MATHEMATICS ENRICHMENT CLUB. Problem Sheet 17, September 24, 2019

1. AMC 2010 Senior Division, Q16.

The 5 -digit number $a 986 b$, where a is the first digit and b is the units digit, is divisible by 72 . What is the value of $a+b$?
2. AMC 2010 Senior Division, Q19.

A circle is inscribed in a quadrant of a larger circle. What is the ratio of the area of the inner circle to that of the quadrant?

3. AMC 2010 Senior Division, Q24.

What is the smallest n such that no matter how n points are placed inside or on the surface of a cube of side length 16 units, there are at least two of these points which are closer than 14 units to each other?
4. A sequence of real numbers, $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$, is defined by

$$
\begin{aligned}
& x_{1}=\sqrt{2}, \quad x_{2}=\sqrt{3} \\
& x_{n}=x_{n-1}-x_{n-2} \quad \text { for } n \geq 3
\end{aligned}
$$

What is the value of x_{2019} ?
5. AMC 2010 Senior Division, Q28.

In the triangle $P Q R, P Q=P R=40 \mathrm{~cm}$ and S is a point on $Q R$ such that $P S=$ 25 cm . The extension of $P S$ meets the circle through $P Q R$ at T.

What is the length in centimetres of $P T$?

Senior Questions

1. The numbers x and y are positive integers that satisfy

$$
3 x^{2}-8 y^{2}+3 x^{2} y^{2}=2008
$$

Find all possible values of x and y.
2. AMC 2010 Senior Division, Q26.

A polynomial f is given. All we know about f is that all its coefficients are non-negative integers, $f(1)=6$ and $f(7)=3438$.
What is the value of $f(3)$?
3. AMC 2008 Senior Division, Q29.

A point O is inside an equilateral triangle $P Q R$ and the perpendiculars $O L, O M$ and $O N$ are drawn to the sides $P Q, Q R$ and $R P$ respectively.
The ratios of the lengths of the perpendiculars $O L: O M: O N$ is $1: 2: 3$. If

$$
\frac{\text { area of } L O N P}{\text { area of } \triangle P Q R}=\frac{a}{b},
$$

where a and b are integers with no common factors, what is the value of $a+b$?

