MATHEMATICS ENRICHMENT CLUB. Problem Sheet 10 Solutions, August 13, 2019

1. Carla wins if either or both players rolls a 5 or 6 . Summing the probability of each case to occur gives

$$
2 \times\left(\frac{2}{6} \times \frac{4}{6}\right)+\frac{2}{6} \times \frac{2}{6}=\frac{5}{9} ;
$$

Carla is more likely to win.
2. First note that $2^{10}=1024$, so that the distinct numbers we are adding can have at most a power of 9 on 2 . Now adding the ten possible distinct powers of 2 , gives $2^{0}+2^{1}+\ldots+2^{9}=2^{10}-1=1023$, and we have to delete a number from the summation on the LHS that is greater than 23 in order to obtain the 3 digit positive integer we need; there is only five distinct powers of 2 that is greater than 23 from the list.
3. By considering the expansion $(a+b)^{2}=a^{2}+b^{2}+2 a b$, and using the fact that $a+b=1$ and $a^{2}+b^{2}=2$, we can deduce that $a b=-1 / 2$.
Next by considering the expansion of $\left(a^{n-1}+b^{n-1}\right)(a+b)$, where n is a positive integer, and using the fact that $a+b=1$ and $a b=-1 / 2$, we have

$$
\begin{aligned}
\left(a^{n-1}+b^{n-1}\right)(a+b) & =a^{n}+b^{n}+a^{n-1} b+a b^{n-1} \\
\left(a^{n-1}+b^{n-1}\right) \times 1 & =a^{n}+b^{n}-\frac{1}{2} a^{n-2}-\frac{1}{2} b^{n-2} \\
a^{n}+b^{n} & =a^{n-1}+b^{n-1}+\frac{1}{2}\left(a^{n-2}+b^{n-2}\right) .
\end{aligned}
$$

The last line of the above equation is a recursive relationship on $a^{n}+b^{n}$, so by setting $n=7$, we can after some work find $a^{7}+b^{7}$, which is $71 / 8$.
4. Rearranging the equation, we have

$$
x-y=\sqrt{x}-\sqrt{y}
$$

We can treat the LHS as a difference of two squares, in which case,

$$
(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})=\sqrt{x}-\sqrt{y}
$$

Now $x \neq y$, so we can cancel the common factor of $\sqrt{x}-\sqrt{y}$ to obtain

$$
\sqrt{x}+\sqrt{y}=1
$$

Squaring both sides and rearranging, we have

$$
\begin{aligned}
x+2 \sqrt{x y}+y & =1 \\
x+y & =1-2 \sqrt{x y}
\end{aligned}
$$

Now the LHS is what we are trying to maximise. If we look at the RHS, we can see that this is maximised if either x or y is zero and the other number must then be one. So the maximum value is one.
5. Let $\angle B A C=\alpha$ and $\angle A B C=\beta$.

(a) Since F and E are the feet of two altitudes, $\angle A F B=\angle B E A=90^{\circ}$. Thus $A F E B$ is a cyclic quadrilateral, of which $\angle E F C$ is an exterior angle. Hence $\angle E F C=$ $\angle A B C=\beta$. In a similar fashion, it can be shown that $\angle C E F=\angle B A C=\alpha$. Thus $\triangle E F C$ is similar to $\triangle A B C$ (equiangular).
(b) By a similar argument to that in part (a), we can show that $\angle E F C=\angle D F A=\beta$, which implies that $\angle B F E=\angle B F D=90^{\circ}-\beta$. Thus $B F$ is the bisector of $\angle D F E$. Moreover, if we consider a different pair of altitudes, we can show that $C D$ bisects $\angle F D E$ and $A E$ bisects $\angle D E F$.

Senior Questions

1. Since we are dividing by $x^{2}-1$, the remainder is a polynomial of x of at most degree 1 ; that is the remainder takes the form $a x+b$, for some constants a and b.

To find a and b, write

$$
\begin{aligned}
x^{2019} & =Q(x)\left(x^{2}-1\right)+a x+b \\
& =Q(x)(x-1)(x+1)+a x+b,
\end{aligned}
$$

where $Q(x)$ is a polynomial of x. Then by putting $x=1$ and $x=-1$ into the last line of the above equation, we have $a+b=1^{2019}=1$ and $-a+b=-1^{2019}=-1$. Solving these simultaneously, we arrive at $a=1$ and $b=0$.
2. By the sine rule,

$$
\begin{aligned}
\frac{\sin \theta}{4} & =\frac{\sin 2 \theta}{6} \\
3 \sin \theta & =2 \sin 2 \theta \\
3 \sin \theta & =4 \sin \theta \cos \theta,
\end{aligned}
$$

so

$$
\sin \theta=\frac{4}{3} \sin \theta \cos \theta
$$

Since $\sin \theta \neq 0$, we may cancel this to obtain $\cos \theta=\frac{3}{4}$.
By the cosine rule,

$$
\begin{aligned}
\cos \theta & =\frac{x^{2}+6^{2}-4^{2}}{12 x} \\
\frac{3}{4} & =\frac{x^{2}+20}{12 x}
\end{aligned}
$$

Thus $x^{2}-9 x+20=0$, which has the solutions $x=4$ or $x=5$.
Now, if $x=4$, then $\triangle A B C$ is isosceles, and $\angle B A C=\angle B C A=\theta$. So by the angle sum of $\triangle A B C, \theta=45^{\circ}$, and hence $\angle B$ is a right angle. But $4^{2}+4^{2} \neq 6^{2}$, so this is clearly incorrect.
That leaves us with $x=5$ as the only solution.
3. Consider the function $f(x)=2^{x}+3^{x}+6^{x}-x^{2}=0$. By a change of base, we have $f^{\prime}(x)=\ln 22^{x}+\ln 33^{x}+\ln 66^{x}-2 x$.
Case 1: If $x<0$, then $f^{\prime}(x)>0$. Therefore $f(x)$ is strictly increasing for $x<0$, which implies there is only one solution for this case; the unique solution is $x=-1$.
Case 2: If $x \geq 0$, suppose we have a solution s. Then $s^{2}=2^{s}+3^{s}+6^{s} \geq 3$, hence $s \geq \sqrt{3} \geq 1$. Which implies $2^{s}=(1+1)^{s} \geq 1+s \geq s$. Now $6^{s}>4^{s}=2^{2 s} \geq s^{2}$, so that $2^{s}+3^{s}+6^{s}>s^{2}$, a contradiction.

