MATHEMATICS ENRICHMENT CLUB. Problem Sheet 3, May 20, $2019{ }^{11}$

1. Let a and b be positive integers such that $2^{a}-2^{b}=2016$. Find the value of $a+b$.
2. Let $A B C D$ be a square, with M and N the mid points of the sides $B C$ and $A D$ respectively. K is an arbitrary point on the extension of the diagonal $A C$ beyond A. The segment $K M$ intersects the side $A B$ at some point L. Prove that $\angle K N A=$ $\angle L N A$.

3. Find the smallest positive integer n such that $\frac{1}{3} n$ is a perfect cube, $\frac{1}{5} n$ a perfect fifth power and $\frac{1}{7} n$ a perfect seventh power.
4. Simplify

$$
\left(\frac{2^{3}-1}{2^{3}+1}\right)\left(\frac{3^{3}-1}{3^{3}+1}\right)\left(\frac{4^{3}-1}{4^{3}+1}\right) \cdots\left(\frac{n^{3}-1}{n^{3}+1}\right) .
$$

5. Two mathematicians take a morning coffee break each day. They arrive at the cafeteria independently, at random times between 9 a.m. and 10 a.m., and stay for exactly m minutes. The probability that either one arrives while the other is in the cafeteria is 40%, and $m=a-b \sqrt{c}$, where a, b, and c are positive integers, and c is not divisible by the square of any prime. Find $a+b+c$. Hint: Interpret this problem geometrically.
6. In how many ways can we choose n integers $x_{1}, x_{2}, \ldots, x_{n}$ such that each is 0,1 or 2 and their sum is even?
[^0]
Senior Questions

1. Given that a, b, and c are positive integers, solve
(a) $a!b!=a!+b$!
(b) $a!b!=a!+b!+2^{c}$
(c) $a!b!=a!+b!+c!$
2. (a) Prove that for $n \geq 3,(n+1)$! $>(n-2)(1!+2!+\ldots+n!)$.
(b) Use part (a) or otherwise, show that for $n \geq 3,(n+1)$! is not divisible by $1!+2!+\ldots+n!$.

[^0]: ${ }^{1}$ Some problems are from UNSW's publication Parabola, and the Tournament of Towns in Toronto.

