MATHEMATICS ENRICHMENT CLUB.

Problem Sheet 15 Solutions, September 17, 2019

1. Let $Q S=x$ and $S P=y$. We want to find the value of x / y.

We can see that $P Q=x+y, Q R=2 x$ and $P R=y$, so by Pythagoras' theorem,

$$
\begin{aligned}
y^{2}+(2 x)^{2} & =(x+y)^{2} \\
y^{2}+4 x^{2} & =x^{2}+2 x y+y^{2} \\
3 x^{2} & =2 x y \\
\therefore \frac{x}{y} & =\frac{2}{3}
\end{aligned}
$$

So $Q S: S P=2: 3$.
2. Since $x, y \neq 0$, we may multiply both sides of the equation by $4 x y$ to clear out all the denominators. Then

$$
\begin{aligned}
4 x^{2}+4 x+4 y & =x y \\
4 x^{2}+4 x & =y(x-4) \\
\therefore y & =\frac{4 x^{2}+4 x}{x-4}
\end{aligned}
$$

By polynomial long-division (or otherwise), we can show that

$$
\frac{4 x^{2}+4 x}{x-4}=4 x+20+\frac{80}{x-4}
$$

Since y is an integer, this implies that $x-4$ is a factor of 80 . As both x and y are positive, this means that the possible solutions are $(5,120),(6,84),(8,72),(12,78)$, $(14,84),(24,120),(44,198)$, and $(84,357)$.
3. If the number is made from $a \neq 1$, then $a a a \ldots$ is divisible by a and thus not prime.

Suppose the number has a non-prime number of digits, then we can factor the number of digit this number has into $q \times p$ where q and p are integers. Hence, we we can "split" the number up into q blocks of p-length digits; i.e

$$
\underbrace{111 \ldots 1}_{p \times q \text { lots of 1's }}=\underbrace{\underbrace{111 \ldots 1}_{\text {lots of 1's }} \times \underbrace{111 \ldots 1}_{p \text { lots of 1's }} \times \ldots \times \underbrace{111 \ldots 1}_{p \text { lots of 1's }}}_{q \text { lots of blocks }} .
$$

The RHS of the number above is divisible by $\underbrace{111 \ldots 1}_{p \text { lots of } 1 \text { 's }}$.
4. For a number to be divisible by 9 , the sum of its digits must also be divisible by 9 . If each digit of the number is even then so is the sum of its digits. So we start with smallest sum of digits that is divisible by 9 and even; this number is 18 . It is easy to check that the number has at least 3-digits, so 288 is the smallest possible solution.
5. If we write $p(x)$ in the standard form, then

$$
p(x)=a_{2020} x^{2020}+a_{2019} x^{2019}+\ldots+a_{1} x+a_{0}
$$

for some coefficients, a_{2020}, \ldots, a_{0}. To find the sum of these coefficients, we evaluate the polynomial at $x=1$. Thus

$$
\begin{aligned}
p(1) & =(1-2)^{2019}(1+2019)+(1-2)^{2018}(x+2018)+\ldots+(1-2)(1+1) \\
& =-2020+2019-2018+2017-2016+\ldots+5-4+3-2 \\
& =-2020+(2019-2018)+(2017-2016)+\ldots+(5-4)+(3-2) \\
& =-2020+1009 \times 1 \\
& =-1011
\end{aligned}
$$

6. Since the RHS of $(m-8)(m-10)=2^{n}$ is a power of 2 , both $m-8$ and $m-10$ must be powers of 2 . Also, the difference between $m-8$ and $m-10$ is 2 , so the two solutions are $m=12, n=3$ and $m=6, n=3$.

Senior Questions

1.

$$
T_{n}\left(\frac{1}{T_{1}}+\frac{1}{T_{2}}+\ldots+\frac{1}{T_{n}}\right)=n^{2}
$$

or

$$
\frac{1}{T_{1}}+\frac{1}{T_{2}}+\ldots+\frac{1}{T_{n}}=\frac{2 n}{n+1} .
$$

This can be proven using induction. The inductive step depends on

$$
\frac{2 n}{n+1}+\frac{1}{(n+1)(n+2) / 2}=\frac{2(n+1)}{(n+1)+1} .
$$

2. Firstly, let's find the equation of the chord $A B$. Since this line passes through $A\left(a, a^{2}\right)$ and $B\left(b, b^{2}\right)$, the gradient is given by

$$
m_{A B}=\frac{a^{2}-b^{2}}{a-b}=a+b
$$

Using the point gradient form of a line,

$$
\begin{aligned}
y-y_{0} & =m\left(x-x_{0}\right) \\
y-a^{2} & =(a+b)(x-a) \\
y & =(a+b) x-a b .
\end{aligned}
$$

Thus the y intercept of $A B$ is $-a b$.
By a similar argument, we can show that the chord through $C D$ has the equation $y=(c+d) x-c d$. As these two chords intersect on the y axis, $a b=c d$, and thus $d=\frac{a b}{c}$.

