

MATHEMATICS ENRICHMENT CLUB. Problem Sheet 13, August 19, 2014¹

- 1. Let $N=1^9\times 2^8\times 3^7\times 4^6\times 5^5\times 6^4\times 7^3\times 8^2\times 9^1$. How many perfect squares divide N?
- 2. Let $-10 \le a, b, c \le 10$. How many triplets, (a, b, c), satisfy

Science

$$\frac{\frac{a}{b}}{c} = \frac{a}{\frac{b}{c}}.$$

- 3. Find the sum of all primes p such that $5^p + 4p^4$ is a perfect square.
- 4. Show that $(1+\sqrt{5})^n+(1-\sqrt{5})^n$ is an even integer for all positive integers n.

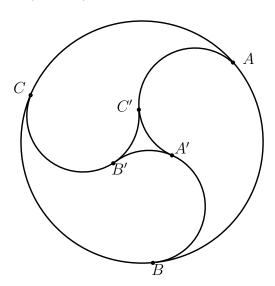


Figure 1: Figure for question 5

- 5. In the figure, ABC is a circle of radius R with 3 tear-drop shapes inside. Each of the arcs AC'A', BA'B' and CB'C' are of circles of the same radius, r. Find the ratio of R to r and the proportional area enclosed in the centre piece A'B'C'.
- 6. Arrange 11 points in the plane so that 16 lines can be drawn, each passing through 3 points.

¹Some problems from UNSW's publication Parabola

Senior Questions

1. Show that, for $x \in (-1, 1)$

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \cdots$$

and hence show that

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots$$

2. Using the above, how many terms are needed to approximate $\ln(2)$ correctly to 5 decimal places?