

BIOM9332

Biocompatibility

Term 2, 2023

Course Overview

Staff Contact Details

Convenors

Name	Email	Availability	Location	Phone
Jelena Rnjak- Kovacina	j.rnjak-kovacina@unsw.edu.au		Samuels 507	9385 3920
Nona Farbehi	n.farbehi@unsw.edu.au			

School Contact Information

Student Services can be contacted via <u>unsw.to/webforms</u>.

Course Details

Units of Credit 6

Summary of the Course

This course outlines the concepts of biocompatibility with emphasis on understanding biological responses to a range of biomaterials and medical devices.

Course Aims

The overall aims of this course are to:

- understand fundamental concepts related to biological performance of materials used in medical devices.
- apply knowledge of biological performance concepts to development of preclinical evaluation programs for medical materials and devices, in particular tissue engineered devices that incorporate biological materials and cultured cells.

Course Learning Outcomes

After successfully completing this course, you should be able to:

Learning Outcome	EA Stage 1 Competencies
Describe biomaterial classes, their general properties, and predict how specific materials may be affected by physiological conditions	PE1.1, PE3.2
2. Explain the principles of tissue engineering and apply these to novel medical device designs	PE1.2, PE3.2
Explain how material processing, sterilisation and handling may affect medical device function	PE1.2, PE3.3, PE3.2
Describe host responses to biomaterials and predict host responses to novel medical device designs	PE1.2, PE3.6, PE1.4, PE3.2
5. Describe biocompatibility and pre-clinical biological performance testing regimes, and propose a testing regime for a novel medical device	PE1.2, PE2.1, PE2.2, PE3.3, PE1.4, PE3.2

Teaching Strategies

A combination of lectures, in class activities, workshops, and independent and group learning tasks are used in this course to expose students to a range of teaching modes. For each hour of contact students are expected to put in at least 1.5 hours of private study.

Additional Course Information

This course outlines the concepts of biocompatibility with emphasis on understanding biological

responses to a range of biomaterials and medical devices. The course consists of 4h of face-to-face time per week, including lectures and workshops. Workshop (2h/week) attendance in-person is expected. Additional independent learning is expected based on guidelines provided throughout the term, including reading of course materials, additional recommended tasks, and completion of assessment tasks.

This course compliments other BIOM courses including Cellular and Tissue Engineering, Mechanical Properties of Biomaterials, Regulatory Requirements for Biomedical Technology, Clinical Laboratory Science and certain thesis topics.

Assessment

Assessment task	Weight	Due Date	Course Learning Outcomes Assessed
1. Major Quiz	20%	TBD	
2. Final Exam	40%	TBD	
3. Major Project - Part 1	10%	TBD	
4. Major Project - Part 2	18%	TBD	
5. Major Project - Part 3	10%	TBD	
6. Major Project - Part 4	2%	TBD	

Assessment 1: Major Quiz

Due date: TBD

Multiple choice, true false and short answer in-class quiz, closed book

This is not a Turnitin assignment

Assessment 2: Final Exam

Due date: TBD

Final exam, centrally-run, closed book

Assessment 3: Major Project - Part 1

Due date: TBD

The Major Project that involves developing a conceptual framework for improved biocompatibility testing of medical devices. This task is designed to foster team work and put the theory into action. Part 1 is submitted individually.

This is not a Turnitin assignment

Assessment 4: Major Project - Part 2 (Group)

Due date: TBD

The Major Project that involves developing a conceptual framework for improved biocompatibility testing

of medical devices. This task is designed to foster team work and put the theory into action. Part 2 is submitted as a group. The groups will be formed in the first tutorial.

This is not a Turnitin assignment

Assessment 5: Major Project - Part 3 (Group)

Due date: TBD

The Major Project that involves developing a conceptual framework for improved biocompatibility testing of medical devices. This task is designed to foster team work and put the theory into action. Part 3 is submitted as a group. The groups will be formed in the first tutorial.

This is not a Turnitin assignment

Assessment 6: Major Project - Part 4

Due date: TBD

The Major Project that involves developing a conceptual framework for improved biocompatibility testing of medical devices. This task is designed to foster team work and put the theory into action. Part 4 is submitted individually.

Attendance Requirements

Students are required to attend their timetabled workshops. Inability to attend the weekly workshop should be discussed with the course convenor.

Course Schedule

View class timetable

Timetable

Date	Туре	Content
O-Week: 22 May - 26 May		
Week 1: 29 May - 2 June	Lecture	Intro to BIOM9332
		Intro to biocompatibility
	Workshop	Timetabled workshop- major project groups will be formed
Week 2: 5 June - 9	Lecture	Biocompatibility concepts cont.
June		Biomaterials
	Workshop	
Week 3: 12 June - 16	Lecture	
June	Workshop	
Week 4: 19 June - 23	Lecture	Cells, ECM, Cell—ECM interactions
June	Workshop	
Week 5: 26 June - 30	Lecture	ISO10993
June	Workshop	
Week 6: 3 July - 7 July		
Week 7: 10 July - 14	Lecture	Tissue Engineering & Sterilisation
July	Workshop	
Week 8: 17 July - 21 July	Lecture	Host responses 1- Immune system 101
Week 9: 24 July - 28	Lecture	Host responses 2- Immune system & biomaterials
July	Workshop	
Week 10: 31 July - 4	Lecture	Host responses 3- Blood interactions

August	Workshop	
--------	----------	--

Submission of Assessment Tasks

Laboratory reports and major assignments will require a Non Plagiarism Declaration Cover Sheet.

Assignments should be submitted on time. A daily penalty of 5% of the marks available for that assignment will apply for work received after the due date. Any assignment more than 5 days late will not be accepted. The only exemption will be when prior permission for late submission has been granted by the Course coordinator. Extensions will be granted only on medical or compassionate grounds under extreme circumstances.

Academic Honesty and Plagiarism

PLAGIARISM

Beware! An assignment that includes plagiarised material will receive a 0?il, and students who plagiarise may fail the course. Students who plagiarise will have their names entered on a plagiarism register and will be liable to disciplinary action, including exclusion from enrolment.

It is expected that all students must at all times submit their own work for assessment. Submitting the work or ideas of someone else without clearly acknowledging the source of borrowed material or ideas is plagiarism.

All assessments which you hand in must have a <u>Non Plagiarism Declaration Cover Sheet</u>. This is for both individual and group work. Attach it to your assignment before submitting it to the Course Coordinator or at the School Office.

Plagiarism is the use of another person's work or ideas as if they were your own. When it is necessary or desirable to use other people's material you should adequately acknowledge whose words or ideas they are and where you found them (giving the complete reference details, including page number(s)). The Learning Centre provides further information on what constitutes Plagiarism at: https://student.unsw.edu.au/plagiarism

Academic Information

COURSE EVALUATION AND DEVELOPMENT

Student feedback has helped to shape and develop this course, including feedback obtained from online evaluations as part of UNSW's as part of UNSW's myExperience process. You are highly encouraged to complete such an on-line evaluation toward the end of Term. Feedback and suggestions provided will be important in improving the course for future students.

DATES TO NOTE

Refer to MyUNSW for Important Dates, available at: https://my.unsw.edu.au/student/resources/KeyDates.html

ACADEMIC ADVICE

For information about:

- · Notes on assessments and plagiarism,
- Special Considerations,
- · School Student Ethics Officer, and
- BESS

refer to the School website available at http://www.engineering.unsw.edu.au/biomedical-engineering/

Supplementary Examinations:

Supplementary Examinations for Term 2 2023 will be held on (TBC) should you be required to sit one.

This course outline sets out description of classes at the date the Course Outline is published. The nature of classes may change during the Term after the Course Outline is published. Moodle should be consulted for the up to date class descriptions. If there is any inconsistency in the description of activities between the University timetable and the Course Outline (as updated in Moodle), the description in the Course Outline/Moodle applies.

Image Credit

Image by Ryan Adams- Assorted Doctors Tools - Credit to http://homedust.com/ under Attribution 2.0 Generic (CC BY 2.0)

CRICOS

CRICOS Provider Code: 00098G

Acknowledgement of Country

We acknowledge the Bedegal people who are the traditional custodians of the lands on which UNSW Kensington campus is located.

Appendix: Engineers Australia (EA) Professional Engineer Competency Standard

Program Intended Learning Outcomes		
Knowledge and skill base		
PE1.1 Comprehensive, theory based understanding of the underpinning natural and physical sciences and the engineering fundamentals applicable to the engineering discipline		
PE1.2 Conceptual understanding of the mathematics, numerical analysis, statistics, and computer and information sciences which underpin the engineering discipline	✓	
PE1.3 In-depth understanding of specialist bodies of knowledge within the engineering discipline		
PE1.4 Discernment of knowledge development and research directions within the engineering discipline	✓	
PE1.5 Knowledge of engineering design practice and contextual factors impacting the engineering discipline		
PE1.6 Understanding of the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the specific discipline		
Engineering application ability		
PE2.1 Application of established engineering methods to complex engineering problem solving	✓	
PE2.2 Fluent application of engineering techniques, tools and resources	✓	
PE2.3 Application of systematic engineering synthesis and design processes		
PE2.4 Application of systematic approaches to the conduct and management of engineering projects		
Professional and personal attributes		
PE3.1 Ethical conduct and professional accountability		
PE3.2 Effective oral and written communication in professional and lay domains	1	
PE3.3 Creative, innovative and pro-active demeanour	✓	
PE3.4 Professional use and management of information		
PE3.5 Orderly management of self, and professional conduct		
PE3.6 Effective team membership and team leadership	✓	