
Parabola Volume 50, Issue 3 (2014)

2014 UNSW School Mathematics Competition
Junior Division - Problems and Solutions

Solutions by David Crocker, UNSW, Australia.

Problem 1
Find

S = 1 + 11 + 111 + · · ·+ 11 . . . 1︸ ︷︷ ︸
2014 digits

.

Proof. [Solution] By sum of the geometric progression formula:

11 . . . 1︸ ︷︷ ︸
k digits

= 1 + 10 + 102 + · · ·+ 10k−1

=
10k − 1

10− 1

=
1

9
(10k − 1),

so we compute

S =
2014∑
k=1

1

9
(10k − 1)

=
1

9

[
2014∑
k=1

10k −
2014∑
k=1

1

]
=

1

9

[
10(1 + 10 + · · ·+ 102013)− 2014

]
=

1

9

[
10(102014 − 1)

9
− 2014

]
(sum of a GP)

=
1

81

[
102015 − 10− 9 · 2014

]
=

1

81

[
102015 − 18136

]
We can find the decimal representation of S as follows. By setting

x = 102015 − 18136,

we see that
S =

x

81
.
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On the other hand, writing out x in base 10 we find,

x = 99 . . . 9︸ ︷︷ ︸
2010 digits

∣∣∣ 81864.
Hence,

x

9
= 11 . . . 1︸ ︷︷ ︸

2010 digits

∣∣∣ 09096.
We now divide by 9 again. Since

11 . . . 1︸ ︷︷ ︸
9 digits

= 9× (012345679)

then extracting groups of 9 1s in x/9, and dividing by 9 and as

2010 = 9× 223 + 3

then S = x/81 in base 10 consists of 223 groups of 012345679 followed by

11109096÷ 9 = 01234344.

Hence,

S = (012345679)(012345679) · · · (012345679)︸ ︷︷ ︸
223 times

∣∣∣ 01234344
= (123456790)(123456790) · · · (123456790)︸ ︷︷ ︸

223 times

∣∣∣ 1234344.
2

Problem 2
Let a1, a2, . . . , an be real numbers such that a1 + · · ·+ an = 1. Prove that

a21 + · · ·+ a2n ≥
1

n
.
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Proof. [Solution 1] A possible solution can be

0 ≤
n∑

i=1

(
ai −

1

n

)2

=
n∑

i=1

(
a2i −

2ai
n

+
1

n2

)
=

n∑
i=1

a2i −
2

n

n∑
i=1

ai +
1

n2

n∑
i=1

1

=
n∑

i=1

a2i −
2

n
· 1 + 1

n2
· n

=
n∑

i=1

a2i −
2

n
+

1

n

=
n∑

i=1

a2i −
1

n
.

Hence,
1

n
≤

n∑
i=1

a2i .

2

Proof. [Solution 2] A similar solution is to shift

ai =
1

n
+ xi for 1 ≤ i ≤ n

and then compute

1 =
n∑

i=1

ai

=
n∑

i=1

1

n
+

n∑
i=1

xi

=
1

n
· n+

n∑
i=1

xi

= 1 +
n∑

i=1

xi

so
n∑

i=1

xi = 0.
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Hence,
n∑

i=1

a2i =
n∑

i=1

(
1

n
+ xi

)2

=
n∑

i=1

(
1

n2
+

2xi
n

+ x2i

)

=

(
n∑

i=1

1

n2

)
+

2

n

(
n∑

i=1

xi

)
+

(
n∑

i=1

x2i

)

= n · 1
n2

+
2

n
· 0 +

(
n∑

i=1

x2i

)

=
1

n
+

(
n∑

i=1

x2i

)
≥ 1

n
.

2

Proof. [Solution 3] Recall the Cauchy-Schwartz inequality:

~a ·~b ≤ ||~a|| ||~b||,

where

~a = (a1, a2, . . . , an) and ~b =

(
1

n
,
1

n
, . . . ,

1

n

)
.

Hence,

1

n
=
a1 + a2 + · · ·+ an

n

= ~a ·~b
≤ ||~a|| ||~b||

=

√√√√ n∑
i=1

a2i

√√√√ n∑
i=1

1

n2

=

√√√√ 1

n

n∑
i=1

a2i

from which the result follows. 2

Problem 3
Find all possible decimal digits you can use to fill places marked with an asterisk ∗, so
that the following identity holds

∗00∗∗∗ = (∗∗∗)2.
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Proof. [Solution] We want integers x with

100 ≤ x ≤ 999

such that for some integer a, 1 ≤ a ≤ 9,

100000a ≤ x2 < 100000a+ 1000

i.e. 100
√
10a ≤ x < 10

√
1000a+ 10.

Rounding to 1 decimal place, a calculator gives the following results with the 7 solu-
tions to x and x2 in the last two columns:

a 100
√
10a 10

√
1000a+ 10 x x2

1 316.2 317.8 317 100489

2 447.2 448.3 448 200704

3 547.7 548.6 548 300304

4 632.4 633.2 633 400689

5 707.1 707.8 − −
6 774.5 775.2 775 600625

7 836.6 837.2 837 700569

8 894.4 894.9 − −
9 948.6 949.2 949 900601

2

Problem 4
Five speakers A, B, C, D and E take part in a conference. Find the total number of ways
to organise the programme so that

a) A speaks immediately before B;

b) B does not speak before A.

Proof. [Solution] For a)

No. = 4 × 1 × 3!

↓ ↓ ↓

Choose a posi-
tion for A

Place B in next
position

Fill remain-
ing positions

= 4× 6 = 24
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For b)

No. =
4∑

j=1

1 × (5− j) × 3!

↓ ↓ ↓
Place A in
position j

Choose a later
position for B

Fill remain-
ing positions

= (4 + 3 + 2 + 1)× 6

= 10× 6 = 60

2

Problem 5

a) Prove that the radius of the inscribed circle to the triangle4ABC is given by

r =
2S

AB +BC + AC
,

where S is the total area of the triangle4ABC.

A

B

C

P

R

Q

O

r

b) In a right-angled triangle, we draw the altitude onto the hypotenuse. This process
is repeated in the two smaller right-angled triangles so formed and the process is
then continued 2014 times, as shown in the diagram. A circle is inscribed in each
of the resulting 22014 triangles. Find the total area of these circles.
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Stage 1 Stage 2

Stage 3 Stage 4

Proof. [Solution, part a] Let AB = c, AC = b, BC = a (lengths). Let the incircle to
4ABC meet the sides at P,Q,R as shown. Since the sides of4ABC are tangent to the
in-circle, then PO, QO and RO are perpendicular to the respective sides AB, AC and
BC. Hence PO is an altitude for 4AOB, QO is an altitude for 4AOC and RO is an
altitude for 4BOC, and these altitudes have length r, the radius of the incircle. Now
4ABC is partitioned into sub-triangles4AOB, 4BOC, 4AOC. Hence

S = Area(4ABC) = Area(4AOB) + Area(4BOC) + Area(4AOC)

=
1

2
rc+

1

2
ra+

1

2
rb

=
r

2
(c+ b+ a).

Therefore,

r =
2S

a+ b+ c
=

2S

BC + AC +BC
.

2

Proof. [Solution, part b] Let 4ABC be a right-angled triangle, w.l.o.g. let ∠ACB be a
right angle. Let CQ be an altitude to4ABC.
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C

AB Q

a b

x y

z

Let S, r, S1, r1 and S2, r2 be the area of the triangle and the radius of the inscribed
circle for4ABC,4BQC and4CQA respectively.

Now 4BQC ||| 4BCA ||| 4CQA (with corresponding sides in order) by “AAA”
by common angles, right angles and angle sum of a triangle.

Since4BQC ||| 4BCA then
x

a
=
z

b
=
a

c
so

x = a · a
c
, z = b · a

c

and so

S1 =
1

2
xz =

1

2
ab
(a
c

)2
= S

(a
c

)2
and a+ x+ z = a+ a

(a
c

)
+ b
(a
c

)
= (c+ a+ b)

(a
c

)
.

Therefore,

r1 =
2S1

a+ x+ z
=

2S
(
a
c

)2
(c+ b+ a)

(
a
c

) = r
(a
c

)
.

Similarly, as4CQA ||| 4BCA,

y

b
=
z

a
=
b

c

so
y = b · b

c
, z = a · b

c

and so

S2 =
1

2
yz =

1

2
ba

(
b

c

)2

= S

(
b

c

)2

and b+ z + y = b+ a

(
b

c

)
+ b

(
b

c

)
= (c+ a+ b)

(
b

c

)
.
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Consequently,

r2 =
2S2

b+ z + y
=

2S
(
b
c

)2
(c+ a+ b)

(
b
c

) = r

(
b

c

)
.

Hence the sum of the areas of the inscribed circles in4BCQ and4ACQ is

πr21 + πr22 = πr2
(a
c

)2
+ πr2

(
b

c

)2

=
πr2

c2
(a2 + b2)

=
πr2

c2
· c2 (by Pythagoras’ Theorem)

= πr2

= Area of the inscribed circle for4ABC

Hence after any number, say n steps where, at each step, each sub right-angle triangle
is subdivided into two sub rightangle triangles by an altitude, the sum of areas of the
inscribed circles in the resulting 2n final rightangle triangles is equal to the area of the
original inscribed triangle for the original triangle4ABC, i.e.

Area = π

(
2S

a+ b+ c

)2

= π

(
ab

a+ b+ c

)2

where the sides are a, b, c and c is the length of the hypotenuse. 2

Problem 6
Show how to cut a square of side length 1 by straight lines, so that the resulting pieces
can be assembled to form a rectangle in which the ratio of sides is 3 : 1.

Unit square

3:1 rectangle

Proof. [Solution 1] Since we start with a unit square of area 1, and the desired rectangle
has sides in ratio 3:1, if the sides are x and 3x then

1 = 3x2 ⇒ x =
1√
3
.

Go up 1√
3

on one side of the unit square and draw a line parallel to the other two sides
of length

√
3. Complete the 1√

3
×
√
3 rectangle BGJA as shown in the diagram.
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A I

DC

B
G

J

FE

H

Now draw the line CJ , the longest line segment from a vertex of the unit square to a
vertex of the rectangle.

We claim 4CBE ≡ 4HIJ and 4CDH ≡ 4EGJ , and hence to perform the
transformation, we make two straight line cuts in the unit square along CH and BE,
then slide down 4CDH on the line CH to the position of 4EGJ and move 4CBE
to the position of4HIJ .

We could verify the claim in various ways — here we use coordinate geometry. Let
AC be the positive y-axis and AJ the positive x-axis with A the origin. Hence we have
coordinates:

A(0, 0), C(0, 1), D(1, 1), I(1, 0)

B

(
0,

1√
3

)
, F

(
1,

1√
3

)
, G

(√
3,

1√
3

)
, J(
√
3, 0)

Line CJ has equation

y − 0 =
1− 0

0−
√
3
(x−

√
3) ⇔ y = − 1√

3
(x−

√
3).

Hence at E, y = 1/
√
3 and so

1√
3
= − x√

3
+ 1 ↔ x =

√
3− 1 ⇒ E

(√
3− 1,

1√
3

)
and at H , x = 1 and so

y = − 1√
3
(1−

√
3) = 1− 1√

3
⇒ H

(
1, 1− 1√

3

)
.

Hence4CBE ≡ 4HIJ as

1. ∠CBE = ∠HIJ = a right angle.

2. CB = HI = 1− 1√
3
.
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3. BE = JI =
√
3− 1.

And4CDH ≡ 4EGJ as

1. ∠CDH = ∠EGJ = a right angle.

2. CD = EG = 1.

3. DH = GJ = 1√
3
.

2

Proof. [Solution 2] This solution is essentially the same as a general two-cut construc-
tion to convert a rectangle with sides x and 1 into a square where 1 ≤ x ≤ 4, as in
Joseph S. Madachy, Madachy’s Mathematical Recreations (Dover Publications, 1979) on
page 12 in Chapter 1 Geometric Dissections.

A

B C

DE

G

F

a

b

c

1

x

AD = x, CD = 1, ED = b, EF = a, GC = c

Make two straight line cuts, GD and EF , then slide up 4GCD up and left along line
GD, and move4FED up and left into position of4GE2D in the square.

G

A

C

F

D
E2

E1

a

1

1

a

c

x − b

b

For consistency of slope of line GD in the rectangle (or 4GCD ||| 4DEF ), we must
have

a

b
=

1

c

11



and to obtain a square we must have

c = x− b = 1 + a.

Therefore,

b = a+ a2 and x = 1 + a+ b

= 1 + a+ a+ a2

= 1 + 2a+ a2

= (1 + a)2

so
a =
√
x− 1

and so we need

x ≥ 1 and b = a+ a2 = (
√
x− 1) + x− 2

√
x+ 1

= x−
√
x,

c = 1 + a =
√
x.

This works provided also that

c ≤ x and a ≤ 1.

Now,

c =
√
x ≤ x iff x ≥ 1 and

a =
√
x− 1 ≤ 1 iff

√
x ≤ 2 or x ≤ 4.

2
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2014 UNSW School Mathematics Competition
Senior Division - Problems and Solutions

Solutions by Denis Potapov, UNSW, Australia.

Problem 1
The integer part of the real number x, written [x], is the unique integer m, such that

m ≤ x < m+ 1.

For example, [
3 +

1

2

]
= 3 and

[
−3− 1

2

]
= −4.

Let k and n be positive integers. Evaluate the expression[
n

k

]
+

[
n+ 1

k

]
+ · · ·+

[
n+ k − 1

k

]
.

Proof. [Solution] We set

An =

[
n

k

]
+

[
n+ 1

k

]
+ · · ·+

[
n+ k − 1

k

]
.

Now, we note that

A0 =

[
0

]
+

[
1

k

]
+ · · ·+

[
k − 1

k

]
= 0 + 0 + · · ·+ 0 = 0.

Also, we note that

An+1 = An −
[
n

k

]
+

[
n

k
+ 1

]
= An + 1.

Consequently,
An = n.

2

Problem 2
Players A and B play the following game:

1. the game starts with 1000 counters;

2. at every move, a player subtracts n counters, where n is some power of 2, includ-
ing 20 = 1;

3. the player cannot subtract more counters than are present at any given stage;

4. the player who first reaches 0 is the winner.
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Find the optimal strategy and the winner, if player A starts the game.

Proof. [Solution] PlayerA always wins by adhering to the strategy in which the number
of counters available before every move of player B is to be a multiple of 3:

1. at the start of the game, the number of counters, P , is

P ≡ 1 mod 3;

2. if the number of counters before each move of player B is a multiple of 3, then
the number of counters before the following move of player A is either

P ≡ 1 mod 3 or P ≡ 2 mod 3;

3. by subtracting either
20 = 1 or 21 = 2,

playerAmakes sure that the number of counters available to playerB on his next
move is again a multiple of 3.

2

Problem 3
Let a1, a2, . . . , an be positive real numbers such that a1 + · · ·+ an = 1. Prove that

1

a1
+ . . .+

1

an
≥ n2.

Proof. [Solution] By the inequality between arithmetic and geometric mean,

a1 + a2 + · · ·+ an
n

≥ (a1a2 · · · an)
1
n and

1

n

(
1

a1
+

1

a2
+ · · ·+ 1

an

)
≥
(

1

a1a2 · · · an

) 1
n

.

Multiplying together,

(a1 + a2 + · · ·+ an)×
(

1

a1
+

1

a2
+ · · ·+ 1

an

)
≥ n2.

That is,
1

a1
+

1

a2
+ · · ·+ 1

an
≥ n2,

given
a1 + a2 + · · ·+ an = 1.

2

Problem 4
Given two circles of radius 1 with their centres one unit apart, a point A is chosen on
the first circle. Two other points B1 and B2 are chosen on the second circle, so that they
are symmetric with respect to the line connecting the centres of the circles. Prove that

(AB1)
2 + (AB2)

2 ≥ 2.
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=

=

A B1

B2

1

Proof. [Solution] By cosine theorem,

AB2
1 =MA2 +B1M

2 − 2MA×B1M × cosα and
AB2

2 =MA2 +B2M
2 + 2MA×B2M × cosα.

A B1

B2

M

α

Amin

1

Adding together
AB2

1 + AB2
2 = 2×

(
MA2 +B1M

2
)
.

On the other hand, the distance
MA

is minimised if
A = Amin,

so by Pythagoras’ Theorem
MA2

min +MB2
1 = 1.

2

Problem 5
Let n be a positive integer.

a) Explain why the set S = {1, 2, . . . , n} can be partitioned into two non-empty disjoint
subsets in exactly 2n−1 − 1 ways.
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b) Find the number of ways the set {1, 2, . . . , 7} can be partitioned into three non-
empty disjoint subsets.

Proof. [Solution] a) There are 2n subsets of the set

S = {1, 2, . . . , n} .

If A is one of these, then
A, S \ A

gives a partition. Since order is unimportant, there are 2n−1 such partitions. Since, the
partition

∅, S
is also included in the above computation, the total number of non-empty partitions
is 2n−1 − 1.

b) Let an be the number of partitions of set

Sn = {1, 2, . . . , n}

into three non-empty subsets. We see a recurrence relation for the sequence

{an}∞n=1

as follows: we can partition the set

Sn−1 = {1, 2, . . . , n− 1}

in an−1 ways and there are 3 subsets in which to place the number n. Also, we could
partition Sn as

A,B, {n} ,
where

A ∪B = Sn−1 and A 6= ∅, B 6= ∅.
By part a), we have exactly

2n−1 − 1

possibilities for the latter. So, we arrive at

a1 = a2 = 0, a3 = 1, an = 3an−1 + 2n−2 − 1, n ≥ 4.

Hence,

a4 = 3a3 + 4− 1 = 6,

a5 = 3a4 + 8− 1 = 25,

a6 = 3a5 + 16− 1 = 90,

a7 = 3a6 + 31− 1 = 301.

2

Problem 6
Show how to cut a square of side length 1 by straight lines, so that the resulting pieces
can be assembled to form a rectangle in which the ratio of sides is 3 : 1.

16



Unit square

3:1 rectangle

Proof. [Solution] See solution in Junior section. 2
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