MINE 5020
Geotechnical Assessment for Underground and Open Cut Mining

Ismet Canbulat
CONTENTS

1 INFORMATION ABOUT THE COURSE ... 3
 1.1 Course Description .. 3
 1.2 Course Completion ... 4
 1.3 Assumed Knowledge ... 4
2 AIMS, LEARNING OUTCOMES AND GRADUATE ATTRIBUTES 5
 2.1 Course Aims .. 5
 2.2 Learning Outcomes .. 5
 2.3 Graduate Attributes .. 5
3 REFERENCE RESOURCES ... 6
 3.1 Reference Materials .. 6
 3.2 Other Resources ... 6
 3.3 Online Resources .. 6
4 COURSE CONTENT AND LEARNING ACTIVITIES ... 7
 4.1 Learning Activities Summary .. 7
5 COURSE ASSESSMENT .. 8
 5.1 Assessment Summary ... 8
 5.2 Assessment Requirements ... 9
 5.3 Penalties for Non-Compliant Submission ... 10
6 ASSESSMENT CRITERIA .. 10
 6.1 Assignment Reports .. 11
7 STUDYING A PG COURSE IN MINING ENGINEERING AT UNSW 12
 7.1 How We Contact You .. 12
 7.2 How You Can Contact Us ... 12
 7.3 Computing Resources and Internet Access Requirements 12
 7.4 Accessing Course Materials Through Moodle .. 12
 7.5 Assignment Submissions .. 12
 7.6 Late Submission of an Assignment ... 13
 7.7 Special Consideration .. 13
 7.8 Course Results .. 13
 7.9 Students Needing Additional Support .. 14
 7.10 Academic Honesty and Plagiarism ... 14
 7.11 Report Writing Guide for Mining Engineers .. 14
 7.12 Continual Course Improvement ... 14
8 SCHOOL ASSESSMENT COVER SHEET .. 15
INFORMATION ABOUT THE COURSE

Course Code: MINE5020 Semester: S1, 2020 Level: PG Units/Credits: 6 UOC
Course Name: Geotechnical Assessment for Underground and Open Cut Mining

Course Convenor: Ismet Canbulat
Contact Details
School of Minerals and Energy Resources Engineering
EMAIL: i.canbulat@unsw.edu.au
Phone: +61 2 9385 4035
Contact times By appointment

1.1 Course Description

Welcome to MINE5020 Geotechnical Assessment for Underground and Open Cut Mining. This course is designed to introduce engineers and geologists to the major geomechanics components associated with coal mining operations, from resource evaluation and mine design to daily operations. It is, therefore, ideally suited to open cut and underground coal engineers or geologists who have an understanding and experience in the coal mining industry but are seeking to develop more specialist skills in the geomechanics field.

This course covers the following aspects:
- Geotechnical components of exploration programs - requirements, technologies, integration, management.
- Geotechnical assessment and logging.
- Geophysical methods for geotechnical determinations, in both exploration and operating mine environments.
- Basic statistics and integration of geotechnical data.
- Australian safety statistics and ground control management strategies.
- Rock mass characterisation
- Geotechnical hazard/condition mapping.
- Activities include course presentations and student presentations

The course is structured to provide an initial overview of basic principles and terminology plus the use of geotechnical tool in Australian mining industry.

An important component will be an emphasis on the interdependencies between geotechnical parameters and coal mine design/operational decisions and requirements. The link between geological and engineering disciplines is an important component in successfully managing these dependencies.

This course is an Intensive, four-day workshop program conducted at UNSW from 6 to 9 April 2020.

How much time is required?

This course is worth 6 UOC. It will be presented in a block mode. It is recommended that approximately 150 hours is required for this course, for satisfactory performance in this program, depending on background and experience. It is the students’ responsibility to manage and plan workloads as much as possible to enable a minimum of 8 hours per week.
1.2 Course Completion

Course completion requires:

- submission of all assessment items; failure to submit all assessment items will result in the award of an Unsatisfactory Failure (UF) grade for the Course.

1.3 Assumed Knowledge

This course assumes a student has knowledge of

- as this is a technical course in a postgraduate program, a fundamental understanding of both Mathematics and Physics to a standard at least equivalent to a first year course in a university engineering program
- basic mining and geological terms and descriptions
- basic understanding of engineering design principles and steps
- mining systems.
2 AIMS, LEARNING OUTCOMES AND GRADUATE ATTRIBUTES

2.1 Course Aims

This course aims to equip the student with knowledge and skills to design and select appropriate Geomechanics techniques for different mining applications.

2.2 Learning Outcomes

It is intended that students will be able to:

1. Understand the principles of engineering designs and how these are applied to analyse problems in mining geomechanics.
2. Have a sound working knowledge of fundamental mechanisms and geotechnical principles within the context of practical coal mining applications;
3. Recognise the role and importance of these principles in a comprehensive range of coal mining applications, both from a technical perspective, and from the risk and operational management perspective.
4. Have a knowledge of rock mass classification techniques used in mining rock mechanics
5. Have a knowledge of risk-based designs in underground and open cut mining.

2.3 Graduate Attributes

This course will contribute to the development of the following Graduate Attributes:

1. appropriate technical knowledge
2. having advanced problem solving, analysis and synthesis skills with the ability to tolerate ambiguity
3. ability for engineering design and creativity
4. awareness of opportunities to add value through engineering and the need for continuous improvement
5. being able to work and communicate effectively across discipline boundaries
6. having HSEC consciousness
7. being active life-long learners.
3 REFERENCE RESOURCES

3.1 Reference Materials

- MEA Report Writing Guide for Mining Engineers. P Hagan and P Mort (Mining Education Australia (MEA)). (Latest edition available for download from the School website or a hardcopy version is available from the UNSW Bookshop)

3.2 Other Resources

- Guide to Authors, 2008. (Australasian Institute of Mining and Metallurgy; Melbourne).

3.3 Online Resources

Selected readings as well as other supporting material (e.g. course outline and lecture notes will be made available on Moodle.)
4 COURSE CONTENT AND LEARNING ACTIVITIES

4.1 Learning Activities Summary

Presentations and reading material are provided to provide students with technical information and examples of management processes are applied in the mining industry.

Discussions will be used to encourage students to articulate and defend positions, consider different points of view and evaluate evidence. Case studies will be used to provide practice in identifying potential problems and evaluating alternative course of actions.

<table>
<thead>
<tr>
<th>UNSW Days</th>
<th>Day</th>
<th>Hrs.</th>
<th>Topic</th>
<th>Content/Activities</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6 Apr</td>
<td>8</td>
<td>Introduction to the Course and the Geotechnical Assessment</td>
<td>Course introduction</td>
<td>IC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Overview of ground control management in Australian mines</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Safety in the mining industry; how does it compare to other industries</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Basic statistics for geotechnical applications</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Principles of engineering and strata control design</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>7 Apr</td>
<td>8</td>
<td>Geotechnical Assessments and risk-based designs</td>
<td>Geotechnical assessment</td>
<td>IC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Group discussions on hazard mapping and design issues</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Use of risk-based design examples</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8 Apr</td>
<td>8</td>
<td>Rock mass classification and monitoring in UG mines</td>
<td>Geotechnical logging and rock mass classification CMRR & GSR</td>
<td>IC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Instrumentation and Monitoring in underground mines</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9 Apr</td>
<td>8</td>
<td>Rock mass classification and monitoring in open cut mines and practical geotechnical management</td>
<td>Other rock mass classification techniques in open cut mining</td>
<td>(Alison McQuillan)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Monitoring techniques in open cut mines</td>
<td>Dan Payne</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Geotechnical Management and Use of Instrumentation and Monitoring</td>
<td></td>
</tr>
</tbody>
</table>

Total student effort hours: Approx. 150

Note: The above indication of “student effort hours” is indicative only – It reflects the anticipated level of total student involvement with the course – either through accessing or participating in online materials and activities; private research; preparation of assignments. Individual students may find their level of involvement differs from this schedule.
5 COURSE ASSESSMENT

5.1 Assessment Summary

The range of assessment tasks have been designed to ensure a student can demonstrate they have satisfactorily attained the minimum requirements of the course as defined in the Learning Outcomes of the course and Graduate Attributes of the program. The student is also advised to review the relevant Assessment Criteria before completing each of the assessment items.

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Assessment</th>
<th>Due Date</th>
<th>Weighting</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A01</td>
<td>Individual report – Stress mapping</td>
<td>3 May 11:59pm</td>
<td>25%</td>
<td>1,2,3</td>
</tr>
<tr>
<td>A02</td>
<td>Individual report – Hazard plan report</td>
<td>24 May 11:59pm</td>
<td>35%</td>
<td>4,5</td>
</tr>
<tr>
<td>A03</td>
<td>Individual report – Calculation of CMRR and one another rock mass technique from your site</td>
<td>14 June 11:59pm</td>
<td>40%</td>
<td>4,5</td>
</tr>
</tbody>
</table>

Assignment A01: Individual report – Stress Mapping (25%) DUE DATE 3rd May 2020 (11:59pm)

This assignment is a written assignment that should not exceed 5 pages in total; including the figures, drawings etc. It should address the following points:

a) Illustrate the stress map of your operation;
b) Discuss the methods used in developing the stress map;
c) Discuss the variation of horizontal stress obtained from measurement in your operation;
d) Discuss the potential implications of the stress orientation in relation to the mine layout using drawings, text etc;
e) Provide and discuss some of the conditions observed in your operation caused by horizontal stress;
f) Discuss potential solutions to minimise the stress special effects in your operation.

NOTE: This assignment will require additional reading beyond the lecture material provided.

Assignment A02: Individual report – Geotechnical hazard plan (35%) DUE DATE 2th May 2020 (11:59pm)

Assignment A02 is a written assignment that should not exceed 8 pages in total, including figures, drawings etc. This assignment should address the following issues:

a) Illustrate an example(s) of a typical hazard plan;
b) Discuss the hazard identification procedures;
c) Discuss the methods of displaying the hazards (and hazard level changes) on the plan;
d) Discuss the appropriateness of, and confidence in the “triggers” available to identify changes in hazard level (both elevated and reduced hazard levels);
e) Discuss the implications of the hazards identified to mining;
f) Identify appropriate procedures for communicating the findings to operating and management personnel at the mine.
Assignment A03: Calculation of CMRR and one another rock mass technique from your site (40%) - DUE DATE 14th June 2020 (11:59pm)

Assignment A03 should comprise a written report (maximum of 8 pages in total). It should address the following:

a) Demonstrate the calculation of at least 5 CMRR in your mine site (possible in different geotechnical domains);
b) Demonstrate the calculation of at least 5 rock mass roof competencies using one of the another rock mass classification techniques (e.g., RMR, MRMR, Q etc) in your mine site (again possible in different geotechnical domains);
c) Discuss calculation process with at least one had calculation for both CMRR and other technique;
d) Describe the critical features related to CMRR and the other technique in your mine site;
e) Discuss the implications of the CMRR.

5.2 Assessment Requirements

- All the course materials and assignments will be available online through Moodle. Access to the Moodle site is via the Moodle icon on the MyUNSW homepage, or at https://moodle.telt.unsw.edu.au

When
- As indicated above.
- Early submission is required in cases where the student will otherwise be absent on the due date of submission.
- Prior to submission, students should read the School Policy on Assignment Submissions which can be viewed at: www.engineering.unsw.edu.au/mining-engineering/what-we-do/about-the-school/school-general-guidelines
- In particular, the student should make sure they have read and understood the:
 - Declaration of Academic Integrity;
 - Assignment Submission requirements detailed in the University Policies section of the Course Outline; and
 - School Policy on Assignment Submission available on the School’s website (the web address is given in the Course Outline). In particular note the requirement that only PDF documents should be uploaded and the required file naming convention.

Where
- Submissions must be made electronically through Turnitin in Moodle unless otherwise stated. Turnitin is a plagiarism checking service that will retain a copy of the assessment item on its database for the purpose of future plagiarism checking.

What
- Submission requirements for all assignments are listed in Section 5.
- The submission must be:
 - a single document in PDF format; and
 - prepared in the form of a formal report that includes a list of reference sources cited in the report, prepared in accordance with the report writing standards of the School as contained in the MEA Report Writing Guide for Mining Engineers. A copy can be obtained from the UNSW Bookshop or downloaded from the School webpage.

How
- The submitted document must be consistent with the following file naming convention:
 <FamilyNameInitials_CourseCode_AssignmentNumber.pdf>.
A typical complaint filename would take the following form <SmithPD_2_A01.pdf> which elements correspond to:

- Family name of student: Smith
- Initial(s) of student: PD
- Course Code: MINE5020
- Assignment number: A01...as defined in the Course Outline for the assessment task
- File format: PDF document

5.3 Penalties for Non-Compliant Submission

A submission that is non-compliant with the School Policy on Assignment Submission and/or requirements as contained in this Course Outline may not be marked and/or penalty marks subtracted from the assignment mark for non-compliance.

Some examples of a non-compliant assignment include that the assignment submission:

- is not a single PDF document. Penalty for non-compliance: assignment not marked.
- is not fully consistent with the designated file naming convention as listed above and defined as Item #6 in the School Policy on electronic submission. For example, a file name such as <HazradPlan.pdf> is NOT compliant.
- does not have appended at the end of the assignment a completed self-assessment by the student of the assignment using the official Assessment Criteria template.

6 ASSESSMENT CRITERIA

The following assessment criteria provide a framework for students when preparing assignments in the course as well as a guideline for assessors when marking an assignment. The student is advised to review the relevant framework before undertaking their assignment.

The criteria listed for each item of assessment and the descriptions contained therein are not intended to be prescriptive nor is it an exhaustive list. Rather it should be viewed as a framework to guide the student as to the type of information and depth of coverage that is expected to be evident in a submission for assessment; the framework illustrates for example what would distinguish an excellent achievement from a poor achievement.

The student should be cognisant that a range of factors is often being assessed in any one assignment; not just whether the final results are numerically correct. Consideration is given to other relevant elements that contribute to the Learning Outcomes of the course as well as the Graduate Attributes of the overall degree program.

The student is cautioned against merely using the assessment criteria as a checklist. When assessing an assignment, elements in the framework will be examined in terms of quality and creativity. Hence ensuring all the listed elements are merely covered in an assignment is often not sufficient in itself and will not automatically lead to full marks being awarded. Other factors such as how the student went about presenting information, how an argument was structured and/or the elements supporting a particular recommendation or outcome are also important.

Finally the framework can also be used to provide feedback to a student on their performance in an assignment.
6.1 Assignment Reports

The assessment criteria that will be used in assessing the assignment reports is summarised in the following table.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Excellent</th>
<th>Good</th>
<th>Satisfactory</th>
<th>Unsatisfactory</th>
<th>Poor</th>
<th>nil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive summary / Assignment brief</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Introduction</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>15</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Methodology and/or experimental procedures</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Results and discussion</td>
<td>40</td>
<td>36</td>
<td>35</td>
<td>28</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Conclusions</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Layout and standard of assignment</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

The table is as follows:

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Excellent</th>
<th>Good</th>
<th>Satisfactory</th>
<th>Unsatisfactory</th>
<th>Poor</th>
<th>nil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive summary / Assignment brief</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Introduction</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>15</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Methodology and/or experimental procedures</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Results and discussion</td>
<td>40</td>
<td>36</td>
<td>35</td>
<td>28</td>
<td>27</td>
<td>20</td>
</tr>
<tr>
<td>Conclusions</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Layout and standard of assignment</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Excellent
- Executive summary / assignment brief has clearly defined objectives and methodology of the project and includes a comprehensive summary of the findings and outcomes of the project.
- Introduction provides the reader with a concise background to the topic that is appropriately referenced.
- Assignment provides the reader with an excellent and clear description of the methodology and/or any experimental procedure that was used to obtain experimental data.
- Assignment is supported with appropriate and incisive analysis supported by results with detailed discussion that advances the knowledge of the topic.
- Results and discussion is concise, appropriate and excellent conclusions, clearly demonstrating the significance of the results.
- No or few spelling and grammatical errors. References are correctly used and all headings used in the assignment are relevant.

Good
- Executive summary / assignment brief has defined objectives and methodology of the project and includes some summary of the findings and outcomes of the project.
- Introduction provides the reader with some background to the topic.
- Assignment provides the reader with a brief description of the methodology and/or any experimental procedure that was used to obtain data, which contains minor errors.
- Assignment is supported with some results, analysis and discussion that partially advance the knowledge of the topic.
- Good conclusions, but significance of the results not clearly demonstrated.
- Some spelling and grammatical errors. References are correctly used and all headings used in the assignment are relevant.

Satisfactory
- Executive summary / assignment brief has defined objectives and methodology of the project with minor errors in summary of the findings and outcomes of the project.
- Introduction provides the reader with little background to the topic.
- Assignment provides the reader with a brief description of the methodology and/or any experimental procedure that was used to obtain data, which contains minor errors.
- Assignment is supported with some results, analysis and discussion.
- Reasonable conclusions but significance of the results only partially addressed.
- Spelling and grammatical errors to be corrected. References are used and not all headings used in the assignment are relevant.

Unsatisfactory
- Executive summary / assignment brief has some defined objectives and methodology of the project with errors in summary of the findings and outcomes of the project.
- Introduction provides the reader with very little background to the topic.
- Assignment provides the reader with a brief description of the methodology and/or any experimental procedure that was used to obtain data, which contains major errors.
- Assignment has only minimal results and discussion, but analysis is missing.
- Unreasonable conclusions not fully supported by the results in the assignment.
- Major spelling and grammatical errors to be corrected. Few references are used and many headings used in the assignment are not relevant.

Poor
- Executive summary / assignment brief has poorly defined objectives and methodology with major errors in summary of the findings and outcomes of the project.
- Introduction provides the reader with no background to the topic.
- Assignment provides the reader with a limited description of the methodology and/or any experimental procedure that was used to obtain data.
- Assignment contains limited results and little discussion of relevance.
- Results and discussion missing.
- Invalid conclusions.
- Conclusions missing.
- Major spelling and grammatical errors to be corrected. No references are used and many headings used in the assignment are not relevant.

nil
- Provided no executive summary or assignment brief.
- Methodology and/or Experimental Procedures missing.
- Results and discussion missing.

MINE5020 Geotechnical Assessment for Underground and Open Cut Mining

11 | Page
7 STUDYING A PG COURSE IN MINING ENGINEERING AT UNSW

7.1 How We Contact You

At times, the School or your lecturers may need to contact you about your course or your enrolment. Your lecturers will use the email function within Moodle or we will contact you on your @student.unsw.edu.au email address.

We understand that you may have an existing email account and would prefer for your UNSW emails to be redirected to your preferred account. Please see these instructions on how to redirect your UNSW emails: https://www.it.unsw.edu.au/students/email/index.html

7.2 How You Can Contact Us

We are always ready to assist you with your inquiries. To ensure your question is directed to the correct person, please use the email address below for:

Enrolment or other admin questions regarding your program: postgrad.mining@unsw.edu.au

Course inquiries: these should be directed to the Course Convenor.

7.3 Computing Resources and Internet Access Requirements

UNSW Mining Engineering provides blended learning using the on-line Moodle LMS (Learning Management System).

It is essential that you have access to a PC or notebook computer. Mobile devices such as smart phones and tablets may compliment learning, but access to a PC or notebook computer is also required. Note that some specialist engineering software is not available for Mac computers.

You can access the School’s computer laboratory in-line with the School laboratory access guidelines and Class bookings.

It is recommended that you have regular internet access to run Moodle most effectively.

More information about system requirements is available at www.student.unsw.edu.au/moodle-system-requirements

7.4 Accessing Course Materials Through Moodle

Course outlines, support materials are uploaded to Moodle. In addition, on-line assignment submissions are made using the assignment dropbox facility provided in Moodle. All enrolled students are automatically included in Moodle for each course. To access these documents and other course resources, please visit: www.moodle.telt.unsw.edu.au

7.5 Assignment Submissions

The School has developed a guideline to help you when submitting a course assignment. Please take a closer look at all these details on our website: www.engineering.unsw.edu.au/mining-engineering/assignment-submission-policy
We encourage you to retain a copy of every assignment submitted for assessment for your own record either in hardcopy or electronic form. On a rare occasion, assignments may be mislaid and we may contact you to re-submit your assignment.

7.6 Late Submission of an Assignment

Full marks for an assignment are only possible when an assignment is received by the due date. In fairness to those students who do meet the assignment due date and time, deductions will apply to submissions made after this time. Details on deductions that are automatically applied to late submissions are available on our webpage: www.engineering.unsw.edu.au/mining-engineering/late-submissions

We understand that at times you may not be able to submit an assignment on time, and the School will accommodate any fair and reasonable extension. We would recommend you review the UNSW Special Consideration guidelines – see following section.

In the case of the assignment reports, penalty marks will be applied at the following rate if submitted after the due date: five (2) percentile points of the maximum possible mark for each day or part thereof that the assessment is overdue.

7.7 Special Consideration

You can apply for special consideration through [UNSW Student Central](http://www.student.unsw.edu.au/specia) when illness or other circumstances interfere with your assessment performance. Sickness, misadventure or other circumstances beyond your control may:

- Prevent you from completing a course requirement,
- Keep you from attending an assessable activity,
- Stop you submitting assessable work for a course,
- Significantly affect your performance in assessable work, be it a formal end-of-semester examination, a class test, a laboratory test, a seminar presentation or any other form of assessment.

We ask that you please contact the Course Convenor immediately once you have completed the special consideration application, no later than one week from submission.

More details on special consideration can be found at: www.student.unsw.edu.au/specia

7.8 Course Results

For details on UNSW assessment policy, please visit: www.student.unsw.edu.au/assessment

In some instances your final course result may be withheld and not released on the UNSW planned date. This is indicated by a course grade result of either:

- WD – which usually indicates you have not completed one or more items of assessment or there is an issue with one or more assignment; or
- WC – which indicates you have applied for Special Consideration due to illness or misadventure and the course results have not been finalised.

In either event it would be your responsibility to contact the Course Convener as soon as practicable but no later than five (5) days after release of the course result. If you don’t contact the convener on time, you may be required to re-submit an assignment and may result in you failing the course. You would also have a NC (course not completed) mark on your transcript and would need to re-enroll in the course.
7.9 Students Needing Additional Support

The Student Equity and Disabilities Unit (SEADU) aims to provide all students with support and professional advice when circumstances may prevent students from achieving a successful university education. Take a look at their webpage: www.studentequity.unsw.edu.au/

7.10 Academic Honesty and Plagiarism

Your lecturer and the University will expect your submitted assignments are truly your own work. UNSW has very clear guidelines on what plagiarism is and how to avoid it. Plagiarism is using the words or ideas of others and presenting them as your own. Plagiarism is a type of intellectual theft. It can take many forms, from deliberate cheating to accidentally copying from a source without acknowledgement. The University has adopted an educative approach to plagiarism and has developed a range of resources to support students. All the details on plagiarism, including some useful resources, can be found at www.student.unsw.edu.au/plagiarism.

All Mining Engineering students are required to complete a student declaration for academic integrity which is outlined in the assignment cover sheets. By signing this declaration, you agree that your work is your own original work.

If you need some additional support with your writing skills, please contact the Learning Centre or view some of the resources on their website: www.lc.unsw.edu.au/. The Learning Centre is designed to help you improve your academic writing and communication skills. Some students use the Centre services because they are finding their assignments a challenge, others because they want to improve an already successful academic performance.

7.11 Report Writing Guide for Mining Engineers

7.12 Continual Course Improvement

At the end of each course, all students will have the opportunity to complete a course evaluation form. These anonymous surveys help us understand your views of the course, your lecturers and the course materials. We are continuously improving our courses based on student feedback, and your perspective is valuable.

We also encourage all students to share any feedback they have any time during the course – if you have a concern, please contact us immediately.
School of Minerals and Energy Resources Engineering

Assessment Cover Sheet

Course Convenor: ___
Course Code: __________________________ Course Title: _____________________________________
Assignment: __
Due Date: _____________________________
Student Name: __________________________ Student ID: ________________________________

ACADEMIC REQUIREMENTS
Before submitting this assignment, the student is advised to review:
• the assessment requirements contained in the briefing document for the assignment;
• the various matters related to assessment in the relevant Course Outline; and
• the Plagiarism and Academic Integrity website at <http://www.lc.unsw.edu.au/plagiarism/pintro.html> to ensure they are familiar with the requirements to provide appropriate acknowledgement of source materials.

If after reviewing this material there is any doubt about assessment requirements, then in the first instance the student should consult with the Course Convenor and then if necessary with the Director – Undergraduate Studies.

While students are generally encouraged to work with other students to enhance learning, all assignments submitted for assessment must be their entire own work and duly acknowledge the use of other person’s work or material. The student may be required to explain any or all parts of the assignment to the Course Convenor or other authorised persons. Plagiarism is using the work of others in whole or part without appropriate acknowledgement within the assignment in the required form. Collusion is where another person(s) assists in the preparation of a student’s assignment without the consent or knowledge of the Course Convenor.

Plagiarism and Collusion are considered as Academic Misconduct and will be dealt with according to University Policy.

STUDENT DECLARATION OF ACADEMIC INTEGRITY
I declare that:
• This assessment item is entirely my own original work, except where I have acknowledged use of source material [such as books, journal articles, other published material, the Internet, and the work of other student/s or any other person/s].
• This assessment item has not been submitted for assessment for academic credit in this, or any other course, at UNSW or elsewhere.

I understand that:
• The assessor of this assessment item may, for the purpose of assessing this item, reproduce this assessment item and provide a copy to another member of the University.
• The assessor may communicate a copy of this assessment item to a plagiarism checking service (which may then retain a copy of the assessment item on its database for the purpose of future plagiarism checking).

Student Signature: __________________________ Date: ______________________

Students are advised to retain a copy of this assessment for their records and submission should be made in accordance to the assessment details available on the course Moodle site.