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1. (a) Show that whatever base b is used, the number (21), is never equal to twice (12),.

(b) Find all the numbers and all bases b < 12 for which there exists a two digit
number (ac), which is twice the number obtained by reversing its digits.

(c) Find all bases b and all numbers n = (ac), such that n = 2 x (ac),.
2. In how many ways is it possible to write 1000 as a sum of consecutive odd integers?
3. Draw a right triangle ABC with right-angle at C' and the sides marked a, b, ¢ as usual.

(a) Draw the enlargement A’B’'C" of ABC by a factor of a.

(b) On the same diagram draw the enlargement A”B”C" of ABC by a factor of b,
lining up B'C" with A”C”, so that A’, B’ and B” are collinear, and thus form a
new triangle A" B"'C"".

(c) Explain why the angle at C"” is a right angle.
(d) What theorem have you just proven and why?
4. In the triangle ABC) it is given that ZABC = 140°. Let D be a point on AC' and E a

point on AB such that the three triangles AED, EDB and DBC are all isosceles, with
their vertices at A, £ and D respectively. Find all the angles of the triangle ABC.

5. Let K, L be points on the sides AB, AD respectively of the convex quadrilateral ABC' D
such that AK = %AB and AL = %AD. Similarly, M, N are points on C'D,C'B such
that CM = :CD and CN = 1CB.

(a) Prove that KLMN is a parallelogram.
(b) Find the ratio of the area of K LM N to the area of ABCD.
6. Year 11 Question. Suppose that m and n are positive real numbers. Use trigonom-

etry to find the the maximum value of

m-+n

vVm2 +n?

!Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres , Macquarie Uni.

1



Senior Questions

1.

The hypotenuse of a right-angled triangle is 15 cm and the radius of the inscribed circle
is 2cm. Find the perimeter of the triangle.

. Suppose we place one of the numbers 1,2,3,...,2000 into each of 2000 boxes. Remove the

two numbers a and b from any two boxes, chosen at random, and put their difference
a — b into one of the two boxes chosen and remove the empty box. Repeat the process
until only one box remains. Show that the number in this box must be even.



