TELE4642

Network Performance

Term 2, 2022
Course Overview

Staff Contact Details

Convenors

<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Availability</th>
<th>Location</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hassan Habibi Gharakheili</td>
<td>h.habibi@unsw.edu.au</td>
<td></td>
<td>Room 417, EE building (G17)</td>
<td>+61 (2) 9385 5176</td>
</tr>
</tbody>
</table>

School Contact Information

Consultations: Lecturer consultation times will be advised during the first lecture. You are welcome to email the tutor or laboratory demonstrator, who can answer your questions on this course and can also provide you with consultation times. ALL email enquiries should be made from your student email address with ELEC/TELExxxx in the subject line; otherwise, they will not be answered.

Keeping Informed: Announcements may be made during classes, via email (to your student email address) and/or via online learning and teaching platforms – in this course, we will use Moodle https://moodle.telt.unsw.edu.au/login/index.php. Please note that you will be deemed to have received this information, so you should take careful note of all announcements.

Student Support Enquiries

For enrolment and progression enquiries please contact Student Services

Web

Electrical Engineering Homepage

Engineering Student Support Services

Engineering Industrial Training

UNSW Study Abroad and Exchange (for inbound students)

UNSW Future Students

Phone
(+61 2) 9385 8500 – Nucleus Student Hub

(+61 2) 9385 7661 – Engineering Industrial Training

(+61 2) 9385 3179 – UNSW Study Abroad and UNSW Exchange (for inbound students)

Email

Engineering Student Support Services – current student enquiries
 • e.g. enrolment, progression, clash requests, course issues or program-related queries

Engineering Industrial Training – Industrial training questions

UNSW Study Abroad – study abroad student enquiries (for inbound students)

UNSW Exchange – student exchange enquiries (for inbound students)

UNSW Future Students – potential student enquiries
 • e.g. admissions, fees, programs, credit transfer
Course Details

Units of Credit 6

Summary of the Course

The course consists of 4 hours of live and online lectures for the first 6 weeks, and 3 hours per week for the remaining 4 weeks. Lectures are recorded and available in Moodle. There is a 2-hour laboratory session each week.

Course Aims

This course aims to develop an understanding of the tools and technologies for understanding and improving the performance of communication networks such as the Internet. It will introduce students to quantitative methods for loss and delay analysis in packet networks, using techniques from stochastic traffic modelling, Markov chains, and queueing theory. It will expose students to frameworks for optimisation and orchestration of network performance, including emerging paradigms such as software-defined networking (SDN). The quantitative methods studied in this course will be applied to practical examples from network architecture and design, in domains ranging from data centres and wide-area networks to home networks, mobile networks, and content-delivery networks.

Course Learning Outcomes

After successfully completing this course, you should be able to:

<table>
<thead>
<tr>
<th>Learning Outcome</th>
<th>EA Stage 1 Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identify the causes of poor performance (losses and delays) in the Internet</td>
<td>PE1.1, PE1.2, PE1.3, PE1.5, PE2.1, PE2.2, PE2.4</td>
</tr>
<tr>
<td>2. Quantify the performance of simple network systems by developing appropriate analytical models</td>
<td>PE1.1, PE1.2, PE1.3, PE1.5, PE2.1, PE2.2, PE3.4</td>
</tr>
<tr>
<td>3. Critique emerging technologies used by Internet Service Providers for offering Quality of Service (QoS) to Internet traffic</td>
<td>PE1.1, PE1.2, PE1.3, PE1.5, PE2.1, PE2.2</td>
</tr>
<tr>
<td>4. Construct and evaluate practical tools for performance evaluation</td>
<td>PE1.1, PE1.2, PE1.3, PE1.5, PE2.1, PE2.2, PE3.2, PE3.3, PE3.4, PE3.6</td>
</tr>
</tbody>
</table>

Targeted Graduate Capabilities

Electrical Engineering and Telecommunications programs are designed to address the following targeted capabilities which were developed by the school in conjunction with the requirements of professional and industry bodies:

- The ability to apply knowledge of basic science and fundamental technologies;
- The skills to communicate effectively, not only with engineers but also with the wider community;
- The capability to undertake challenging analysis and design problems and find optimal solutions;
- Expertise in decomposing a problem into its constituent parts, and in defining the scope of each part;
A working knowledge of how to locate required information and use information resources to their maximum advantage;
Proficiency in developing and implementing project plans, investigating alternative solutions, and critically evaluating differing strategies;
An understanding of the social, cultural and global responsibilities of the professional engineer; ability to work effectively as an individual or in a team;
An understanding of professional and ethical responsibilities;
The ability to engage in lifelong independent and reflective learning.

UNSW Graduate Capabilities

The course delivery methods and course content directly or indirectly addresses a number of core UNSW graduate capabilities, as follows:

- Developing scholars who have a deep understanding of their discipline, through lectures and solution of analytical problems in tutorials and assessed by assignments and written examinations.
- Developing rigorous analysis, critique, and reflection, and ability to apply knowledge and skills to solving problems. These will be achieved by the laboratory experiments and interactive checkpoint assessments and lab exams during the labs.
- Developing digital and information literacy and lifelong learning skills through assignment work.

Developing independent, self-directed professionals who are enterprising, innovative, creative and responsive to change, through challenging design and project tasks.

Teaching Strategies

Delivery Mode

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal lectures, which provide you with a focus on the core analytical material in the course, together with qualitative, alternative explanations to aid your understanding;
- Tutorials (though not formally scheduled, many of the Friday (w1-6, w7-10) lectures will be run as tutorials), which allow for exercises in problem solving and allow time for you to resolve problems in understanding of lecture material;
- Laboratory sessions, which support the formal lecture material and also provide you with practical construction, measurement and debugging skills;
- Project, which will use group-work as a means of exploring a research problem in greater depth, and provide you with the opportunity to demonstrate and communicate your approach and solution.
- Quizzes, which will provide feedback on your progress in problem-solving.
- Final examination, which is the final test of competency

Learning in this Course
You are expected to attend/view all online lectures, labs, and quizzes in order to maximise learning. You must prepare well for your laboratory classes and your lab work will be assessed. In addition to the lecture notes/video, you should read relevant sections of the recommended text. Reading additional texts will further enhance your learning experience. Group learning is also encouraged. UNSW assumes that self-directed study of this kind is undertaken in addition to attending online classes throughout the course.

Laboratory Program

The laboratory schedule is deliberately designed to provide practical, hands-on exposure to the concepts conveyed in lectures soon after they are covered in class. You are required to attend laboratory from Week 1 to Week 10.

Laboratory Exemption

There is no laboratory exemption for this course. Regardless of whether equivalent labs have been completed in previous courses, all students enrolled in this course must take the labs. If, for medical reasons, (note that a valid medical certificate must be provided) you are unable to attend a lab, you will need to apply for a catch-up lab during another lab time, as agreed by the laboratory coordinator.

Additional Course Information

Credits

This is a 6 UoC course and the expected workload is 15 hours per week throughout the 10-week term. It includes lectures and laboratories. Supervised labs are held 2 hours per week; however, you will be expected to work on the assignments and projects outside of designated lab hours.

Relationship to Other Courses

This is a 4th year undergraduate elective course in the School of Electrical Engineering and Telecommunications.

Pre-requisites and Assumed Knowledge

The course TELE3118 "Network Technologies" is a pre-requisite for this course. Knowledge of data networking protocol architectures is assumed, since this course develops techniques for the design and performance analysis of such architectures. In addition, it is expected that the student is conversant with basic probability and statistics, and comfortable with programming (preferably in C, Java, or Python).

Following Courses
The course is not a pre-requisite for other courses in the school of faculty.

Workload

It is expected that you will spend at least 15 hours per week studying a 6 UoC course, from Week 1 until the final assessment, including both online classes and independent, self-directed study. In periods where you need to complete assignments or prepare for examinations, the workload may be greater. Over-commitment has been a common source of failure for many students. You should take the required workload into account when planning how to balance study with employment and other activities.

Attendance

Regular and punctual attendance at all classes is expected. UNSW regulations state that if students attend less than 80% of scheduled classes they may be refused final assessment.

General Conduct and Behaviour

Consideration and respect for the needs of your fellow students and teaching staff is an expectation. Conduct which unduly disrupts or interferes with a class is not acceptable and students may be asked to leave the class.
Assessment

The assessment scheme in this course reflects the intention to assess your learning progress through the term. Ongoing assessment occurs through the lab checkpoints and quizzes.

<table>
<thead>
<tr>
<th>Assessment task</th>
<th>Weight</th>
<th>Due Date</th>
<th>Course Learning Outcomes Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Final Exam</td>
<td>40%</td>
<td>Not Applicable</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>2. Quizzes</td>
<td>30%</td>
<td>Not Applicable</td>
<td>1, 2</td>
</tr>
<tr>
<td>3. Laboratory Practical Experiments</td>
<td>30%</td>
<td>Not Applicable</td>
<td>1, 3, 4</td>
</tr>
</tbody>
</table>

Assessment 1: Final Exam

The exam in this course is a standard 2-hour written examination that will be run in Moodle. The examination tests analytical and critical thinking and general understanding of the course material in a controlled fashion. Questions may be drawn from any aspect of the course (including laboratory), unless specifically indicated otherwise by the lecturer. Marks will be assigned according to the correctness of the responses. Please note that you must pass the final exam in order to pass the course.

Assessment 2: Quizzes

This course will have three online timed written quizzes that will evaluate and provide feedback on your understanding of the material in this course. Quiz 1 will be held in week 3 (Thu 16 Jun), quiz 2 in week 7 (Thu 14 Jul), and quiz 3 in week 9 (Thu 28 Jul). Each quiz is worth 10% of the final grade, and each will typically test your problem-solving skills. Re-tests will not be granted in the event that a student misses the test, unless satisfactory written evidence is presented of adverse conditions that prevented the student from taking the test. In such a case, the course convenor may at his sole discretion conduct the re-test orally (instead of or in addition to a written component) individually with the student, within two weeks of the original test date.

Assessment 3: Laboratory Practical Experiments

- **Assignment 1 [10%]:** This assignment will involve design and development of simulation software to be demonstrated in lab session by week 2. Grading will be based on correctness, functionality, and novelty of design.
- **Assignment 2 [10%]:** This assignment will require you to develop a software application for an SDN. You will demonstrate your functioning tool by week 5. Grading will be based on correctness, functionality, and novelty of design.
- **Project [10%]:** This project will be done in groups of up to 4 students, and is designed to train you in conducting team research into a topic. Groups will choose from a given list of topics (most likely related to the area of Software Defined Networking) or propose their own in consultation with the course convenor. The chosen topic will be briefly presented to the class in week 7. The final presentations will be done in week 10.
Attendance Requirements

Students are strongly encouraged to attend all classes and review lecture recordings.

Course Schedule

Indicative Lecture Schedule:

Week 1 (4 hours): Stochastic Processes, M/M/1 queueing model

Week 2 (4 hours): M/M/1 variants: finite storage, multiple servers, batch arrivals/departures

Week 3 (4 hours): Networks of queues; **Quiz 1 (Thu 16 Jun)**

Week 4 (4 hours): SDN concepts

Week 5 (4 hours): SDN platforms and control plane

Week 6 (4 hours): Flexibility Week – Revision discussions and activities

Week 7 (3 hours): SDN use-cases; **Quiz 2 (Thu 14 Jul)**

Week 8 (3 hours): Discrete-Time Markov Chains (DTMC) concepts, and application: Google Page Rank

Week 9 (3 hours): DTMC applications: Slotted Aloha and Randomised Routing; **Quiz 3 (Thu 28 Jul)**

Week 10 (3 hours): QoS and traffic models; Review; Project presentations

Indicative Laboratory Schedule:

Week 1-2 Lab 1: Queueing system simulation

Week 3-5 Lab 2: SDN application

Week 7-10 Lab 3: Project
Resources

Prescribed Resources

There is no one prescribed textbook for this course. Material from the following books will be used, and will be augmented with papers supplied via the course web-page:

- Papers and other reading material will be posted on the course web-page https://subjects.ee.unsw.edu.au/tele4642/
Academic Honesty and Plagiarism

Plagiarism is the unacknowledged use of other people’s work, including the copying of assignment works and laboratory results from other students. Plagiarism is considered a form of academic misconduct, and the University has very strict rules that include some severe penalties. For UNSW policies, penalties and information to help you avoid plagiarism, see https://student.unsw.edu.au/plagiarism. To find out if you understand plagiarism correctly, try this short quiz: https://student.unsw.edu.au/plagiarism-quiz.

General Conduct and Behaviour

Consideration and respect for the needs of your fellow students and teaching staff is an expectation. Conduct which unduly disrupts or interferes with a class is not acceptable and students may be asked to leave the class.
Academic Information

COVID19 - Important Health Related Notice

Your health and the health of those in your class is critically important. You must stay at home if you are sick or have been advised to self-isolate by NSW health or government authorities. Current alerts and a list of hotspots can be found here. **You will not be penalised for missing a face-to-face activity due to illness or a requirement to self-isolate.** We will work with you to ensure continuity of learning during your isolation and have plans in place for you to catch up on any content or learning activities you may miss. Where this might not be possible, an application for fee remission may be discussed.

If you are required to self-isolate and/or need emotional or financial support, please contact the Nucleus: Student Hub. If you are unable to complete an assessment, or attend a class with an attendance or participation requirement, please let your teacher know and apply for special consideration through the Special Consideration portal. To advise the University of a positive COVID-19 test result or if you suspect you have COVID-19 and are being tested, please fill in this form.

UNSW requires all staff and students to follow NSW Health advice. Any failure to act in accordance with that advice may amount to a breach of the Student Code of Conduct. Please refer to the Safe Return to Campus guide for students for more information on safe practices.

Dates to note

Important Dates available at: https://student.unsw.edu.au/dates

Student Responsibilities and Conduct

Students are expected to be familiar with and adhere to all UNSW policies (see https://student.unsw.edu.au/policy), and particular attention is drawn to the following:

Workload

It is expected that you will spend at least **15 hours per week** studying a 6 UoC course, from Week 1 until the final assessment, including both formal classes and independent, self-directed study. In periods where you need to complete assignments or prepare for examinations, the workload may be greater. Over-commitment has been a common source of failure for many students. You should take the required workload into account when planning how to balance study with employment and other activities.

Attendance

Regular and punctual attendance at all classes is expected. UNSW regulations state that if students attend less than 80% of scheduled classes they may be refused final assessment.

Work Health and Safety

UNSW policy requires each person to work safely and responsibly, in order to avoid personal injury and to protect the safety of others.
Special Consideration and Supplementary Examinations

You must submit all assignments and attend all examinations scheduled for your course. You can apply for special consideration when illness or other circumstances beyond your control interfere with an assessment performance. If you need to submit an application for special consideration for an exam or assessment, you must submit the application prior to the start of the exam or before the assessment is submitted, except where illness or misadventure prevent you from doing so. Be aware of the “fit to sit/submit” rule which means that if you sit an exam or submit an assignment, you are declaring yourself well enough to do so and cannot later apply for Special Consideration. For more information and how to apply, see https://student.unsw.edu.au/special-consideration.

Administrative Matters

On issues and procedures regarding such matters as special needs, equity and diversity, occupational health and safety, enrolment, rights, and general expectations of students, please refer to the School and UNSW policies:

https://student.unsw.edu.au/guide

https://www.engineering.unsw.edu.au/electrical-engineering/resources

Disclaimer

This Course Outline sets out description of classes at the date the Course Outline is published. The nature of classes may change during the Term after the Course Outline is published. Moodle should be consulted for the up-to-date class descriptions. If there is any inconsistency in the description of activities between the University timetable and the Course Outline (as updated in Moodle), the description in the Course Outline/Moodle applies:

Image Credit

Synergies in Sound 2016

CRICOS

CRICOS Provider Code: 00098G

Acknowledgement of Country

We acknowledge the Bedegal people who are the traditional custodians of the lands on which UNSW Kensington campus is located.
Appendix: Engineers Australia (EA) Professional Engineer Competency Standard

<table>
<thead>
<tr>
<th>Program Intended Learning Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge and skill base</td>
</tr>
<tr>
<td>PE1.1 Comprehensive, theory based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline</td>
</tr>
<tr>
<td>PE1.2 Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline</td>
</tr>
<tr>
<td>PE1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline</td>
</tr>
<tr>
<td>PE1.4 Discernment of knowledge development and research directions within the engineering discipline</td>
</tr>
<tr>
<td>PE1.5 Knowledge of engineering design practice and contextual factors impacting the engineering discipline</td>
</tr>
<tr>
<td>PE1.6 Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline</td>
</tr>
<tr>
<td>Engineering application ability</td>
</tr>
<tr>
<td>PE2.1 Application of established engineering methods to complex engineering problem solving</td>
</tr>
<tr>
<td>PE2.2 Fluent application of engineering techniques, tools and resources</td>
</tr>
<tr>
<td>PE2.3 Application of systematic engineering synthesis and design processes</td>
</tr>
<tr>
<td>PE2.4 Application of systematic approaches to the conduct and management of engineering projects</td>
</tr>
<tr>
<td>Professional and personal attributes</td>
</tr>
<tr>
<td>PE3.1 Ethical conduct and professional accountability</td>
</tr>
<tr>
<td>PE3.2 Effective oral and written communication in professional and lay domains</td>
</tr>
<tr>
<td>PE3.3 Creative, innovative and pro-active demeanour</td>
</tr>
<tr>
<td>PE3.4 Professional use and management of information</td>
</tr>
<tr>
<td>PE3.5 Orderly management of self, and professional conduct</td>
</tr>
<tr>
<td>PE3.6 Effective team membership and team leadership</td>
</tr>
</tbody>
</table>