MATHEMATICS ENRICHMENT CLUB. Problem Sheet 1, May 6, 2019

1. Express $0.284284284 \ldots$ as a fraction in simplest terms.
2. Let x, y and z be integers. Show that if $x-y+2 z$ is divisible by 11 , then so is $-12 x+y-13 z$.
3. Anna and Boris move simultaneously towards each other from points A and B, respectively. Their speeds are constant, but not necessarily equal. Had Anna started 30 minutes earlier, they would have met 2 kilometres nearer to B. Had Boris started 30 minutes earlier instead, they would have met d kilometers nearer to A. Find d.
4. A four digit number and its square ends in the same four digits. Find the number.
5. A 3×3 magic square is a grid filled with the numbers 1 to 9 so that the sum of rows, column and diagonal are all equal. E.g

6	1	8
7	5	3
2	9	4

Counting different orientations of the grid as the same magic square, prove that the above example is the only solution.

Senior Questions

1. (a) Prove the identity

$$
\frac{d}{d x} \tan ^{-1}(x)=\frac{1}{1+x^{2}}
$$

(b) Using the this result, show that the infinite series satisfies

$$
x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots=\tan ^{-1}(x)
$$

2. (a) For an integer n, show that $n(n+1)(n+2)(n+3)+1$ is a perfect square.
(b) Thus evaluate $\sqrt{(31)(30)(29)(28)+1}$.
