the nth triangle number is the sum of the first n cubes, i.e.

$$\left(\sum_{k=1}^{n} k\right)^2 = \sum_{k=1}^{n} k^3, \quad \text{for } n \ge 1.$$

- 2. Find the limit $\lim_{n \to \infty} \frac{1^2 + 2^2 + 3^2 + \dots + n^2}{n^3}$.
- 3. A hand of eight cards is dealt from a standard pack. How many hands contain exactly three cards of the same value and the remaining cards from the remaining suit?