MATHEMATICS ENRICHMENT CLUB. Problem Sheet 17 Solutions, September 30, 2019

1. If a number is divisible by 8 , then its last three digits are a multiple of 8 . This gives us $b=4$. If a number is divisible by 9 , then the sum of its digits is also divisible by 9 . This gives us $a=9$. Thus $a+b=9+4=13$.
2. Suppose that the smaller circle has radius r. Then the distance between the centres of the two circles is $\sqrt{2} r$. Thus the radius of the big circle is $(1+\sqrt{2}) r$.

So the ratio is

$$
\pi r^{2}: \frac{\pi(1+\sqrt{2})^{2} r^{2}}{4}
$$

which simplifies to

$$
4:(3+2 \sqrt{2})
$$

3. The edge of the cube is 16 units; the length of the diagonal on any of the faces is $16 \sqrt{2}$ units; and the length of a diagonal through the middle of the cube is $16 \sqrt{3}$. If we place 8 points on the cube spacing them as far as possible from each other (that is, on the 8 vertices), then the minimum distance between points is 16 . However, if we then place a ninth point at the centre of the cube, then the distance from this point to any other point is $8 \sqrt{3} \approx 13.84 \ldots<14$. So the answer is nine.
4. Let's calculate a few terms, and see if we can find a pattern.

$$
\begin{aligned}
& x_{1}=\sqrt{2} \\
& x_{2}=\sqrt{3} \\
& x_{3}=x_{2}-x_{3}=\sqrt{3}-\sqrt{2} \\
& x_{4}=x_{3}-x_{2}=(\sqrt{3}-\sqrt{2})-\sqrt{3}=-\sqrt{2} \\
& x_{5}=x_{4}-x_{3}=-\sqrt{2}-(\sqrt{3}-\sqrt{2})=-\sqrt{3} \\
& x_{6}=x_{5}-x_{4}=-\sqrt{3}+\sqrt{2} \\
& x_{7}=x_{6}-x_{5}=(-\sqrt{3}+\sqrt{2})+\sqrt{3}=\sqrt{2} \\
& x_{8}=x_{7}-x_{6}=\sqrt{2}-(-\sqrt{3}+\sqrt{2})=\sqrt{3}
\end{aligned}
$$

Since $x_{7}=x_{1}$ and $x_{8}=x_{2}$, we can see that the same pattern will keep repeating with period 6 . Now $2019=336 \times 6+3$, so $x_{2019}=x_{3}=\sqrt{3}-\sqrt{2}$.
5. Suppose that the circle has radius r and centre O. Let $P U$ be a diameter of the circle, and let $Q R$ and $P U$ intersect at the point V. Let $Q V=x, V P=y$, and $\angle U P T=\theta$, as shown in the diagram.

Using basic properties of circle geometry, we can show that $U P \perp Q R$ and that $\triangle U P T$ is similar to $S P V$. Thus

$$
\begin{aligned}
\cos \theta & =\frac{y}{25}=\frac{P T}{U P} \\
P T & =\frac{2 r y}{25}
\end{aligned}
$$

Now, consider $\triangle Q V P$. As we know, $\triangle Q V P$ is right-angled, which implies that $x^{2}+$ $y^{2}=40^{2}$. Similarly, from $\triangle O Q V$, we can see that

$$
\begin{aligned}
x^{2}+(r-y)^{2} & =r^{2} \\
x^{2}+r^{2}-2 r y+y^{2} & =r^{2} \\
\therefore 2 r y & =x^{2}+y^{2} \\
& =40^{2}
\end{aligned}
$$

Thus $P T=\frac{40^{2}}{25}=64$.

Senior Questions

1. Rearranging the given equation,

$$
\begin{aligned}
3 x^{2}-8 y^{2}+3 x^{2} y^{2} & =2008 \\
3 x^{2}\left(1+y^{2}\right) & =8\left(251+y^{2}\right) \\
3 x^{2} & =\frac{8\left(250+1+y^{2}\right)}{1+y^{2}} \\
3 x^{2} & =8\left(1+\frac{250}{1+y^{2}}\right)
\end{aligned}
$$

Since the RHS is an integer, this means that $1+y^{2}$ is a factor of 250 . The factors of 250 are $1,2,5,10,25,50,125,250$, which gives possible values of y of $1,2,3$, and 7 . However, the only one of these values that gives a multiple of 3 is $y=7$, which gives $x=4$.
2. Since f is a polynomial, we can write it as

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}=\sum_{k=0}^{n} a_{k} x^{k}
$$

where a_{0}, \ldots, a_{n} are non-negative integers. Furthermore,

$$
f(1)=a_{0}+a_{1}+a_{2}+\ldots+a_{n}=\sum_{k=0}^{n} a_{k} .
$$

Since $f(1)=6$, this tells us that at most 6 of the a_{k} are non-zero, and also that no coefficient is larger than 6 . This means that we can find the coefficients of f by writing 3438 in base 7, which is the same as writing 3438 in terms of integer multiples of powers of 7 .

Using the change of base algorithm we discussed in the solutions to Problem Sheet 16,

$$
\begin{aligned}
3438 & =491 \times 7+1 \\
491 & =70 \times 7+1 \\
70 & =10 \times 7+0 \\
10 & =1 \times 7+3 \\
1 & =0 \times 7+1 .
\end{aligned}
$$

So

$$
\begin{aligned}
3438 & =(13011)_{7} \\
\Longrightarrow f(7) & =1 \times 7^{4}+3 \times 7^{3}+0 \times 7^{2}+1 \times 7^{1}+1 \times 7^{0} \\
\therefore f(x) & =x^{4}+3 x^{3}+x+1 .
\end{aligned}
$$

Evaluating f at $x=3$, we obtain 166 .
3. We rescale the triangle so that $O L=1$, $O M=2$, and $O N=3$.

Firstly, we will find the area of the shaded region. Draw the line $S T$, parallel to $P Q$ and passing through O, and let $S U$ be the perpendicular from S to $P Q$. Then $\triangle R S T$ is also an equilateral triangle, and using some basic trigonometry we can calculate that $S O=2 \sqrt{3}, S N=\sqrt{3}, P U=$ $1 / \sqrt{3}$.

Then $S O L U$ has area $2 \sqrt{3} ; \triangle S P U$ has area $\frac{1}{2 \sqrt{3}}=\frac{\sqrt{3}}{6}$; and $\triangle N S O$ has area $\frac{3 \sqrt{3}}{2}$. Thus

$$
\text { Area of } L O N P=2 \sqrt{3}+\frac{\sqrt{3}}{6}+\frac{3 \sqrt{3}}{2}=\frac{11 \sqrt{3}}{3}
$$

We will now calculate the area of $\triangle P Q R$. Recall from Question 5 on Problem Sheet 10,2018 , that the sum of the perpendiculars from any interior point of an equilateral triangle is equal to the altitude of the triangle. Thus we know that $\triangle P Q R$ has altitude 6 , side length $4 \sqrt{3}$, and hence area $12 \sqrt{3}$.

Thus

$$
\frac{a}{b}=\frac{11 \sqrt{3} / 3}{12 \sqrt{3}}=\frac{11}{36}
$$

and so $a+b=47$.

