Course Outline
Semester 1 2016

MTRN4010
ADVANCED AUTONOMOUS SYSTEMS
Contents

1. Staff Contact Details .. 1
 Contact details and consultation times for course convenor 1
2. Course details .. 1
 Credit Points: .. 1
 Contact Hours .. 1
 Summary of the Course .. 1
 Aims of the Course ... 2
 Student learning outcomes ... 2
3. Teaching strategies .. 3
4. Course schedule ... 3
5. Assessment ... 4
 Assignments ... 5
 Presentation .. 5
 Submission ... 5
 Examinations ... 5
 Calculators .. 5
 Special Consideration and Supplementary Assessment 6
6. Expected Resources for students ... 6
7. Course evaluation and development 6
8. Academic honesty and plagiarism ... 6
9. Administrative Matters ... 7
Appendix A: Engineers Australia (EA) Professional Engineer Competency Standards 8
1. Staff Contact Details

Contact details and consultation times for course convenor

Name: Dr Jose Guivant
Office: ME311B, J17
Tel: (02) 9385 4096
Email: J.Guivant@unsw.edu.au

Consultation Times: To be agreed with students, before week 2.

2. Course details

Credit Points:

This is a 6 unit-of-credit (UoC) course, and involves 5 hours per week (h/w) of face-to-face contact.

The UNSW website states “The normal workload expectations of a student are approximately 25 hours per semester for each UoC, including class contact hours, other learning activities, preparation and time spent on all assessable work. Thus, for a full-time enrolled student, the normal workload, averaged across the 16 weeks of teaching, study and examination periods, is about 37.5 hours per week.”

This means that you should aim to spend about 9 h/w on this course. The additional time should be spent in making sure that you understand the lecture material, completing the set assignments, further reading, and revising for any examinations.

Contact Hours

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Day</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Monday</td>
<td>11:00 – 13:00</td>
<td>Civil Eng. 101(H20)</td>
</tr>
<tr>
<td>Projects/ Lab</td>
<td>Tuesday</td>
<td>09:00 – 12:00</td>
<td>Mechatronic Lab 212 (J18)</td>
</tr>
<tr>
<td></td>
<td>Tuesday</td>
<td>12:00 – 15:00</td>
<td>Mechatronic Lab 212 (J18)</td>
</tr>
<tr>
<td></td>
<td>Tuesday</td>
<td>15:00 – 18:00</td>
<td>Mechatronic Lab 212 (J18)</td>
</tr>
<tr>
<td></td>
<td>Thursday</td>
<td>15:00 – 18:00</td>
<td>Mechatronic Lab 212 (J18)</td>
</tr>
<tr>
<td></td>
<td>Friday</td>
<td>15:00 – 18:00</td>
<td>Mechatronic Lab 212 (J18)</td>
</tr>
</tbody>
</table>

(Note: Projects/Lab sessions take place during weeks 2-13; lectures during weeks 1-12)

Summary of the Course

The course is aimed at learning basic and advanced techniques necessary for the sensing and control of autonomous systems. Contents covered in this course are the theory and application of topics such as Stochastic Processes, Bayesian State Estimation (including Kalman Filter), Sensor Data Fusion, Fuzzy Logic, Particle Swarm Optimization (PSO), Genetic Algorithms.
Half of the course is lecture-based. In the other half, the students apply the concepts on real data and a real platform (UGV - Unmanned Ground Vehicle).

Aims of the Course

The following are the course objectives:

- Understanding of the problem of Modelling and Estimation of Stochastic Dynamical Processes, in particular for Robot Perception and Localization.
- Understand the Implementation of stochastic Sensor Data Fusion for solving Engineering Problems.
- Understanding the theory of advanced techniques such as Fuzzy Logic, PSO and Genetic Algorithms.
- Be able to implement simulations and real systems for the control and estimation of processes such as a mobile robotic platform.
- Enable students to work to improve problem-solving skills.
- Obtain experience working with current state of the art sensing technology in Field Robotics.

Concepts included in this course are useful for other disciplines, in research, development and industrial application.

Student learning outcomes

This course is designed to address the below learning outcomes and the corresponding Engineers Australia Stage 1 Competency Standards for Professional Engineers as shown. The full list of Stage 1 Competency Standards may be found in Appendix A.

After successfully completing this course, you should be able to:

<table>
<thead>
<tr>
<th>Learning Outcome</th>
<th>EA Stage 1 Competencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Understanding of the general theory of Bayesian Estimation. Understanding of the theory and application of the Kalman Filter (KF and EKF) for solving diverse types of problems in the area of Engineering</td>
<td>PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals</td>
</tr>
<tr>
<td>2. Understanding of methods such as GA, Fuzzy Logic and PSO.</td>
<td>PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals</td>
</tr>
<tr>
<td>3. Be able to develop software for applying the theory and actually solving complex problem. Get experience in using state of the art sensors, used in Field Robotics and Autonomous Systems</td>
<td>PE2.3 Application of systematic engineering synthesis and design processes</td>
</tr>
</tbody>
</table>
3. Teaching strategies

Teaching of this course is through lectures to cover the theory and laboratory and project sessions to put it in practice. All laboratory work is individual work and attendance is necessary.

The provision of the learning environment in the laboratory is to facilitate you to develop confidence in managing laboratory tasks as projects. Demonstrators in the laboratories are there to provide you all the guidance and assistance is managing the laboratory tasks.

Example source code for the projects is provided, in order to help in the understanding and full implementation of the projects.

Projects complexity is incremental, in order to allow the student to finally complete the solution of a complex problem.

4. Course schedule

<table>
<thead>
<tr>
<th>Topic</th>
<th>Date</th>
<th>Location</th>
<th>Lecture Content</th>
<th>Suggested Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction / refreshing concepts</td>
<td>week 1</td>
<td>LR</td>
<td>Refreshing concepts: Statistics (Random variables, probability density functions), state space representation, matrix/vector operations and Matlab programming language</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>Estimation 1</td>
<td>week 3</td>
<td>LR</td>
<td>Study of Bayesian Estimation, Sensor Data Fusion.</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>Estimation 2</td>
<td>week 4</td>
<td>LR</td>
<td>(Continuation of previous topic)</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>Estimation 3</td>
<td>week 5</td>
<td>LR</td>
<td>Gaussian Estimators: Kalman Filter and Extended Kalman Filter (EKF)</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>Estimation 4</td>
<td>Week 6</td>
<td>LR</td>
<td>Examples using EKF for estimation (not just for Robotics).</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>Localization 1</td>
<td>week 7</td>
<td>LR</td>
<td>Applying EKF in Robotics: Solving the localization of the UGV</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>Localization 2</td>
<td>week 8</td>
<td>LR</td>
<td>Alternative approach: Applying an optimizer for solving the localization problem</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>Special Topic</td>
<td>week 9</td>
<td>LR</td>
<td>Case of Study: SLAM (Simultaneous Localization and Mapping) or similar problem (to be decided with the students).</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>----------------------</td>
<td>--------</td>
<td>----</td>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td>PSO</td>
<td>week 10</td>
<td>LR</td>
<td>Introduction to PSO (Particle Swarm Optimization)</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>Genetic Algorithms</td>
<td>week 11</td>
<td>LR</td>
<td>Introduction to Genetic Algorithms</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>Fuzzy Logic</td>
<td>week 12</td>
<td>LR</td>
<td>Introduction to Fuzzy Logic</td>
<td>Moodle lecture notes</td>
</tr>
<tr>
<td>Revision</td>
<td>week 13</td>
<td>LR</td>
<td>Revision and discussion</td>
<td>Moodle lecture notes</td>
</tr>
</tbody>
</table>

(note: LR = lecture Room = Civil Eng. 101 (H20))

5. Assessment

<table>
<thead>
<tr>
<th>Assessment task</th>
<th>Length</th>
<th>Weight</th>
<th>Learning outcomes assessed</th>
<th>Assessment criteria</th>
<th>Due date, time, and submission requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projects</td>
<td>4 projects</td>
<td>50%</td>
<td>1,3</td>
<td>Refer to assignments specifications for exact details.</td>
<td>See details in the section about Projects</td>
</tr>
<tr>
<td>Final exam</td>
<td>2 hours</td>
<td>50%</td>
<td>1,2,3</td>
<td>All course content from weeks 1-12</td>
<td>Exam period, date TBC</td>
</tr>
</tbody>
</table>

Necessary conditions in order to pass the course:
a) The exam mark must be 50/100 or higher.
b) The total mark of the project component must be 50/100 or higher.

Projects

<table>
<thead>
<tr>
<th>Task</th>
<th>Weight (of Project component)</th>
<th>Learning outcomes assessed</th>
<th>Assessment criteria</th>
<th>Due date, time, and submission requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 0</td>
<td>0%</td>
<td>(refreshing concepts & skills)</td>
<td>NO</td>
<td>No assessment.</td>
</tr>
<tr>
<td>Task 1</td>
<td>9%</td>
<td>3</td>
<td>Refer to assignment specification for exact details (*).</td>
<td>Meeting with a demonstrator during week 5. (2)</td>
</tr>
<tr>
<td>Task 2</td>
<td>9%</td>
<td>3</td>
<td>Refer to assignment specification for exact details (*).</td>
<td>Meeting with a demonstrator during week 7. (2)</td>
</tr>
<tr>
<td>Project 1</td>
<td>40%</td>
<td>1,3</td>
<td>Refer to assignment specification for exact details (*)</td>
<td>Meeting with a demonstrator during week 10. (2)</td>
</tr>
</tbody>
</table>
Assignments

Presentation

All programs and results must be explained to your demonstrator. A significant portion of the marks are for your knowledge demonstration during your meeting with the demonstrator. A short quiz (for all the students in a lab session), before the demonstration, may be required by the demonstrators. In such cases, the quiz would commence 10 minutes past the nominal starting time of the lab/project session. Students who are not able to attend a demonstration session must apply for special consideration.

At the end of the demonstrations, you must submit all your software and report (if required) in a zipped file, via a Moodle submission site, before midnight of the Friday of the week the assignment is assessed. Details about the format and name convention for programs files and reports will be explained with the release of the tasks and projects.

Submission

Late submissions will be penalised 5 marks per calendar day (including weekends). An extension may only be granted in exceptional circumstances. Where an assessment task is worth less than 20% of the total course mark and you have a compelling reason for being unable to submit your work on time, you must seek approval for an extension from the course convenor *before the due date*. Special consideration for assessment tasks of 20% or greater must be processed through student.unsw.edu.au/special-consideration.

It is always worth submitting late assessment tasks when possible. Completion of the work, even late, may be taken into account in cases of special consideration.

Examinations

You must be available for all tests and examinations. Final examinations for each course are held during the University examination periods, which are June for Semester 1 and November for Semester 2. Provisional Examination timetables are generally published on myUNSW in May for Semester 1 and September for Semester 2.

For further information on exams, please see the Exams section on the intranet. The exam's duration is two (2) hours. It involves substantial part of the theory (presented in the lectures) and also questions about the projects that were solved by the students.

Calculators

You will need to provide your own calculator, of a make and model approved by UNSW, for the examinations. The list of approved calculators is shown at student.unsw.edu.au/exam-approved-calculators-and-computers
It is your responsibility to ensure that your calculator is of an approved make and model, and to obtain an "Approved" sticker for it from the School Office or the Engineering Student Centre prior to the examination. Calculators not bearing an “Approved” sticker will not be allowed into the examination room.

Special Consideration and Supplementary Assessment

For details of applying for special consideration and conditions for the award of supplementary assessment, see the School intranet, and the information on UNSW’s Special Consideration page.

6. Expected Resources for students

All the academic material is provided by the lecturer (Lecture notes, example data, software libraries, example code, sensors and equipment).

In addition to the real-time data provided by the sensors, a dataset of typical measurements are provided for allowing the students to perform play-back sessions and work at home when needed.

7. Course evaluation and development

Feedback on the course is gathered periodically using various means, including the Course and Teaching Evaluation and Improvement (CATEI) process, informal discussion in the final class for the course, Moodle’s forums and the School’s Student/Staff meetings. Your feedback is taken seriously, and continual improvements are made to the course based, in part, on such feedback.

In this course, recent improvements resulting from student feedback includes the practical component, which has been adapted to providing skills and experience in line with the state of the art of the related area of Engineering. More sensors have been added to the experimental and project components of the course.

8. Academic honesty and plagiarism

UNSW has an ongoing commitment to fostering a culture of learning informed by academic integrity. All UNSW students have a responsibility to adhere to this principle of academic integrity. Plagiarism undermines academic integrity and is not tolerated at UNSW. *Plagiarism at UNSW is defined as using the words or ideas of others and passing them off as your own.*

Plagiarism is a type of intellectual theft. It can take many forms, from deliberate cheating to accidentally copying from a source without acknowledgement. UNSW has produced a website with a wealth of resources to support students to understand and avoid plagiarism: student.unsw.edu.au/plagiarism The Learning Centre assists students with understanding
academic integrity and how not to plagiarise. They also hold workshops and can help students one-on-one.

You are also reminded that careful time management is an important part of study and one of the identified causes of plagiarism is poor time management. Students should allow sufficient time for research, drafting and the proper referencing of sources in preparing all assessment tasks.

If plagiarism is found in your work when you are in first year, your lecturer will offer you assistance to improve your academic skills. They may ask you to look at some online resources, attend the Learning Centre, or sometimes resubmit your work with the problem fixed. However more serious instances in first year, such as stealing another student's work or paying someone to do your work, may be investigated under the Student Misconduct Procedures.

Repeated plagiarism (even in first year), plagiarism after first year, or serious instances, may also be investigated under the Student Misconduct Procedures. The penalties under the procedures can include a reduction in marks, failing a course or for the most serious matters (like plagiarism in an honours thesis) even suspension from the university. The Student Misconduct Procedures are available at www.gs.unsw.edu.au/policy/documents/studentmisconductprocedures.pdf.

Further information on School policy and procedures in the event of plagiarism is available on the intranet.

9. Administrative Matters

All students are expected to read and be familiar with School guidelines and polices, available on the intranet. In particular, students should be familiar with the following:
* Attendance, Participation and Class Etiquette
* UNSW Email Address
* Computing Facilities
* Assessment Matters (including guidelines for assignments, exams and special consideration)
* Academic Honesty and Plagiarism
* Student Equity and Disabilities Unit
* Health and Safety
* Student Support Services

Jose E. Guivant
20 February 2016
Program Intended Learning Outcomes

PE1: Knowledge and Skill Base
- PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals
- PE1.2 Conceptual understanding of underpinning maths, analysis, statistics, computing
- PE1.3 In-depth understanding of specialist bodies of knowledge
- PE1.4 Discernment of knowledge development and research directions
- PE1.5 Knowledge of engineering design practice
- PE1.6 Understanding of scope, principles, norms, accountabilities of sustainable engineering practice

PE2: Engineering Application Ability
- PE2.1 Application of established engineering methods to complex problem solving
- PE2.2 Fluent application of engineering techniques, tools and resources
- PE2.3 Application of systematic engineering synthesis and design processes
- PE2.4 Application of systematic approaches to the conduct and management of engineering projects

PE3: Professional and Personal Attributes
- PE3.1 Ethical conduct and professional accountability
- PE3.2 Effective oral and written communication (professional and lay domains)
- PE3.3 Creative, innovative and pro-active demeanour
- PE3.4 Professional use and management of information
- PE3.5 Orderly management of self, and professional conduct
- PE3.6 Effective team membership and team leadership