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Competition 1

Junior Division – Problems and Solutions

Problem 1
Find the set of all pairs of positive integers (n,m) that satisfy

∣
∣n2 −m2 − 2010

∣
∣ ≤ 1.

Solution 1
We being by factoring then we seek n and m that satisfy one of the following:

(i) (n−m)(n+m) = 2009 = (1)(7)(7)(41)(2009) or
(ii) (n−m)(n+m) = 2010 = (1)(2)(3)(5)(67)(2010) or
(iii) (n−m)(n+m) = 2011 = (1)(2011).
From (i) we have the three possibilities n−m = (1), n+m = (2009), n−m = (41), n+m =
(7)(7), n − m = (7), n + m = (7)(41), with respective solutions (n,m) = (1005, 1004),
(n,m) = (45, 4),(n,m) = (147, 140). There are no integer solutions for (ii) since the
factorisation has either (n − m) even and (n + m) odd, or vice versa, and in case (iii)
we have n−m = (1), n+m = (2011) with solution (n,m) = (1006, 1005). The set of all
pairs of positive integers that satisfy |n2 −m2 − 2010| ≤ 1 is

{(1005, 1004), (45, 4), (147, 140), (1006, 1005)}.

Problem 2
Show that if n is a positive integer then n(n+1)(n+2)(n+3)+1 is a perfect square

and deduce that the product of four consecutive positive integers is never a perfect
square.

Solution 2

1The problems and solutions were compiled, created, refined with contributions from David Angell,
Peter Brown, David Crocker, Ian Doust, Bruce Henry (Director), Mike Hirschhorn, David Hunt and
Thanh Tran.
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x(x+ 1)(x+ 2)(x+ 3) + 1 = [(x+ 1)(x+ 2)][(x(x+ 3)] + 1

= (x2 + 3x+ 2)(x2 + 3x) + 1

= [(x+
3

2
)2 − 1

4
][(x+

3

2
)2 − 9

4
] + 1

= (x+
3

2
)4 − 5

2
(x+

3

2
)2 +

25

16

= ((x+
3

2
)2 − 5

4
)2

= (x2 + 3x+ 1)2

Alternate solutions to this part are

x(x+ 1)(x+ 2)(x+ 3) + 1 = x4 + 6x3 + 11x2 + 6x+ 1

= (x4 + 4x3 + 6x2 + 4x+ 1) + 2x3 + 5x2 + 2x

= (x+ 1)4 + 2x(x2 + 2x+ 1) + x2

= (x+ 1)4 + 2x(x+ 1)2 + x2

= ((x+ 1)2 + x)2

= (x2 + 3x+ 1)2

and

x(x+ 1)(x+ 2)(x+ 3) + 1 = (x(x+ 3))((x+ 1)(x+ 2)) + 1

= (x2 + 3x)(x2 + 3x+ 2) + 1

= (x2 + 3x)2 + 2(x2 + 3x) + 1

= ((x2 + 3x) + 1)2

= (x2 + 3x+ 1)2

Suppose that the product of four consecutive integers

n, n+ 1, n+ 2, n+ 3

is a perfect square, that is,

n(n+ 1)(n+ 2)(n+ 3) = a2, a ∈ N.

We also have
n(n+ 1)(n+ 2)(n+ 3) + 1 = b2, b ∈ N.

Thus we require 1 = b2 − a2 = (b− a)(b + a) and b− a, b + a ∈ Z
+ so b− a = b + a = 1

and hence the only possibility has a = 0 and b = 1. Thus there are no positive integers
n to satisfy n(n+ 1)(n+ 2)(n+ 3) = 0.

Problem 3
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A monk sets out from a monastery in a valley at dawn and follows a winding path
up amountainside at a constant speed, planning to arrive at a temple on the mountain-
top at dusk. A second monk sets out from the temple at dawn and travels down the
mountainside along the same path, but at twice the speed, until she meets the monk
coming up and then they stop for a break together. The temple is at an elevation 945
metres above the elevation of the monastery. When viewed from above the winding
path appears as a regular rectangular spiral with the geometry of the central portion
as shown below.
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The two shortest segments of this spiral have length of 1 metre each and the two
longest segments have length 99metres each. When viewed from the side each straight
line segment is at the same constant angle of inclination.

1. What is the change in elevation for each of the monks when they meet?

2. How far has each of the monks travelled when they meet?

3. What is the length of the spiral arm segment on which they meet?

Solution 3

1. Since the angle of inclination is constant the descending monk loses height twice
as fast as the ascending monk gains height. Thus the descending monk loses
height of 630 metres while the ascending monk gains height of 315 metres.

2. The total length of the spiral segments, when viewed from above, is

ℓ = 2(1 + 2 + 99 . . .)

= 2
1

2
(99)(100)

= 9900 metres

The descending monk travels two-thirds of this path, 6600 metres when viewed
from above. The total length of the path is from Pythagoras’ Theorem

√
99002 + 9452 = 9945 metres.

Two-thirds of this distance, 6630 metres, is travelled by the descendingmonk and
one-third of the distance, 3315 metres, is travelled by the ascending monk.
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3. Suppose that the two monks meet on a spiral arm segment of length k. Then we
require either i) 2(1 + 2 + k − 1 . . .) + k < 6600 and 2(1 + 2 + k . . .) > 6600 or ii)
2(1+2+k . . .) < 6600 and 2(1+2+k . . .)+(k+1) > 6600 for some integer k. Note
that 2(1 + 2 + 80 . . .) = 6480, 2(1 + 2 + 80 . . .) + 81 = 6561, 2(1 + 2 + 81 . . .) = 6642
so that condition i) is satisfied for k = 81. The two monks meet on a spiral arm of
length 81 metres, when viewed from above.

An alternate method of solution using trigonometry results in a simpler solution
for part (iii). First let α denote the constant angle of elevation of each path segment
then the total length of the path is

ℓ =
99∑

n=1

2n secα =
2.99.100

2
secα = 9900 secα

and the height is

h = 945 =
99∑

n=1

2n tanα = 9900 tanα.

From the height we deduce

tanα =
945

9900

and then

secα =
√

1 + tan2 α =

√

1 +

(
945

9900

)2

so that

ℓ = 9900

√

1 +

(
945

9900

)2

=
√
99002 + 9452 = 9945m.

So the first monk travels ℓ
3
= 3315m and the second monk travels 2ℓ

3
= 6630.

Calculating the distance travelled by the second monk going down we want to find
N ∈ Z

+ such that
N∑

n=1

2n secα ≤ 6630 <
N+1∑

n=1

2n secα.

Thus we require

N(N + 1) ≤ 6630 cosα = 6600 < (N + 1)(N + 2)

and since N(N + 1) ≈ N2 and
√
6600 ≈ 80 check around N = 80. Note

80.81 = 6480 < 6600 < 81.82 = 6642

then N = 80 and as 6600 − 6480 = 120 = 81 + 39, they meet on a path of base length
81m (the second one for the monk coming down, the first one for the monk going up).

Problem 4
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A cubic block can be partitioned into smaller cubic blocks inmanyways. An integer
n is called a cute-cube number if a cubic block can be partitioned into n cubic blocks of
at most two different sizes.

1. Provide an example of a cute-cube number that is greater than 23 but less than 33.

2. Show that 2010 is a cute-cube number.

Solution 4

1. Fifteen is a cute-cube number. Take a cubic block and partition it into eight cubic
blocks of equal size. Take one of these smaller cubic blocks and partition it into
eight cubic blocks of equal size.

2. Consider the general construction as follows: Take a cubic block and partition
it into n3 cubic blocks of equal size. Take m of these smaller cubic blocks and
partition them into k3 cubic blocks of equal size then

N = n3 −m+m(k3) = n3 +m(k3 − 1)

is a cute-cube number.

Thus N = 2010 is a cute-cube number since

2010 = 63 + 69(33 − 1)

2010 = 83 + 214(23 − 1)

2010 = 93 + 183(23 − 1)

2010 = 113 + 97(23 − 1).

There are other constructions of cute-cube numbers.

Problem 5
LetN0 denote a three-digit natural number with not all digits identical. Arrange the

digits in descending order and subtract from this number the number that is obtained
by arranging the digits in ascending order. Let N1 denote the result, written as a three-
digit number (e.g. 42 is written as 042). Now perform the same operation on N1 that
you performed on N0 and let N2 denote the result. Repeat to construct the sequence
N3, N4, . . ..

1. Show that there exists a number N⋆ such that if N0 = N⋆ then N1 = N⋆.

2. Show that N6 = N⋆ for any initial number N0.

Solution 5

1. Let a1 ≥ a2 ≥ a3 denote the digits of N0 with a1 > a3. The digits of N1 are
10 + a3 − a1, 9, a1 − a3 − 1. Thus if N1 and N0 have the same digits then the
largest of these is a1 = 9. Now equating the remaining two digits we require
{a2, a3} = {a3 + 1, 8 − a3} which has the solution a3 = 4, a2 = 5. Thus the digits
of N0 are 9,5,4 and then N1 = 954− 459 = 495, so that N⋆ = 495.
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2. More generally, starting withN0 we constructN1 with digits b1 = 9 ≥ b2 ≥ b3 and
then the digits ofN2 are 10+b3−b1, 9, b1−b3−1 = b3+1, 9, 8−b3. The largest digit
is 9 and the sum of the remaining digits is 9. Note too that the smallest digit is
increased by one and thus the larger is decreased by one. This can only continue
until the input is 495 which must occur after at most six steps.

Problem 6
Let τ(n) denote the number of positive factors of a positive integer n. Prove that,

for any positive integersm and n, τ(mn) ≤ τ(m)τ(n).

Solution 6
Let π, where i = 1, 2, 3, . . . , denote the prime factors of m and the prime factors

of n (some of which may be common). Using the product symbol
K∏

i=1

xi to denote the

product x1 · x2 · x3 · · · · · xK we can write

m =
K∏

i=1

pαi

i αi ≥ 0

n =
K∏

i=1

pβi

i βi ≥ 0

mn =
K∏

i=1

pαi+βi

i

The divisors of pδii are 1, pi, . . . , p
δi
i so that τ(pδii ) = δi + 1 and

τ(m) =
K∏

i=1

(αi + 1)

τ(n) =
K∏

i=1

(βi + 1)

τ(mn) =
K∏

i=1

(αi + βi + 1).

The result τ(mn) < τ(m)τ(n) now follows since

(αi + βi + 1) ≤ (αiβi + αi + βi + 1) = (αi + 1)(βi + 1).

An alternate proof is possible without using unique factorisation into primes. This
alternate proof starts with the proposition that if d is a divisor of m (i.e. d|mn) then
d = d1d2, where d1|m and d2|n. It then follows that

τ(mn) = |{d ∈ Z
+ : d|mn}|

= |{d1d2 : d1, d2 ∈ Z
+, d1|m, d2|n}|

≤ τ(m)τ(n).

Of course it remains to prove the proposition (see the problems section in this issue).
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Senior Division – Problems and Solutions

Problem 1
See Problem 6 in the Junior Competition.

Solution 1
See Problem 6 solution in the Junior Competition.

Problem 2
The infinite order tower power of x is defined as

T (x) = xxx
x
x
.
.
.

= x(x(x(x
.
.
.

))).

1. Find the largest number x for which T (x) is finite.

2. Find the value of T (x) in this case.

Solution 2
First we may note that T (1) = 1 and thus we seek xmax ≥ 1. Let

T (x) = xxx
x
x
.
.
.

then take logarithms of each side to obtain

log T = log xT = T log x.

Now solve for

x(T ) = exp

(
log T

T

)

.

To find the maximum of x(T ) differentiate x with respect to T then

dx

dT
=

(
1− log T

T 2

)

exp

(
log T

T

)

.

Now dx
dT

= 0 if log T = 1 which yields T = e and

x = exp(
1

e
) = 1.444667861 . . . .

The above solution assumes that T (x) is a well-defined single-valued function with
an inverse x(T ) but the situation is more complicated than this, as is apparent by con-

sidering T (
√
2) =

√
2
T (

√

2)
which has two solutions T (

√
2) = 2 or T (

√
2) = 4.

If we let t = T (x) and consider x > 0 then simple curve sketching arguments reveal
that xt = t has
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(i) a unique solution in t for 0 < x ≤ 1

(ii) two solutions in t for 1 < x < e
1
e

(iii) one solution in t for x = e
1
e

(iv) no solutions in t for x > e
1
e .

Then taking x = e
1
e we have e

t

e = t if t = e.

Problem 3
A gaoler enters a room with three prisoners and places ten hats in clear view on a

table in front of the prisoners. Some of the hats are black and the others are white. The
gaoler blindfolds the prisoners and then puts a hat on each of them and removes the
remaining seven hats and says, “I will give you turns to deduce the colour of the hat
that I have put on your head. If you can do this correctly you will be set free.”

He then removes the blindfold from the first prisoner who says, “I can see the
colours of the hats of my two fellow prisoners but I cannot tell the colour of my own
hat.” The gaoler removes the blindfold from the second prisoner who says, “I can see
the colours of the hats of my two fellow prisoners but I cannot tell the colour of my
own hat.” The gaoler is about to remove the blindfold from the third prisoner when
the prisoner says, “I cannot tell the colours of the hats of my two fellow prisoners but
the colour of my hat is white.” The gaoler says, “That’s correct, you are now free.”

How many black hats did the gaoler bring into the room?

Solution 3
2 black hats.
If there were no black hats then all prisoners would have known the colours of

their hats immediately so consider one black hat. It cannot have been on Prisoner 2 or
3 since then Prisoner 1 would have known that he had white. Then Prisoner 2 would
know he must have a white hat but he didn’t know so there can’t have been just one
black hat.

Suppose there are two black hats then there are the following possibilities:
P1 P2 P3 P3’s Thinking
W W W
W B B Eliminated by statement of Prisoner 1.

Obvious
B W B Eliminated by statement of Prisoner 2.

Obvious
W W B Eliminated by statement of P2.

P2 and P3 cannot both be black as above,
so if P3 is black then P2 must be white,
but P2 did not know so rule out.

B W W
W B W
B B W
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The remaining possibilities all have a white hat on Prisoner 3.
If there were three, four, five, six or seven black hats then in addition to the above

there would be the possibility of a black hat on each prisoner in which case Prisoner 3
could not deduce if he had black or white.

If there were eight black hats then there were only two white hats and by swapping
black and white in the above table Prisoner 3 would have been led to the conclusion
that he had a black hat but this was not his conclusion.

If there was only one white hat then similar to the case of one black hat, Prisoner 3
would have been able to deduce the colours of the hats of all three.

The case of no white hats is trivial.

Problem 4
Consider a triangle with sides a, b, c of unequal length, a < b < c. Construct a

sequence of triangles T1, T2, ... as follows:

Let s1 =
a+ c

2
and let T1 have sides s1, s1, b.

Let s2 =
s1 + b

2
and let T2 have sides s2, s2, s1.

Let s3 =
s2 + s1

2
and let T3 have sides s3, s3, s2.

For n ≥ 3, let sn = 1
2
(sn−1 + sn−2) and let Tn have sides sn, sn, sn−1.

1. Prove that each triangle in the sequence has perimeter a+ b+ c.

2. Prove that for n ≥ 3, sn − sn−1 =
(−1)n−1

2n−1
(s1 − b).

3. What happens to the three sides of Tn as n increases without bound?

Solution 4

1. Let P (n) be the proposition 2sn + sn−1 = a+ b+ c. We also define s0 = b. Clearly
P (2) is true since 2s2 + s1 = a + b + c. Let k be an integer for which P (k) is true
then

2sk + sk−1 = a+ b+ c.

Now consider the proposition for k + 1,

2sk+1 + sk = (sk + sk−1) + sk = 2sk + sk−1 = a+ b+ c

so P (k + 1) and P (k) are true ∀k ≥ 2 by induction.
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2.

sn − sn−1 =
1

2
(sn−1 + sn−2)− sn−1

= (−1

2
)(sn−1 − sn−2)

= (−1

2
)2(sn−2 − sn−3)

...

= (−1

2
)n−1(s1 − s0)

= (−1

2
)n−1(s1 − b)

3. As n → ∞, sn − sn−1 = 0 and sn is finite, x say, so that the sides sn, sn, sn−1 of the
triangle T (n) approach x, x, x, that is, the limiting triangle is equilateral.

Problem 5
For any positive integer n let s(n) denote the digit sum and answer the following.

1. Show that for any positive integer k there is a positive integerm such thatm, 2m, . . . , km
all have digit sum divisible by 10.

2. Prove that for any positive integerm there is a positive integer k, for which s(km)
is not a multiple of 10.

Solution 5

1.
m = 10 · · · 010 · · · 01 · · · 10 · · · 01

with 10 ones and p zeros in each block of zeros between the ones where k < 10p

is such a number.

2. Choose t such thatm < 10t. Then there exist multiples n1 and n2 of m such that

9× 102t ≤ n1 < 9× 102t + 10t and 10t ≤ n2 < 2× 10t .

We can write decimal representations

n1 = 9

t zeros
︷ ︸︸ ︷

0 · · · 0 a1 · · · at , n2 = 1 b1 · · · bt ,
n1 + 10tn2 = 10 b1 · · · bt a1 · · · at ;

but then we have

s(n1) = 9 + a1 + · · ·+ at

s(n2) = 1 + b1 + · · ·+ bt

s(n1 + 10tn2) = 1 + a1 + · · ·+ at + b1 + · · ·+ bt

so s(n1+10tn2) = s(n1)+s(n2)−9, and the three digit sums cannot all bemultiples
of 10.
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Problem 6
Consider the list of fractions

1

2
,
1

6
,

1

12
,

1

20
, . . .

that is,

1

1× 2
,

1

2× 3
,

1

3× 4
,

1

4× 5
, . . .

with the list going on as far as we wish. Prove that if n is any integer greater than 1,
then it is possible to select a finite sequence of consecutive terms from this list which
add up to 1/n.

Solution 6
Consider such a finite sequence

S =
n+m∑

j=n

1

j(j + 1)

and note that
1

j(j + 1)
=

1

j
− 1

j + 1
.

Then

S =
n+m∑

j=n

1

j
− 1

j + 1

=
1

n
− 1

n+ 1
+

1

n+ 1
− 1

n+ 2
+ . . .+

1

n+m− 1
−

1

n+m
+

1

n+m
− 1

n+m+ 1

=
1

n
− 1

n+m+ 1

=
m+ 1

(n+m+ 1)n

Consider m = n2 − 1 then

S =
n2

(n+ n2)n

=
1

1 + n
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