MATHEMATICS ENRICHMENT CLUB. Problem Sheet 9, July 1, 2019

1. Find the sum of all n-digit long numbers formed by $1,2,3, \ldots, n$. For example, if $n=3$ then the sum of all 3 -digit long numbers is $123+132+213+231+312+321=1332$.
2. Evaluate $\sqrt[4]{2} \times \sqrt[8]{4} \times \sqrt[16]{8} \times \sqrt[32]{16} \times \sqrt[64]{32} \ldots$..
3. Several positive integers are written on a blackboard. The sum of any two of them is some power of two (for example, $2,4,8, \ldots$). What is the maximal possible number of different integers on the blackboard?
4. For a triangle $A B C, M$ is the midpoint of the side $A B$ and L is some point along the side $B C$. Let O be the point of intersection between the lines $L A$ and $M C$, and let K be the point of intersection between $L A$ and the line passing through M, parallel to $B C$, as shown in the diagram below.

NOT TO SCALE

(a) Show that the triangles $\triangle K M O$ and $\triangle L C O$ are similar.
(b) Suppose the length $L A$ is twice as long as $M C$, and $\angle O L C=45^{\circ}$. Prove $L A$ is perpendicular to $M C$.
5. Consider the polynomial $p(x)=x^{4}+37 x^{3}+71 x^{2}+18 x+3$. If a, b, c and d are roots of $p(x)$, find a polynomial whose roots are $\frac{a b c}{d}, \frac{a c d}{b}, \frac{a b d}{c}$ and $\frac{b c d}{a}$.

Senior Questions

1. The speed of a multi-pole DC motor is described by the following simplified relation:

$$
\begin{equation*}
j \frac{d^{2} \theta}{d t^{2}}+c \frac{d \theta}{d t}=I_{m o t o r} \tag{1}
\end{equation*}
$$

where θ is the angular position of the motor, j is the rotational inertia of the load, c is the damping coefficient of the load and $I_{\text {motor }}$ is the current through the motor circuit. Additionally, the motor circuit has an associated resistance (R) and back EMF $\left(k_{m} \frac{d \theta}{d t}\right)$ described by the following formula:

$$
\begin{equation*}
V_{i n}=R \times I_{m o t o r}+k_{m} \frac{d \theta}{d t}, \tag{2}
\end{equation*}
$$

where $V_{i n}$ is the applied battery voltage. Given $j=5, c=1, V_{i n}=12$ volts, $R=10$ ohms, $k_{m}=5$, find:
(a) The limiting angular speed of the motor.
(b) The initial acceleration of the motor from a stationary state.
(c) Solve for $\theta(t)$.
2. Using straight-edge and compass techniques, describe how to construct a triangle given its circumcircle (\mathcal{C}) and the three points on it at which the altitude (A), the angle bisector (B), and the median (C) drawn from the same vertex intersect the circle.

