

MATHEMATICS ENRICHMENT CLUB. Solution Sheet 7, June 9, 2015^1

- 1. If we fix x=0, then there are 100 choices for y. If we fix x=1, then there are 99 choices for y, and so on. So the total number of ways to pick x and y such that $x+y \le 100$ is equal to $1+2+3+\ldots+100=\frac{100}{2}[2+(100-1)\times 1]=5050$.
- 2. It doesn't matter which prime you pick. If $p^2 + a^2 = b^2$ then

Science

$$p^2 = b^2 - a^2$$

= $(b - a)(b + a)$.

Because p is prime, the only divisor of p^2 is 1, p and p^2 . Since a and b are integers, by the above equation, b - a = 1 and $b + a = p^2$, so that $\frac{a+b}{p} = p$.

3. The diagonal of the square is the diameter of the circle, hence the area of the circle is π .

By Pythagoras the length of the sides of the square is $\sqrt{2}$. The area of the square is therefore 2.

The sides of the square are the diameter of the smaller circles. The area of the four small half circles are therefore π .

Hence, the area of the shaded region is $\pi - (2 - \pi) = 2$.

- 4. Label the 21 people at the party by a_1, a_2, \ldots, a_{21} . Now a_1 knows at most four other people at the party, by renumbering we can assume that a_1 does not know $a_6, a_7, \ldots a_{21}$. By renumbering again, we can assume that a_6 knows at most four of $a_2, a_3, a_4, a_5, a_7, a_8, a_9, a_{10}$, therefore a_1 and a_6 does not know $a_{11}, a_{12}, \ldots, a_{21}$. Similarly by renumbering, a_1, a_6 and a_{11} does not know $a_{16}, a_{17}, \ldots, a_{21}$, and a_1, a_6, a_{11} and a_{16} does not know a_{21} . It follows that a_1, a_6, a_{11}, a_{16} and a_{21} does not know each other mutually.
- 5. Set g(x) = f(x) 2015, then a_1, a_2, a_3, a_4, a_5 are the roots of g(x), therefore we can write $g(x) = c(x a_1)(x a_2)(x a_3)(x a_4)(x a_5)h(x)$, where c is some constant and h(x) a polynomial.

¹Some problems from UNSW's publication *Parabola*, and the *Tournament of Towns in Toronto*.

Now the integral solutions to f(x) = 2016 are the integral solutions to g(x) = 1, but there is no integral solution to g(x) = 1, because in the expression $g(x) = c(x - a_1)(x - a_2)(x - a_3)(x - a_4)(x - a_5)h(x)$, each $(x - a_i)$, i = 1, 2, 3, 4, 5 are distinct integers for any integer x. Also, h(x) and c are integers for any integer x otherwise f(x) will have non-integer coefficients; multiplying 7 integers in which at least 5 of are distinct can not give 1.

6. Draw a line parallel to AP that intersects the line BC at the point Q; see above. Note that the triangles $\triangle AOP$ and $\triangle AMQ$ are similar, so by triangles and ratios we have |OM| = |PQ|. Now to find $\frac{|OM|}{|PC|}$, all we have to do is work out what portion |PQ| occupies |PC|.

The triangles $\triangle ACP$ and $\triangle MCQ$ are similar, so by triangle and ratios we have $\frac{|AC|}{|PC|} = \frac{|MC|}{|QC|}$. But M is the midpoint of AC, which implies $|MC| = \frac{1}{2}|AC|$, so that

$$\frac{|AC|}{|PC|} = \frac{|MC|}{|QC|} = \frac{1}{2} \frac{|AC|}{|QC|}.$$

It follows that 2|QC| = |PC|, which implies 2|PQ| = |PC|, and therefore $\frac{|OM|}{|PC|} = \frac{1}{2}$.

Senior Questions

1. I am not sure if there are suppose to be additional conditions on the roots or coefficients of P(x), here is my reasoning to why I can not find such an N without additional assumptions: First we evaluate the polynomial at x = 1, this gives $P(1) = a_{99} + a_{98} + \ldots + a_2 + a_1 + 1 = 1 + \sum_{i=1}^{99} a_i$. Therefore, the problem is to find the largest integer N such that

$$\sum_{i=1}^{99} a_i = p(1) - 1 \ge 2(2^N - 1).$$

So we look for the maximum lower bound for P(1). Because the polynomial P(x) has 100 roots, we can express it as $P(x) = (x + r_1)(x + r_2) \dots (x + r_{99})(x + r_{100})$, where $r_1, r_2, \dots, r_{99}, r_{100}$ are the roots of the P(x) times -1. Now if we were to expand the RHS of $P(x) = (x+r_1)(x+r_2) \dots (x+r_{99})(x+r_{100})$, then we can equate the coefficients

of P(x) by

$$a_{99} = \sum_{i=1}^{100} r_i$$

$$a_{98} = \sum_{i < j} r_i r_j$$

$$a_{97} = \sum_{i < j < k} r_i r_j r_k$$

$$\vdots$$

$$1 = r_1 r_2 \dots r_{99} r_{100}$$

where the notation $\sum_{i < j}$ means the product of all r_i with r_j over all index such that i < j, and similarly for $\sum_{i < j < k}$; that is the coefficient a_{99} of P(x) is sum of the negative of roots of P(x), the coefficient a_{98} is sum of product of two terms and so on. These forms the conditions on r_i .

Now we may set $r_1, r_2, \ldots, r_{50} = y$ and $r_{51}, r_{52}, \ldots, r_{100} = 1/y$, for some positive real number y, because $r_1 r_2 \ldots r_{100} = 1$ and each coefficient $a_1, a_2, \ldots a_{99}$ is positive. But then $P(1) = (1+y)^{50}(1+1/y)^{50} \ge (1+y)^{50}$; because y is arbitrary, I can not find such an N.

2. Let d be the greatest common divisor between x and y, write it as gcd(x,y) = d. Then we have $x = d \times x'$ and $y = d \times y'$, where x' and y' are some integers such that gcd(x',y') = 1. Now in order to show that x + y is a square, we just need to show that x' + y' = d, because this implies $x + y = d^2$.

We can rewrite $\frac{1}{x} + \frac{1}{y} = \frac{1}{z}$ as z(x+y) = xy or equivalently z(x'+y') = dx'y'. Since $\gcd(x,y,z) = 1$, $\gcd(d,z) = 1$. Furthermore, x' does not divide y' and visa versa, therefore $\gcd(x'+y',x') = \gcd(x'+y',y') = 1$. It follows from the equation z(x'+y') = dx'y' that x' and y' must divide z, so we have x'y' = z, which implies x'+y'=d.

3. We start by trying a few values of n to see if we can spot a pattern.

$$n = 1,$$
 $14^{1} + 11 = 25 = 5(5)$
 $n = 2,$ $14^{2} + 11 = 207 = 3(69)$
 $n = 3,$ $14^{3} + 11 = 25 = 5(551)$
 $n = 2,$ $14^{4} + 11 = 207 = 3(12809)$

It seems like when n is odd, $14^n + 11$ is divisible by 5, and when n is even , $14^n + 11$ is divisible by 3.

If n is even then $14^n = 14^{2k} = 196^k$. As 196 has remainder 1 when divided by 3, it follows that 196^k has remainder 1 when divided 3. Therefore $142^k + 11$ is divisible by 3.

If n is odd, then $14^n = 14^{2k+1} = 14 \times 14^{2k} = 14 \times 196^k$. As 196 as remainder 1 when divided by 5, it follows that 196^k also has remainder 1 when divided by 5, and 14×196^k has remainder 4 when divided by 5. Therefore $14^{2k} + 1 + 11$ is divisible by 5.

Hence 14n + 11 is divisible by 5 and 3 alternately, and can never be prime.