Science

MATHEMATICS ENRICHMENT CLUB. Problem Sheet 8, June 16, 2015^1

- 1. How many integral solutions (x, y) are there for the equation $x^2 y^2 = 1999$ (Note that 1999 is prime).
- 2. Let $\triangle ABC$ be a right-angled triangle with sides of length |AB| = a, |BC| = b and |CA| = c and $\angle CAB = 90^{\circ}$. A circle is inscribed in $\triangle ABC$ such that the circle intersects each side of the $\triangle ABC$ exactly once. Find the radius of the circle in terms of a, b and c.
- 3. Let N be a number of the form $N = \underbrace{333\ldots 333}_{61\times 3's}$, and M a number of the form $M = \underbrace{666\ldots 666}_{62\times 6's}$. Find $N\times M$.
- 4. Let x be a positive odd number, and a positive integer greater than 2. If a^x has remainder r_1 when divided by (a-1) and r_2 when divided by (a+1), find $r_1 + r_2$.
- 5. Let [x] denotes the greatest integer less than or equal to x, where x is some real number. How many positive integers less than 1001 can be expressed in the form [2x] + [4x] + [6x] + [8x]?
- 6. On a bicycle, tyre wear is proportional to distance traveled, front tyre lasting x kilometres and rear tyre lasting y kilometres. (x < y). An advertisement claims that a set of tyres lasts at least (x + y)/2 kilometres provided you interchange front and rear tyre after an appropriate distance. Investigate.

¹Some problems from UNSW's publication *Parabola*.

Senior Questions

1. Consider the quadratic equation

$$f(x) = x^2 - 2(c+1)x + c - 3,$$

where c is some real number. Let $\alpha, \beta > 0$, and suppose $\alpha + \frac{1}{\alpha}$ and $2 - \beta - \frac{1}{\beta}$ are the roots of f(x). Find all possible values for c.

- 2. Let $\triangle ABC$ be a triangle and X,Y,Z points on the sides BC,CA,AB respectively. Suppose $BX \leq XC,CY \leq YA,AZ \leq ZB$. Show that
 - (a) The area of $\triangle XYZ$ is not less than one quarter of the area of $\triangle ABC$.
 - (b) One of the corner triangles $\triangle AZY$, $\triangle BXZ$, $\triangle CYZ$ has area not greater than the area of $\triangle XYZ$.

- 3. Given that a, b and c are positive integers, find the conditions for which the equation $\sqrt{a} b = \sqrt{c}$ has a solution.
- 4. (bonus) Infinitely many physicists walks into a pub. The first physicist orders a beer, the second orders half a beer, the third a quarter, the fourth an 8^{th} and so on. The bartender happens to be a math student, what would the bartender tell the physicists?