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1. You can think of an arithmetic sequence as a set of stairs, where the size of the“jump”
from one step to the next is the same in every case.

average value

As there is an odd number of terms in the arithmetic sequence, the middle term is
equal to the average value of the sequence. That is

a6 =
S11

11
=

220

11
= 20.

2. (a) Let n be the total number of people at the party. Then the total number of
handshakes is given by (n − 1) + (n − 2) + (n − 3) + . . . + 1. This is the sum of
an arithmetic sequence with n− 1 terms. Thus

(n− 1) + (n− 2) + (n− 3) + . . .+ 1 =
n− 1

2
[(n− 1) + 1] =

n2 − n
2

If n2−n
2

= 253, then n = 23,−22. If we take the positive solution, then there are
23 people at the part in total (including Bernard), thus Bernard has invited 22
guests.

(b) Since there are 23 people in the party, we first divide them into groups of 12 and
11, the number of ways we can do this is

23!

12!× 11!
,

where 23! = 23× 22× 21× . . .× 2× 1, and similarly for 12! and 11!. To see how
the above equation works, 23! represent the number of ways we can put 23 people
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into 23 chairs, but we don’t care how the 12 or 11 people are arranged within the
group, so we remove 12! and 11!.

Next we consider how many ways 11 and 12 people can be arranged at a round
table. For the group of 12 people, there are 12! ways in which they can be arranged
into 12 chairs. However because the table is round, we can rotate the table and
get the same arrangement; the number of rotations is 12. Hence we conclude that
there is 12!/12 = 11! ways the 12 person group can be arranged. For the group
of 11 people, there are 10! ways to arrange them following a similar argument as
the 12 group case. Thus we conclude the total number of ways Bernard can do
this is

23!

12!× 11!
× 11!× 10! =

23!

12× 11
.

3. Suppose that n is a positive integer that is one less than a perfect cube. Then there is
another positive integer m such that n = m3 − 1. This is the difference of two cubes,
thus

m3 − 1 = (m− 1)(m2 +m+ 1)

If m = 2, then this means that n = 1 × 7, a prime. If, however, m 6= 2, then n has a
non-trivial factorisation as neither m− 1 or m2 +m+ 1 is equal to one. That is, n is
not prime.

4. Let 4ABC be a isosceles triangle with base ∠BAC = ∠BAC = 72◦, D is the point
of intersection between the bisector of ∠BAC and the line CB, as shown.

(a) Let x = a
b
. By the sum of angles in 4ADC, ∠ADC = 72◦. Therefore, the

triangles 4ACD and 4BAC are similar. Furthermore, 4ADB is isosceles, so
that a = AD = BD, as shown below.

A

B

C

D

b

a

72◦
a

72◦36◦
36◦

36◦

a

Now by ratios of similar triangles we have AC
CD

= BC
AC

or a
b

= a+b
a

, which implies

x = 1 + 1
x
. Solving for x gives a

b
= 1+

√
5

2
.

(b) Applying the cosine rule to 4ADC, we have

cos(36◦) =
2a2 − b2

2a2
= 1− 1

2

(
1

x

)2

=
1 +
√

5

4
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5. We can always pair up the divisors of a number x in such a way that the product of
the pair is equal to the number itself. For example the divisors of 4 are 1, 2 and 4,
which can be paired up into {1, 4} and {2}. In particular, note that if x has an odd
number of divisors, then x is a perfect square.

Suppose we have a number x with an odd number of even divisors and even number of
odd divisors, then the total number of divisors of x must be odd. Hence x is a perfect
square.

If x is odd, then is has no even divisors. Since zero is an even number, this means that
x has an even number of even divisors, contrary to our assumption. Thus x is even.

We can write x in terms of its prime factors as

x = pe11 p
e2
2 p

e3
3 . . . pekk

where the pi for i = 1, 2, . . . , k are the prime factors of x and the ei are their respective
exponents. In number theory, the τ -function is the function that returns the number
of factors of a positive integer. Once the prime factorisation of x is known, τ(x) is
easily computed.

τ(x) = (e1 + 1)(e2 + 1)(e3 + 1) . . . (ek + 1).

Now since x is even, we know that p1 = 2, and to find the number of odd divisors, we
should calculate (e2 + 1)(e3 + 1) . . . (ek + 1). However, as x is a square number, all the
ei are even numbers. This means that (e2 + 1)(e3 + 1) . . . (ek + 1), is the product of
k − 1 odd numbers, and thus is odd. So there is no such number x.

6. Statement (c) is false. Because if we assume (c) is true, then by statement (b), a+ b =
3b+ 5 so that 3b+ 5 is divisible by 3; (b) is false. Also by statement (d), 7(a+ b)− 6a
is a prime, but 7(a + b) − 6a is divisible by 3; (d) is false. We have too many false
statements if (c) is true.

By statements (a) and (b), 2b + 6 is divisible by b. Therefore b is a divisor of 6; that
is b is 1, 2, 3 or 6. By statement (b) and (d), 9b+ 5 is a prime. Then

b a = 2b+ 5 a+ 7b

1 7 14
2 9 23
3 11 32
6 17 59

We can see that the only prime numbers in the third column are 23 and 59, corre-
sponding to the solutions a = 9, b = 2 and a = 17, b = 6.

Senior Questions

1. (a) One way to do this is by polynomial long division http://en.wikipedia.org/

wiki/Polynomial_long_division, another way is by induction.
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(b) Using part (a), we have an − 1 = (a− 1)(an + an−1 + . . .+ a+ 1). Since an − 1 is
prime, the only factor it can have is 1; we must have a− 1 = 1, so a = 2.

Suppose n is not prime, then there are positive integers x > 1 and y > 1 such
that n = xy. If we write an− 1 = axy− 1 = (ax)y− 1, then we can use the results
of part (a) with ax instead of a to obtain

an − 1 = (ax)y − 1 = (ax − 1)[(ax)y + (ax)y−1 + . . .+ ax + 1].

Because the LHS of the above equation is a prime, we can conclude (just as before)
that ax − 1 = 1, which means ax = 2x = 2; x = 1, and we have a contradiction.

2. Let Fn be the nth Fibonacci number. The Fibonacci numbers, 0, 1, 1, 2, 3, 5, . . ., can
be defined by the recurrence relation

Fn = Fn−1 + Fn−2,

with initial conditions F0 = 0 and F1 = 1.

(a) Substituting Fn = Arn into the recurrence relation, we have

Arn = Arn−1 + Arn−2.

Thus

Arn − Arn−1 − Arn−2 = 0

Arn−2(r2 − r − 1) = 0

Now if either A = 0 or r = 0, this would mean that Fn = 0 for all n, which is
clearly not the case. Thus r2 − r − 1 = 0, as required.

(b) As given in the question

Fn = α

(
1 +
√

5

2

)n

+ β

(
1−
√

5

2

)n

.

Substituting in the initial conditions F0 = 0 and F1 = 1, we have

α + β = 0 (1).

α

(
1 +
√

5

2

)
+ β

(
1−
√

5

2

)
= 1 (2).

Solving this system of equations simultaneously gives the result α = 1√
5

and

β = − 1√
5
. Thus the closed formula for the nth Fibonacci number is

Fn =
1√
5

(
1 +
√

5

2

)n

− 1√
5

(
1−
√

5

2

)n

.
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(c) The first 5 Lucas numbers are

L0 = 2

L1 = 1

L2 = 3

L3 = 4

L4 = 7

You should obtain the formula

Ln =

(
1 +
√

5

2

)n

+

(
1−
√

5

2

)n

.
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