COURSE STAFF

Course Convener: Dr. Arash KHATAMIANFAR, Room 213, Electrical Engineering (EE) Building (G17): Click here for the map a.khatamianfar@unsw.edu.au

Tutors: Prof. Rodica Ramer, ror@unsw.edu.au
Dr. Branislav Hredzak, b.hredzak@unsw.edu.au
Dr. Jayashri Ravishankar, jayashri.ravishankar@unsw.edu.au
Dr. Siyuan Chen, siyuan.chen@unsw.edu.au
Dr. Zhaocheng Huang, zhaocheng.huang@unsw.edu.au

Laboratory Contact: Mr. Michael Philips (Head Demonstrator), michael.phillips@unsw.edu.au

Consultations: You are encouraged to ask questions on the course material, after the lecture class times in the first instance, rather than via email. Lecturer consultation times will be advised on Moodle, https://moodle.telt.unsw.edu.au/login/index.php, which is an online learning and teaching management platform used in this course. You can also post questions on Moodle discussion forums (highly encouraged). You may also be interested in using other online platforms outside Moodle to communicate with your fellow students who currently take the course or those who have taken it before, such as Discord. You are welcome to ask your questions during tutorials from the tutors and mentors. ALL email enquiries should be made from your student email address with “ELEC1111” in the subject line; otherwise they may not be answered.

Keeping Informed: All announcements regarding the course and its assignments will be made via Moodle. Announcements may also be made during classes but everything will be formally posted on the "Course Announcements" forum of ELEC1111 in Moodle. Please note that you will be deemed to have received this information, so you should take careful note of all announcements.

COURSE SUMMARY

Contact Hours
The course consists of:
- Lecture: 3 hours every week;
- Tutorial (face-to-face): 2 hours every even week and 1 hour every odd week, starting from Week 2;
- Tutorial (Online): 1 hour every week;
- Laboratory Experiments: 2 hours every week, starting from Week 3.

<table>
<thead>
<tr>
<th>Session</th>
<th>Day</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>Wednesday</td>
<td>12pm - 2pm</td>
<td>Sir John Clancy Auditorium</td>
</tr>
<tr>
<td></td>
<td>Friday</td>
<td>1pm - 2pm</td>
<td>Click here for the map</td>
</tr>
<tr>
<td>Tutorials</td>
<td>Tuesday to Friday</td>
<td>Check Your Timetables</td>
<td>Check Your Timetables</td>
</tr>
<tr>
<td>Laboratories</td>
<td>Monday to Friday</td>
<td>Check Your Timetables</td>
<td>Labs 101/102 and 113/114 EE Building (G17): Click here for the map</td>
</tr>
</tbody>
</table>
Context and Aims
The theory of Electric Circuits is fundamental for the understanding and building of further knowledge in the Electrical Engineering. ELEC1111 is an introductory course in Electrical Engineering, which provides an introduction to electrical circuits and fundamental electrical elements as well as the technical skills to analyse such circuits. This is a course suitable for students pursuing further studies in Electrical Engineering such as Power & Energy, Telecommunications, Control, Instrumentation, etc., as well as some other related Engineering disciplines including Computer Science and Engineering. In the practical section, this course provides hands-on experience in building and testing circuits. This course is presented in such a way that students, who have taken this course, are capable of building and analysing some practical and useful devices afterwards.

The aims of the course are to:
- Provide students with analytical and practical design experience;
- Ensure the students’ design skills are adequate and to the level desirable for a professional Engineer;
- Give the students the opportunity to improve their design skills and engineering practice skills required by professional engineers.

Indicative Lecture Schedule
In a typical semester, each topic will be delivered in one week as shown below,

<table>
<thead>
<tr>
<th>Period</th>
<th>Summary of Lecture Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week/Topic 1</td>
<td>Introduction, Circuit Basics Overview, Nodes & Meshes, Power & Energy</td>
</tr>
<tr>
<td>Week/Topic 2</td>
<td>Ohm's Laws, Kirchhoff's laws, Series & Parallel Connection of Elements</td>
</tr>
<tr>
<td>Week/Topic 3</td>
<td>Nodal and Mesh Analysis</td>
</tr>
<tr>
<td>Week/Topic 4</td>
<td>Circuit Theorems (Superposition, Thevenin, Norton, Source Transformation)</td>
</tr>
<tr>
<td>Week/Topic 5</td>
<td>Capacitors and Resistor-Capacitor (RC) Circuits</td>
</tr>
<tr>
<td>Week/Topic 6</td>
<td>Inductors and Resistor-Inductor (RL) Circuits</td>
</tr>
<tr>
<td>Week/Topic 7</td>
<td>Operational Amplifiers (Op Amps)</td>
</tr>
<tr>
<td>Week/Topic 8</td>
<td>AC Analysis I - Phasor and Impedance</td>
</tr>
<tr>
<td>Week/Topic 9</td>
<td>AC Analysis II - Circuit Theorems</td>
</tr>
<tr>
<td></td>
<td>Mid-session break (25 Sep - 2 Oct, 2017)</td>
</tr>
<tr>
<td>Week/Topic 10</td>
<td>AC Power and AC Op Amps</td>
</tr>
<tr>
<td>Week/Topic 11</td>
<td>Transformers</td>
</tr>
<tr>
<td>Week/Topic 12</td>
<td>Digital Logic Circuits</td>
</tr>
</tbody>
</table>

Indicative Laboratory Schedule

<table>
<thead>
<tr>
<th>Period</th>
<th>Summary of Laboratory Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 3</td>
<td>Lab/Experiment 1: Familiarization with Laboratory Equipment</td>
</tr>
<tr>
<td>Week 4</td>
<td>Lab/Experiment 2: Series and Parallel Circuits</td>
</tr>
<tr>
<td>Week 5</td>
<td>Lab/Experiment 3: Circuit Construction and Kirchhoff’s Laws</td>
</tr>
<tr>
<td>Week 6</td>
<td>Lab/Experiment 4: Network Theorems</td>
</tr>
<tr>
<td>Week 7</td>
<td>Lab/Experiment 5: RC & RL Transients</td>
</tr>
<tr>
<td>Week 8</td>
<td>Lab/Experiment 6: Operational Amplifiers (Op Amps)</td>
</tr>
<tr>
<td>Week 9</td>
<td>Lab/Experiment 7: AC Circuits and AC Power</td>
</tr>
<tr>
<td></td>
<td>Mid-session break (25 Sep - 2 Oct, 2017)</td>
</tr>
<tr>
<td>Week 10</td>
<td>Open Laboratories</td>
</tr>
<tr>
<td>Week 11</td>
<td>Lab Exam</td>
</tr>
<tr>
<td>Week 12</td>
<td>Lab Exam</td>
</tr>
<tr>
<td>Week 13</td>
<td>Lab/Experiment 8: Digital Logic Circuits</td>
</tr>
</tbody>
</table>
Assessment
The following summative assessment tasks will give you your final mark for Semester 2, 2017. It should be noted that because of changes in UNSW’s Assessment policy the length of the final exam has been reduced to two hours.

1. Mid-Semester Exam (1 hour) and Peer-Review Assignment 25%
2. Laboratory Assessments and Exam 20%
3. Online Quizzes 5%
4. Final Exam (2 hours) 50%
Total 100%

- The mid-semester exam is tentatively scheduled in Week 7 of the semester.
- The peer-review assignment for mid-semester exam begins from Week 8 of the semester, and its deadline is at the end of Week 9.
- The laboratory exam will take place in Weeks 11 and 12 of the semester.
- The date of the final exam will be announced by the University.

For further details on each assessment task and their marks please refer to page 6 of this document.
COURSE DETAILS

Credits
ELEC1111 is 6 UOC course. The expected average workload is approximately **12-15 hours per week** throughout the semester, including face-to-face contact hours and self-studying.

Relationship to Other Courses
This course is an introduction to electrical engineering for both Electrical and Telecommunications Engineering students and other engineering disciplines in general across the faculty. It is a pre-requisite for many other courses both in electrical and other engineering schools.

Pre-requisites and Assumed Knowledge
There are no particular pre-requisites for this subject, but it is essential to have physics and mathematics background at high-school level.

Following Courses
This course is a pre-requisite for Circuits and Signals course (ELEC2134)

Learning outcomes
After successful completion of this course, you should be able to:

- **LO1.** Systematically analyse AC and DC electric circuits by deriving and solving the equations using Kirchhoff's laws and circuit theorems;
- **LO2.** Obtain the transient and steady state behaviour of a first order circuit;
- **LO3.** Demonstrate a basic understanding of phasors and phasor diagrams for AC circuit analysis;
- **LO4.** Apply sinusoidal steady state analysis to AC circuits and distinguish between AC power definitions;
- **LO5.** Apply concepts of circuit analysis in circuits with ideal operational amplifiers and ideal transformers;
- **LO6.** Demonstrate basic proficiency in building basic electric circuits, operate fundamental electrical engineering equipment, work in a laboratory environment and follow occupational health and safety (OH&S) regulations;
- **LO7.** Perform basic simulations of DC and AC circuits using appropriate software.

The course delivery methods and course content address a number of core UNSW graduate attributes; these include:

- The capacity for analytical and critical thinking and for creative problem solving;
- The ability to engage in independent and reflective learning;
- Information Literacy – the skills to locate, evaluate, and use relevant information;
- The capacity for enterprise, initiative, and creativity;
- The skills of effective communication.

This course is designed to provide the above learning outcomes which arise from targeted graduate capabilities listed in **Appendix A**. The targeted graduate capabilities broadly support the UNSW and Faculty of Engineering graduate capabilities (listed in **Appendix B**). This course also addresses the Engineers Australia (National Accreditation Body) Stage I competency standard as outlined in **Appendix C**.
TEACHING STRATEGIES

Delivery Mode
The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures, which provide you with a focus on the core analytical material in the course, together with qualitative, alternative explanations to aid your understanding;
- Tutorials, which allow for exercises in problem solving and allow time for you to resolve problems in understanding of lecture material;
- Laboratory sessions, which support the formal lecture material and also provide you with practical construction, measurement and debugging skills;
- Recorded lecture videos, which support the scheduled face-to-face lectures for revision purposes. Please note that watching recordings is no substitute for actually attending the classes, where live questions can be asked. In particular, note that having access to recorded lectures does not imply improved exam preparation, without significant and consistent additional self-directed study through the semester.

Learning in this course
You are expected to attend ALL lectures, tutorials, labs, and mid-semester exam in order to maximise learning. It is important to prepare your tutorial questions prior to attending the tutorial classes. You must prepare well for your laboratory classes, and you will be tested on this preparation at the beginning of each lab session. In addition to the lecture notes/videos, you should read relevant sections of the recommended text. Reading additional texts will further enhance your learning experience. Group learning is also encouraged. UNSW assumes that self-directed study of this kind is undertaken in addition to attending face-to-face classes throughout the course. Group learning/study and collaboration throughout the course is strongly encouraged.

Tutorial classes
Three different modes of tutorials will be provided in ELEC1111.

1. **Face-to-face regular tutorials**: These are one-hour regular tutorial sessions where the tutor explains to the students how to work out the given problems. The worked-out solutions will be provided on Moodle after the tutorial classes.

2. **Face-to-face flipped tutorials**: These tutorials function in a collaborative manner where students are encouraged to work in groups of 2 to 3 and try to solve the given problems by applying their learnings from the lectures and other tutorials. The given problems in these tutorials would cover some sample exam questions from previous years as well as design problems. The tutors will mentor the students to solve the questions correctly, and if it seems necessary, they would help out by explaining the problems-solving techniques for more challenging questions. It is highly recommended that students work out the problems toward the final solution collaboratively and in a team-work manner.

3. **Online tutorial videos**: These are pre-recorded solutions of typical tutorial questions, that you can watch at your own time and pace. A document with the worked-out solutions is also provided for the tutorial videos. It is strongly suggested that you attempt to solve the questions of these tutorials before watching the videos to observe the methods and theory used in each question. The format of the videos is typically 3 - 5 minutes long, which is a lot more concentrated, compared to a normal tutorial class, and it is important to do preparatory work before watching the solutions. It is expected that you spend at least one hour per week on solving and watching these tutorials.

Laboratory program
The laboratory schedule is deliberately designed to provide practical, hands-on exposure to the concepts conveyed in lectures soon after they are covered in class. Students are required to attend the laboratories as outlined in the Contact Hours. The laboratories are an integral part of learning in this course as they allow you to build circuits, measure and observe in real life the theory of the lectures. You are expected to attend all labs, and lab exam. You must prepare well for your laboratory classes as your lab work will be assessed during each lab session. In addition to the lab work, you may have feedback sessions with your lecturer for a face-to-face discussion in open laboratory sessions. One open-lab time has already been scheduled for Week 10. The rest will be announced on Moodle.

Laboratory Exemption
There is NO laboratory exemption for this course. Regardless of whether equivalent labs have been completed in previous courses, all students enrolled in this course must take the labs. If, for medical reasons, (note that a valid medical certificate must be provided) you are unable to attend a lab, you will need to apply for a catch-up lab during another lab time, as agreed by the laboratory head demonstrator.
ASSESSMENT

The assessment scheme in this course reflects the intention to assess your learning progress throughout the semester. Ongoing assessment occurs through the mid-semester exam, lab experiments (see lab manual), online tutorial quizzes, lab exams\(^1\).

Mid-Semester Exam and Peer-review Assignment

There will be a one-hour exam during the session tentatively scheduled in Week 7, which tests your general understanding of the course material, and it is designed to give you feedback on your progress through the analytical components of the course. Questions may be drawn from any course material up to the end of Week/Topic 6, which includes numerical and analytical questions. Marks will be assigned according to the correctness of the responses. This exam accounts for 20% of the total course mark out of 25% allocated mark (see page 3).

Following the mid-semester exam, there will be a peer-review assignment as a reflection on your mid-semester exam. You will be given one week (Week 8, Solution Submission) to rework the questions of the exam and upload your solutions on a Workshop Exercise page on Moodle, along with detailed explanations of the process and methods/laws you used. At the completion of the submission stage, the official solutions to the mid-semester exam will be provided on Moodle, and you will be asked to provide detailed feedback and comments to three submissions of your fellow students as well as your own submission and upload the reviews by the end of Week 9 (Feedback Submission). The solution submission part accounts for 40% of the peer-review assignment mark, and the feedback submission part accounts for the remaining 60% for the mark. In total, this peer-review assignment on your mid-semester exam accounts for 5% of the total course mark out of 25% allocated mark (see page 3). **NOTE:** Repeat students are NOT exempt from these tests.

Laboratory Assessment

Laboratories are primarily about learning, and the laboratory assessment is designed mainly to check your knowledge as you progress through each stage of the laboratory tasks. You are required to maintain a lab book for recording your observations and receiving your lab mark. A lab book is an A4 size notebook containing a mix of plain pages and graph sheets. You have to purchase your own lab book from any stores. The laboratory manual, which contains the instructions on the laboratory experiments and equipment, will be provided in a PDF file on Moodle as well as in printed version which can be purchased from UNSW Bookshop ([Click here for the map](#)). Thus, if you have already purchased the lab manual from UNSW Bookshop or have printed out the PDF file in a notebook format, there is no need to have a separate lab book. Several online training videos have been created to help you get to know the laboratory equipment and how to use them properly. These videos are available on Moodle as well as the PDF version of lab manual via provided hyperlinks.

NOTE: Students must upload the completed occupational health and safely (OH&S) form to the submission page provided on Moodle before attending the first practical laboratory session. If a student attends laboratory sessions without having submitted a signed OH&S form, the lab demonstrators will NOT assess the student’s lab work until the form is submitted.

The lab assessment comprises of three parts:

1. **Pre-lab exercises**, which accounts for 20% of your lab mark. These are questions that must be completed and answered before you attend each of the lab sessions. Students without a completed pre-lab exercise will NOT be allowed to participate in the experiment.

2. **Lab experiments**, which accounts for 70% of your lab mark. This includes your measurements, graphs, and answers to lab questions completed in your lab manual. The experimental part must be completed within the allocated 2 hours of each lab session and will be marked throughout the experiment by your lab demonstrators on your lab manual or lab book.

3. **Post-lab questionnaire**, which accounts for 10% of your lab mark. This is an online assignment which must be submitted within the week that you have completed the corresponding lab experiment. Unsatisfactory answers and lack of effort in the post-lab exercises will incur a penalty on your post-lab mark for that session. Late submissions will also reduce the mark for this assignment by 2.5 points.

The laboratory assessments accounts for 10% of your total course mark out of 20% allocated mark (see page 3).

\(^1\) For all face-to-face assessment tasks, i.e., laboratories and mid-semester exams, if the student is unable to attend for medical or other serious reasons, the student must present medical certificates and/or other documentation within 3 days of the assessment to the lecturer in charge. If this is not done within the required period then no consideration will be given. In the case of missing an exam/test for one of the reasons above, the assessment will be carried over to the final exam, i.e., the final exam will become a higher percentage of the total course mark.
Laboratory Exam

To check that you have achieved the practical learning outcomes for the course, you will be examined in the laboratory for a practical test in Weeks 11 and 12 after the first 7 lab experiments have been completed. Lab exams are closed-book practical exams that include an experiment with its relevant analytical calculations. The exam will be based on what you have learned in your laboratory classes and the applied theory from lectures. Marks will be awarded for the correct understanding of practical and relevant theoretical concepts, correct operation of laboratory equipment, and correct interpretation of measured results. The lab exam accounts for 10% of your total course mark out of 20% allocated mark (see page 3).

NOTE: You have to attend and complete at least seven out of the eight lab experiments AND attain a pass assessment in the labs AND pass the lab exam to pass the course. This means that even if you score 100% on the final written examination and on the quizzes, you will not pass the course if your overall mark for lab assessments and lab exam is not satisfactory.

Online Quizzes

Each week starting from Week 2, there will be an online quiz related to the material covered in the previous week of the course. The quizzes must be completed within a specific timeline (mostly a week). The submission timeline will be announced on Moodle. Furthermore, if you achieve a certain minimum mark on each quiz you will unlock a "Completion Badge". Each badge may require different minimum mark to be unlocked (mostly around the mark of 80 out of 100).

The average mark of the 12 quizzes accounts for 60% of the total mark of this assignment provided that you have successfully completed "10 out of the 12" quizzes. The other 40% of the total mark accounts for successfully unlocking "10 out of 12" Completion Badges. The overall mark for this assignment accounts for 5% of your total course mark.

As an Example, the Completion Badge for Week 1 online quiz looks like the following.

![Georg Simon Ohm](image)
For successfully completing the section on electric circuit variables and basics and achieving a section mark of 80 and above.

Final Exam

The exam in this course is a standard closed-book 2-hour written examination, comprising five compulsory questions. University approved calculators are allowed. The examination tests analytical and critical thinking and general understanding of the course material in a controlled fashion. Questions may be drawn from any aspect of the course that has been presented in lectures, tutorials and/or laboratories, unless specifically indicated otherwise by the lecturer. Marks will be assigned according to the correctness of the responses. Please note that you MUST achieve a minimum of 40 marks out of 100 in the final exam to pass the course. The final exam mark accounts for 50% of the total course mark (see page 3).

Relationship of Assessment Methods to Learning Outcomes (as described on page 4)

<table>
<thead>
<tr>
<th>Assessment</th>
<th>LO1</th>
<th>LO2</th>
<th>LO3</th>
<th>LO4</th>
<th>LO5</th>
<th>LO6</th>
<th>LO7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-semester exam</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Peer-review of mid-semester exam</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Laboratory practical assessments</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>Lab exam</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Online quizzes</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Final exam</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
COURSE RESOURCES

Textbooks

Prescribed textbook

Available at UNSW Bookshop, UNSW Library, McGraw-Hill website, or online retailers.

Other reference books

On-line resources

Moodle
As a part of the teaching component, the online teaching and learning management system known as Moodle will be used to disseminate teaching materials, host forums and quizzes. As the course progresses, students’ marks from assessments such as labs and the quizzes are available for personal viewing on this website: https://moodle.telt.unsw.edu.au/login/index.php.

Simulation
Although simulation of electric circuits is not an assessable part of the ELEC1111 course, students are strongly encouraged to familiarize themselves with building basic simulations and also measuring and interpreting results of simulations. Throughout the semester, some of the examples will be provided as simulation files.

There are several simulation programs that can be used not only for this course, but also for the rest of your Electrical Engineering degree. One online simulation platform is a browser-based applet for simulation of electric circuits available at http://www.falstad.com/circuit. It is a simple-to-use and easy-to-understand online application that allows you to simulate simple electric circuits. It is also very simple to share cases and simulations with others.

OTHER MATTERS

Dates to note
Important Dates available at: https://student.unsw.edu.au/dates

Academic Honesty and Plagiarism
Plagiarism is the unacknowledged use of other people’s work, including the copying of assignment works and laboratory results from other students. Plagiarism is considered a form of academic misconduct, and the University has very strict rules that include some severe penalties. For UNSW policies, penalties and information to help you avoid plagiarism, see https://student.unsw.edu.au/plagiarism. To find out if you understand plagiarism correctly, try this short quiz: https://student.unsw.edu.au/plagiarism-quiz.

Student Responsibilities and Conduct
Students are expected to be familiar with and adhere to all UNSW policies (see https://student.unsw.edu.au/guide), and particular attention is drawn to the following:

Workload
It is expected that you will spend at least ten to twelve hours per week studying a 6 UoC course, from Week 1 until the final assessment, including both face-to-face classes and independent, self-directed study. In periods where you need to complete assignments or prepare for examinations, the workload may be greater. Over-commitment has been a common source of failure for many students. You should take the required workload into account when planning how to balance study with employment and other activities.

Attendance
Regular and punctual attendance at all classes is expected. UNSW regulations state that if students attend less than 80% of scheduled classes they may be refused final assessment.

General Conduct and Behaviour
Consideration and respect for the needs of your fellow students and teaching staff is an expectation. Conduct which unduly disrupts or interferes with a class is not acceptable and students may be asked to leave the class.

Work Health and Safety
UNSW policy requires each person to work safely and responsibly, in order to avoid personal injury and to protect the safety of others.

Special Consideration and Supplementary Examinations
You must submit all assignments and attend all examinations scheduled for your course. You should seek assistance early if you suffer illness or misadventure which affects your course progress. All applications for special consideration must be lodged online through myUNSW within 3 working days of the assessment, not to course or school staff. For more detail, consult https://student.unsw.edu.au/special-consideration.

Continual Course Improvement
This course is under constant revision in order to improve the learning outcomes for all students. Please forward any feedback (positive or negative) on the course to the course convener or via the online student survey myExperience. You can also provide feedback to ELSOC who will raise your concerns at student focus group meetings. As a result of previous feedback obtained for this course and in our efforts to provide a rich and meaningful learning experience, we have continued to evaluate and modify our delivery and assessment methods.

Administrative Matters
On issues and procedures regarding such matters as special needs, equity and diversity, occupational health and safety, enrolment, rights, and general expectations of students, please refer to the School and UNSW policies: https://student.unsw.edu.au/guide https://www.engineering.unsw.edu.au/electrical-engineering/resources
APPENDICES

Appendix A: Targeted Graduate Capabilities

Electrical Engineering and Telecommunications programs are designed to address the following targeted capabilities which were developed by the school in conjunction with the requirements of professional and industry bodies:

- The ability to apply knowledge of basic science and fundamental technologies;
- The skills to communicate effectively, not only with engineers but also with the wider community;
- The capability to undertake challenging analysis and design problems and find optimal solutions;
- Expertise in decomposing a problem into its constituent parts, and in defining the scope of each part;
- A working knowledge of how to locate required information and use information resources to their maximum advantage;
- Proficiency in developing and implementing project plans, investigating alternative solutions, and critically evaluating differing strategies;
- An understanding of the social, cultural and global responsibilities of the professional engineer;
- The ability to work effectively as an individual or in a team;
- An understanding of professional and ethical responsibilities;
- The ability to engage in lifelong independent and reflective learning.

Appendix B: UNSW Graduate Capabilities

The course delivery methods and course content directly or indirectly addresses a number of core UNSW graduate capabilities, as follows

- Developing scholars who have a deep understanding of their discipline, through lectures and solution of analytical problems in tutorials and assessed by assignments and written examinations.
- Developing rigorous analysis, critique, and reflection, and ability to apply knowledge and skills to solving problems. These will be achieved by the laboratory experiments and interactive checkpoint assessments and lab exams during the labs.
- Developing capable independent and collaborative enquiry, through a series of tutorials spanning the duration of the course.
- Developing digital and information literacy and lifelong learning skills through assignment work.
- Developing ethical practitioners who are collaborative and effective team workers, through group activities, seminars and tutorials.
- Developing independent, self-directed professionals who are enterprising, innovative, creative and responsive to change, through challenging design and project tasks.
- Developing citizens who can apply their discipline in other contexts, are culturally aware and environmentally responsible, through interdisciplinary tasks, seminars and group activities.
Appendix C: Engineers Australia (EA) Professional Engineer Competency Standard

<table>
<thead>
<tr>
<th>Program Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE1: Knowledge and Skill Base</td>
</tr>
<tr>
<td>PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals ✓</td>
</tr>
<tr>
<td>PE1.2 Conceptual understanding of underpinning maths, analysis, statistics, computing ✓</td>
</tr>
<tr>
<td>PE1.3 In-depth understanding of specialist bodies of knowledge ✓</td>
</tr>
<tr>
<td>PE1.4 Discernment of knowledge development and research directions</td>
</tr>
<tr>
<td>PE1.5 Knowledge of engineering design practice</td>
</tr>
<tr>
<td>PE1.6 Understanding of scope, principles, norms, accountabilities of sustainable engineering practice</td>
</tr>
<tr>
<td>PE2: Engineering Application Ability</td>
</tr>
<tr>
<td>PE2.1 Application of established engineering methods to complex problem solving ✓</td>
</tr>
<tr>
<td>PE2.2 Fluent application of engineering techniques, tools and resources ✓</td>
</tr>
<tr>
<td>PE2.3 Application of systematic engineering synthesis and design processes</td>
</tr>
<tr>
<td>PE2.4 Application of systematic approaches to the conduct and management of engineering projects</td>
</tr>
<tr>
<td>PE3: Professional and Personal Attributes</td>
</tr>
<tr>
<td>PE3.1 Ethical conduct and professional accountability</td>
</tr>
<tr>
<td>PE3.2 Effective oral and written communication (professional and lay domains) ✓</td>
</tr>
<tr>
<td>PE3.3 Creative, innovative and pro-active demeanour ✓</td>
</tr>
<tr>
<td>PE3.4 Professional use and management of information</td>
</tr>
<tr>
<td>PE3.5 Orderly management of self, and professional conduct</td>
</tr>
<tr>
<td>PE3.6 Effective team membership and team leadership</td>
</tr>
</tbody>
</table>