
MATHEMATICS ENRICHMENT CLUB.
Solution Sheet 8, July 1, 2019

1. First note that x must be an even number, so let’s consider the possible values of y.
If y = 0, then x = ±100 (2 solutions).
If y = ±1, then x = ±98 (4 solutions)
If y = ±2, then x = ±96 (4 solutions)
However, if y = ±50, then x = 0 (2 solutions again).
So there are 49× 4 + 2× 2 = 200 solutions.

The following graphical solution was contributed by a student.

x

y

(0, 50)

(100, 0)

(0,−50)

(−100, 0)
x + 2y = 100

x− 2y = 100−x− 2y = 100

−x + 2y = 100

We can think of the solutions to the equation as being the integral points (points with
integer coordinates) lying on the sides of the diamond in the number plane shown
above. On any side of the diamond, there are 51 integral points. However, the four
corner points lie at the end of two different sides. Thus there are 4 × 51 − 4 = 200
solutions.

2. Note that we can write the list of numbers as 20, 21, . . . , 28. In this new format, the
product of any two number is 2 to the power of the sum of their exponents. Therefore,
we can proceed to filling in the 3 × 3 product square as a slightly modified standard
3× 3 magic square. To show whether the solution is unique, see solution sheet 1.

3. (a) x3 must be an integer as x3 = 10+5[x]. Also x3 ≤ 10+5x and x3 > 10+5{x−1}
so 2 < x < 3. Hence [x] = 2 and therefore x3 = 10 + 5× 2 = 20 and x = 3

√
20.
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(b) y3− 5{y} = 10 so 10 < y3 < 15. Thus 2 < y < 3, y = 2 + {y} and so {y} = y− 2.
Hence y3 = 10 + 5(y − 2) = 5y, and since y 6= 0, y2 = 5 and hence y =

√
5.

4. There are two possibilities: either f(x) is the product of a linear polynomial and a
cubic or two quadratics. In the first case, this means that, for some integers a, b, c and
d,

x4 − nx + 63 = (x + a)(x3 + bx2 + cx + d)

= x4 + (a + b)x3 + (ab + c)x2 + (ac + d)x + ad

Equating coefficients, we have

a + b = 0 (1)

ab + c = 0 (2)

ac + d = −n (3)

ad = 63 (4)

From (1), we have b = −a, which substituted into (2) gives c = a2. If we substitute
this into (3), we have n = −(a3 + d). Thus all the coefficients can be written in terms
of a and d alone. Since ad = 63, both a and d have the same sign. We will consider
them both negative, then the sign of n is positive and we can draw up the following
table:

a d n = −(a3 + d)

−1 −63 64
−3 −21 48
−7 −9 352
−9 −7 736
−21 −3 9264
−63 −1 250 048

In this case, the smallest value of n is 48.

Now let’s consider the two quadratics case. Then

x4 − nx + 63 = (x2 + ax + b)(x2 + cx + d)

= x4 + (a + c)x3 + (b + d + ac)x2 + (bc + ad)x + bd

Equating coefficients, we have

a + c = 0 (1)

b + d + ac = 0 (2)

bc + ad = −n (3)

bd = 63 (4)
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From (1), we have a = −c, which substituted into (2) gives b+ d = c2; and substituted
into (3) gives

bc− cd = −n
c(b− d) = −n

n = c(d− b)

Thus we have

b d c2 = b + d c n = c(d− b)

1 63 64 8 496
3 21 24 Not valid
7 9 16 4 8

So the smallest value of n is 8.

5. Extend the line BM to the point D where DM = CM . Then BD = MB+MC. Since
ACMB is a cyclic quadrilateral and 4ABC is equilateral, ∠CMD = ∠BAC = 60◦.
So 4CMD is also equilateral. It can be shown by SAS that 4ACM ≡ 4BCD, and
hence AM = BD = MD + MC.

A

B C

M
D

Senior Questions

1. We have a solution to the equation when x2 − 5x + 5 = 1, or when x2 − 5x + 5 = −1
and x2− 11x+ 30 is even, or when x2− 5x+ 5 6= 0 and x2− 11x+ 30 = 0. For the first
case, x = 4 and x = 1 are the only integral solutions. For the second case, x = 2, 3 are
the solutions. For the last case, x = 5, 6 are solutions. There are six different solutions.

2. If p1, p2, . . . , pn are n primes in arithmetic progression, then p1 = a, p2 = a+d, . . . , pn =
a + (n − 1)d. Also, if p1, . . . , pn are all greater than or equal to n, then d is divisible
by every prime less than n. For if p is prime, p < n and p does not divide d, then for
some k with 1 ≤ k ≤ n, a + (k − 1)d is divisible by p. But pk is prime, so pk = p. But
p < n, pk ≥ n, a contradiction.

So if p1, . . . , p6 are all greater than or equal to 6, then d must be divisible by 2, 3
and 5, so it is divisible by 30. So the smallest set of numbers we might consider is
7, 37, 67, 97, 127, 157.
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3. Since 2n+1 is odd and a perfect square, we can write as 2n+1 = (2k+1)2 = 4k2+4k+1,
for some non-negative integer k, which implies n = 2k(k + 1). Since either k or k + 1
is odd, we conclude that n is a multiple of 4.

Because n is even, 3n + 1 must be odd so we can write 3n + 1 = (2j + 1)2, for some
non-negative j, which implies 3n = 4j(j + 1). Similar to before, either j or j + 1 is
odd, so we can conclude that n is divisible by 8.

To complete the question, we show that n is divisible by 5. The possible remainder of
an integer a divided by 5 are 0, 1, 2, 3 and 4, therefore any perfect square number must
have remainders 0, 12, 22, 32− 5 and 42− 3(5); that is 0, 1, 4 are the only remainders of
a perfect square number when divided by 5. If we consider the remainders of 2n + 1
and 3n + 1 when divided by 5, for n = 0, 1, 2, 3, 4, we can see that the only time when
both 2n+ 1 and 3n+ 1 have remainders either 0, 1, or 4 is when n = 0. Hence the only
time when both 2n + 1 and 3n + 1 are perfect squares is when n ≡ 0 (mod 5); that is
n is divisible by 5.
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