Linear and Robust Control Systems ELEC 9731
Session I 2018

Instructor: Prof Victor Solo Prof A. Savkin
E-Mail: v.solo@unsw.edu.au [use subject: ELEC 9731]
UOC: 6
Class Times: Wednesday, 6pm-9pm Room: Ainsworth 102
Prerequisites: Undergraduate Control Course

Course Organisation
There are two parts to the course
Part I: (Prof Solo) Linear Systems and Control: weeks 1-6
Part II: (Prof Savkin) Robust Control: weeks 7 -12

Aims:
Provide an introduction to multivariable linear system theory and control from both an input/output and a state space point of view.
Provide an introduction to Robust Control

Assessment:
To pass, students must obtain a pass level in each part of the course
Assignments (two for each part) 10% each
Exams (one for each part) (Take-home) 30% each
Assignments should have a School Assignment Sheet as the first page.
These sheets are available from the School Office, or may be downloaded from the School web page.
Keep a copy of your assignment
Late assignments will be penalised at 10% of the maximum value per day late.

Assignment, Exam Timetable
Assignment 1: out - week 2 ; due - week 4
Assignment 2: out - week 4 ; due - week 6
Exam: out - week 6 ; due - week 8
Assignment 3: out - week 8 ; due - week 10
Assignment 4: out - week 10 ; due - week 12
Exam: out - week 12 ; due - week 14
Resources
Part I

Software: Matlab (including Simulink)
Textbook: none.
References: in Library Open Reserve
ii GC Goodwin, SF Graebe, ME Salgado (2000),
Control System Design. Prentice Hall. P629.8/203

Part II

Software: Matlab (including Simulink)
Textbook: none
Control Systems Design. Prentice Hall.
ii L. Ljung, (1999), System Identification: Theory for the User
2nd., ed., Prentice-Hall, HUC 003/164 D
iii J. Doyle, B. Francis, A. Tannenbaum, (1990),
Feedback Control Theory, Macmillan Press (the book is available on the web)

Teaching Strategies
Lectures to give the basic material in written form,
and to highlight the importance of different sections,
and help with the formation of schema.
Assignments to give practice in problem solving, and to assess your progress.
Examination the final test of competency.

Learning Outcomes
At the end of the course the student will be familiar with
basic aspects of linear system theory and control,
from both an input/output and a state space point of view
The student will be able to use this knowledge to solve
basic problems in linear system theory, control design
and system identification.

Academic Honesty and Plagiarism
Plagiarism means copying. You cannot copy other peoples work of any kind;
you cannot copy from any source. Plagiarism is a serious offence and (severe)
penalties will apply; see https://student.unsw.edu.au/plagiarism

Administrative Matters
On issues and procedures regarding such matters as special needs,
equality and diversity, occupational health and safety, enrolment, rights,
and general expectations of students, please refer to the School policies,
on the School webpage.
Week Topic

1a Review SISO State Space
Including: modal transformation; controllability; observability; state space decomposition theorem; polynomial division; Sylvester resultant and coprimeness.

2 Feedback
Linear state feedback; Bass-Gura formula; modal approach; internal model principle. Linear state feedback with observer; limits to control; right half plane zeroes.

3a tracking and disturbance rejection.

3b MIMO systems
Gilbert’s form; matrix fraction description; state space; controllability, observability.

4 Polynomial Matrices
unimodular matrices; Smith form; Smith-McMillan form. MIMO poles and zeroes.

5 MIMO decomposition theorem.

6 Balanced realization.