MATHEMATICS ENRICHMENT CLUB. Problem Sheet 12 Solutions, August 27, 2019

1. Since $1!+2!+3!=9=3^{2}$, we know that $n=3$ is a possible solution to the problem. We will show that $n=3$ is the largest solution. Observe that for any number to be a perfect square, it cannot end in the digit 3 . Since $1!+2!+3!+4!=33, n=4$ is not a solution. Moreover, n ! contains factors of both 2 and 5 for $n>4$, therefore n ! ends in the digit 0 for $n>4$. We can now conclude that the number $1+2!+3!+\ldots+(n-1)!+n$! ends in the digit 3 for $n>4$, thus cannot be a perfect square.
2. Since we are adding consecutive integers, we know that $a_{2}=a_{1}+1, a_{3}=a_{1}+$ $2, \ldots, a_{100}=a_{1}+99$. Therefore, we can write

$$
\begin{aligned}
\sqrt{a_{2}+a_{3}+\ldots+a_{99}}-\sqrt{a_{1}+a_{100}} & =\sqrt{98 a_{1}+1+2+\ldots+98}-\sqrt{2 a_{1}+99} \\
& =\sqrt{98 a_{1}+4851}-\sqrt{2 a_{1}+99}
\end{aligned}
$$

The second line of the equation above is minimal when $a_{1}=1$.
3. Let $a b c$ and efg be three digit numbers. Then we can write the initial 6 -digit number x as

$$
x=1000 \times a b c+e f g
$$

We also know that

$$
6 x=1000 \times e f g+a b c .
$$

Combining the above two equations gives $5999 \times a b c=994 \times e f g$, which can be further simplified to $857 \times a b c=142 \times e f g$. Hence the number we are after is 142857 .
4. To have all frogs the same colour, we must first reach a situation where there is the same number of frogs of two different colours. So we can think about this problem in terms of the difference between the number of frogs having two different colours, then it is possible to have all frogs the same colour if this number is zero for any combination of two colours. For example, initially this number is 1 if we compare brown with green or green with yellow, and 2 if we compare brown with yellow.
Now if two frogs with different colours meet, both frogs change colour to the third, so the number of frogs of different colours either changes by 3 or remains the same. Since we started with a difference of 1 or 2 , and can only change this number by 3 , it is not possible to get the same number of frogs of two different colours.
5. Let $E F$ be the diameter perpendicular to $C D$, and let G be the reflection of D in the line $E F$, as shown below.

Since G is the reflection of $D, A G=B D$. If we can show that $C O G$ is a diameter of the circle, then $\triangle A C G$ is right angled (by Thales' theorem) and the desired result follows by Pythagoras' theorem. In order to show that $C O G$ is a diameter of the circle, we must show that $\angle C O G$ is straight.
Let H be the point of intersection of $O C$ ad $A B$. Let $\angle O C D=\alpha$ and $\angle C H B=\beta$. Since $C D \perp A B, \alpha$ and β are complementary. Furthermore, $\angle C H B$ and $\angle O H A$ are vertically opposite, so $\angle O H A=\beta$ a nd thus $\angle H O F=\alpha$.
Now $\triangle O C D$ is isosceles, thus $\angle O D C=\angle O C D=\alpha$, and since $F E$ is parallel to $C D$, $\angle E O D=\angle O D C=\alpha$. As G is the reflection of D in the line $E F, \triangle O E G \equiv \triangle O E D$, and thus $\angle G O E=\angle D O E=\alpha$. Thus $\angle G O E$ and $\angle H O F$ are equal and thus vertically opposite, and so $\angle G O C$ is straight, as required.

Senior Questions

1. From Problem Sheet 11, Senior Question 1(b), recall that the length of the median can be expressed in terms of the side lengths, $a=B C, b=A C$ and $c=A B$.

Thus $E C=\frac{1}{2} \sqrt{2\left(a^{2}+b^{2}\right)-c^{2}}$ and $A D=\frac{1}{2} \sqrt{2\left(c^{2}+b^{2}\right)-a^{2}}$. So if $E C=A D$, then

$$
\begin{aligned}
2\left(a^{2}+b^{2}\right)-c^{2} & =2\left(c^{2}+b^{2}\right)-a^{2} \\
3 a^{2} & =3 c^{2}
\end{aligned}
$$

The only positive solution to this equation is $a=c$, and thus $\triangle A B C$ is isosceles.
2. Using the method of partial fractions, we can write

$$
\frac{2 n-1}{n(n+1)(n+2)}=\frac{-1}{2 n}+\frac{3}{n+1}+\frac{-5}{2(n+2)} .
$$

Thus

$$
\begin{aligned}
\sum_{n=1}^{25} \frac{2 n-1}{n(n+1)(n+2)} & =\sum_{n=1}^{25} \frac{-1}{2 n}+\frac{3}{n+1}+\frac{-5}{2(n+2)} \\
& =\sum_{n=1}^{25} \frac{-1}{2 n}+\sum_{n=1}^{25} \frac{3}{n+1}+\sum_{n=1}^{25} \frac{-5}{2(n+2)} \\
& =-\frac{1}{2} \sum_{n=1}^{25} \frac{1}{n}+3 \sum_{n=2}^{26} \frac{1}{n}-\frac{5}{2} \sum_{n=3}^{27} \frac{1}{n} \\
& =\left(-\frac{1}{2}+3-\frac{3}{2}\right) \sum_{n=3}^{25} \frac{1}{n}-\frac{1}{2}\left(\frac{1}{1}+\frac{1}{2}\right)+3\left(\frac{1}{2}+\frac{1}{26}\right)-\frac{5}{2}\left(\frac{1}{26}+\frac{1}{27}\right) \\
& =\frac{475}{702} .
\end{aligned}
$$

