MATHEMATICS ENRICHMENT CLUB.
 Solution Sheet 9, July 8, 2019

1. Given a n-digit long number, if we fix the last digit (say let it be 1), then there are $(n-1)$! ways to arrange the other $n-1$ digits (say $2,3, \ldots, n$) to get a different n-digit long number. Hence, each of $1,2, \ldots, n$ will appear $(n-1)$! times in the last digit of the n-digit long number. Therefore the last digit of all combinations of n-digit long numbers contributes to the sum by an amount of $(n-1)!\times(1+2+3+\ldots+n)$.
We can make a similar argument by fixing the second last digit, so that the second last digit of all combinations of n-digit long numbers contributes to the sum $(n-1)!\times$ $(1+2+3+\ldots+n) \times 10$.
Repeating this for all digits, the total sum is $(n-1)!\times(1+2+3+\ldots+n) \times(1+10+$ $\left.10^{2}+\ldots+10^{n}\right)$.
2. Note that $\sqrt[4]{2} \times \sqrt[8]{4} \times \sqrt[16]{8} \times \sqrt[32]{16} \times \sqrt[64]{32} \ldots=\sqrt[4]{2} \times \sqrt[8]{2^{2}} \times \sqrt[16]{2^{3}} \times \sqrt[32]{2^{4}} \times \sqrt[64]{2^{5}} \ldots$. Hence we can rewrite this product as

$$
2^{\frac{1}{4}} \times 2^{\frac{2}{8}} \times 2^{\frac{3}{16}} \times 2^{\frac{4}{32}} \times 2^{\frac{5}{64}} \ldots=2^{\frac{1}{4}+\frac{2}{8}+\frac{3}{16}+\frac{4}{32}+\frac{5}{64}} \ldots,
$$

which means that all we need to find is the infinite sum $x=1 / 4+2 / 8+3 / 16+4 / 32+$ $5 / 64+\ldots$ The trick here is to compare x with $x / 2$:

$$
\begin{aligned}
x-\frac{x}{2} & =\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\ldots \\
\frac{x}{2} & =\frac{1 / 4}{1-1 / 2} \\
x & =1 .
\end{aligned}
$$

We conclude that product of the surds is 2 .
3. Let a be the greatest number written on a blackboard. Pick another integer, b, on the board, then $a \geq b$. Furthermore, there is an integer $n \geq 0$ such that $2^{n} \leq a<2^{n+1}$, so that $2^{n}<a+b \leq 2 a<2^{n+2}$. Since $a+b$ must be a power of two, we must have $a+b=2^{n+1}$. Because b is an arbitrary integer we picked and there is only one choice of n, we can conclude that $2^{n+1}-a$ is the only other integer on the board; there are only two numbers on the board.
4. (a) Since the lines $K M$ and $C B$ are parallel, $\angle K M O=\angle O C L$. Furthermore, $\angle C O L$ and $\angle M O K$ are vertically opposite and hence equal. Thus $\triangle K M O$ is similar to $\triangle L C O$, and we have the formula

$$
\frac{|K O|}{|K L|-|K O|}=\frac{|O M|}{|M C|-|O M|} .
$$

(We need this for the second part.)

(b) Since M is the midpoint of $A B$ and the lines $K M$ and $C B$ are parallel, by the midpoint theorem K is the midpoint of $A L$. Additionally, using the fact that $2|M C|=|A L|$, we have $|K L|=|M C|$. Now substituting $|K L|=|M C|$ into the formula from part (a), we obtain $|K O|=|O M|$. Therefore the triangles $\triangle K M O$ and $\triangle O L C$ are isosceles. Finally, using the condition $\angle O L C=45^{\circ}$ we have $\angle C O L=90^{\circ}$.
5. Since the constant coefficient of $p(x)$ is $3, a b c d=3$. Therefore,

$$
\frac{a b c}{d}=\frac{3}{d^{2}}, \quad \frac{a c d}{b}=\frac{3}{b^{2}}, \quad \frac{a b d}{c}=\frac{3}{c^{2}}, \quad \frac{b c d}{a}=\frac{3}{a^{2}} .
$$

Let $y=3 / x^{2}$, then $p(\sqrt{3 / y})=0$ when $p(x)=0$. Therefore rearranging $p(\sqrt{3 / y})=0$ gives a polynomial of y with the required roots.

Senior Questions

1. (a) Firstly, we want to make the RHS of (1) look like the RHS of (2). Thus

$$
\begin{aligned}
j \frac{d^{2} \theta}{d t^{2}}+c \frac{d \theta}{d t} & =I_{\text {motor }} \\
R j \frac{d^{2} \theta}{d t^{2}}+\left(R c+k_{m}\right) \frac{d \theta}{d t} & =R \times I_{\text {motor }}+k_{m} \frac{d \theta}{d t}
\end{aligned}
$$

Hence

$$
\begin{equation*}
R j \frac{d^{2} \theta}{d t^{2}}+\left(R c+k_{m}\right) \frac{d \theta}{d t}=V_{i n} \tag{3}
\end{equation*}
$$

Let $\omega=\frac{d \theta}{d t}$. As $\omega \rightarrow \omega_{\infty}, \frac{d^{2} \theta}{d t^{2}} \rightarrow 0$. So

$$
\begin{aligned}
\omega_{\infty} & =\frac{V_{i n}}{R c+k_{m}} \\
& =\frac{12}{10(1)+5} \\
& =0.8 \mathrm{rads} / \mathrm{s}
\end{aligned}
$$

(b) Similarly, if we set $\omega(0)=0$, then

$$
\begin{aligned}
\frac{d^{2} \theta}{d t^{2}} & =\frac{V_{i n}}{R j} \\
& =\frac{12}{(10)(5)} \\
& =0.24 \text { rads } / \mathrm{s}^{2}
\end{aligned}
$$

(c) If we wish to solve (3) for $\theta(t)$, we first re-write in terms of ω. Then

$$
\begin{aligned}
R j \frac{d \omega}{d t}+\left(R c+k_{m}\right) \omega & =V_{i n} \\
\frac{d \omega}{d t}+\frac{R c+k_{m}}{R j} \omega & =\frac{V_{i n}}{R j}
\end{aligned}
$$

Now the coefficient of ω is just a constant $\left(\frac{R c+k_{m}}{R j}\right)$, and if we multiply both sides of the equation by $e^{t\left(R c+k_{m}\right) / R j}$, then the LHS turns into something that looks like the result of differentiation using the product rule. (This particular bit of magic
is called the method of integrating factors.) Consequently,

$$
\begin{aligned}
e^{t\left(R c+k_{m}\right) / R j} \frac{d \omega}{d t}+\frac{R c+k_{m}}{R j} e^{t\left(R c+k_{m}\right) / R j} \omega & =\frac{V_{i n}}{R j} e^{t\left(R c+k_{m}\right) / R j} \\
\frac{d}{d t}\left(\omega e^{t\left(R c+k_{m}\right) / R j}\right) & =\frac{V_{i n}}{R j} e^{t\left(R c+k_{m}\right) / R j} \\
\omega e^{t\left(R c+k_{m}\right) / R j} & =\frac{V_{i n}}{R j} \int e^{t\left(R c+k_{m}\right) / R j} d t \\
& =\frac{V_{i n}}{R j} \times \frac{R j}{R c+k_{m}} e^{t\left(R c+k_{m}\right) / R j}+C_{1} \\
& =\frac{V_{i n}}{R c+k_{m}} e^{t\left(R c+k_{m}\right) / R j}+C_{1} \\
\omega & =\frac{V_{i n}}{R c+k_{m}}+C_{1} e^{-t\left(R c+k_{m}\right) / R j}
\end{aligned}
$$

Using the initial condition given in (b), we have $C_{1}=-\frac{V_{i n}}{R c+k_{m}}$, and hence

$$
\omega(t)=\frac{V_{i n}\left(1-e^{-t\left(R c+k_{m}\right) / R j}\right)}{R c+k_{m}} .
$$

Since $\omega=\frac{d \theta}{d t}$,

$$
\begin{aligned}
\theta(t) & =\frac{V_{i n}}{R c+k_{m}} \int\left(1-e^{-t\left(R c+k_{m}\right) / R j}\right) d t \\
& =\frac{V_{i n}}{R c+k_{m}}\left(t+\frac{R j e^{-t\left(R c+k_{m}\right) / R j}}{R c+k_{m}}+C_{2}\right)
\end{aligned}
$$

If we assume that $\theta(0)=0$, then $C_{2}=-\frac{R j}{R c+k_{m}}$, so

$$
\theta(t)=\frac{V_{i n}}{R c+k_{m}}\left[t+\frac{R j\left(e^{-t\left(R c+k_{m}\right) / R j}-1\right)}{R c+k_{m}}\right] .
$$

2. Suppose that we already have a solution, $\triangle D E F$ with circumcircle, \mathcal{C}, centred at O and points A, B and C as shown below.

In particular, consider the angle bisector, $B D$. Let $\angle E D B=\beta$. Then $\angle E D B=$ $\angle B D F=\beta$. Furthermore, since $\angle B D F$ and $\angle F E B$ subtend the same arc, $\angle F E B=$ β. Similarly, it can be shown that $\angle B F E=\beta$, which implies that $\triangle B E F$ is isosceles with $E B=B F$. As $O B$ and $O F$ are both radii of the circle, $\triangle O E F$ is also isoceles. This means that $E O F B$ is a kite with diagonals $E F$ and $O B$ that intersect perpendicularly at M. Now since O is the centre of the circumcircle, $O M$ is the perpendicular bisector of $E F$.

There are two consequences of this fact:

- M is the midpoint of $E F$, and hence the median $D C$ passes through it.
- The altitude $D A$ is parallel to $O M$.

So, if we are given the circumcircle and hte point A, B and C, we can construct the original triangle thus:
(a) Find O the centre of the circle.
(b) Draw a line between O and B.
(c) Draw a line parallel to $O B$ passing through the point A. The second point of intersection between this line and the circle is the vertex D.
(d) Join the line $D C$. The point of intersection between $D C$ and $O B$ is M, the midpoint of the side $E F$.
(e) Draw a line through M perpendicular to $A D$. This line crosses the circle at E and F.

Some notes on the construction:

- Should the circumcentre lie outside the triangle, $E O F B$ will be a non-convex kite and $O B$ must be extended to find M. The rest of the construction remains the same.
- There is one case where the above construction does not work: if the points A, B and C coincide, then at best we can say that $\triangle D E F$ is isosceles and determine the location of the vertex D, but the base $E F$ cannot be determined.

