
Science

MATHEMATICS ENRICHMENT CLUB. Problem Sheet 7, June 9, 2015¹

- 1. Find the number of ordered pairs (x, y) of non-negative integers such that $x + y \le 100$.
- 2. Let p be your favourite prime number greater than 100, and a, b positive integers such that $p^2 + a^2 = b^2$. Find $\frac{a+b}{n}$.
- 3. A square is inscribed in a circle with diameter 2. Four smaller circles are then constructed with their diameters on each of the sides of the square; see below. Find the shaded area.

- 4. At a party of 21 people each person knows at most four others. Prove that there are five in the party who mutually do not know each other.
- 5. Let f(x) be a polynomial with integer coefficients. Suppose a_1, a_2, a_3, a_4, a_5 are distinct integers such that $f(a_1) = f(a_2) = f(a_3) = f(a_4) = f(a_5) = 2015$. Find the number of integral solutions for the equation f(x) = 2016.
- 6. M is the midpoint of the side CA of triangle ABC. P is some point on the side BC. AP and BM intersect at the point O. If BO = BP, determine $\frac{|OM|}{|PC|}$.

Senior Questions

- 1. Let $P(x) = x^{100} + a_{99}x^{99} + a_{98}x^{98} + \ldots + a_2x^2 + a_1x + 1$ be a polynomial with all real roots, where a_1, a_2, \ldots, a_{99} are positive and real. Find the maximum value of the positive integer N in the inequality $2(2^N 1) \leq \sum_{i=1}^{99} a_i$.
- 2. Suppose that the integers x, y and z have greatest common divisor 1, and that $\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$. Show that x + y is a square.
- 3. Let n be a nonnegative integer. Prove that $14^n + 11$ is never prime.

¹Some problems from UNSW's publication Parabola, and the Tournament of Towns in Toronto.