MATHEMATICS ENRICHMENT CLUB. Problem Sheet 8, June 24, 2019

1. Given that x and y are integers, how many different solutions are there to the equation

$$
|x|+2|y|=100 ?
$$

2. Place the numbers $1,2,4,8,16,32,64,128$ and 256 in a 3×3 square grid in such a way, that the product of each row, column and diagonal gives the same value. Can you find another solution that is not just a rotation or reflection of the first one?
3. If x is a positive real number, let $[x]$ denote the greatest integer less than or equal to x and $\{x\}=x-[x]$. For example, $[3.14]=3,\{3.14\}=0.14$.
Find numbers x and y such that
(a) $x^{3}-5[x]=10$
(b) $y^{3}-5\{y\}=10$.
4. Consider the polynomial $f(x)=x^{4}-n x+63$. Find the smallest positive integer n such that $f(x)$ can be written as the product of two non-constant polynomials with integer coefficients.
5. Let $\triangle A B C$ be an equilateral triangle inscribed in a circle. Let M be fourth point on the circle, lying between B and C, as shown below. Prove that $M A=M B+M C$.

Senior Questions

1. How many different integers x satisfy the equation

$$
\left(x^{2}-5 x+5\right)^{x^{2}-11 x+30}=1 ?
$$

2. The integers $5,11,17,23$ and 29 are five prime numbers in arithmetic progression. Find six prime numbers in arithmetic progression.
3. Given that n is a positive integer and $2 n+1$ and $3 n+1$ are perfect squares, prove that n is divisible by 40 .
