Never Stand Still

Faculty of Science

School of Mathematics and Statistics

MATHEMATICS ENRICHMENT CLUB. Solution Sheet 6, June 11, 2013

- 1. The prime factorisation of $770 = 2 \times 5 \times 7 \times 11$, so assuming by adults we mean over 18 year olds, our two people are 22 and 35.
- 2. (**Disclaimer:** Introduction 'group theory' answer this question can be answered more simply by deductive logic, or guess and check (maximum 13 guesses), but this question's close ties to group theory I think warrants a bit of abstract algebra. If you just want the answer, skip to the end ⊚)

Let's write the card shuffler as a function σ , where $\sigma(n)$ is the new position of the *n*th card after one shuffle. We'll also write iterated shuffles as σ^m , meaning *m* compositions of the shuffling function σ . As a final piece of notation, we'll introduce 'k-cycles', which are written as a collection of numbers in a pair of brackets and indicate that the σ value of each number is that to its immediate right (or the first position if at the end of the cycle), e.g. (1 2 3) means $1 \to 2$, $2 \to 3$ and $3 \to 1$.

The information given tells us

$$\sigma^2 = (1 \ 12 \ 5 \ 2 \ 7 \ 9 \ 11 \ 10 \ 4 \ 13 \ 3 \ 8 \ 6).$$

We can multiply (compose) cycles together just by tracing from left (i.e. applying the cycles to each number left to right), for example

$$(1\ 2\ 3)(2\ 1\ 4) = (1)(2\ 3\ 4) = (2\ 3\ 4)$$

since $1 \to 2 \to 1$, $2 \to 3$, $3 \to 1 \to 4$ and $4 \to 2$. In this manner we can repeatedly multiply σ^2 and we find

$$\sigma^{26} = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13),$$

i.e. shuffling 26 times puts the cards back in to the order they originally were. This means the 'order' of σ is \leq 26, where the 'order' of a permutation is how many times

¹Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres , Macquarie Uni.

 $^{^{2}}$ An interesting result is that every permutation can be written as a product of 2-cycles, e.g. (1 2 3) = (1 3)(3 2), and even though this 2-cycle representation is not unique, it is always made up of either an odd or even number of 2-cycles.

you multiply it by itself to get the identify function - one that leaves everything alone like the one above.

Since σ is, at most, a 13-cycle its order is ≤ 13 . So the order of σ could be 1, 2, 13 or 26 in order to satisfy $\sigma^{26} = ()$, but it can't be 26, it's not 1 or 2 from the given information, so it must have order 13.

So now we work out σ^{12} , then we can determine σ so that $\sigma^{12}\sigma = ()$. I worked out σ^{12} by first performing

$$\sigma^2 \sigma^2 = \sigma^2 = (1 \ 5 \ 7 \ 11 \ 4 \ 3 \ 6 \ 12 \ 2 \ 9 \ 10 \ 13 \ 8)$$

then

$$\sigma^8 = \sigma^4 \sigma^4 = (1 \ 7 \ 4 \ 6 \ 2 \ 10 \ 8 \ 5 \ 11 \ 3 \ 12 \ 9 \ 13)$$

and finally

$$\sigma^{12} = \sigma^8 \sigma^4 = (1 \ 11 \ 6 \ 9 \ 8 \ 7 \ 3 \ 2 \ 13 \ 5 \ 4 \ 12 \ 10).$$

To find σ I then wrote it as a 2-cycle representation

$$\sigma = (a\ 1)(b\ 2)(c\ 3)(d\ 4)\cdots(m\ 13)$$

and work through, from left to right, making sure I put the numbers back where they started. For instance $\sigma^{12}(1) = 11$, so set a = 11, $\sigma^{12}(2) = 13$, so b = 13, $\sigma^{12}(3) = 2$ so c = 13 (I've already made b = 13, and so far $2 \to 13$ so now I make $13 \to 3$ after, so that overall $2 \to 13$). Continuing, we find

$$\sigma = (11\ 1)(13\ 2)(13\ 3)(12\ 4)(12\ 5)(9\ 6)(13\ 7)(13\ 8)(13\ 9)(11\ 10)(11\ 12)(11\ 13)$$
$$= (1\ 10\ 12\ 4\ 5\ 13\ 2\ 3\ 7\ 8\ 9\ 6\ 11).$$

Finally, this means the cards originally ordered A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K become, after one shuffle, J, K, 2, Q, 4, 9, 3, 7, 8, A, 6, 10, 5.

- 3. (a) Draw the right angled triangle ABC with right angle at C. Let D be the midpoint of AB, and E a point on AC such that $AC \perp DE$. Then ΔADE is similar to ΔABC (three angles equal). Since $AD = \frac{1}{2}AB$ then $AE = \frac{1}{2}AC$ or rather AE = EC. Now ΔAED is congruent to ΔCED (two sides equal, AE = EC, DE common, and an included angle $\angle AED = \angle DEC$). Thus $\frac{1}{2}AB = AD = DC$.
 - (b) From part i) we see $DB_1 = B_1C$ and $DC_1 = C_1B$. Note that ΔCB_1A_1 is similar to ΔCAB (two sides in ratio and an included angle). The sides are in ratio 1: 2 so $A_1B_1 = \frac{1}{2}AB = C_1B$, and so $A_1B_1 = DC_1$. Similarly ΔBC_1A_1 is similar to ΔBAC , so $C_1A_1 = B_1C = B_1A_1$. Thus ΔB_1C_1D and $\Delta B_1C_1A_1$ are congruent because they have 3 equal sides.
- 4. Following the hint, we must have 3m-1=n or 3m-1=2n, since 3m-1<3n. So

$$3(3m-1) - 1 = km, \quad k \in \mathbb{Z}$$
$$(9-k)m = 4$$
$$m = \frac{4}{9-k}$$
$$m = 4, 2, \text{ or } 1,$$

or

$$3\frac{3m-1}{2} - 1 = km$$

$$9m - 3 - 2 = 2km$$

$$m = \frac{5}{9-2k}$$

$$m = 5, \text{ or } 1.$$

Thus the pairs are (1,1), (1,2), (2,5), (4,11) and (5,7).

- 5. (a) $\phi(12) = 4$, $\phi(30) = 8$
 - (b) We can think of $\phi(n)$ as being the number of numbers less than n which are not a multiple of a factor of n (except the factor 1). So if p is prime, its only factors are 1 and p, so every other number is not a multiple of a factor that isn't 1, except p itself. Thus $\phi(p) = p 1$.

For p^2 , the factors are 1, p and p^2 , so the multiples of the factors that aren't 1 are $p, 2p, 3p, \ldots, p^2$, of which there are p. So $\phi(p^2) = p^2 - p$.

For p^3 , the factors are $1, p, p^2$ and p^3 , so the multiples of the factors that aren't 1 are $p, 2p, 3p, \ldots, p^2, (p+1)p, \ldots, 2p^2, (2p+1)p, \ldots$, that is, the multiples of p^2 are contained in the multiples of p, of which there are p^2 . So $\phi(p^3) = p^3 - p^2$.

- (c) Using the same method as above, the factors of pq are 1, p, q and pq, so the multiples of the factors that aren't 1 are $p, 2p, 3p, \ldots, qp$ (q of them) and $q, 2q, 3q, \ldots, pq$ (p of them), but we don't want to count pq twice. So $\phi(pq) = pq q (p-1)$.
- 6. We use the fact that the medians divide ABC into 2 equal area pieces, and that S is $\frac{2}{3}$ along the median from A (you can prove these by considering the areas of smaller triangles with the same heights).

Let the median from A meet BC at P, since ST is parallel to BC triangles APC and AST are similar - 3 angles equal. Since $AS = \frac{2}{3}AP$ then the area of AST is $\frac{4}{9}$ the area of APC which is half the area of ABC so the area of AST is $\frac{2}{9}$ the area of ABC.

Senior Questions

1. Let $f(x) = 2x^n - nx^2 + 1$, then $f'(x) = 2nx(x^{n-2} - 1)$. So f has stationary points at x = 0 and x = 1 (since n > 3 and odd). Taking the second derivative $f''(x) = 2n(n-1)x^{n-2} - 2n$, so f''(0) = -2n < 0 and f''(1) = 2n(n-1) - 2n = 2n(n-2) > 0. So x = 0 is a local max and x = 1 is a local min.

Finally f(0) = 1 > 0 and f(1) = 3 - n < 0. Since these are the only stationary points, f is monotonic between/outside of them. Since x = 0 is a local max, and positive there is one root for x < 0, which is unique since f is monotonic decreasing for x < 0. Since f(0) > 0 > f(1) and f is monotonic between 0 and 1 there is exactly one root for 0 < x < 1. Since x = 1 is a local min, f(1) < 0 and f(x) is monotonic increasing for x > 1 there is exactly one root for x > 1. Thus, in total, there are 3 roots.

2. Take the log of both sides and the differentiate both sides with respect to x.

$$\log f(x) = x \log \left(1 + \frac{1}{x}\right)$$
$$\frac{f'(x)}{f(x)} = \log\left(1 + \frac{1}{x}\right) - \frac{1}{x+1}.$$

3. Draw the graph of $y = \frac{1}{t}$ for t between 1 and $1 + \frac{1}{x}$ and we see that the area under the curve is larger than the area of the rectangle with base $1 + \frac{1}{x} - 1$ and height $\frac{1}{1 + \frac{1}{x}}$, so

$$\int_{1}^{1+\frac{1}{x}} \frac{1}{t} dt = \log\left(1+\frac{1}{x}\right) > \frac{1}{x} \frac{x}{x+1} = \frac{1}{1+x}.$$

Thus $\frac{f'(x)}{f(x)} > 0$, and since f(x) > 0 for all x so is f'(x).