MATHEMATICS ENRICHMENT CLUB. Solution Sheet 7, June 25, 2019 ${ }^{1}$

1. Note that x has greater magnitude than y. Firstly, let's concentrate on positive solutions to the equation. If $2019=x^{2}-y^{2}$, then $2019=(x+y)(x-y)$. The factors of 2019 are 1, 3, 673, and 2019. So

$(x-y)$	$(x+y)$	x	y
1	2019	1010	1009
3	673	338	335

Thus the solutions are $(1010, \pm 1009),(-1010, \pm 1009),(338, \pm 335)$ and $(-338, \pm 335)$, so there are eight solutions altogether.
2. Let O be the centre of the incircle, let the radius of the incircle be r and let D, E and F be the points of tangency between the incircle and the triangle as shown below.

Since $O D, O E$, and $O F$ are radii to tangents, $\angle B F O=\angle C E O=\angle O D B=90^{\circ}$. Thus $A F O E$ is a square with side length r. Hence $A E=A F=r, E C=b-r$ and $F B=c-r$. Furthermore, by RHS, $\triangle E O C \equiv \triangle D O C$ and thus $D C=b-r$. Similarly, $B D=c-r$. Thus

$$
\begin{aligned}
& a=(b-r)+(c-r) \\
& r=\frac{1}{2}(b+c-a)
\end{aligned}
$$

[^0]3. A neat trick is to express N as
$$
\underbrace{333 \ldots 333}_{61 \times 3^{\prime} s}=\frac{3}{9}(\underbrace{999 \ldots 999}_{61 \times 9^{\prime} s})=\frac{1}{3}\left(10^{61}-1\right) .
$$

Similarly, $M=\underbrace{666 \ldots 666}_{62 \times 6^{\prime} s}=\frac{2}{3}\left(10^{62}-1\right)$. Now

$$
\begin{aligned}
N \times M & =\frac{2}{9}\left(10^{61}-1\right)\left(10^{62}-1\right) \\
& =\frac{2}{9}\left(10^{61}-1\right) \times 10^{62}-\frac{2}{9}\left(10^{61}-1\right) \\
& =\underbrace{222 \ldots 222}_{60 \times 2^{\prime} s} \underbrace{000 \ldots 000}_{62 \times 0^{\prime} s}-\underbrace{222 \ldots 222}_{60 \times 2^{\prime} s} \\
& =\underbrace{222 \ldots 222}_{60 \times 2^{\prime} s} 19 \underbrace{777 \ldots 777}_{60 \times 7^{\prime} s} 8 .
\end{aligned}
$$

4. In modular arithmetic, if $a \equiv b \bmod (n)$, then $a^{x} \equiv b^{x} \bmod (n)$. Thus we can see that

$$
\begin{aligned}
a & \equiv 1 \bmod (a-1) \\
a^{x} & \equiv 1^{x} \bmod (a-1) \\
1 \bmod (a-1) &
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& a \equiv a \bmod (a+1) \\
& \equiv(-1) \bmod (a+1) \\
& a^{x} \equiv(-1)^{x} \bmod (a+1) \\
&(-1)^{x} \bmod (a+1) \equiv-1 \bmod (a+1) \\
& \equiv a
\end{aligned}
$$

Thus $r_{1}+r_{2}=a+1$.
5. We can write $x=n+d$, where n is the integral part of x and d the decimal part. Then $[2 x]+[4 x]+[6 x]+[8 x]=20 n+[2 d]+[4 d]+[6 d]+[8 d]$. We scan over the range of d; that is $0<d<1$ to see what positive integer under 1001 can be expressed in the form of $[2 x]+[4 x]+[6 x]+[8 x]$. For example

$$
\begin{array}{lllllllll}
{[2 x]} & + & {[4 x]} & + & {[6 x]} & + & {[8 x]} & & \\
0 & + & 0 & + & 0 & + & 1 & =1, & \text { if } \frac{1}{8} \leq d<\frac{1}{6} . \\
0 & + & 0 & + & 1 & + & 1 & =2, & \text { if } \frac{1}{6} \leq d<\frac{1}{4} . \\
0 & + & 1 & + & 1 & + & 2 & =4, & \text { if } \frac{1}{4} \leq d<\frac{1}{3} . \\
0 & + & 1 & + & 2 & + & 2 & =5, & \text { if } \frac{1}{3} \leq d<\frac{3}{8} . \\
0 & + & 1 & + & 2 & + & 3 & =6, & \text { if } \frac{3}{8} \leq d<\frac{1}{2} .
\end{array}
$$

If we continue with the above calculations, the results are the numbers ending in 3, 7, 8 or 9 can not be expressed in the form $[2 x]+[4 x]+[6 x]+[8 x]$. This means that, for $n=0$, we have 0 (in this case we can't actually count this one, as we are looking at positive integers), $1,2,4,5$ and 6 . For $n=1$, we have 20, 21, 22, 24, 25 and 26 (6 possibilities). For $n=2$, we have $40,41,42,24,45$ and 46 , and so on. Since we are also counting 1000 itself, there are a total of 300 numbers that can be written this way.
6. Let d be the number of kilometres travelled before the tyre switch is made. Then $\frac{d}{x}$ is the proportion of wear on the front tyre before the switch, hence they will travel a further $\left(1-\frac{d}{x}\right) y$ kilometres before the tyres are retired. So the total distance travelled by the font tyre is $d+\left(1-\frac{d}{x}\right) y$. Similarly, the total distance travelled by the rear tyre is $d+\left(1-\frac{d}{y}\right) x$.
Suppose the claim of the advertisement is true, then we must have the following system of inequalities

$$
\begin{aligned}
& d+\left(1-\frac{d}{x}\right) y \geq \frac{x+y}{2} \\
& d+\left(1-\frac{d}{y}\right) x \geq \frac{x+y}{2}
\end{aligned}
$$

Rearranging this gives

$$
\begin{aligned}
& d\left(1-\frac{y}{x}\right) \geq \frac{x-y}{2} \\
& d\left(1-\frac{x}{y}\right) \geq \frac{y-x}{2}
\end{aligned}
$$

then using the assumption that $x<y$, we have

$$
\begin{aligned}
& d \leq \frac{x-y}{2} \times\left(1-\frac{y}{x}\right)^{-1}=\frac{x}{2} \\
& d \geq \frac{x-y}{2} \times\left(1-\frac{x}{y}\right)^{-1}=\frac{y}{2}
\end{aligned}
$$

The last system of inequality does not hold because $x<y$, so we have a contradiction to the advertisement's claim.

Senior Questions

1. Since $\alpha>0,\left(\alpha+\frac{1}{\alpha}\right)^{2}=\alpha^{2}+\frac{1}{\alpha^{2}}+2 \geq 2$. Similarly, $\left(\beta+\frac{1}{\beta}\right)^{2} \geq 2$. Therefore, if r_{1} and r_{2} are the roots of f (assuming $r_{1} \geq r_{2}$ wlog), then $r_{1} \geq 2$ and $r_{2}<0$, so that $r_{1} r_{2}=c-3<0$, which implies $c<3$.
To get the lower bound on c, we use the quadratic formula $2 \leq r_{1}=(c+1)+$ $\sqrt{(c+1)^{2}-4(c-3)}$. Solving gives $-2 \leq c$.
2. Square both sides of the equation $\sqrt{a}-b=\sqrt{c}$ and rearranging gives

$$
\sqrt{c}=\frac{a-b^{2}-c}{2 b}
$$

Since the RHS of the above equation is rational, \sqrt{c} must be rational. Write $\sqrt{c}=x / y$, where x and y are integers with greatest common multiplier one. Then $c=x^{2} / y^{2}$, and greatest common multiplier between x^{2} and y^{2} is one. Since c is an integer, x^{2} must be divisible by y^{2}, which can only happen if $y^{2}=1$, because the greatest common multiplier between x^{2} and y^{2} is one. Hence $c=x^{2}$, so that c is a perfect square.

If c is a perfect square, then the equation $\sqrt{a}-b=\sqrt{c}$ implies that a is also a perfect square.
3. Use the method of reflection. Reflect the point B in the line that represents the river bank. This is shown as B^{\prime} in the diagram below. Then the shortest distance from A to B^{\prime} is clearly a straight line. We can use Pythagoras' theorem to show that this is 15 km .

[^0]: ${ }^{1}$ Some problems from UNSW's publication Parabola, and the Tournament of Towns in Toronto

