Ethics & Leadership in Engineering
— the Students’ Guide

Course Staff

Course convener: Dr I. Skinner, i.skinner@unsw.edu.au.
You will also have other class-room teachers.

Consultations: Students are encouraged to use the on-line discussion tools found on the course moodle-site.
Matters concerning course content & administration should be referred to the convener.
Class-room teachers have responsibility for arrangements within their respective classes.

Course details

Units of Credit: GSOE9510 is a 6 UoC course; we emphasis that 6 UoC means 6 UoC: the indicative student workload is 150 hr, i.e. 13 hr/wk, allowing some time for exam and preparation. Of course, the amount of work you actually choose to do depends upon your ambition and your ability.

Classes: This term, GSOE9510 has 2 classes running most weeks, a ‘lecture’ and a tutorial.
You will find a detailed class schedule on moodle.

Course Information

Context and aims

This course is part of the non-technical component of your professional education.

Aims: This course is primarily designed to enhance your ability to (i) analyse ethical problems, determine a plan of action, and articulate this resolution to others, and (ii) make decisions about technological innovations and, thereby, to engage productively in the leadership of various groups. In both cases we are primarily interested in the context of engineering, but the skills apply equally to your wider life.

A further expectation is to provide you with (i) an understanding of the complex, interlocking organisations that form the wider, non-technical context in which engineers
practice, and (ii) some practical guidance both for interacting professionally with other engineers, wherever they might be, and for conducting yourselves as engineers, especially within large organisations under strong commercial pressures. Ethical analyses will be specifically informed by formal guidance from Engineers Australia (2010).

Prerequisites & assumed knowledge: There is no prerequisite for this course but we assume that you have worked previously on an engineering project of some description.

Parallel Teaching: Some of the class-time will be lectures shared with the undergraduate course ELEC4122 which has some common content.

Learning outcomes

After the successful completion of this course, the student will be able to

- describe the social, environmental, regulatory, & organisational context of engineering and identify which of its features are important for an engineering design;
- identify ethical problems, particularly in the context of engineering practice;
- formulate and communicate consistent, coherent responses to such problems, using the formal language of ethics, and critically examine the ethical arguments proposed by others;
- use different criteria, including aspects of sustainability, to evaluate technological innovations;
- help lead, i.e. facilitate the effective working of, a team (be it a technical project team or those involved in using an innovation); and
- identify ways to assess and reduce risks, especially those associated with human limitations.

In summary, we expect you will improve your ability to consider problems from multiple perspectives and make decisions associated with uncertain, inconsistent and imprecisely defined requirements, as is often the case when people are involved. Appendix 1 explains how these relate to wider program graduate outcomes.

Additionally, students are expected to improve their skills in gathering and synthesising information, in the oral and written presentation of arguments, in listening, and in working with other people, some of whom will have ideas and beliefs very different from your own. It is clear these objectives can be met only when students actually engage in discussing and debating (both written and oral) the course of action which should be followed, i.e. the ‘best’ decision.
Teaching strategies

GSOE9510 consists of the following elements: “lectures”, tutorial-based activities, on-line activities, and self-paced learning.

Self-paced learning

This course is unorthodox. (Some students do not believe this and complain it is not what they expect!) Rather than having a set of traditional ‘instructional’ lectures, this course is structured as a reading course. This means that you will only completely develop your knowledge of the core material by reading the prescribed resources, **not at lectures**.

It is an important professional skill to be able to search through information and identify what you need. You will not advance far in your profession if you cannot do this. Think: papers, reports, manuals. Text-based documentation is everywhere. This course is designed to enhance this skill needed for professional independence.

Of course, no lecture notes will be distributed, but you will receive suggested readings.

Further, being able to discipline your own learning will stand you in good stead for the rest of your lives. It is also important to be able to reflect on what you have learned, for without doing so you cannot identify what you yet need to learn. (Some students complain because they want something that requires them to be less independence!)

Key reading resources

Instead of needing to read everything on the list in detail, you can share the task. You can take advantage of work done by each other. You will each have an assigned reading and from this develop a learning resource to be placed on moodle and explaining key concepts of the GSOE9510 syllabus.

Plenary Classes

Formal ‘lectures’ merely introduce the main themes of the course, provide some motivation, and present the fundamental concepts you must understand.

In other classes we will have visitors who will discuss specific topics, set in a specific context.

Tutorials

The other classroom activities occur in smaller groups. They provide structured reflection on some of the ideas explored during the course and will afford you the chance to share your understandings and experiences with each other, facilitated by a tutor. Once again you will practise key skills. The syllabus of this course is not such that you can learn without active engagement with other people.
Moodle

There is an on-line component for this course using moodle. Students must participate in the activities because this is where your team projects operate.

Team projects

As this course explores theory about leadership, it is important to have practical work, too (just like labs). There are two team projects. These will give you an opportunity to practise what is learnt about teamwork and leadership as well as develop some of the other learning objectives of the course.

Note that these ‘teaching strategies’ are supported and guided by Guidelines on learning that inform teaching at UNSW (UNSW 2013a). In particular, “engaging students in learning; contextualise learning; be inclusive; design curriculum to engage, contextualise, and be inclusive; and teach to engage, contextualise and be inclusive.”

Be assured that you will find this course more fun than you initially expect. Every year students are different but every year it is a pleasure to see them get passionate & care about something. Whatever else, make sure you ENJOY YOURSELF. We enjoy this course, too.

Assessment

There are several components for the summative assessment in this course.

Your exam mark x is determined from two items: your class-test t and final exam mark f, both normalised to be out of 1. These have flexible weightings (to advantage you) as follows:

$$x = 50 \times \max \left(\frac{t}{3} + \frac{2f}{3}, \frac{t}{5} + \frac{4f}{5} \right).$$

You also get an an in-session mark y out of 50. This consists of two parts: moodle-based team-focussed activities weighted at 25 and week-by-week individual classroom-based “continuous” assessment weighted at 25. In turn, the classroom mark comes from 3 homework exercises (13) and participation (12). The moodle-based work comes from two group deliverables—a learning resource (10) and a simulation project (12)—and your participation in moodle-based discussions (3).

Your final, summative course mark m is given by

$$m = x + y.$$

However, if $x \leq 22$, then you will get a UF grade. In other words, you must get a satisfactory mark for the combination of final exam and the class-test marks in order to pass this course.

The “due dates” for all assessment tasks are given in Table 1 below.
Final Examination: The written examination, after classes end, will be of 2 hr duration. It will test critical thinking and general understanding of the course material in a controlled setting. It will be an open-book exam. The final exam will be held after the end of the teaching session.

Class-Test: This closed-book test of 1 hr duration will test basic knowledge of the core ideas and key terms of the course. It will take the form of short answer questions. The class-test will be in class in Week 8 (Thu 11 Apr).

Homework Assignments: You will have THREE short homework assignments, due in your tutorial class in Weeks 3, 6 & 9. Each will require you to write about 300 words (plus any necessary background). Full details of this task’s requirements are in the relevant document that will be given out later.

Class-room Participation: You are required to participate during classes. This means working on the activities, actively listening and appropriately contributing to discussions, not simply being physically present. There will be no marks given for mere presence. If you do not do these things, you will not learn what we expect you to learn this session, notably how to respond when asked a question. Classroom discussion will occur in a small group context. Further details about classroom participation marking are in a separate document. If you do not have a formal, acceptable explanation for missing a class, your participation mark will be reduced.

Moodle Participation: You are also expected to contribute to the on-line discussions about the topics introduced by your classroom activities. At the end of session, your best postings will be reviewed as your marked contribution.

Simulation Project: In this activity, you will work in a team of 3 to 6 students. The teams will compete against each other to win a simulation game that will be played using moodle as the interface. The game will run over the course duration, with the first round played Friday 11 Jan. With only one round each day, there will be time between rounds of play for your team to discuss its strategy. The team will receive a mark on the basis of how well it functions and also its success in the game. After the game concludes, you will be required to write a short individual reflection statement about how it went. Full details of this task’s requirements are in separate documents.

Any student who is repeating this course will participate in a different project (so that the game is not spoiled for others).

Online Learning Resource: Your team (same team as above) will also develop an on-line learning resource for the class, based on an assigned reading relevant to this course. This resource is expected to use the ideas explored in this reading and, of course, the learning objectives of this course. The format of this resource is at the discretion of the
team. Teams are also required to reply to any questions that will be asked on moodle in response to its resource, though you are not necessarily expected to have the definitive answer. Additionally, you, as an individual, must ask questions about TWO resources produced by other teams. The resource is expected to take a typical student only 15 minutes to work through. A few readings are longer and will be given to larger teams. The resulting resource will, of course, be longer in this case. Full details of this task’s requirements are in separate documents. The chapters for the learning resources will be allocated to teams by Friday 11 Jan. *All learning resources are due Wed Week 6.*

<table>
<thead>
<tr>
<th>Week</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Mon</td>
<td>team memberships completed</td>
</tr>
<tr>
<td>2 Wed</td>
<td>resource chapters received</td>
</tr>
<tr>
<td>2 Thu</td>
<td>play Round 1 of simulation project</td>
</tr>
<tr>
<td>3</td>
<td>homework 1 submitted</td>
</tr>
<tr>
<td>6 Wed</td>
<td>submit learning resource</td>
</tr>
<tr>
<td>6</td>
<td>homework 2 submitted</td>
</tr>
<tr>
<td>8 Thu</td>
<td>class-test</td>
</tr>
<tr>
<td>9</td>
<td>homework 3 submitted</td>
</tr>
<tr>
<td>10 Fri</td>
<td>complete team project reflection questionnaires</td>
</tr>
<tr>
<td>tba</td>
<td>exam</td>
</tr>
</tbody>
</table>

Table 1 Critical dates for student work.

Team membership: To form teams, you need to select a team using the team membership selection tool in moodle. *You will be in the same team for both the Key Reading and the Simulation Projects.*

Note these general considerations about your assessment.

(i) All assessed tasks will be graded according to the academic merit (see nominated learning objectives) of the individual piece of work.

(ii) Being able to formulate and ask appropriate questions is an important skill and, where relevant, marks are influenced by the quality of the questions you raise.

(iii) Marks are also influenced by your ability to communicate your ideas clearly and concisely.

In all assessment tasks, you should read the instructions and pay attention to formal requirements detailed on any relevant cover-sheet. There is a standard penalty for late submission of a task: given-mark = raw-mark × 0.8^n, where n is the number of days late.

Course Schedule

Please confirm the schedule on moodle, where it can be kept up-to-date.
Resources for Students

As mentioned above, ‘lecture notes’ will not be distributed. However, you will get some notes associated with the key ideas.

Books

Books are expensive. There is no single prescribed textbook set for this course. Instead, we have identified some excellent reference books that will support your learning.

Martin & Schinzinger (1996) covers the essential material about ethics, and relates this to engineering practice. The aspects related to leadership are supported by Northouse (2007), which is not specific to engineering. A reference generally useful, and also set in the context of (albeit civil) engineering, is Beder (1998).

There are many, better written and more entertaining books that pose significant, timeless ethics issues in works of fiction, and yet relevant to engineers, e.g. Asimov (1950), Clarke (1965), Shelley (1818), Stevenson (1886), and Orwell (1949). Likewise, engaging writers (not those of textbooks) have explored the nature of leadership, organisations, and strategy, from the legendary Homer (750 BC, 720 BC) and Lao-Tzu (6th century BC), through the Renaissance (e.g. Machiavelli 1532), to modern authors (e.g. Tolkien 1954). Consider the contrasting approaches to leadership shown in Shakespeare’s Richard II and Henry V. Musings on such things are as old as human society itself.

DVDs

In Week 1, you will watch the story of a celebrated “engineering achievement” (from Constructing Australia 2007). The Library has copies of other such stories and we encourage you to view a couple more during the rest of the session, particularly with friends.

On-line resources

There is a wealth of case studies related to engineering ethics on The Web. We encourage you to explore it, and think about what you find. Do you agree with it? Why? Likewise, on The Web, there is plenty of free advice about leadership and strategies. Remember, though: web-based resources may have no quality assurance.

We invite students who find suitable material, including web-sites, to highlight these to others using the moodle discussion tools.

The Learning Centre

The Learning Centre is located in behind Student Central in the Chancellry. It provides free and confidential academic support services for students. These include assistance with communicating information in both written & oral forms. Given the nature of assessment
tasks in this course, you may find this useful. You can approach the Centre directly for assistance on an individual (or group) basis, or you may choose to discuss your needs with Dr Skinner first.

Other Matters

Administrative Matters

On issues and procedures regarding such matters as special needs, equity and diversity, occupational health and safety, enrolment, rights, and general expectations of students, please refer to the relevant Faculty & UNSW policies.

Academic Honesty and Plagiarism

Plagiarism is the unacknowledged use of other people’s work, including the copying of assignments written by other students or material found on The Web. Plagiarism is considered a serious offence by the University and severe penalties may apply. Any plagiarism will be referred to the Head of School for further action. For more information about plagiarism, please see Learning Centre (2010), or ask us.

Continual Course Improvement

Students are invited to provide feedback (positive or negative) to the course convener or a tutor, at any time. There is a discussion forum (“suggestion box”) on moodle for this purpose.

Last year there was a serious problem which we couldn’t know about. No-one informed us until Week 9, when it was too late to fix.

Advice on how to succeed in this course

(i) Learn the key principles so that you can identify ethical issues or problems with teams and engage in debates. Working through the resources is an excellent way to start, but only a start.

(ii) Practise these skills in discussions, and not only in your designated tutorial times. Listen to others.

(iii) Complete all the assessment tasks at the appropriate time, to the required specifications.

(iv) Above all, make sure you are enjoying yourself and finding points of interest, for then the rest will follow. If you haven’t found anything of interest in this course, then start asking questions, and please, please tell us.
Course References

Constructing Australia 2007, television series, Australian Broadcasting Corp, Sydney.

Shelley, M. 1818, *Frankenstein*, ... London.

Stevenson, R.L. 1886, *The Strange Case of Dr Jekyll and Mr Hyde*, ... Edinburgh.

Appendix 1: Graduate Attributes

This course addresses the following Engineers Australia ‘Personal and Professional Skills or Capabilities.’

- team skills and leadership ability
- an understanding of and commitment to the ethical, social, cultural, and environmental responsibilities of the professional engineer.

This course also addresses a number of UNSW ‘Graduate Capabilities’ (UNSW 2013b).

- Scholars who are understanding of their discipline in its interdisciplinary context; capable of independent and collaborative enquiry; rigorous in their analysis, critique, and reflection; ethical practitioners; and capable of effective communication.
- Leaders who are capable of initiating as well as embracing change and collaborative team workers.
- Professionals who are capable of operating within an agreed Code of Practice.
- Global Citizens who are capable of applying their discipline in local, national and international contexts; culturally aware and capable of respecting diversity and acting in socially just/responsible ways; and capable of environmental responsibility.