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1. Write 232 + 217 + 1 = (216 + 1)2, and observe that 216 + 1 is the largest Fermat prime
number.

2. First we show that the 5th power of any integer have the same last digit as the original
number. For a n-digit long integer x, we can write it as x = a1+10×a2+. . .+10n−1×an,
where a1, a2, . . . , an are nonnegative integers less than 10. Then

x2 = a21 + 10× a1 × a2 + 102 × a22;

in words, the last digit of x2 will be the same as the last digit of a21. Repeating this
calculation, we can show that the last digit of x5 will be the same as the last digit of
a51. Now, we can easily verify that a51 has the same last digit as a1 for a1 = 1, 2, . . . 9,
hence x5 will have the same last digit as x.

Therefore, the last digit of 15+25+ . . .+1235 is equal to the last digit of 1+2+ . . . 123;
which is 3.

3.

4. Suppose a is n-digits long, then b = a(10n + 1). Also, b = ka2 for some integer k.
Therefore,

k =
b

a2
=

10n + 1

a
.

Since 10n + 1 is a n + 1 digits long number, the fraction on the RHS of the last
equation must be greater than 0 and less than 10. Therefore, the integer 1 < k < 9.
Since ak = 10n + 1, k must be odd. k can not be 1, otherwise a will be n + 1 digits
long. k can not be 3, 5 or 9, because 10n + 1 is never divisible by those numbers. Thus
the only possibility if 7.

5. (a) If we draw a horizontal line across any one of the 1× 1 grid squares (we think of
the dimension as vertical×horizontal), then no matter how the 10× 12 paper is
folded along the grid lines, this horizontal line will still be horizontal. Similarly,
any vertical line will be preserved under the action of folding.

1Some problems from UNSW’s publication Parabola, and the Tournament of Towns in Toronto.
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Thus, if we were to cut horizontally across the thick 1 × 1 square folded paper,
then we are cutting horizontally across each of 1 × 1 grid squares of the unfold
paper. This means we will produce 10 + 1 strips of papers. Similarly, if we cut
vertically then we will produce 12 + 1 strips.

(b) Label the first row along the grid points (i.e the corner of the 1× 1 squares) with
A’s and B’s in a alternating fashion. Then label the second row with C’s and
D’s in an alternating fashion. Repeat the AB labelling on the third row, and CD
on the fourth row etc, in an alternation fashion until each grid point has been
labelled. Then no matter how the 10 × 12 paper is folded, the A,B,C and D
corners will always be folded onto itself.

Thus, if we were to cut the corner labelled by A of the thick 1× 1 square folded
paper, then we would be cutting out each of the grid labelled with an A in the
original unfold 10 × 12 paper. Since there are 5 × 6 grid points labelled with an
A, it follows that there are 30 + 1 separated pieces due to this cut. We can use a
similar argument to work the number of components we get by cutting the other
corners of the folded 1× 1 paper.

6. Let a = 10b, then we can rewrite the inequality 10 < ax < 100 as 1 < bx < 2. Similarly,
if 100 < ax < 1000, then 2 < bx < 3. Suppose n is the smallest integral solution to the
inequality, then since there are exactly 5 solutions, the largest solution must be n + 4.
From this we can deduce b(n− 1) < 1 < bn and b(n+ 4) < 2 < b(n+ 5). Summing up
the first inequality with itself and with the second one we obtain b(2n−2) < 2 < b(2n)
and b(2n + 3) < 3 < b(2n + 5). Therefore, the inequality 2 < bx < 3 has from 4 to 6
integer solutions; 2n, 2n + 1 . . . , 2n + 4 are always solutions, while 2n − 1 and 2n + 4
may or may not be.

So if we want to get a only four solutions, then we need to consider a number b such
that b(2n− 2) < 2 and 3 < b(2n+ 5) for some integer n. An easy way to do this is set
n = 5, then 1

5
< b < 1

4
. The solutions for the first inequality is 5, 6, 7, 8 and the second

10, 11, 12, 13.

We can get 5 or 6 solutions by picking the appropriate b.

Senior Questions

1. Notice that we have the greatest control over the number p1, so we want to find out
what p1 is allow to be. Suppose p1 > 3, then p1, . . . p17 can not contain factors of 3.
Therefore, pi = 1 (mod 3) or pi = 2 (mod 3) for i = 1, 2, . . . , 17; that is p1, . . . , p17
must have remainder 1 or 2 when divided by 3. From this, we have p2i = 1 (mod 3)
for each i = 1, . . . 17, and so p21 + p22 + . . . + p217 = 2 (mod 3). On the other hand, the
square of an integer must have remainder 0 or 1 when it is divided by 3 (e.g consider
remainders of the square of an even or odd number when divided by 3). Therefore,
p21 + . . . + p217 is not a square, so we have shown that p1 ≤ 3.

If p1 = 2, then p217 − p216 is an even number so it is divisible by p1 = 2. If p1 = 3, then
as before p16 ≡ p17 = 1 (mod 3). Thus, p217 − p216 = 0 (mod 3) which conclusions the
proof.
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2. Suppose we can place the numbers on a circle so that the condition holds. Let us call
the integers from 26 to 75 normal, and all the others extreme. Two extreme integers
cannot be consecutive (their difference is either less than 25 or greater than 50). Note
that the numbers of the extreme and normal integers are the same and therefore they
must alternate. However the normal number 26 can be adjacent to only one extreme
integer 76. contradiction.

3. We consider the general case of n knights, k1, k2, . . . kn, where n ≥ 3. Let s1, s2, . . . , sn
be the initial seats where k1, k2, . . . , kn sits in order, and let a = bn/2c be the greatest
integer less than or equal to n/2. We split the knights into the two groups K1 =
{k1, k2, . . . , ka} and K2{ka+1, ka+2, . . . , kn}, then we can change the anti-clockwise or-
dering of the seated knights into an clockwise ordering, by reversing the order of the
knights in the set K1 and K2. To move k1 to sa, k1 must swap position with k2 then
k3 and so on sucessively; it takes (a − 1) swaps to move k1 to the seat sa. Similarly,
it takes (a − 2) swaps to move k2 into sa−1, (a − 3) swaps to move k3 to sa−2 and so
on. Therefore, it takes 1 + 2 + . . . + (a − 1) swaps to reverse the order of the set K1.
Similarly, it takes 1 + 2 + . . .+ (n− a− 1) swaps to reverse the order of the set K2. In
summery, then number of swaps required is

[1 + 2 + . . . + (a− 1)] + [1 + 2 + . . . + (n− a− 1)] =
n−1∑
r=2

⌊r
2

⌋
Therefore, if n = 12 then the number of swaps required is 30, and if n = 13 then the
number of swaps required is 36. All is left to do is to show that the number a we picked
initial does indeed produce the minimum number of required swaps.
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